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1 Introduction

Strongly warped regions or ‘throats’ are a generic feature of type IIB flux compactifica-

tions [1–6]. It can even be argued that, in certain regions of the ‘landscape’, they are

statistically unavoidable [7]. The prime example is the Klebanov-Strassler (KS) throat (or

warped deformed conifold) [8]. It can be viewed as a stringy version of a Goldberger-Wise-

stabilized Randall-Sundrum (RS) model [9] and is thus phenomenologically interesting for

all the well-known reasons making the RS model so attractive. Moreover, throats play

a key role in mechanisms realizing de Sitter vacua [10] and in string-theoretic models of

inflation, such as brane-antibrane inflation [11].

In warped compactifications, couplings between fields localized in the UV and IR

regions (regions of weak and strong warping, respectively) are generically suppressed by

powers of the warp factor [12, 13]. In cosmology, two implications of this suppression are

of particular interest:1 One is the long lifetime of certain IR-localized modes, which can

hence play the role of ‘throat dark matter’ [14–19]. The other is the small energy transfer

rate from a plasma of such modes (created at the end of warped brane inflation) to any

1In non-cosmological applications of warped geometries, such as supersymmetry breaking and flavor

model building, related effects are known as ‘sequestering’ (see e.g. [25–29]). The technical questions

arising in this context are somewhat different and we will not address them in the following.
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UV-localized sector [20–24]. This can cause problems for the reheating of the Standard

model after inflation in a throat.

The main point of the present paper is to demonstrate that tachyonic 5d scalars can

play a central role in coupling IR- and UV-localized sectors and to discuss some of the

immediate cosmological implications.

The importance of tachyons in this context is easily understood: Recall first that the

presence of tachyons is AdS5 is natural from the perspective of 5d supersymmetry [30, 31]

and observed in concrete examples, such as the compactification of type IIB supergravity

to AdS5 on T 1,1 [32–34]. It is well-known that tachyons do not destabilize infinite AdS5 as

long as their negative mass-squared respects the Breitenlohner-Freedman bound [35, 36].

On a slice of AdS5, tachyons generically introduce an instability. In supersymmetric models

on a slice of AdS5, stability is maintained by a positive mass-squared operator localized at

the UV brane [31]. Such a brane-mass term can also be used to ensure the stability of non-

supersymmetric Randall-Sundrum models with tachyons [37–39].2 Now, for any massive 5d

scalar, its efficiency in mediating interactions between IR and UV brane is determined by

the 5d bulk profile of its lowest Kaluza-Klein modes. Generically, the value of IR-localized

modes is exponentially suppressed near the UV brane. This exponential suppression is

governed by the 5d mass-squared. Thus, it is natural to expect that tachyonic scalars will

provide the strongest coupling between the UV and IR brane. In the following, we study

this general idea at the quantitative level.

Our main point can be made in a simple 5d toy model: a single tachyonic scalar on

a slice of AdS5. Any of its low-lying IR-localized KK modes can be taken to represent a

typical particle of the IR sector. The UV sector to which such a KK mode might decay

is modeled as a 4d gauge theory localized on the UV brane. Our 5d scalar couples to the

F 2 term of this theory through its value at the UV-brane. We calculate the corresponding

decay rate and find it to be of the same order of magnitude as that resulting from the

mediation of the graviton.3 This result arises from two compensating effects: On the one

hand, the modes of a tachyon decay more slowly than those of a graviton when moving

from the IR to the UV. On the other hand, they are subject to an extra suppression due

to the UV-localized mass term (which is necessary for stability).

From the above, it is clear that in many relevant situations the tachyon is, in fact,

bound to dominate: Namely, massless 5d scalars are expected to obtain a large UV mass

term in generic, fully stabilized models. The 5d graviton, which has the profile of a massless

scalar and no UV mass term, can not mediate the decay of spin-zero states. Thus, the

tachyon dominates the decay of low-lying IR-localized spin-zero states or ‘glueballs’. We

illustrate this in a simplified KKLMMT-type setup for warped reheating. It turns out

that tachyons dominate the energy transfer to the Standard Model. They can thus help to

avoid the complete dissipation of inflationary energy density into gravitons, thereby solving

a generic problem of (warped) brane inflation.

2Alternatively, one can impose the Dirichlet boundary condition at the UV brane [40]. This corresponds

to the limit of sending the boundary mass to infinity.
3The bulk profile of modes of the 5d graviton is the same as that of a massless 5d scalar.
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Our paper is organized as follows: section 2 provides a pedagogical introduction to

tachyons in a slice of AdS5. Building on this discussion, section 3 gives a simple and

intuitive derivation of the decay rate of the IR-localized modes of a 5d tachyon to a UV-

localized sector. It is followed by a discussion of situations in which the tachyon dominates

the decay of IR-localized states in section 4. In section 5, we explain our results from

the perspective of the dual CFT, finding further support for our intuitive picture and our

calculations. We then discuss the applicability of our 5d analysis to presumably more

realistic and general throat geometries in section 6. Finally, in section 7, we turn to

cosmological applications, in particular to effects on reheating and dark matter decay. Our

Conclusions are followed by an appendix in which we provide a Bessel function analysis

supporting our order-of-magnitude calculation in the main text.

Cosmological implications of tachyonic 5d scalars in a warped throat were discussed

in [15] and, more recently, in [19]. The latter analysis includes processes which, in our

language, can be interpreted as tachyon-mediated decays from the IR- to the UV-localized

sector. We discuss the relation of [19] to our work in section 6.

2 Tachyons in a slice of AdS5

To set up our notation, we recall that an RS I model [41] is defined by a slice of AdS5 with

metric

ds2 = e−2ky(ηµνdx
µdxν) + dy2 , (2.1)

where k = 1/R is the inverse curvature radius. The slice is bounded by two 3-branes at

yUV = 0 and yIR = ℓ. In the following, we will focus on the dynamics of a scalar Φ with

action

S5d =

∫
d4xdy

√
−G 1

2
Φ
[
∇2 −M2

]
Φ , (2.2)

where ∇2 = (
√
−G)−1∂M (

√
−GGMN∂N ) and GMN is the AdS5 metric. Capital indices

run over {0, . . . , 3} and y. We assume that the model is already stabilized, e.g. via the

Goldberger-Wise mechanism [42], and that Φ is an additional scalar field, not related to

the stabilization.

