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Abstract: We show that a source which radiates in the vacuum of the strongly coupled

N = 4 SYM theory produces an energy distribution which, in the supergravity approxi-

mation, has the same space-time pattern as the corresponding classical distribution: the

radiation propagates at the speed of light without broadening. We illustrate this on the ba-

sis of several examples: a small perturbation propagating down a steady string, a massless

particle falling into AdS5, and the decay of a time-like wave-packet. A similar observation

was made in Phys. Rev. D81 (2010) 126001 for the case of a rotating string. In all these

cases, the absence of broadening is related to the fact that the energy backreaction on the

boundary arises exclusively from the bulk perturbation at, or near, the boundary. This

is so since bulk sources which propagate in AdS5 at the speed of light do not generate

any energy on the boundary. We interpret these features as an artifact of the supergrav-

ity approximation, which fails to encode quantum mechanical fluctuations that should be

present even in the strong coupling limit. We argue that such fluctuations should enter the

dual string theory as longitudinal string fluctuations, which are not suppressed at strong

coupling. We heuristically estimate the effects of such fluctuations and argue that they re-

store the broadening of the radiation, in agreement with expectations from both quantum

mechanics and the ultraviolet/infrared correspondence.
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1 Introduction

Understanding gauge theory dynamics beyond perturbation theory, and in particular at

strong coupling, represents one of the major desiderata of theoretical physics, with ram-

ifications going from high-energy to condensed matter physics. Recent years have seen

some important progress in that sense thanks to the theoretical breakthrough known as

the AdS/CFT correspondence (or, with a somewhat more general sense, the gauge/string

duality) [1–3], which allows one to study the strong coupling regime of some special, highly

symmetric, gauge theories via weak coupling techniques in a ‘dual’ string theory. Further

efforts in that direction have been triggered by the experimental observation of strong cou-

pling aspects in the dynamics of the quark-gluon plasma — the high-temperature, decon-

fined, phase of QCD, which is produced in the intermediate stages of a heavy ion collision

at RHIC and, more recently, at the LHC. This plasma corresponds to a physical regime

where QCD itself is not so far away from its conformal ‘cousins’, so like the N = 4 su-

persymmetric Yang-Mills (SYM), to which the AdS/CFT correspondence has been widely
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tested. This observation stimulated applications of AdS/CFT to time-dependent phenom-

ena (see, e.g., the review papers [4–6] and refs. therein), among which the problem of the

radiation at strong coupling [7–21, 23, 24].

In particular, some of these studies addressed the space-time distribution of the ra-

diated energy, whose calculation in AdS/CFT is quite complex, as it requires solving a

gravitational backreaction problem (see below). Motivated by the phenomenology of the

quark-gluon plasma, the first such studies were concerned with the finite-temperature prob-

lem — e.g., the medium-induced radiation by a heavy quark propagating through a strongly

coupled plasma [13, 14, 17–19]. More recently, similar problems have been addressed also

in the context of the vacuum of the N = 4 SYM theory [15, 16, 20, 22, 23]. One of these

studies — that of the synchrotron radiation in ref. [23] — produced some very interesting

and intriguing results, which in particular triggered our present analysis.

Before we describe these results and our present work, let us recall that all the

AdS/CFT calculations aforementioned have been performed in the supergravity approx-

imation (SUGRA), which is the semiclassical limit of the string theory in which both

string loops and internal string excitations are neglected. This approximation is generally

assumed to faithfully describe the strong ‘t Hooft coupling limit of the N = 4 SYM theory,

that is, the limit λ = g2Nc → ∞ with fixed g ≪ 1 (g is the Yang-Mills coupling and Nc the

number of colors). However, in this work we shall give arguments suggesting that this is

not always the case: SUGRA seems unable to capture the detailed space-time distribution

of the radiation emitted in the vacuum and in the strong coupling limit. This is so since, as

we shall demonstrate, this distribution is affected by longitudinal string fluctuations which

are not suppressed in the strong coupling limit.

Our arguments in that sense will be constructed in two steps, with different degrees of

rigor: (1) a supergravity calculation of the energy backreaction in sections 2 and 3, which is

very explicit and in some cases even exact, and (2) a calculation of the string fluctuations

in section 4, which is semi-heuristic (in the sense of using string quantization in flat space-

time), but which we believe to capture the salient features of the actual situation in curved

space-time. In what follows, we shall describe these two steps in more detail.

The first step involves explicit calculations of the energy distribution produced in the

supergravity approximation by various types of sources radiating in the vacuum of N = 4

SYM. One purpose of this analysis is to demonstrate that the main result in ref. [23] is in

fact generic (and not specific, say, to the special geometry of the rotating quark). Namely,

the supergravity prediction for the radiation emitted by an arbitrary source exhibits the

same space-time pattern as the corresponding classical result, without any trace of broad-

ening. By ‘broadening’ we mean off-shell effects, which would be natural in a quantum

field theory (and even more so at strong coupling !) and would yield components of the

radiation which propagate slower than light, thus leading to a spreading in the radiation

emitted by a source which is localized in space and time. But our calculations show that, in

the SUGRA limit, the radiation always propagates at the speed of light, so like the solution

to the classical Maxwell equations. For instance, a point-like source at r = 0 which is a

pulse in time with duration σ generates a thin spherical shell of energy, which is localized

at r = t with a width equal to σ.
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One reason why this lack of broadening looks so surprising is because, at a first sight

at least, it seems to contradict the ultraviolet/infrared (UV/IR) correspondence [25, 26],

which is one of the pillars of the gauge/string duality. In order to explain this puzzle, let

us first recall some elements of the AdS/CFT formalism and thus fix some notations.

The five-dimensional (5D) Anti de Sitter space-time AdS5 where the string theory

is formulated can be viewed as a product between the 4D Minkowski space-time (the

‘boundary’ of AdS5) times a ‘radial’1 (or ‘fifth’) dimension, that we shall denote as z, in

conventions where 0 ≤ z < ∞ and the Minkowski boundary lies at z = 0 (see eq. (2.1)

for the precise form of our metric). Roughly speaking, this fifth dimension acts as a

reservoir of quantum fluctuations for the dual gauge theory. The UV/IR correspondence

is a more precise version of this statement. This is a unique tool allowing for the physical

interpretation of the results of the string theory back to the original gauge theory.

Specifically, the UV/IR correspondence relates the typical energy/momentum scales

(or, by the uncertainty principle, the space-time scales) of the physical phenomenon on the

‘boundary’ to the radial (z) position of the string excitation in the ‘bulk’. For real-time

phenomena like radiation, there are at least two types of scales which can be encoded in

this way: (i) the overall size R of the phenomenon on the boundary,2 which with our

present conventions is proportional to the radial penetration z of the dual excitation in the

bulk, and (ii) the space-time virtuality ∆s2 on the boundary (say, the difference t2 − r2

in the case of the spherical shell of radiation alluded to above), which is proportional to

the position z of the string source in the bulk at the time of emission. For the physical

problems that we have in mind and that we shall discuss in this paper, the above statements

are direct consequences of causality within the framework of the string theory calculation

of the backreaction. This is the calculation of the energy density on the boundary from the

response of the AdS5 metric to the 5D stress tensor of the string excitation (which for this

purpose plays the role of a ‘source’).

How do these scaling arguments apply to the supergravity results for radiation at

strong coupling? First of all, we should say that they work fine for the radiation emitted

in a medium [13, 14, 18, 19]. For instance, a heavy quark moving at constant speed in the

N = 4 SYM plasma at temperature T is dual to the ‘trailing string’ — a Nambu-Goto

string attached to the quark and pulled by the latter through the AdS5 black hole geometry

representing the plasma. Each bit of this string, which in the 5th direction extends from

the Minkowski boundary down to the black hole horizon at z ∼ 1/T , yields a contribution

to the energy on the boundary with a transverse width proportional to the location z of

that bit [13, 14, 19]. In particular, when z (and hence the transverse width) becomes of

order 1/T , this is a sign that the respective component of the radiation has thermalized

(and then propagates as a hydrodynamical wave in the medium [14]).

Returning to the problem of the radiation in the vacuum, we note that the first ‘UV/IR

correlation’ above — that between the overall size and the radial penetration of the dual

1Following standard conventions, we shall use the word ‘radial’ in relation with both the 5th dimension

z, and the physical radius r = |r| in 3 dimensions. The precise meaning should be clear from the context.
2Here R refers to a frame where the center of mass of the energy distribution is at rest; in other frames,

one must take into account the Lorentz contraction (see e.g. the discussion in section 2.1).
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excitation in the bulk — is indeed respected, as is easy to see for a localized excitation. For

instance, for the ‘pulse on the boundary’ alluded to above (more precisely, a time-like wave-

packet which can represent the virtual photon produced in electron-positron annihilation),

we shall find that the dual bulk perturbation propagates like a massless particle falling

into AdS5 (a wave-packet centered at z = t). This is in agreement with the fact that, on

the boundary, the energy density expands as a spherical shell at r = t (see the discussion

in sections 3.1 and 3.2). A similar situation holds when the physical source is a heavy

quark whose dual object in the bulk is a Nambu-Goto string. Then, the bulk perturbation

which propagates at the 5D speed of light is a bit of energy flowing down the string. (The

calculation of this 5D velocity requires a careful separation of the radiative part from

the Coulomb part of the energy, which are both encoded in the Nambu-Goto string; see

section 2.3 and the subsequent publication [27] for more details.) This is in agreement with

the fact that the radiation produced via backreaction on the boundary expands outward at

the speed of light, as found in [23] for the rotating string and as we shall see in section 2.2

below for a small but generic string perturbation.

What about the other ‘UV/IR correlation’, that between the space-time virtuality

of the radiation on the boundary and the position z of its source in the bulk? At first

sight, this seems to be violated by the SUGRA results that we are aware of: the radiation

propagates in the vacuum without broadening, so like massless, on-shell, quanta, in spite

of the fact that there are sources in the bulk at arbitrary large distances z. Such a violation

would be very strange though: as we shall argue in section 2.2, the correlation between

the broadening of the distribution on the boundary and the position of the source in the

bulk is simply a consequence of causality. (Such a correlation is for instance manifest

in the calculation of the ‘glueball’ density TrF 2
µν produced on the boundary by a small

perturbation of a static string [28].) And indeed a closer inspection of the calculations in

sections 2 and 3 and also in ref. [23] reveals that this apparent contradiction is solved by

the fact that, in all these calculations, the whole backreaction on the boundary (in terms of

radiation) comes from sources in the bulk which are located close to the boundary, within

a distance in z set by the width σ of the physical perturbation. In particular, in the

limit where the physical source has zero width, the backreaction on the boundary comes

exclusively from the limit z → 0 of the perturbation in the bulk.3

But whereas it solves a potential conflict with the UV/IR correspondence, this last

observation introduces another puzzle: why should bulk sources which lie far away from

the boundary have no reflection in terms of energy density in the physical gauge theory ?

Our investigations will allow us to elucidate the mathematical origin of this mysterious

property in the context of the SUGRA calculations: it arises from the fact that bulk sources

which propagate in AdS5 at the speed of light do not generate any energy backreaction on

the boundary.4 This property is quite intuitive when the source is moving parallel to the

3In fact, even in more general cases where the physical source is delocalized on the boundary (like the

rotating quark in ref. [23]) it appears that, via appropriate changes of variables in the convolutions expressing

the backreaction, one can obtain the whole result for the energy density as an endpoint contribution, coming

from the boundary endpoint (z = 0) of the integral over z [23, 27].
4The importance of the bulk propagation at the speed of light for the problem of the synchrotron
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boundary, that is, it stays at a fixed value of the 5th coordinate z: then, the backreaction is

a gravitational shock-wave [30] which, because of Lorentz time dilation, is fully generated at

very early times t → −∞ (see section 2.1 below). In that case, there is naturally no energy

backreaction from any finite value of t. Similarly, for the case of a massless particle falling

into AdS5 at the speed of light (say, along the 5th dimension), we shall find that there

is no energy backreaction except from the starting point of the trajectory at t = z = 0.

The corresponding backreaction is a gravitational shock-wave with zero width (since fully

generated at z = 0) and whose intersection with the boundary is a spherical shell moving

outward with r = t.

For motion at the speed of light which is oriented towards the interior of AdS5, one can

formally interpret the absence of energy backreaction as a kind of ‘Lorentz time dilation’,

but only after performing a special change of coordinates which mixes the fifth dimension

with one of the spatial dimensions (see section 4.1). In these new coordinates, the prop-

agation of the radiation without broadening appears as ‘Lorentz contraction’. But we do

not find this interpretation as very natural, or useful.

More generally, we believe that there is no physical foundation for this property of

the supergravity approximation, which is the lack of broadening for radiation at strong

coupling. Indeed, this seems difficult to reconcile with general expectations about the

dynamics in an interacting quantum field theory, like the importance of off-shell effects

generated by virtual quantum fluctuations. In particular, this property is inconsistent

with a physical picture for parton branching at strong coupling [16], which is supported

by other AdS/CFT calculations, like those concerning the anomalous dimensions for the

leading-twist operators [31–34], the structure functions for deep inelastic scattering [35–

38], or the angular distribution of the energy density produced via the decay of a time-like

wave-packet [15]. Note however that none of these previous calculations has investigated

the detailed space-time distribution of the energy density, so they could not encounter the

difficulties that we are concerned with here.

Motivated by such considerations which make us feel uncomfortable with the super-

gravity prediction for the energy distribution, we shall proceed in section 4 to a study of

the stability of this approximation with respect to string fluctuations. Such a study is nec-

essarily heuristic since the quantization of the string fluctuations in curved space-time is

an unsolved problem. Here, we shall follow a pragmatic approach proposed by Hofman and

Maldacena [15], which consists in using string quantization in flat space and the light-cone

(LC) gauge together with a special change of coordinates, introduced in [39], which mixes

the fifth coordinate z with one of the spatial coordinates (see section 4.1). Hofman and

Maldacena used this strategy to study the angular distribution of the energy produced by

radiation in AdS/CFT has been also recognized in the recent paper [29]. There it is shown that each energy

bit flowing down the rotating string generates a backreaction in the form of a gravitational shock-wave and

that, by superposing such shock-waves for all the bits along the string, one obtains a pattern for the energy

density on the boundary which is similar to that found in [23]. However, it was not realized there that each

of these shock-waves is in fact generated via backreaction from z ≈ 0 (that is, from the very early stages of

the trajectory of each energy bit) and that this is the reason why the resulting energy distribution shows

no more broadening than the classical one.
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the decay of a time-like wave-packet. They computed only the energy density integrated

over the spatial radius r, so they could not notice that the energy is actually localized on a

thin shell at r = t. For that particular set-up, they have shown that the energy distribution

in the SUGRA approximation is isotropic event by event and that the string corrections

to it — which involve the transverse string fluctuations — are suppressed, as expected, in

the strong coupling limit.

Here, however, we shall be concerned with the radial (r) distribution of the energy

density, which in the coordinates of ref. [39] receives corrections from the longitudinal5 string

fluctuations. The latter are not independent degrees of freedom, rather they are related to

the transverse fluctuations via the constraints of the LC gauge, but this relation is such

that the longitudinal fluctuations are not suppressed as λ → ∞. This last property is well

known (it is manifest in textbook treatments of string quantization in flat space [40, 41]),

yet we are not aware of any application of it in the context of AdS/CFT. This is most likely

so because the longitudinal degrees of freedom do not directly participate in standard string

problems like the scattering between two strings.

Following the strategy in [15], in section 4.2 we shall show that the radial distribution

of the energy density receive sizeable corrections from the longitudinal string fluctuations.

These corrections are independent of λ — at least up to issues of ultraviolet divergences,

that we shall shortly comment on. Hence they are a part of the leading order result in

the strong coupling limit and they act, as expected, towards spreading the distribution

in r − t. Moreover this spreading is such that the UV/IR correspondence is respected: a

contribution to the energy density from string fluctuations at z yields a spreading t−r ∼ z.

Our present analysis cannot be seen as definitive, first, because of the lack of rigor

in the string quantization prescription and, second, because the analysis in section 4.2

is plagued with ultraviolet divergences, as is generally the case for problems involving

string fluctuations in flat space. Polchinski and Susskind have argued that, in AdS5 the

UV divergences should be cured by the warp factor [42]. We do not know whether the

arguments in ref. [42] can be extended to the longitudinal fluctuations of interest to us

here. But independently of such issues, which require further clarifications, we believe that

our results provide solid evidence in favor of the failure of the supergravity approximation

for the observables which are sensitive to longitudinal string fluctuations.

2 Classical strings

In this section, we shall present our first example of a supergravity calculation of radiation

at strong coupling, whose result shows the remarkable feature outlined in the Introduction:

the radiated energy propagates without broadening, in spite of having bulk sources at

arbitrarily large distances in the 5th dimension.

Specifically, in section 2.2 we shall compute the energy density radiated by a small

perturbation (‘pulse’) propagating along a steady string. In physical terms, the string

describes the wavefunction of a heavy quark and the pulse represents its response to an

external perturbation acting for a short lapse of time. The condition that the string

5By which we mean the space-time direction longitudinal in the sense of the LC gauge; see section 4.
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perturbation remain small is equivalent to the non-relativistic approximation for the motion

of the heavy quark. We shall find that the whole contribution to radiation (as obtained

after subtracting the Coulomb piece of the energy) is generated via backreaction from the

string endpoint at the boundary alone. Via the UV/IR correspondence, this property is

correlated with the lack of broadening alluded to above.

But before turning to the string perturbation, we shall first review, in section 2.1,

the calculation of the energy backreaction for an unperturbed string moving at constant

speed. Besides allowing us to introduce the general formalism in a simpler setup, this

problem is interesting also in that it offers a conceptually simple example where the UV/IR

correspondence works as expected — in relation with the Coulomb energy of the heavy

quark. Moreover, in this context we shall for the first time observe a property which will

play an important role later on: a bulk source which propagates at the 5D speed of light

does not generate any energy on the Minkowski boundary.

Finally in section 2.3 we shall argue that this last property is responsible for the

lack of backreaction from string points away from the boundary, for both the small string

perturbation studied in section 2.2 and the rotating string problem discussed in ref. [23].

2.1 Heavy quark with constant velocity

Consider an on-shell heavy quark moving with constant velocity υ < 1 along the x ≡ x1

axis within the vacuum of the N = 4 SYM theory. In the dual string theory, and with a

convenient choice of coordinates in AdS5, this is described as a Nambu-Goto string attached

to a D7-brane hanging vertically along the radial direction of AdS5 and moving at constant

speed υM = υ δM1. (M = 0, 1, 2, 3, 5 are vector indices for AdS5: the first four indices refer

to the Minkowski components, and the 5th one to the radial direction.) Specifically, using

the so-called Poincaré coordinates,

ds2 ≡ GMNdxMdxN =
L2

z2

[

− dt2 + dr
2 + dz2

]

, (2.1)

together with the temporal-gauge parametrization XM (τ, σ) ≡ XM (t, z) for the string

world-sheet, the string embedding function reads XM = (t, υt, 0, 0, z). In eq. (2.1), r =

(x1, x2, x3) and we shall often use the notations x ≡ x1 and x⊥ ≡ (x2, x3). The variable

z along the string is restricted to z ≥ zm where zm =
√

λ/(2πmq) is the radial position

of the D7-brane and mq is the mass of the heavy quark. In what follows we shall assume

the quark to be heavy enough for zm to be much smaller than all the other scales in the

problem (e.g., the space-time locations where we measure the energy density), and we shall

often set zm = 0 in explicit calculations.

The moving quark generates (color) electric and magnetic fields, which are simply the

boosted versions of the Coulomb field produced by the quark in its rest frame. We would

like to compute the energy density E ≡ 〈T00〉 which is stored in these fields. Within the

supergravity context, this is obtained from the ‘backreaction’ of the associated Nambu-

Goto string on the Minkowski boundary [43, 44]. The respective construction is in fact

more general than the specific quark/string problem at hand — it applies whenever we
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have a ‘source’ of energy and momentum in the bulk, with 5D stress tensor tMN , which is

dual to some physical perturbation, or bound state, in the boundary gauge theory.

In what follows, we shall exhibit the general formulæ expressing the energy backre-

action for the type of problems of interest to us here — namely, for bulk sources which

are dual to small perturbations of the N = 4 SYM vacuum. (This is in particular the

case for the heavy quark problem under consideration.) By ‘small perturbations’, we more

precisely mean sources tMN which in the limit Nc → ∞ scale like N0
c = 1, so the associated

change hMN ≡ δGMN in the bulk metric is a small effect of O(1/N2
c ). To compute this

effect, it is enough to solve the linearized version of the 5D Einstein equations. The gauge

theory stress tensor 〈Tµν〉 is finally inferred from a study of the behaviour of the metric

perturbation hMN near the Minkowski boundary at z = 0. By working in a gauge where

h5M = 0 and denoting

Hµν ≡ z2

L2
hµν = H(3)

µν z3 + H(4)
µν z4 + O(z5), (2.2)

one can compute the gauge theory expectation value of the stress tensor from the coefficient

of z4 in the above small–z expansion:

Tµν =
2L3

κ2
5

H(4)
µν =

N2
c

2π2
H(4)

µν . (2.3)

Although it amounts to solving linearized equations of motion, the calculation of HMN

is quite involved, because of the many coupled equations for the (generally) fifteen in-

dependent components. However, this calculation can be more economically organized

by recognizing that the fifteen ‘independent’ components of HMN depend upon only five

gauge-invariant degrees of freedom, in agreement with the number of physical degrees of

freedom expected for the 4D stress tensor Tµν . These physical degrees of freedom (linear

combinations of HMN and its derivatives) can be chosen in (arbitrarily) many ways, and

here we shall follow the procedure in [23], from which we shall simply quote the relevant

results (see refs. [14, 45] for other such choices).

Namely, specializing to E ≡ T00 and using eq. (3.62) in ref. [23], one finally arrives at

the following expression for the energy density at a space-time point xµ = (t, r) on the

boundary:

E(t, r) = EA(t, r) + EB(t, r) (2.4)

where

EA =
2L3

π

∫

d4ŕ dz

z2
Θ(t − t́)δ′′(W)

[

z(2t00 − t55) − (t − t́)t05 + (x − x́)iti5
]

, (2.5)

EB =
2L3

3π

∫

d4ŕ dz

z
Θ(t − t́)δ′′′(W)

[

|r−ŕ|2(2t00−2t55+tii)−3(x−x́)i(x−x́)jtij
]

. (2.6)

In these equations, the bulk point with coordinates (t́, ŕ, z) is the source point from which

originates the perturbation and d4ŕ ≡ dt́ d3
ŕ. (Throughout this paper, we shall systemat-

ically use the symbol acute for the spatial coordinates of a point belonging to a source in
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the bulk.) Furthermore, the quantity

W = −(t − t́)2 + (r − ŕ)2 + z2 . (2.7)

is proportional to the 5D invariant distance between that source point in the bulk and the

point of measurement on the boundary. The δ-function δ(W), which enters via the (re-

tarded) bulk-to-boundary propagator [23], shows that the metric perturbation propagates

throughout AdS5 at the 5D speed of light (which is equal to one in our present conven-

tions), as expected for classical, massless fields in AdS5 — in this case, gravitational waves.

The presence of derivatives of the δ-function may seem peculiar, but it is a generic feature

of retarded propagators in AdS, as we shall show in appendix B where we construct the

respective scalar propagator. The derivatives of δ(W) in eqs. (2.5) and (2.6) can be taken

as derivatives w.r.t. one of the external variables appearing in W and subsequently pulled

out of the integrand, but caution is needed since there might be explicit dependence on

that variable in the integrand. In such cases it is better to write

δ(n)(W) = lim
ǫ→0

∂n
ǫ δ(W + ǫ). (2.8)

As already emphasized, eqs. (2.5) and (2.6) hold for an arbitrary bulk source with

(parametrically small) stress tensor tMN . When this source is a string — the case of interest

in this section —, there are some simplifications due to the fact that, for a string, tMN has

support only on the 2D string world-sheet. Using the parametrization XM = (t, rs(t, z), z)

for the latter, one has tMN (t́, ŕ, z) ∝ δ(3)(ŕ − rs(t́, z)) and then the spatial integrations in

eqs. (2.5) and (2.6) are trivially done.

More explicitly, for a generic string profile XM = (t, rs(t, z), z), one has

tMN (t, r, z) = − T0√
−G

√−g gab ∂aX
M ∂bX

N δ(3)(r − rs) . (2.9)

where T0 =
√

λ/2πL2 is the string tension, GMN is the (unperturbed) AdS5 metric from

eq. (2.1), and gab, with a, b = t, z, is the induced metric on the string world-sheet:

gab = GMN∂aX
M∂bX

N , −g =
(

∂tX · ∂zX
)2 −

(

∂tX
)2(

∂zX
)2

. (2.10)

In what follows, we shall often use a dot (prime) to denote a derivative w.r.t. t (z).

Armed with such general formulæ, we now return to the case of a heavy quark at

constant velocity, for which we have XM = (t, υt, 0, 0, z). The respective 5D bulk stress

energy tensor is easily obtained as

tMN =

√
λ

2π

γz

L3
δ(2)(x⊥) δ(x − υt)







1 −υ 0

−υ υ2 0

0 0 υ2 − 1






, (2.11)

where, with increasing order, the elements correspond to the t, x and z-components, while

all the elements which involve at least one transverse component are identically zero and

are not shown. γ = 1/
√

1 − υ2 is the Lorentz contraction factor. Using eq. (2.5) we find

EA =

√
λ

π2
γ(3 − υ2)∂2

x
2

⊥

∫

dz dt́ δ(W) , (2.12)
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where for the situation at hand

W = −(t − t́)2 + (x − υt́ )2 + x
2
⊥ + z2 . (2.13)

Solving the constraint W = 0 and taking into account only the retarded solution, we write

δ(W) =
γδ[t́ − γ2(t − υx) + γ

√

x
2
⊥ + z2 + γ2(x − υt)2]

2
√

x
2
⊥ + z2 + γ2(x − υt)2

. (2.14)

Integrating over t́ and taking the two derivatives we obtain

EA =
3
√

λ

8π2
γ2(3 − υ2)

∫

dz

[x2
⊥ + z2 + γ2(x − υt)2]5/2

. (2.15)

The integral over z can be easily performed to yield

EA =

√
λ

4π2

γ2(3 − υ2)

[x2
⊥ + γ2(x − υt)2]2

. (2.16)

Here, however, we are less interested in the final result for the energy density on the

boundary, but more in the way how this result gets built by adding contributions coming

from different points z inside the bulk. We shall return to this issue in a moment, but

before that let us also compute the second term EB. Starting from eq. (2.6) we have

EB =

√
λγ

3π2
lim
ǫ→0

∂3
ǫ

∫

dz dt́ δ(W + ǫ)
[

(4 − υ2)x2
⊥ + 4(1 − υ2)(x − υt́)2

]

. (2.17)

It is straightforward to integrate over t́ using the δ-function, differentiate three times w.r.t.

ǫ, set ǫ = 0 and finally integrate over z to arrive at

EB = −
√

λγ2

6π2

(4 − 2υ2)[x2
⊥ + γ2(x − υt)2] + υ2γ2(x − υt)2

[x2
⊥ + γ2(x − υt)2]3

. (2.18)

Adding the two contributions we obtain the expected result [13, 14, 19]

E =

√
λγ2

12π2

(1 + υ2)x2
⊥ + (x − υt)2

[x2
⊥ + γ2(x − υt)2]3

. (2.19)

When υ → 1 this formula approaches a shock-wave, as expected from Lorentz contraction:

E =

√
λγ

16πx
3
⊥

δ(x − t). (2.20)

This is in agreement with the shock-wave constructed in [30, 46] when the latter is in-

tegrated over all source positions z∗ in the bulk with a weight proportional to 1/z2
∗ , as

suggested from the expression of the static energy of a string hanging down.

We now turn to our main interest in this calculation, which is to show that the UV/IR

correspondence is indeed satisfied in this case, in a rather precise, quantitative way. Specif-

ically, a bit of the string located at radial distance z from the boundary contributes pre-

dominantly to the Coulomb energy density around the space-time points xµ = (t, x,x⊥)
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with x⊥ ∼ γ(x − υt) ∼ z (here, x⊥ = |x⊥|). This is simply the Lorentz boosted version of

the (perhaps more familiar) statement that, in the rest frame of the heavy quark (υ = 0),

a bit of the string at z is responsible for the backreaction at points r with r ≡ |r| ∼ z.

This follows by inspection of the convergence properties of the integral over z in eq. (2.15)

and the corresponding one for EB.