It will be convenient to use the coordinate z = k−1eky and the corresponding confor-

mally flat metric

ds2 =
1

(kz)2
(ηµνdx

µdxν + dz2) . (2.3)

Expanding Φ in KK modes,

Φ(x, z) =
∑

n

ϕn(z)χn(x) , (2.4)

we have a set of canonically normalized 4d scalars χn with masses mn, the wave functions

of which satisfy the equations

(
z2∂2

z − 3z∂z +m2
nz

2 − M2

k2

)
ϕn(z) = 0 . (2.5)
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To specify boundary conditions, it is convenient to view the extra dimension as an S1/Z2

orbifold. Thus, our ϕn are defined on the double cover of the interval [zUV, zIR], where

zUV = k−1 and zIR = k−1ekℓ. We assume that Φ is even under the Z2 symmetry transfor-

mation, implying that ϕn is symmetric under (z − zUV) → −(z − zUV) and periodic with

period 2(zIR − zUV).

In terms of the rescaled field

ψn(z) ≡ (zk)−3/2ϕn(z) , (2.6)

Equation (2.5) takes the form of a 1-dimensional Schrödinger equation [41]

(
−∂2

z + V (z)
)
ψn(z) = m2

n ψn(z) (2.7)

with ‘energy’ m2
n and potential

V (z) =
α2 − 1

4

z2
− 3

zUV

δ(z − zUV) +
3

zIR

δ(z − zIR) . (2.8)

Here α ≡
√

4 +M2/k2 , and the δ-function contributions come from the rescaling in the

presence of boundary conditions. The solutions of eq. (2.7) are Bessel functions of order

α (cf. appendix A) and all that follows could be derived from a careful analysis of the

behaviour of these functions. However, we find it more illuminating to make our main

qualitative points using a parametric analysis of approximate but explicit solutions.

According to eqs. (2.7) and (2.8), we are basically looking for the solutions of a quantum

mechanical problem on an interval.4 The coefficient of the 1/z2 term in the potential

is subject to the Breitenlohner-Freedman bound [35, 36] M2 ≥ −4k2 (corresponding to

α ≥ 0), which ensures the stability of the AdS5 vacuum. Figures 1 and 2 show the

potential for the particularly interesting cases M = 0 and M = −4k2. Standard KK-mode

intuition tells us that all m2
n are positive for M2 > 0, while m0 = 0 for M = 0. We then

clearly expect the presence of negative ‘energy eigenvalues’ m2
n for ‘tachyonic’ M2 < 0.

This is not tolerable from the perspective of the 4d effective field theory. Indeed, while the

Breitenlohner-Freedman bound is sufficient to ensure the stability of infinite AdS space, it

does not guarantee the stability of a slice of AdS.

One way to avoid this instability is to introduce a UV-brane-localized mass opera-

tor [37–39]. We therefore supplement eq. (2.2) with

SUV = −
∫
d4xdy

√
−GλkΦ2(x, y)δ(y − yUV) , (2.9)

where we have written the dimensionful coefficient as a product of k and a dimensionless

parameter λ ≥ 0. This mass term modifies the potential,

V (z) =
α2 − 1

4

z2
+

2λ− 3

zUV

δ(z − zUV) +
3

zIR

δ(z − zIR) , (2.10)

4More precisely, we are looking for the even solutions on the S1 covering space of that interval.
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V

z

zIRzUV

Figure 1. Potential in the effective Schrödinger equation for a 5d mass M = 0.

V

z
zIR

zUV

Figure 2. Potential in the effective Schrödinger equation for a 5d mass M2 = −4k2. The dotted

δ-peak appears when a large mass term on the UV brane is added.

such that, for λ > 3
2 , the δ-peak at the UV brane becomes repulsive (cf. figure 2). It is

intuitively clear that such a modification of the potential lifts the energy eigenvalues and

can therefore remove tachyonic modes.

Indeed, it will become apparent in the next section that, in the limit zIR → ∞ (the RS

II limit [44]), a zero mode appears if λ = λ0 ≡ 2−α. This is the minimal value of λ required

for stability — for λ > λ0 all modes are massive. In the RS I case (for finite zIR) the minimal

value of λ may differ from λ0, depending on the specific boundary condition imposed at

the IR brane. However, this difference goes to zero together with zUV/zIR and its precise

value will not be important. Moreover, for the specific case of supersymmetric boundary

conditions (when the IR brane carries as mass term of opposite value w.r.t. the UV-brane

mass term [31]), the minimal value continues to be λ0. Thus, it will be convenient for us to

– 5 –
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assume such supersymmetric IR boundary conditions (modifying eq. (2.10) appropriately)

and to think of λ0 = 2 − α as of the minimal value of λ, also at finite zIR.

To conclude our preliminary discussion of tachyons in a slice of AdS5, we briefly de-

scribe the KK mass spectrum. As long as λ > λ0, the spectrum does not differ qualitatively

from the familiar massless or positive-mass-squared case. As we already emphasized, we are

dealing with a quantum-mechanical problem on a compact space of size ∼ (zIR−zUV) ≃ zIR.

We thus naively5 expect mn to be quantized in units of z−1
IR , to which we will from now

on refer as our IR scale mIR ≡ zIR
−1 = k e−kℓ. Indeed, the Bessel function analysis of

appendix A shows that mn ≃ (n + α
2 − 3

4)π k e−kℓ for 1 ≪ n ≪ ekℓ. This approximate

formula remains rather accurate all the way down to relatively small n.

We finally note that a technically related analysis of the wave functions of a tachyonic

scalar has recently appeared in [39] in a rather different physical context. We refer to that

paper for more details on the quantum mechanical analogue and corresponding references.

3 Decays mediated by AdS5 fields

As one can see from figure 1, a massless scalar has to tunnel through an effective potential

barrier before it can reach the UV brane.6 By contrast, a tachyonic scalar with M2 = −4k2

has no such barrier to surmount (cf. figure 2). Thus, one expects the tachyon to couple

more strongly to the UV brane. There is, however, a compensating effect: The UV-brane

mass term of the tachyon suppresses its value at the brane. To determine the relative

importance of these two effects, we now estimate the decay rate of the KK modes of a bulk

scalar to a gauge theory living on the UV brane. Our interest is in the dependence on the

parameters α and λ.