Consider eq. (2.15) for definiteness and assume that x⊥ ∼ γ(x−υt) and they are both

very large as compared to the lower limit zm in the integral over z (which has been kept

implicit in equations like (2.12)). We can divide the integration range into three domains:

(i) z ≪ x⊥, (ii) z ≃ x⊥, and (iii) z ≫ x⊥. In domain (i), we can neglect z within

the integrand and the ensuing integral, that is,

I1 ≈
∫ x⊥

zm

dz

[x2
⊥ + γ2(x − υt)2]5/2

≈ x⊥
[x2

⊥ + γ2(x − υt)2]5/2
∼ 1

x4
⊥

, (2.21)

is dominated by its upper limit z ≃ x⊥ (at least parametrically and for relatively large

values of x⊥). In domain (iii), the external coordinates can be neglected and then

I3 ≈
∫ ∞

x⊥

dz

z5
∼ 1

x4
⊥

, (2.22)

where this time the integral is dominated by its lower limit, that is, z ≃ x⊥ once again.

Thus, the integral is indeed controlled by values z ∼ x⊥. This is the expected manifes-

tation of the UV/IR correspondence for the problem at hand. Note also the way how

this correspondence works in the presence of a Lorentz boost: the longitudinal extent

x − υt of the energy generated by a bit of string at z scales like x − υt ∼ z/γ; this is the

Lorentz-contracted version of the corresponding extent x⊥ ∼ z in transverse directions.

The second issue of interest to us here is the typical value of the ‘emission’ time t́ which

contributes to the backreaction. We would like to show that, in the ultrarelativistic limit

v → 1, or γ → ∞, the whole contribution to the energy density — which in that limit takes

the form of the shock-wave (2.20) — comes from very early times t́ → −∞. The corollary

of that is that a bit of the string which propagates through AdS5 at the 5D speed of light6

does not produce any backreaction on the boundary (since there is no contribution to the

energy density (2.20) from any finite t́).

To show that, we shall rely on the expression for the emission time that can be read

off eq. (2.14), that is,

t́ = γ2(t − υx) − γ
√

x
2
⊥ + z2 + γ2(x − υt)2 . (2.23)

Let us focus on a bit of string at a fixed value of z. We have just seen that, this particular

piece of string will contribute to the backreaction at x⊥ , γ(x − υt) ∼ z. When γ → ∞,

the response is peaked at x − t ∼ z/γ → 0 (as also manifest on eq. (2.20)) and then it is

convenient to write x ≡ t− δx̄/γ, where the quantity δx̄ ∼ z thus defined remains fixed as

6Note that for the uniformly moving heavy quark, the 4D velocity of the heavy quark on the boundary

coincides with the 5D velocity of any bit of the vertical string in AdS5.
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v → 1. Simple algebra using 1 − v ≃ 1/2γ2 as v → 1 implies

t − υx = t(1 − υ) + υ
δx̄

γ
≃ t

2γ2
+

δx̄

γ
,

x − υt = t(1 − υ) − δx̄

γ
≃ t

2γ2
− δx̄

γ
, (2.24)

and hence

t́ ≃ t

2
+ γδx̄ − γ

√

x
2
⊥ + z2 + [(t/2γ) + δx̄]2 → γδx̄ − γ

√

x
2
⊥ + z2 + δx̄2 , (2.25)

where the last limit hold as v → 1 at fixed t. Clearly t́ < 0 for any t and finite value of γ,

and t́ → −∞ when γ → ∞, as anticipated.

For the problem at hand, where the 5D velocity of any bit of string is parallel to the

Minkowski boundary, the above property is easy to understand: this is merely a conse-

quence of Lorentz time dilation. But as we shall later discover, the same mathematical

property — the fact that there is no boundary backreaction from sources which propagate

inside AdS5 at the 5D speed of light — holds whatever the direction of motion of the

sources inside the bulk and in particular for sources falling along z.

2.2 Small pulse down the string

Whereas the previous calculation was merely a warm-up exercice, which permitted us to

fix the notations and introduce some general formulæ, the calculation to follow will provide

us with the first non-trivial example of the phenomenon that we would like to emphasize

throughout this paper: a source which radiates in the vacuum of the strongly coupled

N = 4 SYM theory produces an energy density which exhibits no quantum broadening in

the supergravity approximation.

Here, the source will be the heavy quark which is accelerated under the action of a

weak7 but otherwise arbitrary external force, and thus can radiate quanta of N = 4 SYM.

From the perspective of the dual, gravity, calculation, this means that the endpoint of

the string at the boundary is forced to follow some arbitrary motion, whose amplitude is

weak and slowly varying in time (see below for the precise conditions). Via the (linearized)

equations of motion, this perturbation of the endpoint propagates as a small perturbation

of the shape of the string inside the bulk.

Furthermore, the lack of quantum broadening means that the energy density radiated

by the quark — i.e., the backreaction produced by the string perturbation on the boundary

— exhibits the same, localized, distribution in space and time as the corresponding solution

of the classical Maxwell equations: the radiated energy appears to propagate at the 4D

speed of light, so like classical fields or free massless quanta. As we shall see, the absence

of broadening is a consequence of the fact that the string backreaction responsible for

radiation is restricted to the string endpoint at z = 0 alone.

For simplicity, we shall assume that the string is at rest in the absence of the external

perturbation and that its deformation from a vertical line is restricted to just one spatial

7The case of a large, but uniform, angular acceleration has been studied in ref. [23] and will be also

discusses in section 2.3 below; other cases will be considered in a subsequent paper [27].
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direction: the x ≡ x1 axis. (If the latter condition is satisfied by the string endpoint,

then it is automatically satisfied by the string perturbation anywhere in the bulk.) We

shall present explicit results for arbitrary small perturbations, but the physically most

transparent example is that of an external force which is localized in time — a ‘kick’ acting

on the heavy quark. The associated string perturbation is a pulse which propagates down

the string. The corresponding backreaction has been already computed in ref. [28], but only

insofar as the ‘dilaton’ field (the expectation value of the operator Tr F 2
µν) is concerned. As

we shall later explain, that particular case is rather peculiar and in any case very different

from the backreaction for the energy density.

Consider therefore a string which in the absence of any external perturbation is ‘sitting’

at r = 0. (The corresponding formulæ are obtained by letting υ → 0 in all the formulæ

in section 2.1.) Under the action of an external force, the string endpoint acquires a time-

dependent deviation xq(t) along the x axis, which is ‘small’ in a sense to be shortly specified.

Then the general perturbation of the string can be parametrized as xs(t, z) with boundary

condition xs(t, z = 0) = xq(t). The string embedding functions are XM = (t, xs, 0, 0, z)

and the Nambu-Goto action takes the form

S = −T0

∫

dt dz
√−g = −T0

∫

dt dz|G00|
√

1 − ẋ2
s + x′2

s (2.26)

with G00 = −L2/z2. Varying xs → xs + δx(t, z) and requiring the action to be stationary

we obtain the classical string equation of motion (EOM)

∂

∂t

ẋs
√

1 − ẋ2
s + x′2

s

− 1

|G00|
∂

∂z

|G00|x′
s

√

1 − ẋ2
s + x′2

s

= 0. (2.27)

Assuming that |ẋs|, |x′
s| ≪ 1 the EOM linearizes in xs and becomes

(

∂2
t − ∂2

z +
2

z
∂z

)

xs = 0. (2.28)

The general retarded solution to eq. (2.28) with the given boundary condition is

xs(t, z) = xq(t − z) + zẋq(t − z). (2.29)

Notice that this is the linear approximation to the general solution of the EOM [7]

t = tq + γqz, xs = xq + γqẋqz, (2.30)

where xq, ẋq and γq are evaluated at tq. Interestingly, the linear approximation is tanta-

mount to letting γq → 1, that is, it is tantamount to the non-relativistic approximation

for the motion of the quark on the boundary. In general, it is helpful to think that the

boundary motion can be parametrized as

xq = x0f(t/τ, . . . ), (2.31)

where τ is the smallest time scale in the problem and the dots stand for the dependence

on the remaining time scales. Then one can see that the linear approximation holds under
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the conditions that x0 ≪ τ and z ≪ τ2/x0. Thus, even for boundary perturbations whose

amplitude x0 is arbitrarily small, the linear approximation can be trusted only up to some

maximal penetration z inside the bulk, beyond which the string perturbation (which is

amplified by the scale factor z) becomes relatively large.

To be more specific, let us consider a perturbation which is localized in time:

xq = x0 exp

(

− t2

2σ2

)

. (2.32)

In the linear approximation, this leads to the following string profile

xs = x0

[

1 +
z(z − t)

σ2

]

exp

[

−(z − t)2

2σ2

]

, (2.33)

which describes a pulse on the string with a maximum at z = t and a width of order

σ. Hence, the position of the peak propagates down the string at the 5D speed of light:

vz = dz/dt = 1. The linear approximation is valid as long as x0 ≪ σ and z ≪ σ2/x0; these

conditions allow for values of z which are much larger than σ.

Returning to the general perturbation (2.29), let us compute the radiated energy den-

sity, as produced via backreaction on the boundary. To that aim, we shall rely on the

general formulæ introduced in section 2.1 and in particular on eq. (2.9) for the string stress

tensor, where now δ(3)(r − rs) = δ(2)(x⊥)δ(x − xs). In what follows, we shall simplify

these formulæ in order to (i) be consistent with the linear approximation for the string

perturbation, and (ii) retain only those contributions which correspond to radiation.

The second constraint above turns out to be quite subtle: the string worldsheet is

simultaneously describing various forms of energy — the Coulomb energy of the heavy

quark, the radiated energy, and interference terms between the two — and in general it

does not seem possible to unambiguously isolate these various contributions already at

the level of the string stress tensor. Rather, the general strategy in that sense is to first

compute the total energy density on the boundary (via backreaction from the string in the

bulk) and then identify the radiation as the component of the energy density which shows

the slowest fall-off, namely like 1/r2, when r → ∞. In our present analysis, we shall partly

follow this strategy — by chasing contributions with a slow fall-off at large r —, but we

shall combine it with a physical analysis of the string stress tensor tMN , which will allow

us to identify and discard the contributions to the Coulomb energy.

For more clarity, we relegate most of the technical details to appendix C and focus

here on the main results and on the points of physics. A first conclusion of the analysis

in appendix C is that, to the accuracy of interest, one can ignore the small deviation xs

away from x = 0 within the δ-function expressing the support of the string; that is, one can

replace δ(3)(r−rs) → δ(3)(r). Indeed, the contributions obtained by expanding δ(x−xs) in

powers of xs represent, at most, interference effects between Coulomb energy and radiation

and thus decay as 1/r3 or faster at large distances.8 We therefore write

tMN = t̃MNδ(3)(r) . (2.34)

8Note that such an interference term represents the leading order correction to the ‘dilaton’ field due to

the static string [28]. So, in that case, it was important to keep trace of xs inside δ(x − xs).
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The various components t̃MN are listed in eq. (C.8) in appendix C. Here, we focus on the

energy density t̃MN , which reads:

t̃00 =

√
λ

2π

z

L3

1 + x′2
s

√

1 − ẋ2
s + x′2

s

, Es =

∫ ∞

zm

dz
L3

z3
t̃00(t, z) . (2.35)

Given t̃00, the total energy Es stored in the string is computed as shown above. As

anticipated, t̃00 also encodes the Coulomb energy, which would be non-vanishing even in

the absence of acceleration. For instance, for a heavy quark with constant velocity v1 = υ

(the problem discussed in section 2.1), we have ẋs = υ and x′
s = 0, and the above equations

yield Es = mqγ, as expected for a relativistic particle. (Recall that zm =
√

λ/(2πmq)

with mq the mass of the quark.) For a generic motion of the heavy quark, eq. (2.35)

simultaneously describes Coulomb energy (associated with the instantaneous value of ẋs)

and radiation (associated with the variation of ẋs, i.e. with the quark acceleration, and —

related to this — to the deformation of the string worldsheet, as measured by x′
s). As we

now demonstrate, these two types of energy can be disentangled from each other for the

small perturbation problem at hand.

For consistency with the linear approximation in (2.29), we need to expand eq. (2.35)

to quadratic order in the perturbation xs. This yields

t̃00 ≃
√

λ

2π

z

L3

(

1 +
1

2
x′2

s +
1

2
ẋ2

s

)

. (2.36)

At this level, it is convenient to use eq. (2.29) in order to relate ẋs and x′
s to the boundary

motion:

ẋs = ẋq + zẍq, x′
s = −zẍq, (2.37)

where in the r.h.s. xq is evaluated at t− z. By inserting these expressions in eq. (2.36) and

using the fact that d/dt = −d/dz when acting on xq, we deduce

t̃00 ≃
√

λ

2π

z

L3

[

1 +
1

2

(

ẋ2
q + 2zẋqẍq

)

+ z2ẍ2
q

]

=

√
λ

2π

z3

L3

[

1

z2
− 1

2

d

dz

(

ẋ2
q

z

)

+ ẍ2
q

]

. (2.38)

We shall now argue that the first two terms within the last square bracket, that is 1/z2 and

the term which is a total derivative, represent the Coulomb energy of the non-relativistic

quark, whereas the last term, proportional to the quark acceleration squared, represents

the radiation (see also refs. [7, 22] for similar arguments). To that aim, we compute the

total string energy according to eq. (2.35):

Es ≃
√

λ

2π

∫ ∞

zm

dz

[

1

z2
− 1

2

d

dz

(

ẋ2
q

z

)

+ ẍ2
q

]

=

√
λ

2πzm

(

1 +
υ2

2

)

+

√
λ

2π

∫ ∞

zm

dz ẍ2
q(t − z)

= mq +
mqυ

2

2
+

√
λ

2π

∫ t

−∞
dt́ ẍ2

q(t́), (2.39)
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where υ = ẋq(t). As anticipated, the first two terms in the last expression are recognized

as the quark energy in the non-relativistic approximation, whereas the remaining integral

involving ẍ2
q is clearly the radiated energy.

Incidentally, the above calculation already tells us what should be the total energy

radiated by the quark: by energy conservation, this is the same as the radiative piece of

the energy stored into the string. Hence,

Erad =

√
λ

2π

∫ t

−∞
dt́ ẍ2

q(t́), P ≡ dErad

dt
=

√
λ

2π
a2 , (2.40)

where a = ẍq is the quark acceleration and P is the radiated power. These formulæ were

to be expected: as shown by Mikhailov [7], they hold for an arbitrary motion of the quark

on the boundary. Moreover, they are formally identical with the corresponding classical

result in electrodynamics, up to the replacement
√

λ ↔ e2/3. Recovering these results

via the explicit calculation of the string backreaction represents a non-trivial check on the

respective calculation, to which we now return.