3.1 Generic UV-brane mass term

We assume that Φ interacts with a gauge theory localized at the UV brane via the action7

∫
d4x dz

√
−Gk− 3

2 Φ(x, z) tr (FµνFµν) δ(z − zUV) . (3.1)

We have arbitrarily set the coefficient of this interaction term to one in units of k since we

will anyway perform only an order-of-magnitude calculation. Using eq. (2.4), we see that

the coupling of the n-th KK mode to the gauge theory is given by

∫
d4x k−

3

2 ϕn(zUV) tr (FµνFµν) χn(x) . (3.2)

5This is naive in the sense that the potential introduces the further dimensionful quantity zUV into the

calculation. However, in the limit zUV/zIR → 0 the 1/z2 term together with the UV-brane δ function

basically just serve to provide a certain boundary condition at one side of the interval. Hence the scale zUV

does not affect the (low-lying part of) the spectrum. This will become apparent after the analysis of the

next section.
6This is the same situation as for the graviton (cf. [44]).
7As we will discuss in section 6 in more detail, this term can be viewed as an effective 5d description of

the dilaton coupling to the gauge fields on a D-brane stack.
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The coupling constant between the n-th KK mode and two gauge bosons,

gn ∼ k−
3

2 ϕn(zUV) = k−
3

2 ψn(zUV) , (3.3)

has mass dimension [gn] = −1 and determines the decay rate according to

Γn ∼ g2
nm

3
n . (3.4)

In order to calculate gn, we need a detailed understanding of the shape of the KK

modes. To achieve this, we introduce the coordinate ẑ = mnz (for each mn 6= 0) and

translate the δ functions back to boundary conditions at ẑUV and ẑIR. We then have to solve

[

∂2
bz + 1 −

(
α2 − 1

4

ẑ2

)]

ψn(ẑ) = 0 , (3.5)

subject to

(
ẑ ∂

bzψn

)
|
bz=bzUV

=

(
λ− 3

2

)
ψn|

bz=bzUV
and

(
ẑ ∂

bzψn

)
|
bz=bzIR

=

(
λ− 3

2

)
ψn|

bz=bzIR
, (3.6)

where we have also modified the IR boundary condition as mentioned earlier.

It is straightforward to solve eq. (3.5) separately in the regions ẑ ≪ 1 and ẑ ≫ 1,

where the first and second term of the potential, respectively, can be neglected.8 We find

that for small ẑ

ψn,UV(ẑ) ≃






1

Nα

(
ẑ

1

2
+α +Bα ẑ

1

2
−α
)

forα > 0

1

N0

(
ẑ

1

2 +B0 ẑ
1

2 ln
1

ẑ

)
forα = 0 ,

(3.7)

while for large ẑ

ψn,IR(ẑ) ≃ 1

Aα
cos(ẑ + Cα) , (3.8)

where Nα, Bα, Aα and Cα are constants of integration.9 The qualitative behaviour of the

resulting wave function is sketched in figure 3.

The canonical normalization of χn implies, together with eq. (2.6), the normalization

condition
1

mn

∫
bzIR

bzUV

dẑ ψn(ẑ)2 = 1 (3.9)

for our wave function. Let us assume that ẑIR ≫ 1 and that the absolute value of the wave

function grows between ẑUV and ẑ ∼ 1 (this turns out to always be the case if λ is generic).

8We assume α2
−

1

4
∼ O(1) for simplicity, excluding the special region α ≃

1

2
.

9Note that, with the redefinitions

N0 ≡
Nα

1 +Bα
and B0 ≡

α(1 −Bα)

1 +Bα
,

the second line of eq. (3.7) can be recovered as the α → 0 limit of the first line.
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ψn

bz

bzIRbzUV

Figure 3. Sketch of the wavefunction ψn as a function of ẑ

It is then apparent that the overall normalization is dominated by the cosine solution in

the IR region 1 ≤ ẑ ≤ ẑIR, implying

Aα ∼
√
ẑIR/mn = m

−1/2
IR . (3.10)

Of course, we are actually interested in the lowest-lying modes, so that zIR ∼ O(1) rather

than zIR ≫ 1. Nevertheless, the approximate cosine region (which in this case contains

only a few oscillations) continues to contribute an O(1) fraction to the total normalization.

Thus, eq. (3.10) continues to be correct up to O(1) factors.

To summarize, we now know that the UV solution has to be matched to the IR solution

with approximate value A−1
α ∼ m

1/2
IR at ẑ ∼ 1. For the decay rate, we need the UV-brane

value of this UV solution, which we will now derive.

The first boundary condition of eq. (3.6) together with eq. (3.7) gives

Bα = −
(

1 − 2α

λ− 2 + α

)
ẑ 2α

UV
, (3.11)

B0 = −
(

1 − 1

(λ− 2) ln(1/ẑUV) + 1

)
1

ln(1/ẑUV)
. (3.12)

Now, for λ = λ0 + O(1) and α = O(1), we see that both the ẑ
1

2
+α solution and the ẑ

1

2
−α

solution, as well as the full solution ψn,UV are of comparable size at ẑUV. Thus, only the more

strongly growing solution is important for the matching at ẑ ∼ 1. The value of ψn at the

UV brane is suppressed according to the behaviour of this solution. By contrast, for α = 0

the ẑ
1

2 solution and the ẑ
1

2 ln(1/ẑ) solution cancel almost exactly at the UV brane, leading

to an extra suppression factor 1/ ln(1/ẑ) in the brane value of ψn. In summary, we have

ψn(ẑUV) ∼






ẑ
1

2
+α

UV m
1

2

IR forα > 0

ẑ
1

2

UV

ln(1/ẑUV)
m

1

2

IR forα = 0 .

(3.13)

Note that the α = 0 result could also have been derived by using the expression for Bα in

eq. (3.11) and carefully taking the limit α→ 0. It is valid for α . ln(1/ẑUV)−1.
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Using eqs. (3.3) and (3.4) and recalling that ẑUV = mn/k, one finds the decay rates

Γn ∼






(mn

k

)4+2α
mIR forα > 0

(mn

k

)4 mIR

ln2(k/mn)
forα = 0 .

(3.14)

These rates represent one of our main results and will be used in the cosmological applica-

tions later on.