Via similar manipulations, one can convince oneself that the radiative contributions

to all the components of t̃MN are proportional to a2 (to the accuracy of interest). The

respective results are quite simple: the only non-trivial components are

t̃rad00 = t̃rad55 = −t̃rad05 =

√
λ

2π

z3

L3
ẍ2

q (2.41)

with ẍ2
q evaluated at t−z. Using these results, one can evaluate the radiated energy density

according to eqs. (2.5) and (2.6). It turns out that EB = 0 whereas

EA =

√
λ

π2
∂2

r2

∫

dz dt́ δ(W) z(z + t − t́) ẍ2
q(t́ − z) . (2.42)

The linear approximation is a priori restricted to relatively small values of z, but this poses

no problem for the above integral over z, since this is actually saturated by its lower limit

at zm ≈ 0 (see below). Also, W has to be evaluated at xs = 0, cf. eq. (2.34), and therefore

(for the retarded solution)

δ(W) =
δ(t́ − t +

√
z2 + r2)

2
√

z2 + r2
. (2.43)

By using this δ-function to perform the time integration, we obtain

E =

√
λ

2π2
∂2

r2

∫

dz
z(z +

√
z2 + r2)√

z2 + r2
ẍ2

q . (2.44)

with ẍ2
q evaluated at t́− z = t− z −

√
z2 + r2. At this point, it is convenient to change the

integration variable from z to ξ, via

ξ ≡ z +
√

z2 + r2, (2.45)

This implies

z =
ξ2 − r2

2ξ
, dz =

ξ2 + r2

2ξ2
dξ,

√

z2 + r2 =
ξ2 + r2

2ξ
, (2.46)
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and the energy density becomes (at the lower limit, we neglect zm next to r)

E = EA =

√
λ

4π2
∂2

r2

∫ ∞

r

dξ

ξ
(ξ2 − r2)ẍ2

q , (2.47)

where now the argument of xq is t− ξ and every dot corresponds to a derivative w.r.t. t or

equivalently the argument.

At this point, an essential simplification occurs: since the integrand in eq. (2.47) is

linear in r2, it is quite clear that, after we take the external derivatives, the only surviving

contribution is a boundary term, coming from the lower boundary at ξ = r, or z = 0. A

similar property was noticed in ref. [23] in relation with the rotating string. On the other

hand, the situation is very different for the calculation of the average ‘dilaton’ density

〈Tr F 2
µν〉 on the boundary, where a final integration over all values of ξ is left to be done [28].

This difference has dramatic consequences for the space-time pattern of the response on

the boundary, which we shall shortly discuss.

Returning to eq. (2.47), it is important to stress that the simplification alluded to

above has occurred because of compensations between the various terms in eq. (2.5), which

in turn were made possible by the particularly simple structure of the radiation piece of the

bulk stress tensor, eq. (2.41). (For instance, if one takes just the t̃00 piece in the integrand

of eq. (2.5) and then uses the simple expression for t̃00 shown in eq. (2.41), one obtains

terms ∝ r4 which would yield non-trivial contributions from the bulk.) We conclude that

both the particular tensor structure in eq. (2.41), and the specific functional form of the

individual components there, are important for our final conclusion that only boundary

terms survive. These boundary terms are easily evaluated as

E(t, r) =

√
λ

8π2

ẍ2
q(t − r)

r2
. (2.48)

The total radiated energy is obtained by multiplying the above expression with 4πr2 and

integrating over r. Clearly, this yields the expected result, cf. eq. (2.40).

From the previous discussion, it should be clear that eq. (2.48) represents the general

solution for an arbitrary one-dimensional motion of the heavy quark in the non-relativistic

limit. In particular, for the Gaussian pulse (2.33) one finds

E =

√
λ

8π2

x2
0

σ8r2

[

(r − t)2 − σ2
]2

exp

[

−(r − t)2

σ2

]

, Erad =
3
√

λ

8
√

π

x2
0

σ3
. (2.49)

The most important feature of eq. (2.48) for us here is the fact that the space-time

distribution of the radiated energy is controlled by the function xq(t− r), i.e. by the initial

perturbation of the heavy quark translated from r = 0 (the quark position) to r = t. A

similar pattern would be obtained by solving the classical Maxwell equations with the heavy

quark as a source. It looks like, at strong coupling, the radiation is simply propagating

from r = 0 up to r = t at the speed of light, in the same way as classical radiation

(or free massless quanta) would do. In particular, for the localized perturbation (2.32),

the radiated energy density, eq. (2.49), propagates as a spherical shell centered at r = t

and with a width equal to the width σ of the initial perturbation. There is no sign of
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quantum broadening, that is, no time-like components in the radiation left behind at r ≪ t,

in contrast to expectations based on the physical picture of parton branching at strong

coupling (see the discussion at the beginning of section 3).

In what follows, we shall argue that this lack of broadening of the radiative energy

density on the boundary is a consequence of the fact that the whole backreaction comes

from the string endpoint at z = 0, as noticed after eq. (2.47). To that aim, we shall show

that the backreaction from string points at z > 0 — if non-zero ! — would introduce

a spread t − r ∼ z in the energy distribution, which with increasing z could become

arbitrarily large. For more clarity we shall focus on a localized initial perturbation, like

eq. (2.32). Then the perturbation propagates down the string as a pulse centered at z = t́

(cf. eq. (2.33)). This property together with the causality condition W = 0 implies the

following relation between the position z of the ‘source in the bulk’ (here, a point on the

pulse) and the measurement point (t, r) on the boundary: t ≃ z +
√

z2 + r2 or

z ≃ t2 − r2

2t
≃ t − r

2
, (2.50)

where the second approximation holds when both t and r are large with t, r ≫ t− r. This

condition is easy to understand: it takes a time t́ ≃ z for the perturbation to propagate

along the string from z = 0 up to z and then a time
√

z2 + r2 for the gravitational wave

expressing the backreaction to propagate through AdS5 from the point z on the string

(which has r = 0) up to the point r on the boundary. Note that both propagations alluded

to above proceed at the 5D speed of light.

Eq. (2.50) is the expected form of the UV/IR correspondence — or, more precisely, its

expression (ii) according to the discussion in the Introduction. It predicts a spreading

t − r in the energy distribution which grows proportionally with the radial location z of

the source in the bulk. Such a spreading is seen indeed in the calculation of the ‘dilaton’

density on the boundary [28], but it is absent from the corresponding calculations of the

radiation, as presented here and in ref. [23]. Clearly, this absence of broadening is still

consistent with eq. (2.50) because in the case of radiation the whole backreaction comes

from the endpoint of the convolution at z = zm. Yet, this is a rather surprising feature,

that we would like to understand better via the remaining analysis in this paper.

2.3 Velocity of a bit of energy

In this subsection, we start developing an argument, to be completed at later stages of this

analysis, which sheds more light on the absence of broadening in the SUGRA calculations

of radiation. Namely, we shall argue that the lack of backreaction from bulk sources which

lie far away from the boundary is a consequence of the fact that these sources propagate

at the speed of light in AdS5. We should stress from the very beginning that this property

is not just a consequence of the kinematics, and hence of causality. Indeed, we have

just seen, towards the end of the previous subsection, that causality alone does permit

backreaction (in terms of radiated energy on the boundary) from bulk points at z > 0

and that the respective contributions would show spreading, cf. eq. (2.50). The fact that

such contributions are nevertheless absent in the final result is therefore a property of the
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SUGRA dynamics, that we shall now attribute to the propagation of bulk sources at the

5D speed of light.

The argument will be developed in several steps: First, in the present subsection, we

shall verify that the flow of energy in AdS5 proceeds indeed at the speed of light (except near

z = 0) for the two examples that we have discussed so far: the small string perturbation

and the rotating string of ref. [23]. Then, in section 3.1 we shall show that this property

— the propagation of bulk sources at the speed of light — implies the particular structure

for the bulk stress tensor shown in eq. (2.41), which in turn is responsible for the lack of

backreaction (as discussed after eq. (2.47)). Finally in section 4.1 we shall argue that the

fact bulk sources propagating at the speed of light cannot radiate may be interpreted as

a form of Lorentz time dilation, but in a ‘twisted’ system of coordinates which mixes the

5th dimension with one of the spatial coordinates xi on the boundary.

In the context of section 2.2, the fact that the perturbation propagates down the string

at the speed of light seems already well established: we have noticed e.g. that the peak

of the pulse in eq. (2.33) travels according to z = t. However, other examples like the

rotating string [23] or the trailing string (at finite temperature) [8, 9] show that it is not

always possible to associate the flow of energy along a string with a propagating string

deformation. So, we need a more precise definition of what we mean by the ‘velocity of

the energy flow down the string’. This is provided by the string stress tensor tMN : the

component t0M (with M 6= 0) describes the energy flow in the M direction, while t00 is

the energy density; hence the ratio υM = t0M/t00 defines the respective component of the

velocity.9 As explained in section 2.2, care must be taken to include into t0M and t00 only

the respective radiative contributions, since the Coulomb energy is not flowing. We shall

therefore use

υM =
t0M
rad

t00rad
. (2.51)

For instance, this definition together with eq. (2.41) immediately implies υz = 1 (and of

course υi = 0 for i = 1, 2, 3), at any z > 0. So, for that problem, we have υ2 = υ2
z = 1, as

anticipated.

An alternative definition, which is equivalent to eq. (2.51) but often easier to use

in practice, involves the worldsheet stress tensor πa
M with a = τ, σ. Within the string

worldsheet, there is only one direction for the energy flow, namely σ = z. (As before, τ = t

and σ = z.) Then it is natural to define the radial velocity of a bit of energy as

υz ≡ dEs/dt

dEs/dz

∣

∣

∣

∣

rad

, (2.52)

where dEs/dz and dEs/dt denote the energy density and the energy flow down the string,

respectively, and the subscript “rad” indicates that we have to consider only radiative

9Note that υM is not a 5D vector, so the position of the index M is irrelevant.
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contributions to these quantities. One generally has (with T0 =
√

λ/2πL2)

dEs

dz
= −πτ

0 =
T0√−g

[(Ẋ · X ′)X ′
0 − (X ′ · X ′)Ẋ0] ,

dEs

dt
= −πσ

0 =
T0√−g

[(Ẋ · X ′)Ẋ0 − (Ẋ · Ẋ)X ′
0] . (2.53)

One way to understand eq. (2.52) is to follow a curve of constant energy Es(t, z). The

condition dEs = 0 under small variations dt and dz implies indeed

dEs =
∂Es

∂t
dt +

∂Es

∂z
dz = 0 =⇒ υz ≡ dz

dt
=

−∂Es/∂t

∂Es/∂z
. (2.54)

The difference in sign w.r.t. eq. (2.52) comes from the fact that, in eq. (2.53), we have

defined the energy flux to be positive when the energy is decreasing at a given z.

It is straightforward to apply eqs. (2.52)–(2.53) to the problem of a small string per-

turbation in section 2.2 and thus rederive the expected result υz = 1. (The separation

of the radiated energy within the worldsheet tensor proceeds in exactly the same way as

for the respective 5D stress tensor, cf. the discussion leading to eq. (2.41).) Here we shall

rather use them for the problem of the rotating string, i.e. a string attached to a heavy

quark which rotates on the boundary at uniform angular velocity ω0. The corresponding

backreaction has been computed in ref. [23] and found to arise from the string endpoint at

z = 0 alone. In agreement with that finding, we shall now show that the velocity of a bit

of energy flowing down the string is equal to one at any z > 0. In spherical coordinates,

the profile of the rotating string reads [23]

rs =
√

R2
0 + γ2

0υ2
0z

2, θs =
π

2
, φs = ω0(t − γ0z) + arctan(γ0ω0z), (2.55)

where ω0 = υ0/R0, γ2
0 = 1/(1 − υ2

0) and with υ0 the magnitude of the boundary velocity.

Inserting these formulæ into eq. (2.53), it is straightforward to deduce that

dEs

dz
=

√
λ

2π

γ0

z2
+

√
λ

2π
γ0a

2
0, (2.56)

dEs

dt
=

√
λ

2π
a2

0. (2.57)

Here a0 = γ2
0υ2

0/R0 is the proper acceleration of the boundary motion, which also deter-

mines the position of the induced worldsheet horizon: zh = 1/a0. Considering the energy

density in eq. (2.56), it seems natural to associate the first term with the Coulomb energy

density dECoul/dz of the rotating quark, and the second one with the energy density due

to radiation, dErad/dz. This identification is supported by the type of arguments leading

to eq. (2.41): after integrating eq. (2.56) over z to compute the total energy stored in the

string, one finds that the first term there yields a contribution mqγ0, which is recognized

as the energy of a relativistic quark with uniform velocity v0. As for the energy flux in

eq. (2.57), this coincides with the expected result for radiated power, so it is clear that this

includes radiation alone. Hence, the radial velocity of a bit of energy is given by

υz =
dEs/dt

dErad/dz
=

1

γ0
. (2.58)
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This is strongly suppressed in the ultrarelativistic limit γ0 ≫ 1, which can be interpreted

as a consequence of the Lorentz collimation of the radiated energy around the direction

of emission (here, in the five-dimensional sense). But a small progression in z along the

profile of the string implies a relatively large displacement in the spatial direction r, since

the respective coordinate rs of the string rises rapidly with z, cf. eq. (2.55). Specifically,

the energy bit has a non-zero velocity vr, computed as

υr ≡ drs

dt
= ṙs + r′sυz =

γ0υ
2
0z

√

R2
0 + γ2

0υ2
0z

2
, (2.59)

with of course ṙs = 0 for the rotating string. Finally, the string as a whole is rotating, and

therefore so does the energy bit flowing along it. This implies the following υφ component

for the velocity of the energy flow

υφ ≡ rs
dφs

dt
= rsφ̇s + rsφ

′
sυz =

υ0R0
√

R2
0 + γ2

0υ2
0z

2
. (2.60)

(The other angular velocity vanishes, υθ = 0, since θ is fixed for the string.) On the

boundary (z = 0), one has υφ = υ0 with υr vanishing, while for large z, on the contrary,

υφ vanishes with υr → υ0. For the magnitude squared we obtain

υ2 ≡ υ2
z + υ2

r + υ2
φ = 1, (2.61)

for any z and for any boundary velocity υ0. As a check, notice that we would obtain the

same results by computing the velocity of the energy flow directly from the 5D string stress

tensor, according to eq. (2.51). The components of interest are the energy and momentum

density given in spherical coordinates by [23]

t0M
rad =

√
λγ0z

5

2πL7
δ(3)(r − rs)(r

′2
s + r2

sφ
′2
s , −ω0r

2
sr

′
sφ

′
s , 0 , ω0r

′2
s , −ω0r

2
sφ

′
s), (2.62)

with the elements corresponding to (t, r, θ, φ, z) respectively and where we have again sub-

tracted from t00 and t0φ the terms which correspond to the static energy of the string.