3.2 Tuned UV-brane mass term

Equation (3.11) suggests that the point λ = λ0 = 2−α may require special attention: Near

this point, the UV-brane value of the ẑ
1

2
−α mode (the falling or weakly growing mode)

is significantly enhanced compared to the value of the ẑ
1

2
+α mode (the strongly growing

mode). We already know that, for λ = λ0, the lowest mode is massless since, for the specific

choice of IR boundary conditions discussed earlier, λ0 is the minimal allowed value. This

mode can not decay unless the tuning is imperfect. We will not discuss the possible decay

rate of such an ‘almost massless’ mode.

Furthermore, in the tuned case the UV-brane δ-function is least-repulsive (or most

attractive). Thus, we expect the decay rates of higher modes to be larger for λ = λ0 than

for the generic case of λ > λ0. These enhanced decay rates are our main interest in this

subsection.

Let us first consider the case 0 < α < 1 and λ = λ0. Taking eq. (3.11) at face value,

Bα is infinite, which simply means that in the solution of eq. (3.7) only the ẑ
1

2
−α term is

present. When moving from ẑ = O(1) to ẑ = ẑUV, the wave function then changes by a

factor ẑ
1

2
−α

UV . Repeating the arguments which lead us to eq. (3.14), this gives the decay rate

Γn ∼
(mn

k

)4−2α
mIR for 0 < α < 1 and λ = λ0 . (3.15)

In the case α = 0, we have B0 = 0 at λ = λ0 according to eq. (3.12). Hence the wave

function falls by a factor ẑ
1

2

UV. This implies

Γn ∼
(mn

k

)4
mIR for α = 0 and λ = λ0 . (3.16)

As expected, a tuned value of λ enhances the rates in the whole range 0 ≤ α < 1, with the

enhancement being more pronounced at larger α.

Apparently, nothing in the above calculation depends on the restriction to α < 1.

However, it is easy to see that something goes wrong for α > 1. Indeed, if only the ẑ
1

2
−α

mode is relevant for all ẑ ≪ 1, the ψ2
n normalization integral is dominated by the region

near ẑUV. Thus, the relevant mode is UV localized. Obviously, this can not be the case for

all modes with mn ≪ k (to which our argument formally applies).

At the technical level, the above problem comes from the insufficient accuracy of the

approximation made in eq. (3.7). This accuracy can be improved by taking into account

– 9 –
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higher-order terms in the small-argument expansions of the Bessel functions.10 Including

only the first-order correction, we find

ψn,UV(ẑ) ≃






1

Nα

[
ẑ

1

2
+α

(
1 − ẑ2

4(1 + α)

)
+Bα ẑ

1

2
−α

(
1 − ẑ2

4(1 − α)

)]
for α 6= 1

1

N1

[
ẑ

3

2

(
1 − ẑ2

8

)
+B1 ẑ

− 1

2

(
1 +

ẑ2 ln(1/ẑ)

2

)]
for α = 1 .

(3.17)

In fact, the ẑ2 correction to the ẑ
1

2
+α solution will not play any role and we drop it in the

following. With this simplification, eq. (3.17) together with the UV boundary conditions

implies

Bα = 4α(1 − α)ẑ 2α−2
UV

, (3.18)

B1 =
4

2 ln(1/ẑUV) + 1
. (3.19)

This result can be intuitively understood as follows: It is clear that, for generic λ, the

boundary condition eq. (3.6) can only be fulfilled if both solutions to the wave equation,

ẑ
1

2
+α + · · · and Bα ẑ

1

2
−α + · · · , are of comparable size at the UV brane. This immediately

gives Bα ∼ ẑ 2α
UV

as in eq. (3.11). Now, for tuned λ0 = 2 − α, the function Bα ẑ
1

2
−α fulfills

the boundary condition already by itself, as can be easily checked. Therefore, the boundary

condition now forces the leading correction to that function, Bα ẑ
5

2
−α, to have the same

size as the other solution, ẑ
1

2
+α, at the UV brane. This gives Bα ∼ ẑ 2α−2

UV in agreement

with eq. (3.18).

We now observe that, as long as α < 1, the ẑ
1

2
−α solution is dominant everywhere

between ẑ = ẑUV and ẑ = O(1). This justifies our previously derived rate of eq. (3.15) and

shows that the presently discussed ẑ2 corrections are not important for 0 ≤ α < 1.

Next, we focus on the regime α > 1. In this case, we see that the ẑ
1

2
−α solution

dominates for ẑUV < ẑ < ẑ
1−1/α
UV . By contrast, the ẑ

1

2
+α solution is larger for ẑ

1−1/α
UV <

ẑ < O(1). Although figure 3 does not describe this regime correctly, one can check that

the normalization is nevertheless dominated by the IR region. It is then easy to see that

ψn(ẑUV) ∼ z
α− 3

2

UV m
1

2

IR for α > 1 and λ = λ0 , (3.20)

giving the decay rate

Γn ∼
(mn

k

)2α
mIR for α > 1 and λ = λ0 . (3.21)

It can be checked that, in spite of the extra logarithms appearing at intermediate steps,

the special case α = 1 is correctly reproduced by simply taking the appropriate limit of

either eq. (3.15) or eq. (3.21).

The 5d graviton with indices µ, ν has the same equation of motion as a massless 5d

scalar without boundary mass (i.e. for λ = λ0 = 0). We assume M5 ∼ k in the following.

10Alternatively, they can be determined by solving eq. (3.5) iteratively, treating the ‘1’ as a perturbation.
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The coupling of the 5d graviton to the energy-momentum tensor on the UV brane is then

suppressed by a factor k−3/2 as in eq. (3.1). Hence eq. (3.21) with α = 2 also applies to

the graviton and we have

Γn ∼
(mn

k

)4
mIR for graviton KK modes , (3.22)

in agreement with the literature on graviton tunneling between two throats (see e.g. [12, 45,

46]). These results are relevant since the throat to which the KK modes decay is dual to a

UV-brane-localized gauge theory [46]. Of course, eq. (3.22) corresponds to the case where

this gauge theory has O(1) degrees of freedom. We finally note that the coupling strength

of graviton KK modes to the UV brane has been given, e.g., in appendix A of [103]. For

M5 ∼ k, it reads gn ∼ √
mnmIR/k

2. The decay rate then follows from eq. (3.4) and also

reproduces eq. (3.22).