(We shall elaborate more on this subtraction in the subsequent publication [27].) Then the

velocity of the energy flow is

υM =
1

t00rad

(

t0r
rad, t

0θ
rad, rst

0φ
rad, t

0z
rad

)

, (2.63)

with M = r, θ, φ, z. Plugging eq. (2.62) into eq. (2.63) we arrive at the previously found

expressions in eqs. (2.58), (2.59) and (2.60) for the components of the velocity.

Let us also comment here on some other intriguing result in ref. [23], namely the

fact that the whole contribution to the energy density on the boundary, and not just its

radiative part, appears to be generated by backreaction from the endpoint of the string at

z = 0. Whereas for radiation this feature can be ascribed to the propagation of the bits

of energy down the string at the speed of light, there is certainly no such a correlation for

the Coulomb piece of the energy, which is static. Rather, what we would like to argue here
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is that, for the case of the Coulomb energy, the respective finding is merely a consequence

of a particular choice made in ref. [23] for the integration variables in the convolutions

expressing the backreaction. Namely, the Coulomb energy appears as a bulk contribution

(i.e., a result of the backreaction from string points at z > 0) when using the standard

variables t́ and z — in terms of which we have a transparent physical interpretation and

the UV/IR correspondance holds as expected —, but it can be formally transferred into

a boundary contribution (a backreaction from z = 0 alone) via an appropriate change of

variables mixing t́ and z. To illustrate this point, we shall perform in appendix A the

corresponding change of variables on the example of a string (heavy quark) with constant

velocity and show that, with the new variables, the complete result appears to be generated

at the endpoint of the integration at z = 0. Yet, from the discussion in section 2.1, we

already know that string points at any value of z do contribute to the Coulomb energy,

provided one uses the ‘physical’ variables t́ and z. This example shows that care must be

taken when trying to understand the UV/IR correspondence in various sets of coordinates.

At this point, one may wonder whether a similar property could also hold for the

radiated energy — namely, whether the fact that the whole contribution to radiation is

coming from z = 0 is not just an artifact of our peculiar choice of coordinates. We do not

believe this to be so, since in this case the correlation with z = 0 has a clear signature, which

is independent of the choice of integration variables in the calculation of backreaction: the

lack of broadening of the radiated energy density in physical space. As we saw on the

example of the small string perturbation, the width t− r of the energy distribution on the

boundary, eq. (2.49), is fixed by the width σ of the initial perturbation. Via the UV/IR

correspondence, this allows for contributions from string points at z . 1/σ, but not from

much larger values of z. So, whatever choice we make for the integration variables, the

backreaction must come from points z near the boundary, although it is likely that our

previous respective choices were indeed special, in the sense that, with these choices, the

whole contribution was generated from z = 0 alone.

Let us conclude this section with a comment on the generality of our conclusions:

the correlation between the bulk propagation at the speed of light and the lack of energy

backreaction on the boundary implies that the absence of broadening for radiation should

be a generic feature of the supergravity calculations. Indeed, whatever is the physical

source of radiation in the dual gauge theory, the corresponding energy flow in AdS5 will

propagate at the speed of light, except possibly for a transition region at small z, where

the radiation is still connected to its source, and whose extent is controlled by the width of

the external perturbation. Hence, the maximal broadening on the boundary will be fixed

by that width as well. In the next section we shall give other examples of that type, where

the bulk excitation is a supergravity field rather than a Nambu-Goto string.

3 A time-like wave-packet

In this section, we shall consider a different type of radiation, that emitted by a time-like

(or ‘massive’) wave-packet, which decays into the massless quanta of N = 4 SYM. The

prototype of this phenomenon is the evolution of the time-like photon produced in e+e−
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annihilation. To lowest order in perturbation theory at weak coupling, the photon decays

into a pair of quanta (say, a quark and an antiquark) which in the center of mass frame

propagate with equal but opposite momenta, at the speed of light. The final state in this

approximation is simply a pair of back-to-back partons (‘two jets’). If one includes higher

order corrections (again, at weak coupling), then the pair of partons initially produced by

the decay of the virtual photon are themselves off-shell (time-like) and can radiate other

quanta. Then the final state consists in three or more partons. The stronger the coupling,

the larger is the probability of branching in the final state, and the more complex is the

structure of the latter in terms of partons. In the strong coupling limit, we expect this

branching to be so efficient that the energy-momentum distribution in the final state —

consisting in myriads of partons — is essentially isotropic (in the center of mass of the

virtual photon, of course). This expectation has been confirmed by the explicit AdS/CFT

calculation of the angular correlations of the energy density in the final state, by Hofman

and Maldacena [15], which revealed that there are no such correlations at all: the final

state is fully isotropic, in a given event.

The physical picture of parton branching alluded to above has also another implication:

it suggests that the energy-momentum distribution in the final state at strong coupling

must be time-like. Namely, one expects the energy density to be non-zero essentially

everywhere inside a three-dimensional sphere with radius r = t. (We assume that the

initial photon wave-packet was localized near r = 0.) Indeed, most of the quanta produced

in the intermediate stages of the parton cascade are time-like and hence propagate with

velocities smaller than one, thus yielding a tail in the energy distribution at r < t. This

is to be contrasted with the energy distribution produced by a classical source localized at

t = 0 and r = 0, which is a narrow spherical shell with r = t.

Yet, as we shall shortly see, the AdS/CFT calculation of the energy distribution pro-

duced by the time-like (TL) wave-packet at strong coupling (in the supergravity approx-

imation) produces a narrow spherical shell which propagates outwards at the (4D) speed

of light, so like a classical perturbation ! The mathematical origin of this result is the

same as for the string perturbation discussed in the previous section: the supergravity field

describing the AdS5 perturbation induced by the TL wave-packet propagates into the bulk

at the 5D speed of light and therefore has no backreaction in terms of energy density on

the boundary. The latter is fully generated at early times, when the perturbation is close

to the boundary (within a distance set by the width of the initial wave-packet) and its

velocity is still smaller than one.

Whereas the mathematics of the backreaction calculation is quite similar to that of

the string perturbation in section 2.2, the physical interpretation is perhaps sharper for

the case of the TL wave-packet. This will allow us to better appreciate the inconsistency

of the supergravity result with respect to general expectations from quantum mechanics.

In section 2.2 we have seen that the small pulse propagating down a vertical string

behaves very much like a massless classical particle falling into AdS5 at the speed of light.

In section 3.2 below, we shall discover that a similar picture holds also for the TL wave-

packet. We therefore begin our discussion in this section by computing the backreaction

due to a classical, massless, particle which undergoes free motion in AdS5.

– 23 –



J
H
E
P
0
2
(
2
0
1
1
)
0
6
5

3.1 The falling massless particle

The motion of a free particle in a curved space-time follows a geodesic. For a massless

particle in AdS5 and with our choice (2.1) for the metric, the most general such trajectory

can be cast into the form

x ≡ x1 = υt , x2 = x3 = 0 , z =
1

γ
t, x2 + z2 = t2 , (3.1)

where γ = 1/
√

1 − υ2 is the boost factor associated with the longitudinal motion along

the boundary. For the examples considered in sections 2.2 and 3.2 we actually need10

υ = 0, but for the present discussion it is not more difficult to consider a general value

υ < 1. Note that eq. (3.1) together with the fact that z ≥ 0 restricts the time variable to

positive values, t ≥ 0. That is, here we do not consider a steady situation, which would be

translationally invariant in time, but a situation where the particle is put at t = 0 on the

Minkowski boundary and left to freely fall into AdS5.

To construct the associated bulk energy-momentum tensor, it is convenient to start

with the expression valid for a massive particle with mass m, and then take the limit

m → 0. Then the 5D stress tensor reads

tMN =
m√−g

dxM

dt

dxN

dt

dt

dτ
δ(4)(x − xp(t)), (3.2)

with τ the proper time and xp(t) the particle trajectory. We have

dτ =
√−g00

dt

γ
. (3.3)

Furthermore, the momentum in local inertial coordinates can be expressed in terms of the

conserved momentum as

mγ =
E0√−g00

, (3.4)

so that eq. (3.2) becomes

tMN =
E0

|g00|
√−g

dxM

dt

dxN

dt
δ(4)(x − xp(t)). (3.5)

At this level we can take the massless limit and specialize to AdS5 and the trajectory in

eq. (3.1). One immediately finds (below, XM = (t, υt, 0, 0, t/γ))

tMN = E0

( z

L

)7
δ(x − υt) δ(2)(x⊥)δ(z − t/γ)

XMXN

t2
. (3.6)

After lowering the indices and letting υ = 0, this yields

t00 = t55 = −t05 = E0

( z

L

)3
δ(3)(r)δ(z − t), tiM = 0, (3.7)

10Note that when comparing the present discussion to that in section 2.2, the ‘free particle’ which is

currently under consideration corresponds to the small pulse falling down the string, and not to the heavy

quark that the string is attached to.
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which is very similar to the stress tensor (2.41) for the radiation emitted by a small string

perturbation. The only, inessential, difference between eqs. (2.41) and (3.7) is that, in the

latter, the bulk energy density is a strict δ-function at z = t, while in the former it has

some width around the maximum at z = t. Thus, the fact that the source in the bulk

propagates at the speed of light along the radial direction (υz = 1) automatically implies

the tensor structure in (2.41) or (3.7) for the associated bulk stress tensor.

Using the general formulæ in section 2.1, it is straightforward to compute the boundary

energy density produced via backreaction from the bulk stress tensor (3.6). One thus finds

that EB = 0. Furthermore, within the integrand of eq. (2.5) we can write

z(2t00 − t55) − (t − t́)t05 + (x − x́)iti5 = E0

( z

L

)3 t + vx

γ
δ(x́ − υt́) δ(2)(x́⊥)δ(z − t́/γ).

Using the δ-functions above to perform the integrations over x́, x́⊥ and z, one obtains

E = EA =
2E0

π

t + vx

γ2
∂2

r2

∫ ∞

0
dt́ t́ δ

(

t2 − r2 − 2(t − υx)t́
)

. (3.8)

Note that the δ-function inside the integrand together with the lower limit on t́ (which

was generated by the condition z ≥ 0) imply a factor Θ(t2 − r2). This is the expected

condition, following from causality, that the space-time distribution of the energy density

on the boundary must be time-like. However, this Θ-function becomes a δ-function after

performing the two external derivatives w.r.t. r2. One has indeed

E =
E0

2πγ2

t + vx

(t − υx)2
∂2

r2 [(t
2 − r2)Θ(t2 − r2)] =

E0

2πγ2

t + vx

(t − υx)2
δ(t2 − r2) . (3.9)

eq. (3.9) describes a spherical shell of zero width which propagates at the speed of light,

so like classical radiation, and whose shape looks anisotropic because of the boost with

velocity υ in the x direction. By taking υ → 0, isotropy becomes manifest:

E =
E0

4πr2
δ(t − r) ,

dE

dΩ
≡
∫

dr r2E =
E0

4π
. (3.10)

In the above equation we have also shown the energy density per unit solid angle. Clearly,

the total energy is equal to E0 and coincides, as expected, with the total energy stored in

the bulk stress tensor (3.7).

Returning to the calculation of the energy density according to eq. (3.8), we note that

the condition t = r implies t́ = z = 0. That is, the whole backreaction on the boundary

comes from the string endpoint at z = 0, so like for the string perturbation in section 2.2.

In both cases, this property follows from the fact that the source in the bulk — the pulse

on the string, or the falling particle — propagates at the 5D speed of light.

To conclude this discussion, let us mention that for the bulk excitation under discussion

— a free, point-like, massless particle with the stress tensor (3.6) — the backreaction on

the AdS5 metric can be computed exactly, and not only in the linear approximation in

which hold our general formulæ (2.5)–(2.6) for EA and EB. The corresponding solution is

a gravitational shock-wave in AdS5, whose intersection with the boundary is the spherical

shell in eq. (3.9). At generic points inside AdS5, the gravitational shock-wave involves the

δ-function δ(t2 − r2 − z2). This will be further discussed in section 4.
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3.2 A time-like wave-packet

In this subsection, we shall consider a problem which is perhaps better motivated at a

physical level than the problem of the falling particle discussed in the previous subsection,

but whose mathematical treatment turns out to be very similar: the decay of a time-like

wave-packet. This wave-packet, which acts as a boundary condition for a supergravity field

in the bulk, is to be seen as a model for the virtual photon created via e+e− annihilation.

Strictly speaking, a photon within N = 4 SYM should be described by a vector field coupled

to the R-current operator, but for the present purposes there is no loss of generality if we

instead consider a scalar field coupled to the ‘glueball’ operator Tr F 2
µν .

Working in the rest frame of the virtual ‘photon’, we are led to consider the following

boundary condition for the associated dilaton field in the bulk:

φb = exp

(

−iωt − t2

2σ2
− r2

2σ2
r

)

. (3.11)

Clearly, this is a wave-packet with zero average momentum.11 To also guarantee that this

is time-like (TL), we need to assume that both σ and σr are relatively large: σω ≫ 1

and σrω ≫ 1. Then the Fourier modes introduced by the Gaussian in eq. (3.11) are small

compared to ω, which therefore sets the virtuality of the wave-packet.

Before we solve the AdS problem with boundary condition (3.11), let us first study

the corresponding classical problem. In that case, the wave-packet (3.11) should be viewed

as a source in the r.h.s. of the massless Klein-Gordon equation in the usual, Minkowski,

space-time. The respective retarded solution reads

φ(t, r) =

∫

dt́ d3
ŕ Θ(t − t́)

δ(t́ − t + |r − ŕ|)
|r − ŕ| ρ(t́, ŕ), (3.12)

where ρ(t́, ŕ) is the same function as in eq. (3.11), but now viewed as a classical source. We

are interested in the response at large distances r ≫ σ, σr, and therefore ŕ ≪ r (indeed, the

Gaussian in the source sets effectively ŕ . σr). In this regime we can approximate (with α

the angle between r and ŕ)

|r − ŕ| ≃ r − ŕ cos α +
ŕ2

2r
sin2 α . (3.13)

By keeping only the first two terms in this expansion, it is straightforward to find

φ ≃ 1

r
exp

[

−iω(t − r) − (t − r)2

2σ2
− σ2

rω
2

2

]

. (3.14)

Since σrω ≫ 1 by assumption, it is clear that this field φ is strongly suppressed (in fact,

truly negligible) in the regime r ≫ σr where the above approximation is valid. This

leads us to the expected conclusion that, being off-shell, a classical TL wave-packet cannot

propagate outside its original support at ŕ . σr.