4 Situations dominated by the tachyon

A detailed discussion of the application of our 5d analysis to the Klebanov-Strassler throat

is the subject of section 6. However, to explain the relevance of tachyon decay rates we

have to jump somewhat ahead and mention certain facts concerning warped flux compact-

ifications already in this section: In flux compactifications, scalars obtain a large mass in

the unwarped part of the compact space.11 In our 5d model, this corresponds to a large

and generically detuned mass term on the UV brane. It is then evident from eq. (3.14) that

a maximally tachyonic scalar (α = 0) has a considerably larger decay rate than a massless

scalar (α = 2). This can be easily understood from the quantum mechanical analog: The

suppression effect of the UV mass term is present for both fields, but only the massless

scalar has to surmount an additional potential barrier. Thus, assuming that a certain KK

mode decays only via scalars and that all relevant scalars have a large UV-brane mass term,

the tachyon governs the decay. Clearly, the assumption that decays proceed only through

scalars is non-trivial: The graviton decay rate, eq. (3.22) is larger than the tachyon rate,

eq. (3.14) (albeit only by a factor (ln(k/mn))−2 ∼ (kℓ)−2). However, this is only relevant

for spin-two KK modes which can mix with the graviton.

Next, we observe that there are specific situations where, in contrast to what was

said above, the tachyon decay rate is larger than that of the graviton. This is possible

because the tachyon wavefunction rises while the graviton wavefunction falls when moving

away from the UV brane. Thus, if there is a probe brane in the throat which is localized

somewhere between the UV and IR brane, the decay to this probe brane can be dominated

by the tachyon (even if a corresponding graviton decay is allowed). We use the simple ansatz

eq. (3.1) for the coupling to gauge fields on the probe brane at ẑδ (where ẑUV < ẑδ < ẑIR).12

11We assume that the Kähler moduli are stabilized as well (which requires effects other than flux).
12As a string-theoretic realization of this situation, consider a D7 brane wrapping a 3-cycle of the T 1,1

in a Klebanov-Strassler throat and extending from the compact Calabi-Yau to a certain lowest point in the

throat. For a discussion of such embeddings and applications see e.g. [47–50]. Even though, in 5d language,

the D7-brane gauge theory lives everywhere between bzUV and bzδ, we model this situation by a gauge theory

localized at bzδ. This is a reasonable approximation since the coupling to throat fields is dominated by

interactions at the largest relevant values of bz.
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We now demonstrate the enhancement of the decay rates quantitatively. Let the probe

brane be localized at y = δ for some δ ≪ ℓ. For the light modes, ẑδ = ẑUV e
kδ ∼ ne−k(ℓ−δ)

is small and we can use the approximate wavefunctions of eq. (3.7). We see that, as ẑδ
increases, the tachyon wave function (α = 0) grows like ẑ

1

2 (we neglect the additional

logarithmic dependence). By contrast, the KK graviton wave function (α = 2) falls like

ẑ
1

2
−α. This is because, as explained before eq. (3.20), the falling solution dominates near

the UV brane. Thus, the ratio of the two wave functions at ẑδ is enhanced, relative to

its UV brane value, by a factor (ẑδ/ẑUV)2. Given that the tachyon decay rate to the UV

brane is suppressed relative to the corresponding graviton rate by the logarithmic factor

mentioned above, we conclude that

Γtachyon

Γgraviton
∼ (ẑδ/ẑUV)4

ln2(ẑIR/ẑUV)
(4.1)

for decays to the probe brane. Thus, the tachyon starts to dominate the decay when

the probe-brane warp factor (ẑδ/ẑUV)−1 becomes smaller than 1/
√

ln(ẑIR/ẑUV). This is

obviously a very weak requirement.

Finally, we mention a third situation in which the tachyon dominates the decay rates to

the UV sector. We can not argue from the 5d perspective how natural or unnatural it is to

have a tuned UV mass term, λ = λ0. (We will return to this question in the string-theoretic

context in section 6). However, a tuned value of λ0 is clearly a legitimate possibility.

Combining eqs. (3.15) and (3.21), the corresponding decay rates can be written as

Γn ∼
(mn

k

)2+2|α−1|
mIR for λ = λ0 . (4.2)

For 0 < α < 2, this obviously dominates the decay rates corresponding to massless scalars

and the graviton. The maximal enhancement is realized for α = 1, i.e., for a tachyon the

negative mass-squared of which is half that of the Breitenlohner-Freedman bound.

5 CFT interpretation

We now present physical arguments for the decay rates of section 3 using the ‘CFT-dual’

description of a Randall-Sundrum model as a strongly coupled 4d field theory. In other

words, we are going to appeal to a simplified, purely field-theoretic version of the AdS/CFT

correspondence [51]. In this description, a scalar bulk field with mass squared M2 corre-

sponds to a CFT operator O∆ with conformal dimension ∆ = 2 +
√

4 +M2/k2 = 2 +α.13

Without a UV brane, the generating functional of CFT correlators can be obtained from

the gravity description via the relation [54, 55]

∫
DφCFT e

−SCFT[φCFT]−
R

d4x φ0O∆ =

∫

φ0

DΦ e−S5d[Φ] . (5.1)

Here φ0(x) specifies the behaviour of the bulk field Φ(x, z) near the boundary of AdS5

(taking z → 0) to be Φ(x, z) ≃ φ0(x) z
4−∆ k3/2. It thus acts as a source for the correspond-

13As we will discuss below, for α < 1, also the relation ∆ = 2 − α can be realized [53].
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ing operator in the generating functional.14 The value of φ0 is kept fixed in the functional

integral on the right-hand side and φCFT denotes the dynamical CFT fields.

In the Randall-Sundrum model, there is a brane at z = k−1, corresponding to a UV

cutoff ΛUV = k in the CFT. The source φ0(x) = k5/2−∆Φ(x, k−1) now becomes a physical

degree of freedom and has to be included in the functional integral [57]:
∫

Dφ0 e
−SUV[φ0]

∫

ΛUV

DφCFT e
−SCFT[φCFT]−

R

d4x φ0O∆ =

∫
Dφ0 e

−SUV[φ0]

∫

φ0

DΦ e−S5d[Φ] .