11The overall normalization of the wave-packet will be fixed later on.
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We now turn to the AdS calculation at strong coupling, where eq. (3.11) acts as the

4D boundary limit for the solution to the 5D Klein-Gordon equation in AdS5. Then the

solution can be expressed with the help of the respective boundary to bulk propagator:

φ(t, r) =

∫

dt́ d3
ŕD(t − t́, r − ŕ, z)φb(t́, ŕ). (3.15)

A convenient and rather compact expression for this propagator in coordinate space, to be

derived in appendix B, is

D(t − t́, r − ŕ, z) = −2z4

π
Θ(t − t́)δ′′′(W), (3.16)

with W defined in eq. (2.7). Then we can write eq. (3.15) as

φ = −z4

π
∂3

z2

∫

dt́ d3
ŕ

δ[t́ − t +
√

z2 + (r − ŕ)2]
√

z2 + (r − ŕ)2
φb(t́, ŕ). (3.17)

Once again we consider large distances r ≫ σ, σr, where we can expand

√

z2 + (r − ŕ)2 ≃ ρ − rŕ

ρ
cos α +

r2ŕ2

2ρ3
sin2 α, (3.18)

with ρ =
√

z2 + r2, and we keep the most dominant terms in the exponential. We first

integrate over α and subsequently over ŕ, and finally we take the three derivatives on the

factor which varies the most, that is exp(iωρ), to find

φ =
i
√

2πσ3
rω

3

4

z4

ρ4
exp

[

−iω(t − ρ) − (t − ρ)2

2σ2
− σ2

rω
2r2

2ρ2

]

. (3.19)

It is instructive to compare this bulk field at strong coupling to the classical field in

eq. (3.14): the last term in the argument of the Gaussian in (3.19) is now proportional

to r2/ρ2, and hence it can remain small even for σrω ≫ 1 provided r is sufficiently small

compared to ρ, meaning r ≪ z. In other terms, the wave-packet can propagate within

AdS5, but only within a small angle θ ≡ r/z . 1/(σrω) with respect to the radial axis.

When σrω ≫ 1 this angle is so small that we can neglect the displacement along the spatial

direction r and approximate ρ ≃ z. Then eq. (3.19) becomes

φ = c exp

[

−iω(t − z) − (t − z)2

2σ2
− r2

2θ2z2

]

, (3.20)

where c is a dimensionless constant which depends on the various energy scales of our

problem, but not upon the coordinates (since we have replaced z/ρ = 1). At this level, it

is convenient to view c as a free constant, to be later fixed by the condition that the total

energy carried by the TL wave-packet takes some prescribed value E0.

In order to compute the backreaction due to this bulk wave-packet, we need the asso-

ciated stress tensor. For a scalar field in AdS5 space, this is given by

tMN =
N2

c

16π2L3

[

∂Mφ∂Nφ∗ + ∂Nφ∂Mφ∗ − gMN gPQ ∂P φ∂Qφ∗] . (3.21)
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Under the present assumptions, we have z ≫ r ≫ σ. Using these conditions to simplify

the components of tMN , we eventually find

t00 = t55 = −t05 =
N2

c c2ω2

16π2L3
exp

[

−(t − z)2

σ2
− r2

θ2z2

]

, tiM = 0. (3.22)

In order to arrive at these results we have dropped, in all components of tMN , terms which

are suppressed, compared to the leading non-vanishing components, by powers of 1/σω

and σ/z. Recalling that θ → 0, we can replace in the above

exp

(

− r2

θ2z2

)

≃ π3/2θ3z3δ(3)(r) . (3.23)

Since on the other hand we have assumed r ≫ σ in order to arrive at eq. (3.22), it is

clear that the use of the above δ-function is legitimate only when looking at the bulk stress

tensor over spatial distances much larger than σ. Remarkably, the (approximate) mathe-

matical identity in eq. (3.23) introduces a factor z3 in t00, which from the manipulations

in sections 2.2 and 3.1 we know to be essential in order to obtain a result for the energy

density which gets contributions only from the boundary at z = 0.

With eq. (3.23), our bulk tensor takes the form

t00 = t55 = −t05 = E0
z3

L3

1√
πσ

exp

[

−(t − z)2

σ2

]

δ(3)(r) (3.24)

where we have chosen the constant c so that

c2 =
16E0

N2
c σω2θ3

=
16E0ωσ3

r

N2
c σ

. (3.25)

It is of course understood that eq. (3.24) can be used for computing the backreaction only

at sufficiently large distances r ≫ σ.

As expected, eq. (3.24) is very similar to the respective expressions for the small pulse

down the string, eq. (2.41), and for the falling massless particle, eq. (3.7). Once again, we

have the bulk stress tensor of a source propagating along the radial direction of AdS5 at

the speed of light. From our previous experience, we expect the corresponding boundary

energy to be generated exclusively by the bulk field at z = 0 and to be localized near r = t

within a distance σ. We have indeed EB = 0 and (compare to eq. (2.44))

E = EA =
E0

π3/2σ
∂2

r2

∫ ∞

0
dz

z(z +
√

z2 + r2)√
z2 + r2

exp

[

−(t − z −
√

z2 + r2)2

σ2

]

, (3.26)

which after manipulations entirely similar to those already encountered in section 2.2 (in-

volving in particular the change of variable (2.45)) finally yields the following result for the

energy density produced by the decay of the TL wave-packet:

E =
E0

4πr2

1√
πσ

exp

[

−(t − r)2

σ2

]

. (3.27)
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As anticipated this is a narrow spherical shell propagating at the speed of light, with the

width set by the initial perturbation. Moreover, this energy density has been entirely

produced via backreaction from the endpoint of the integration at z = 0.

Whereas the result (3.27) shows the same type of space-time pattern as the radiation

by a small string perturbation, cf. eq. (2.49), and it has been generated via similar mathe-

matical manipulations, there is nevertheless an important difference between the two: the

total energy in eq. (3.27) is independent of λ and thus it remains constant in the strong

coupling limit. This is as expected on physical grounds, since the original ‘virtual pho-

ton’ has only a finite energy E0. But this raises an uncomfortable relationship between

this result, eq. (3.27), and a quantum mechanical interpretation of the outgoing radiation.

Namely, it seems difficult to understand how it is possible to distribute a finite amount of

energy over a thin spherical shell which expands for ever (so that the energy density can

become arbitrarily small) while keeping a constant, narrow, width σ (so that the radial

wave number kr cannot decrease below a value k0 ≃ 1/σ fixed by the uncertainty princi-

ple). Indeed, this would imply that a finite-size detector which is located sufficiently far

away can register a non-zero amount of energy which is smaller than ~k0, that is, smaller

than the energy of a single quanta with that wave number. Classically, such a situation

would be permitted, since the amplitude of the classical field corresponding to wave num-

ber kr ≃ k0 can decrease with r and become arbitrarily small. But in quantum mechanics,

the amplitude squared is proportional to the number of quanta per mode, which takes only

discrete values.

4 String fluctuations and the freely falling particle

In the previous sections, we have analyzed various perturbations in the bulk associated

with radiating sources on the boundary and shown that several of these perturbations

(a small pulse flowing down along a string or a dilaton, time-like, wave-packet) can be

mathematically idealized as a massless point particle falling freely into the radial dimension

z of AdS5. For all these cases, we have found that the energy flow on the boundary (i.e.,

in the physical space), as calculated from the backreaction of the 5D energy-momentum

tensor associated with the bulk perturbation, is a thin spherical shell of matter moving

outwards at the velocity of light.

Going beyond the supergravity approximation, all the bulk perturbations that were

previously described by local supergravity fields should be replaced by microscopic strings.

Similarly, for the problems involving a macroscopic string one should add the effects of

stringy excitations. In this section, we would like to show that the world-sheet fluctuations

of the microscopic strings can have sizeable effects on our previous results. To that aim, we

shall take as an example the closed string underlying the ‘falling point particle’ introduced

in section 3.1. As we shall see, depending on what measurement is made, the ‘point-like

particle’ may be a good approximation, with string fluctuations unimportant, or a poor

approximation, having important string fluctuations.

Hofmann and Maldacena [15] have already studied string fluctuations for the falling

particle but only under the circumstance where energy at a given angle, or set of angles,
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is measured integrated over the three-dimensional radial coordinate. They found string

corrections to angular energy-energy correlations to be small and proportional to 1/λ.

However, the purpose of our study is to see whether the out-flowing energy remains in a

thin radial shell when string fluctuations are included, and to carry out that calculation

we need to generalize the discussion of [15].

4.1 A special set of light-cone coordinates

In order to describe string fluctuations, it is useful to use light-cone coordinates where the

free string in flat space can be easily quantized [40, 41]. Of course we are not in flat space,

but so long as the fluctuations are not too large and we use coordinates where the string

does not move in the fifth dimension, a flat space calculation should be adequate, at least

for qualitative estimates. Clearly, our present coordinates, cf. eq. (2.1), are not well suited

in that sense, since in these coordinates the ‘point particle’ is moving along the z direction.

A strategy to circumvent this problem, that was also followed in ref. [15], is to make a

change of coordinates which mixes radial with boundary coordinates, in such a way that

the bulk motion of our ‘falling particle’ occurs at a fixed value of the new fifth dimension.

A suitable set of coordinates in that sense has been originally introduced in [39] and later

applied to e+e− annihilation in [15, 20].

We shall connect these new coordinates to our previous ones by using the six global

coordinates WM on AdS5, which satisfy

W 2
−1 + W 2

0 − W 2
1 − W 2

2 − W 2
3 − W 2

4 = L2 . (4.1)

These are related to our previous coordinates in eq. (2.1) via

W−1 + W4 =
L2

z
, Wµ =

xµL

z
, (µ = 0, 1, 2, 3) . (4.2)

In terms of them, our new coordinates, yM , are defined as

W0 + W3 =
L

y5
, W−1 = −y0L

y5
, W4 = −y3L

y5
, W1,2 =

y1,2L

y5
, (4.3)

and hence they are dimensionless. In these variables, the metric (2.1) becomes

ds2 =
L2

y2
5

[

−2dy+dy− + dy
2
⊥ + dy2

5

]

, (4.4)

with y± = (y0±y3)/
√

2 and y⊥ = (y1, y2). The following relations hold between the x and

y variables (below x± = (x0 ± x3)/
√

2 and x⊥ = (x1, x2))

y+ = − L

2x+
, y− =

2x+x− − x
2
⊥ − z2

2x+L
, y⊥ =

x⊥√
2x+

, y5 =
z√
2x+

. (4.5)

One also has y5 = −
√

2y+z/L. In particular, the physical boundary at z = 0 lies at y5 = 0

in these new coordinates.

Using eq. (4.5) one can now easily check that these new variables realize indeed the

desiderata for which they have been introduced: with respect to them, the bulk motion of
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the ‘point particle’ introduced in section 3.1 takes place at a fixed value of the (new) radial

coordinate y5. Indeed, we can write (compare to eq. (3.7))

z3Lδ(3)(r)δ(z − t) =
√

2 δ(y5 − 1)δ(2)(y⊥)δ(y−) . (4.6)

In these variables, the bulk excitation looks like a point-like particle propagating along

the y3 direction at the speed of light (y3 = y0, or y− = 0), while keeping a fixed value

y5 = 1 away from the boundary. It is easy to check that the only non-zero component of

the particle stress tensor, eq. (3.7), in these new coordinates is12

t̂−− =
E0√
2L2

δ(y5 − 1)δ(2)(y⊥)δ(y−) . (4.7)

Note that the spherical symmetry of the problem, which was manifest in our original spatial

coordinates r = (x1, x2, x3), appears now to be lost. But this is not a serious drawback, as

the full symmetry will reappear when transforming the final results for the energy density

back to the original coordinates.

The new variables introduced above have another virtue, which will greatly simplify

our subsequent discussion of the string fluctuations: the backreaction associated with the

stress tensor (4.7) is particularly simple to compute. Indeed, with this source, the 5D

system of Einstein equations reduce to a single, linear, equation for δĝ−− which can be

solved exactly, using the bulk-to-bulk propagator in AdS5. The solution is a gravitational

shock-wave which at any point in the bulk is proportional to δ(y−) (see e.g. [20, 30, 46]).

Then the energy-momentum tensor on the boundary is extracted in the standard way, from

the behavior of δĝ−− near y5 = 0. One thus finds that the boundary response is also a

shock-wave, with (below p+ = E0/
√

2)

T̂−−(y+, y−,y⊥) =
2

π

p+L

(1 + y
2
⊥)3

δ(y−) . (4.8)

Recalling that on the boundary (y5 = z = 0) one has y− ∝ 2x+x− − x
2
⊥ = t2 − r

2, it

becomes clear that what looks like a shock-wave (y− = 0) in the y-coordinates is in fact

the spherical shell propagating at the speed of light (t = r) that we have previously found

in section 3.1, cf. eq. (3.10).

This is a quite remarkable fact: the property of lack of broadening that we observed

when computing the radiation in the original coordinates appears as Lorentz contraction

in these new coordinates. Similarly, our observation in section 3.1, that the radiation by

a massless particle falling into AdS5 comes only from t́ = z → 0 can be viewed as a

consequence of Lorentz time dilation with respect to the ‘time’ y0 (or y+). Indeed, given

the discussion towards the end of section 2.1, it should be clear that the shock-wave in

eq. (4.8) has been fully generated via radiation at early times ý+ → −∞. Returning to

the original variables, this implies x́+ → 0 and therefore t́ = z → 0 (recall that x́3 = 0

12For more clarity, we shall systematically indicate tensor components in the y variables by a hat. Note

also that, if one uses the coordinates y0 and y3 instead of the light-cone coordinates y±, then the non-zero

components of t̂MN are t̂00 = t̂33 = −t̂03, with t̂−− = 2t̂00.
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for this source). Since the propagation at the speed of light is of course essential for such

‘kinematical’ arguments using the y coordinates, it becomes obvious that the absence of

backreaction from sources at large values of the ‘original’ 5th coordinate z is a consequence

of the fact that these sources propagate in AdS5 at the speed of light.