(5.2)

We may think of the l.h. side of eq. (5.2) as being defined by the r.h. side. In our case,

the UV-brane action of the bulk scalar field, SUV[φ0], consists of the UV-brane mass term

and the interaction term with the brane-localized gauge theory. (We have suppressed the

gauge fields in the functional integral in eq. (5.2) for notational simplicity.) Thus, at the

UV scale ΛUV, the complete Lagrangian on the CFT side of the duality reads

L = LCFT[φCFT] +M2
φ0
φ2

0 +
1

Λ∆−3
UV

φ0 O∆ +
1

ΛUV

φ0 tr (FµνFµν) , (5.3)

where we have redefined φ0 by an appropriate power of ΛUV to give it mass dimension one.

When running the action corresponding to eq. (5.3) down to scales below ΛUV, the

CFT induces a kinetic term ∼ (∂φ0)
2 for the scalar φ0, which now manifestly becomes a

propagating field [56]. Similarly, the tachyonic instability which arises for M2 < 0 in the

presence of a UV brane can be understood as an effect of CFT-induced corrections. In

this language, loop effects of the CFT drive a scalar φ0 with M2
φ0

= 0 at the UV scale

to a negative mass squared at the IR scale if ∆ < 4 [38]. A sufficiently large mass term

at the UV scale prevents the CFT from making the scalar tachyonic. In particular, the

tuning λ = λ0 of the UV mass described earlier can be interpreted in the CFT language

as a tuning of M2
φ0

which ensures that φ0 becomes massless at the IR scale.

We first focus on the case of a generic, large UV mass term, λ = λ0 + O(1). In this

case, φ0 has a mass of the order ΛUV even after running down to the IR scale mIR. Since

φ0 remains heavy all the way from ΛUV down to mIR, its effect on the CFT dynamics and,

in particular, on the dimension of O∆ is negligible. Thus, the IR scale Lagrangian is still

that of eq. (5.3), modified only by a kinetic term and a mass correction for φ0. We can

now integrate out φ0 entirely, finding the coupling

∼ 1

Λ∆−2
UV

1

M2
φ0

O∆ tr (FµνFµν) (5.4)

between the brane-localized gauge theory and the operator O∆. At low scales, the confor-

mal symmetry of LCFT is broken by the IR brane. In the case of the Klebanov-Strassler

throat, this breaking of (approximate) conformal invariance is a dynamical effect within

the strongly-coupled gauge theory. The low-lying glueball states of this gauge theory cor-

respond to (linear combinations [58, 59] of) the KK modes of the bulk fields. Assuming

14More precisely, Φ(x, z) ≃ φ0(x) z
4−∆ k3/2 + A(x) z∆ k3/2, where A(x) can be interpreted as the expec-

tation value of the dual operator O∆ and φ0(x) as the source. The factors k3/2 have been introduced for

dimensional reasons.
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Figure 4. Decay of a glueball G via the light field φ0 into two gauge fields Aµ.

that these glueballs have non-vanishing overlap with O∆, they decay to the brane-localized

gauge theory via the operator in eq. (5.4). Since we assumed that M2
φ0

∼ Λ2
UV

even at the

IR scale, the decay rate

Γ ∼
(
mIR

ΛUV

)2∆

mIR (5.5)

follows by dimensional analysis. Recalling that ΛUV = k and ∆ = 2+α, we see immediately

that this agrees with the first line of eq. (3.14).

We now turn our attention to the tuned case, λ = λ0, making use of the holographic

picture developed in [38, 57]. As before, we run the Lagrangian of eq. (5.3) down to the

scale mIR. In contrast to our previous discussion, we can not appeal to the large mass of

φ0 to ignore its influence on the CFT. Indeed, as explained earlier, M2
φ0

approaches zero as

the energy scale approaches mIR. However, provided that α > 1 (∆ > 3), we can now argue

that the influence of φ0 is negligible because of its small mixing with CFT states. Indeed, for

∆ > 3, the operator φ0O∆ is irrelevant. Thus, we assume that the IR scale effective action

contains light glueballs and a light field φ0, with a mixing term suppressed by 1/Λ∆−3
UV .

The decay of glueballs to fields of the UV-brane gauge theory now proceeds via the

massless or light ‘source field’ φ0, cf. figure 4. The rate follows by dimensional analysis:

Γ ∼
(
mIR

ΛUV

)2∆−4

mIR . (5.6)

This result can also be immediately obtained from eq. (5.5): That equation secretly contains

a suppression factor 1/(Λ2
UV

)2 coming from the massive φ0 propagator. Replacing this mass

by mIR, i.e. multiplying eq. (5.5) by (ΛUV/mIR)4, we obtain eq. (5.6). This rate agrees with

the result of the gravity calculation for α > 1 given in eq. (3.21).

For α < 1 (∆ < 3) the above line of argument breaks down since the mixing between

φ0 and the CFT states can not any more be considered a small perturbation. This can

also be understood from our gravity-side discussion in section 3. Indeed, we are dealing

with a situation where the UV-brane mass term is tuned to allow for an exact zero mode.

The bulk profile of this zero-mode is ψ0 ∼ z
1

2
−α. Thus, its normalization is UV-localized
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for α > 1 and IR-localized for α < 1 (cf. eq. (3.9)). The corresponding 4d field can then

be viewed as a UV-brane- or IR-brane-localized field respectively. In the case α > 1, this

supports our previous statement that φ0 does not affect the CFT dynamics significantly.

By contrast, in the α < 1 case, the zero mode is tangled up in a non-trivial way in the

non-perturbative CFT dynamics [57–59].

In order to understand the case α < 1 with tuned λ = λ0 from the CFT perspective,

we will first describe the analysis of this section from an equivalent but technically slightly

different point of view. When running the Lagrangian of eq. (5.3) down to smaller scales,

we are consecutively integrating out φ0 modes with lower and lower 4-momenta k. This

induces corrections which are schematically of the form

∼ 1

Λ
2(∆−3)
UV

O∆(k)2

M2
φ0

(k) + c(k)k2
. (5.7)

Here the function c is zero at the high scale, c(ΛUV) = 0, and grows at lower scales to the

extent that a kinetic term for φ0 is induced by CFT loops. If M2
φ0

(k) becomes small and

the induced operator ∼ O∆
2 is not suppressed by ΛUV (i.e. for ∆ < 3), it can be large

enough to modify the CFT dynamics significantly and to invalidate the derived decay rate.

Moreover, the effect of this operator must be the origin of the tachyonic instability which

is present in the CFT for λ < λ0.

Alternatively, we may immediately integrate out φ0, before considering any RG running

or loop effects. This induces a coupling of the type given in eq. (5.4) (but with M2
φ0

=

M2
φ0

(ΛUV)). It also induces the term

∼ O2
∆

(ΛUV)2(∆−3)M2
φ0

(5.8)

which, in contrast to the non-local corrections given schematically in eq. (5.7), is a local

operator. In other words, the presence of a UV brane with a brane-localized mass term can

be viewed, on the CFT side, as a correction by a ‘double trace operator’ as discussed in [61].

It is now immediately clear that, as M2
φ0

is large in the detuned case, this O2
∆ correction

is too small to affect the CFT dynamics at low energy scales (and in particular the dimen-

sion of O∆) significantly. Hence, the coupling O∆F
2 can be directly used to estimate the de-

cay rate of any light glueball with non-vanishing overlap with O∆. This reproduces eq. (5.5).

It is also clear that, from this perspective, the value ∆ = 2 (corresponding to α = 0)

deserves special attention. Indeed, in this case the O2
∆ operator is marginal rather than

irrelevant. As discussed in section 4 of [61], this causes multiplicative renormalization of

the operator O∆ with logarithmic running:

O∆(mIR) ∼ ln(ΛUV/mIR)O∆(ΛUV) . (5.9)

Upon rescaling the operator in eq. (5.4), we obtain an additional factor of ln(ΛUV/mIR)−2

in the decay rate eq. (5.5), in agreement with the factor ln(k/mIR)−2 in the second line of

eq. (3.14).

We now consider the case α < 1 with tuned boundary mass, λ = λ0, corresponding

to the largest consistent coefficient of the O2
∆ correction. From the discussion in section 3
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(see in particular eqs. (3.7) and (3.18)) we see that, in this case, the UV behaviour of

the AdS scalar changes from Φ ∝ z2+α to Φ ∝ z2−α. According to the general discussion

of [53], the dual description of an AdS field theory with such boundary conditions and with

α < 1 is provided by a CFT with an operator O∆′ with dimension ∆′ = 2 − α (instead of

∆ = 2 + α). When we integrate φ0 out at the UV scale, we obtain the coupling

∼ 1

Λ∆′

UV

O∆′ tr (FµνFµν) (5.10)

as well as a term of the type given in eq. (5.8). One may in fact say that it is this

latter correction with an appropriately tuned coefficient which forces the dimension of O
to change to ∆′ = 4 − ∆ in the infrared [39] (see also [61, 62]). From eq. (5.10), we can

estimate the decay rate of glueballs with non-vanishing overlap with O∆′ as

Γ ∼
(
mIR

ΛUV

)2∆′

mIR , (5.11)

in agreement with eq. (3.15).

While a more systematic and quantitative study of the CFT description of the decay

rates under consideration may be worthwhile, we believe that we have now supplied enough

additional physical intuition for the purposes of the present paper. In particular, we have

fully confirmed the results of our gravity-side calculation.

6 Application to throats in flux compactifications

We now discuss the applicability of our results to throat geometries in type IIB string

theory. For definiteness, we focus on the Klebanov-Strassler (KS) throat [8, 60, 63, 64] in

the following. We expect, however, that our results can similarly be applied to other types

of throats.

The curvature scale R = k−1 of the KS throat varies logarithmically along the radial

direction and the geometry smoothly terminates in the IR. We neglect this logarithmic

variation in the following. Sufficiently far away from the IR tip, the KS throat can then

be approximated by the space AdS5 ×T 1,1. In the UV, the throat is smoothly glued into a

compact manifold [1]. We focus on compactifications in which the size L of this manifold

is not hierarchically larger than the AdS scale R of the throat.15 We can then neglect the

‘thickness’ of the compact manifold and approximate it by the UV brane of an RS model.

Similarly, we model the IR end of the throat by an IR brane (see ref. [9] for more details

on the KS throat as a RS model).

The KK reduction of type IIB supergravity on T 1,1 in an AdS5 × T 1,1 background

has been carried out in [32–34]. The resulting spectrum of KK modes contains scalars

with various tachyonic masses, some of which saturate the Breitenlohner-Freedman (BF)

bound. Note that the presence of scalars saturating this bound is expected on general

15The throat can only be glued smoothly into the compact manifold if L & R. The distribution of flux

vacua strongly favors vacua where the volume L6 is small in string units, cf. [65] and references therein.

Thus, the generic compactification has no large hierarchy between R and L.
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grounds: The theory in AdS5, which results from the KK reduction, is supersymmetric.

Furthermore, the isometries of T 1,1 ensure the presence of massless vector multiplets in the

spectrum. Such multiplets contain a scalar with maximally tachyonic mass [30, 31, 43].

We will now discuss tachyons from such multiplets in more detail. The KK reduction

of type IIB supergravity on AdS5 × T 1,1 contains eight massless 5d vectors. One of these

vectors comes from the compactification of the 4-form potential on the 3-cycle in T 1,1 ∼
S3 × S2. The corresponding abelian symmetry of the solution is called U(1)B . The seven

remaining vectors are associated with the SO(4)×U(1)R isometry of T 1,1. Since the U(1)R
vector is part of the massless graviton multiplet [32–34] which contains no scalars (and in

particular no tachyon), we end up with seven BF tachyons in total. In the classification

of [32–34], these scalars belong to shortened versions of vector multiplet I.

In a KS throat, the symmetries are reduced with respect to AdS5 ×T 1,1. In the region

between the IR and UV end, which is the most symmetric part of the throat, the symmetry

is reduced to SO(4)×U(1)B×Z2M ⊂ SO(4)×U(1)B×U(1)R. The U(1)R is broken to Z2M by

theM units of 3-form-flux on the S3, which are also responsible for the logarithmic variation

of the AdS scale [66]. Note, however, that this breaking does not affect our previous

counting of BF tachyons since, as mentioned before, the U(1)R vector has no scalar partner.