Given a result like (4.8) for the (LC) energy density T̂−− in the y coordinates, it

is useful to know how to transform it back to the original x coordinates. This requires

a change of variables yµ → xµ together with a Weyl transformation (see refs. [15, 20] for

details). We here present the result of this transformation for the case of the energy density

per unit solid angle. In the original coordinates, this is defined as

dE

dΩ
(n) ≡ lim

t→∞

∫

dr r2 E(t, r) = lim
r→∞

r2

∫ ∞

0
dt niT

0i(t, rn) , (4.9)

where the unit vector n = r/r specifies the direction of measurement and the second

equality (which is the formula used in the analysis in ref. [15]) exploits energy-momentum

conservation (∂µT0µ = 0) to express dE/dΩ in terms of the energy flux along n integrated

over all times and evaluated at points on the sphere at r → ∞. It should be clear from

above formulæ that dE/dΩ contains no information about the radial distribution of the

energy flow: this is averaged out when performing the integration over r, or over time.

For the case of a particle falling in AdS5, one can express either E ≡ T00 or the Poynting

vector Si = T 0i in terms of T̂−−, and thus obtain [15, 20]

dE

dΩ
(n) =

√
2(1 + y

2
⊥)3

8L

∫

dy− T̂−−(y+ = 0, y−,y⊥) . (4.10)

In the above equation, the condition y+ = 0 expresses the limit r → ∞ (and hence

x+ → ∞). Also, y⊥ is related to n = (sin θ cos φ, sin θ sin φ, cos θ) via

y⊥ =
sin θ

1 + cos θ
(cos φ, sin φ) =⇒ 2

1 + y
2
⊥

= 1 + cos θ . (4.11)

(This follows from y⊥ = x⊥/(t+x3) after using t = r, as appropriate for the spherical shell

in eq. (4.8).) Using the above relations together with eq. (4.8) for T̂−− it is straightforward

to check that dE/dΩ = E0/4π, in agreement with the respective result in eq. (3.10).

4.2 Longitudinal string fluctuations and broadening

As shown by Hofman and Maldacena [15] the y coordinates introduced in the previous

subsection allow for a heuristic treatment of the world-sheet fluctuations of a microscopic

string falling into AdS5 which parallels the corresponding analysis in flat space and in the

light-cone gauge (see e.g. [40, 41]). In what follows we shall perform a similar analysis

but focus on a different problem as compared to ref. [15]. Namely, we shall focus on

the longitudinal string fluctuations δy−(τ, σ), which play no role in the calculation of the

angular distribution of the energy — as obvious from eq. (4.10), which involves an integral

over all values of y− — but which have the essential effect to broaden its radial distribution

(in r = |r|), as we shall see.
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Our strategy to include string fluctuations will be as follows. As previously discussed,

in the absence of fluctuations the closed string reduces to a pointlike, massless, particle that

in the y representation is located at y5 = 1, y⊥ = 0 and y− = 0, cf. eq. (4.7). The effect of

the string fluctuations is to render this distribution ‘fuzzy’: a fluctuation δyM (τ, σ) in the

string worldsheet is responsible for a contribution to t̂MN with support at y5 = 1 + δy5,

yi = δyi (with i = 1, 2) and y− = δy−. There is no fluctuation in y+ by construction,

because we shall work in the light-cone (LC) gauge

y+ =
α′p+τ

L
, (4.12)

with p+ = E0/
√

2. Some general results on the quantization of string fluctuations in

LC gauge and flat space are reviewed in appendix D. (The discussion in appendix D is

heuristically extended here to AdS5, with y5 treated as one of the ‘transverse coordinates’,

on the same footing as y1 and y2.) As we recall in that appendix, y−(τ, σ) is a dependent

variable whose fluctuations come from those in y⊥ and y5 (see eq. (D.3)). However, a given

string mode only contributes δy5 ∼ δyi ∼ 1/λ1/4 while it gives δy− ∼ 1 (see eqs. (D.12)

and (D.13)). Moreover, the equal-point correlations13 〈δy2
5〉 and 〈(δyi)2〉 have only weak,

logarithmic, ultraviolet divergences in flat space (see eq. (D.14)) and have been argued to

be finite in AdS5 [42]. By contrast, 〈(δy−)2〉 shows a strong, quadratic, UV divergence

in flat space cf. eq. (D.15), thus yielding a potentially large contribution even after the

introduction of an ad-hoc cutoff on the number of modes. Besides, we do not know whether

one can generalize the arguments in [42] in such a way as to also cure this divergence when

moving from flat space to AdS5. We shall return later to these points.

For these reasons, we henceforth neglect the fluctuations in yi and y5 and concentrate

on those in y−. (The effects of δyi on the angular distribution of the energy have been

estimated in ref. [15] and found to be small, of O(1/λ).) Also, since y− = 0 for the classical

pointlike particle in the bulk, cf. eq. (4.7), we denote the respective fluctuations simply as

ý−(τ, σ). As usual, the acute symbol in ý− is used to differentiate a point on the string from

the point y− on the boundary at which we measure the LC energy density T̂−−. Finally, in

order to be able to measure the effect of the fluctuations, we need to give up the integral

over y− in eq. (4.10), but rather study the y−-dependence of the LC energy density 〈T̂−−〉
(averaged over the string fluctuations).

To summarize, we need to compute the backreaction from a string fluctuation with

longitudinal coordinate ý−(τ, σ) and then average over the fluctuations, according to the

rules in appendix D heuristically extended to AdS5. As already mentioned in the previous

subsection, one advantage of the y representation is that the backreaction due to the stress

tensor eq. (4.7) is easy to compute. Specifically, the energy density T̂−− on the boundary

is obtained as the convolution of the bulk point-like source with the bulk-to-boundary

13Throughout this section, the brackets 〈· · · 〉 refer to the average over the string fluctuations.
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propagator (that we here take from ref. [15]). This yields

〈T̂−−(y−,y⊥)〉 =
6i p+L

π2

∫ ∞

−∞
dý+

∫ 2π

0

dσ

2π
(4.13)

×
〈

ý4
5(τ, σ)

[−2ý+(ý−(τ, σ) − y−) + ý2
5(τ, σ) + (y⊥ − ý⊥(τ, σ))2 + iǫ]4

〉

,

where we shall immediately take ý5 = 1 and ý⊥ = 0, since we neglect the respective string

fluctuations, as already explained. Also, it is here understood that y+ = 0, corresponding

to x+ → ∞. At this stage it is convenient to insert unity in the form

1 =

∫

d´́y−δ(´́y− − ý−(τ, σ)) , (4.14)

and thus get

〈T̂−−(y−,y⊥)〉 =
6ip+L

π2

∫

dý+d´́y−

[−2ý+(´́y− − y−) + 1 + y
2
⊥ + iǫ]4

P (´́y−) , (4.15)

where

P (´́y−) ≡
∫

dσ

2π

〈

δ(´́y− − ý−(τ, σ))
〉

. (4.16)

is recognized as the probability distribution for a point on the string to be found at ´́y−. In

particular, it satisfies

∫

d´́y−P (´́y−) = 1 , (4.17)

as it should. Because of translation invariance we expect P to be independent of τ . So, the

only dependence upon ý+ in the integrand of eq. (4.15) is that explicit in the denominator.

It is then straightforward to perform the corresponding integration, by using

∫

dý+

[−2ý+(´́y− − y−) + 1 + y
2
⊥ + iǫ]4

=
−πi

3(1 + y
2
⊥)3

δ(´́y− − y−) . (4.18)

We thus find

〈Ê(y−,y⊥)〉 ≡
√

2(1 + y
2
⊥)3

8L
〈T̂−−(y−,y⊥)〉 =

E0

4π
P (y−) . (4.19)

The new quantity 〈Ê(y−,y⊥)〉 is defined in such a way that its integral over y− yields

the energy density per unit angle, cf. eq. (4.10). By integrating the last expression above

over y− and using the probability conservation (4.17), one recovers the previous result

dE/dΩ = E0/4π. This meets our expectations: the effects of the longitudinal string

fluctuations are washed out by the integral over y−.

But the crucial new feature in eq. (4.19) is its explicit dependence upon y−. Note

the remarkable fact that the integral over ý+ in eq. (4.18) has identified the longitudinal

coordinate of a point on the string (´́y−) with that of a point on the boundary (y−). In
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the absence of fluctuations, P (y−) → δ(y−), and the above expression yields, as expected,

the shock-wave result in eq. (4.8) — that is, a spherical shell of zero width (t = r) in the

original x coordinates. But for generic fluctuations, eq. (4.19) shows the interesting result

that the width of the probability distribution P (y−) for the fluctuations acts at the same

time as the width of the distribution in y− of the energy density on the boundary. This is

the announced relation between fluctuations and broadening.

To better appreciate the physical meaning of this relation, it is useful to recall that

the relation between the coordinates yM and the original coordinates xM looks different in

the bulk (z > 0) as compared to the boundary (z = 0).

The argument y− of P (y−) refers to a point on the closed string in the bulk. Using

eq. (4.5), we can relate string fluctuations in y− to fluctuations in the position x́M of the

‘massless falling particle’ in AdS5. (For more clarity, we reintroduce the ‘acute’ symbol

on coordinates belonging to the string and the δ symbol for fluctuations: e.g. y− → δý−.)

In doing that, one should recall that the variable x́+ = −L/(2ý+) is by construction fixed

in the LC gauge (4.12). Then, one can separate the average motion of the falling particle

(z0 =
√

2x́+, r0 = 0) from its fluctuations by rewriting eq. (4.5) as

z =
√

2x́+(1 + δy5) , x́⊥ =
√

2x́+ δý⊥ ,

δý− = − 1

L

[
√

2 δx́3 + x́+(δý2
⊥ + δy2

5 + 2δy5)
]

. (4.20)

The first two equations above show that fluctuations in z and x́⊥ are of the same order as

those in the ‘transverse coordinates’ y5 and ý⊥, and hence they are suppressed at large λ.

As for the last equation, it shows that, in physical coordinates, the large string fluctuations

in ý− correspond to fluctuations in the spatial coordinate x́3: δx́3 ∼ Lδý−. This lack of

spherical symmetry for the problem at hand might look surprising at first sight, but it is

just an artifact of our change of variables (4.5) together with the use of the LC gauge. But

this has no incidence on the final result for the energy density in physical space, which is

obtained by combining (4.10) and (4.19) and is manifestly isotropic.

Returning to eq. (4.19), the argument y− of 〈T̂−−〉 is a boundary variable, for which

z = 0 and hence

y− =
2x+x− − x

2
⊥

2x+L
=

t − r√
2L

for x⊥ = 0 , (4.21)

where in the second equality we have used the underlying spherical symmetry to fix x⊥ = 0

(and hence r = x3). Hence, via eq. (4.19), the large string fluctuations in ý− are directly

mapped onto fluctuations ∆r in the localization of the energy distribution around a central

value r = t. Specifically, if the probability distribution P (y−) for the string fluctuations

has some characteristic width ∆ý−, then (4.19) and (4.21) imply that there will be a width

∆r = L∆ý− , (4.22)

for the radial “energy shell” on the boundary at time t.

This broadening of the energy distribution is in agreement with the UV/IR correspon-

dence, as we now explain. To that aim, we return to the integral representation (4.15) but,
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instead of performing the integral over ý+ as in eq. (4.18), we consider first the integral

over ´́y−. If the probability distribution P (´́y−) has support in a range ∆ý−, then the inte-

gral over ´́y− within that range requires |ý+| . 1/∆ý−. But from eq. (4.5), −2ý+ = L/x́+

so that x́+ ∼ L∆ý−. For the falling particle x́+ = z/
√

2, so we finally get the following

estimate

z ∼ L∆ý− , (4.23)

for the typical values of z contributing to fluctuations with amplitude ∆ý−. By comparing

with eq. (4.22), we see that ∆r ∼ z, which is the expected correlation according to the

UV/IR correspondence. Note also that this correlation is washed out — once again, as

expected — when integrating the energy distribution over y−. Indeed, if one integrates

eq. (4.15) over y−, by using a formula analogous to eq. (4.18), one generates the δ-function

δ(ý+), which then implies x́+ = z/
√

2 → ∞. Thus, the angular energy distribution, as

obtained after integration the radial distribution over r (or t), appears to be generated via

backreaction at z → ∞, as already noted in ref. [15].

Finally, how large is the width ∆ý− of the probability distribution P (y−) for the string

fluctuations? This can be identified with the squared root of 〈(δy−)2〉, which is the equal-

point limit of the respective 2-point function. In flat space at least, 〈(δy−)2〉 shows a strong

UV divergence, so the above question makes no sense without a cutoff on the number of

contributing string modes. Similar, and even stronger, UV problems are also inherent in

the evaluation of P (´́y−) according to eq. (4.16): by exponentiating the δ-function in the

integrand there and then expanding the exponential, one generates an infinite series of

higher-point correlations of ý−, which are evaluated at coincident points. To obtain an

heuristic estimate for ∆ý−, let us introduce an upper limit N on the mode number n for

the string oscillations. Requiring n ≤ N , one finds (see appendix D)

〈(∆y−)2〉 ∼ N2

(Lp+)2
, (4.24)

which shows a much stronger cutoff dependence than the respective transverse fluctuations

〈(∆yi)2〉 ∼ ln N√
λ

. (4.25)

If, as argued in [42], the warping in the 5th dimension acts effectively as a UV cutoff in

AdS5, then it seems natural to take N of the order

N ∼ e
√

λ , (4.26)

since via eq. (4.25) this yields a result for 〈(∆yi)2〉 which is finite and independent of λ, in

agreement with [42]. With this choice for N , eqs. (4.24) and (4.22) yield a very large spread

in r away from r = t. As noticed after eq. (4.19), the space-time structure of this spread

is in principle determined by the probability distribution P (y−) for longitudinal string

fluctuations. But in the absence of a reliable procedure for computing string fluctuations

in AdS5, we are not able to specify this distribution any further.
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Of course, in reality we do not have a good control over string fluctuations when they

become so large as shown in (4.24)–(4.26). However, we do believe that we have given good

arguments for the broadening of the radial profile of the outgoing energy produced by the

decay of a time-like photon. Moreover, it appears that the scale ∆ý− which controls this

broadening according to (4.22) is large and not suppressed by inverse powers of λ. This

implies strong modifications of the predictions of the supergravity approximation, whose

accurate calculation would require a proper treatment of string fluctuations in AdS5.
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A The constant velocity string: a different perspective

In this appendix we present an alternative way to derive the energy energy density induced

by a heavy quark moving with constant velocity. Considering eqs. (2.12) and (2.13), we

make the change of variables

t́ = tq + γz ⇒ dt́ = dtq, (A.1)

and then W becomes a linear function of z, more precisely

W = Wq + 2γz

(

t − υx − tq
γ2

)

, (A.2)

where we have defined

Wq = −(t − tq)
2 + (x − υtq)

2 + x
2
⊥. (A.3)

Now it is straightforward to integrate over z making use of the δ-function which will set

z = − Wq

2γ(t − υx − tq/γ2)
. (A.4)
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Causality requires that the denominator in the above eq. (A.4) should be positive and,

since z ≥ 0, we need Wq ≤ 0 in order to obtain a non-zero result. Thus we have

EA =

√
λ

2π2
γ2(3 − υ2)∂2

x
2

⊥

∫ ∞

−∞
dtq

Θ(−Wq)

γ2(t − υx) − tq
. (A.5)

It is clear that the first derivative will act on the step function, that is, on the upper end

point of the integration interval, to give

∂
x

2

⊥
Θ(−Wq) = −δ(Wq) = −

γδ[tq − γ2(t − υx) + γ
√

x
2
⊥ + γ2(x − υt)2]

2
√

x
2
⊥ + γ2(x − υt)2

. (A.6)

Now also the integration over tq can be easily done by making use of the δ-function in the

above. We find

EA = −
√

λ

4π2
γ2(3 − υ2)∂

x
2

⊥

1

x
2
⊥ + γ2(x − υt)2

, (A.7)

which leads to eq. (2.16) in the main text, and similarly we can calculate EB which leads to

eq. (2.18). What is important to notice in the above derivation, is that the tq-integration

is determined by Wq = 0, which in turn fixes z = 0 when performing the z-integration.

B Boundary to bulk scalar propagator in AdS5

Here we would like to construct the boundary to bulk scalar propagator. We shall obtain

it from the −ź4/4 coefficient of the bulk to bulk propagator. In momentum space, and for

space-like kinematics, the latter is given by (see for example appendix B in [38])

G(ω,q, z, ź) = −z2
< z2

>I2(Qz<)K2(Qz>), (B.1)

where Q2 = q
2 − ω2 > 0. In the time-like region Q2 < 0 the propagator is obtained by

analytic continuation together with the retardation prescription ω → ω + i0. Then we find

for the boundary to bulk propagator

D(ω,q, z) =































z2Q2

2
K2(Qz) if Q2 > 0,

iπz2|Q|2
4

H
(1)
2 (|Q|z) if Q2 < 0, ω > 0,

− iπz2|Q|2
4

H
(2)
2 (|Q|z) if Q2 < 0, ω < 0.

(B.2)

Notice that D(ω,q, z = 0) = 1. Now we wish to Fourier transform back to configuration

space. Performing the angular integrations in spherical coordinates we find

D(ω, r, z) =

∫

d3
q

(2π)3
eiq·rD(ω,q, z) =

1

2π2r

∫ ∞

0
dq q sin(qr)D(ω,q, z) (B.3)
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with r = |r| and q = |q|. For ω > 0 we can use the first two cases in eq. (B.2) and

integrating over q we obtain

D(ω > 0, r, z) =
i

8
√

2π

z4

ρ7/2
ω7/2 H

(1)
7/2(ωρ), (B.4)

where we have defined ρ =
√

r2 + z2. We notice that H7/2 is a rather simple function which

for ω > 0 is given by

H
(1)
7/2

(ωρ) =

√

2

πωρ
eiωρ

[

1 − 6

iωρ
+

15

(iωρ)2
− 15

(iωρ)3

]

. (B.5)

For ω < 0 we have

D(ω < 0, r, z) = D∗(|ω|, r, z), (B.6)

and therefore we can write

D(t, r, z) = 2

∫

dω

2π
Re
[

e−iωtD(ω, r, z)
]

(B.7)

Making use of eqs. (B.4) and (B.5) we see that the integrand in the above is an even

function of ω and therefore we can multiply by a factor of 1/2 and extend the integration

to the whole real axis. Furthermore the terms odd in ω will vanish automatically and the

result will be real. Thus

D(t, r, z) = − z4

8πρ4

∫ ∞

−∞

dω

2π
(iω)3eiω(ρ−t)

[

1 − 6

iωρ
+

15

(iωρ)2
− 15

(iωρ)3

]

. (B.8)

The last expression is simply related to an integral representation of the δ-function and its

derivatives and we have

D(t, r, z) = − z4

8πρ4

[

δ′′′(ρ − t) − 6δ′′(ρ − t)

ρ
+

15δ′(ρ − t)

ρ2
− 15δ(ρ − t)

ρ3

]

. (B.9)

It is a straightforward exercise to start from 16ρ4Θ(t)δ′′′(ρ2 − t2) and show that it is equal

to the square bracket above (in the sense of distributions). Thus we finally have

D(t, r, z) = −2z4

π
Θ(t) δ′′′(ρ2 − t2). (B.10)

C Backreaction in the non-relativistic limit

Let us add here some complemental details in the calculation to the energy radiated by a

non-relativistic quark when it goes under an arbitrary 1D motion. The string embedding

functions and their derivatives are given by

XM = (t, xs, 0, 0, z), ẊM = (1, ẋs, 0, 0, 0), XM ′
= (0, x′

s, 0, 0, 1), (C.1)
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and we easily find the components and the determinant of the induced metric on the

world-sheet (with the usual parametrization (τ, σ) ≡ (t, z))

gττ = Ẋ · Ẋ = |G00| (−1 + ẋ2
s), (C.2)

gσσ = X ′ · X ′ = |G00| (1 + x′2
s ), (C.3)

gτσ = Ẋ · X ′ = |G00| ẋsx
′
s, (C.4)

√−g = |G00|
√

1 − ẋ2
s + x′2

s . (C.5)

Now starting from eq. (2.9) we can find

t̃MN =
T0√−g
√
−G

[

gσσẊM ẊN + gττX
M ′

XN ′ − gτσ

(

ẊMXN ′
+ XM ′

ẊN
)]

. (C.6)

Let us calculate the components of the above expression and at the same time lower the

indices. Since the metric is diagonal we do this by multiplying each component by ±|G00|2,
where we use the minus only when one of the two indices is equal to 0. After substitution

of the common coefficient

T0|G00|3√−g
√
−G

=

√
λ

2π

z

L3

1
√

1 − ẋ2
s + x′2

s

, (C.7)

we find

t̃00 =

√
λ

2π

z

L3

1 + x′2
s

√

1 − ẋ2
s + x′2

s

, t̃01 = −
√

λ

2π

z

L3

ẋs
√

1 − ẋ2
s + x′2

s

,

t̃05 =

√
λ

2π

z

L3

ẋsx
′
s

√

1 − ẋ2
s + x′2

s

, t̃11 =

√
λ

2π

z

L3

ẋ2
s − x′2

s
√

1 − ẋ2
s + x′2

s

,

t̃15 = −
√

λ

2π

z

L3

x′
s

√

1 − ẋ2
s + x′2

s

, t̃55 =

√
λ

2π

z

L3

−1 + ẋ2
s

√

1 − ẋ2
s + x′2

s

. (C.8)

Expanding the square root and keeping only the quadratic terms of the components we have

t̃00 = t̃55 =

√
λ

4π

z

L3
(ẋ2

s + x′2
s ), t̃05 =

√
λ

2π

z

L3
ẋsx

′
s, t̃11 =

√
λ

2π

z

L3
(ẋ2

s − x′2
s ), (C.9)

and using eq. (2.37) to express ẋs and x′
s in terms of the boundary motion we finally arrive

at eq. (2.41). We should notice here that t̃01 and t̃15 contain a linear term in ẋs and x′
s

respectively. However, they do not contain a term quadratic in the boundary motion since

the first correction to the solution to the string EOM eq. (2.27) is cubic in the boundary

motion. Indeed, one can check by direct substitution that

xs(t, z) = xq(t − z) + zẋq(t − z) − 1

2
z2 ẋ2

q(t − z)ẍq(t − z), (C.10)

is the solution to the required order of accuracy. But in general, one might consider the

situation where terms in tMN which are constant or linear in ẋs and x′
s combine with the

expansion of δ(W) in powers of xs and therefore produce quadratic terms which can give
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rise to radiation (recall that we have set xs = 0 in the argument of W in section 2.2).

However one can find that

δ(W) =
1

2ρ
δ(t́ − t + ρ) +

xxs

2ρ3

[

δ(t́ − t + ρ) − ρ δ′(t́ − t + ρ)
]

+ O(x2
s), (C.11)

with ρ =
√

z2 + r2, and such terms will be eventually suppressed by inverse power of r and

thus do not contribute to the radiated energy.

D Strings in the light-cone gauge

Here we remind the reader how the free string in flat space is quantized and evaluate the

size of the fluctuations (for more details see e.g. [40, 41]). As usual, we denote the world-

sheet coordinates by τ and σ, with 0 ≤ σ ≤ 2π for a closed string. We shall work in the

light-cone (LC) gauge, defined by

y+ =
α′p+τ

L
, (D.1)

(p+ denotes the LC momentum of the string) together with the associated σ parametriza-

tion. In this gauge, the transverse coordinates y⊥(τ, σ) = (y1, y2) of the string obey the

equations of motion of harmonic oscillators,

(

∂2

∂τ2
− ∂2

∂σ2

)

yi(τ, σ) = 0 , (D.2)

whereas the longitudinal coordinate y− is not independent, but rather it is related to the

transverse coordinates by the constraints enforcing the LC gauge. Namely, one has (for a

closed string)

∂τy
− =

L

2α′p+

(

(∂τy⊥)2 + (∂σy⊥)2
)

. (D.3)

eq. (D.2) is solved as (below, i = 1, 2)

yi(τ, σ) = yi
0 +

√

α′

2L2
(αi

0 + α̃i
0)τ + i

√

α′

2L2

∑

n 6=0

{

αi
n

n
e−in(σ+τ) +

α̃i
n

n
ein(σ−τ)

}

. (D.4)

The α operators with/without a tilde refer to closed string waves which are left/right

moving along the string. The quantization of the transverse string fluctuations proceeds

in the standard way, by imposing

[αi
m, αj

n] = mδijδm,−n , (D.5)

together with the similar relation for the tilded operators. (Tilded and untilded operators

commute with each other.) Notice that the standard creation and annihilation operators

for the quantum harmonic oscillator are related to the αi
n operators above via

ai
n =

αi
n√
n

, ai†
n =

αi
−n√
n

, with n ≥ 1 , (D.6)
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and obey indeed [ai
n, ai†

m] = δijδmn.

The constraint equation (D.3) can be integrated to yield

y−(τ, σ) = y−0 +
τ

2p+L
(L⊥

0 + L̃⊥
0 ) +

i

2p+L

∑

n 6=0

1

n

(

L⊥
n e−in(σ+τ) + L̃⊥

n ein(σ−τ)
)

, (D.7)

where

L⊥
n =

1

2

∑

p

αi
n−pα

i
p , L⊥

−n = (L⊥
n )† , (D.8)

are the so-called transverse Virasoro generators which satisfy the commutation relation

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 − m)δm,−n . (D.9)

c is the central charge which equals the number of the transverse dimensions D − 2.

The two-point functions of these operators are evaluated in the standard way:

〈yi(τ, σ), yj(0, 0)〉 = δij α′

2L2

∞
∑

n=1

1

n

(

e−in(σ+τ) + ein(σ−τ)
)

, (D.10)

〈y−(τ, σ)y−(0, 0)〉 =
c

48(p+L)2

∞
∑

n=1

n2 − 1

n

(

e−in(σ+τ) + ein(σ−τ)
)

. (D.11)

From eq. (D.10) it is clear that the size of the transverse fluctuation δyi due to a single

mode n is

δyi
n ∼

√

α′

nL2
=

1
√

n
√

λ
, (D.12)

which is very small when λ is large. On the other hand, eq. (D.11) implies that a single

mode gives a longitudinal fluctuation with typical size

δy−n ∼ 1

p+L
, (D.13)

which is not suppressed when λ is large and which gets much larger contributions from

large n as compared to δyi. This last feature becomes especially important whenever one

needs to consider the equal-point limit of the 2-point function (or, more generally, of a

n-point function), so like in the discussion of the average LC energy 〈Ê〉 in section 4.2.

Specifically, when taking the limit τ, σ → 0 in eqs. (D.10) and (D.11) one encounters

ultraviolet divergences coming from the sum over the large–n modes, which are logarithmic

in the case of eq. (D.10), but quadratic in the case of eq. (D.11). Introducing a mode cutoff

n ≤ N to regularize the divergence, we get

〈(yi)2〉 =
α′

L2
ln N =

ln N√
λ

, (D.14)

〈(y−)2〉 =
cN2

48(p+L)2
. (D.15)
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What should be the value of the mode cutoff N? If we were to consider a scattering

problem — the scattering between two strings — then, first, longitudinal modes would

not matter and, second, the effective region in τ would be non-zero and fixed by the

kinematics: δτ ∼ 1/(α′s) with
√

s the center of mass energy of the scattering. This limits

the participating modes to n ≤ N = α′s and the corresponding fluctuation sizes to

〈(yi)2〉 ∼ ln α′s√
λ

, 〈(y−)2〉 ∼ (α′s)2

(p+L)2
. (D.16)

The first equation in (D.16) gives the shrinkage of the diffraction peak while the second

one gives the natural longitudinal extent of the scattering process.

However, when evaluating 〈Ê〉 in eq. (4.13) or (4.15), one encounters higher powers of

y−(τ, σ) which must be averaged and there is no natural cutoff. Polchinski and Susskind [42]

argue that in AdS5 the string fluctuations are cutoff by warping in the fifth dimension, in

such a way that (D.14) becomes finite and of order one (and thus independent of
√

λ).

This suggests

N ∼ e
√

λ , (D.17)

as a cutoff on modes which in turn would give, cf. eq. (D.15),

∆y− ∼ e
√

λ

p+L
, (D.18)

which is a very large value. Note that

x ∼ e−
√

λ , (D.19)

is the region in Bjorken–x variable where one starts to see “partons” in DIS at strong

coupling [36]. Then

∆y− ∼ 1

xp+
, (D.20)

can be identified with the lifetime of partons which have energy xp+ – here the partons

which compose the closed string, or the ‘falling point particle’.
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