The symmetry is further reduced at the IR and UV end of the KS throat: In the IR, the

SO(4) stays intact, but the U(1)B is completely broken, and the Z2M is broken to Z2 [8, 67–

69]. In the UV, on the other hand, the SO(4) × U(1)R isometry of T 1,1 is broken since a

compact Calabi-Yau has no continuous isometries. Concerning the U(1)R factor, we are

anyway only interested in its Z2 subgroup which survives in the IR region. This discrete Z2

symmetry (or a larger discrete subgroup of the T 1,1 isometry) may or may not be respected

by the compact Calabi-Yau. The latter is certainly the generic case. In addition, the KS

throat has another Z2 symmetry (called I-symmetry in [69]) which interchanges the two

2-sphere in the T 1,1 (T 1,1 is an S1 bundle over S2 ×S2) and reverses the sign of the 2-form

potentials of type IIB supergravity [60, 70]. This symmetry is unbroken in the IR and

may or may not be broken in the UV.16 Furthermore, the U(1)B can be broken or remain

unbroken in the UV. This is not essential for us since the corresponding BF scalar, being

in the adjoint, is uncharged. Thus, the couplings of this scalar to various UV localized

fields, which are our main interest, are not forbidden by this symmetry. We finally note

that the symmetry breaking in the UV is mediated to the IR by irrelevant operators and

is thus suppressed by powers of the warp factor [15, 16, 73, 74].17

We now discuss specifically the effects of the tachyon in the U(1)B vector multiplet (also

known as Betti multiplet). This tachyon is an SO(4) singlet, but odd under the I-symmetry

16As long as the throat is infinite, we can move along a one-parameter family of solutions, the so-called

baryonic branch of the dual gauge theory, and the KS solution is a special point which respects the I-

symmetry [68, 69, 71, 72]. However, the metric deformation which corresponds to moving along the baryonic

branch does not respect the conformal-Calabi-Yau condition [71]. Hence, it is not clear how to glue such a

deformed throat into a compact UV space in the framework of warped flux compactifications [1]. For this

reason, we do not consider such deformations. It is, of course, nevertheless possible that the I-symmetry

is broken by the Calabi-Yau (instead of the throat), corresponding to a Z2-breaking on the UV brane.
17As discussed in [87], relevant perturbations (which grow towards the IR) are also possible as long as

they start with a sufficiently small amplitude in the UV.

– 17 –



J
H
E
P
0
2
(
2
0
1
0
)
0
6
3

Z2 [68].18 In the IR region of the KS throat, where the approximation as AdS5 × T 1,1

becomes unreliable, this tachyon mixes with a scalar of mass M2 = 5k2 [75, 76]. In the

UV, on the other hand, the two scalar fluctuations decouple, as we will now demonstrate.

The equations of motion of this system are given in eqs. (47) and (48) in [75]:

z̃′′ − 2

sinh2 τ
z̃ + m̃2 I(τ)

K2(τ)
z̃ = m̃2 9

4 · 22/3
K(τ)w̃ (6.1)

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ + m̃2 I(τ)

K2(τ)
w̃ =

16

9
K(τ)z̃ . (6.2)

Here, primes denote derivatives with respect to the radial coordinate τ of the KS throat

(using the metric convention of [8]) and m̃ is related to the 4d mass of the state. The

functions I(τ) and K(τ) are e.g. given in appendix B in [75]. In the UV, τ ≫ 1, these

functions can be approximated by I(τ) ∼ τ e−4τ/3 and K(τ) ∼ e−τ/3. The equations of

motion then indeed decouple and simplify to

z̃′′ = 0 (6.3)

w̃′′ − w̃ = 0 . (6.4)

This is solved by z̃ = τ + const. and w̃ = eτ + const. e−τ (neglecting the overall factors).

For τ ≫ 1, the coordinate τ is related to our coordinate z by z ∝ e−τ/3 and the wavefunc-

tions read z̃ = ln z + const. and w̃ = z−3 + const. z3. Up to an overall factor of z2 (which

is related to a field redefinition19) these are indeed the wavefunctions of a tachyon which

saturates the BF bound and a scalar with mass M2 = 5k2. In particular, we see that the

wavefunctions from the KK decomposition on AdS5×T1,1 are a good approximation in the

UV of the KS throat.

The mass spectrum of 4d KK modes from this system of two scalars was determined

in [75] and found to contain the lightest state which is known so far for the KS throat

(see e.g. [77–82] for other parts of the mass spectrum). Since heavier KK modes decay

very quickly to lighter states via various processes (which we will discuss in section 7), this

lightest KK mode generically contains an O(1)-fraction of the energy density of a heated

KS throat.20 Due to the effect of the U(1)B tachyon, these particles decay to the UV sector

with the rate determined in section 3.

The approximate SO(4) symmetry of the IR region suppresses decays violating the

total SO(4) charge. Therefore, a sizeable fraction of the energy density in a KS throat is

generically in the form of charged KK modes. We will now argue that tachyons are also

18We note that, in the infinite throat limit, this 5d scalar has a massless 4d mode [68, 75]. When the

throat is glued into a compact manifold, this mode obtains a mass which is parametrically large compared

to the IR scale mIR if the volume of the compact manifold is small. Thus, this mode is not important in

our context.
19In particular, the field z̃ is related to the fluctuation ψ = δg13 = δg24 of the 5-dimensional compact

manifold in the throat by the field redefinition z̃ = z−2ψ. In the UV of the throat, where the approximation

as AdS5 × T 1,1 is applicable, the field ψ is a 5d scalar with a standard kinetic term (coming from the 10d

Einstein-Hilbert term).
20More precisely, this state is part of a massive vector multiplet of 4d N = 1 supersymmetry [76]. A

similar fraction of the energy density is therefore stored in the superpartners of this scalar.
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relevant for the decay of these states. Namely, the spectrum in [32–34] contains tachyons

with various charges, though not all of them have the maximally allowed negative mass-

squared. For example, the tachyon in the SO(4) vector multiplet is in the adjoint of SO(4).

We expect that these tachyons mix with other scalars with the same charge in the IR region

of the KS throat. Various IR-localized states can therefore decay via a given tachyon to

the UV sector, and the decay rates from section 3 apply. As another example, we can con-

sider KK modes which are dual to glueballs created by the operator of lowest dimension,

∆ = 3
2 , in the KS theory. These states are scalars in the (1

2 ,
1
2) of SU(2)× SU(2) ∼ SO(4).

In [76], the lightest KK mode in this tower was proposed as a candidate for the lightest

state in the KS spectrum. A scalar operator of dimension ∆ = 3
2 is dual to a tachyon with

α = 2 − ∆ = 1
2 (cf. section 5). The decay rate of the corresponding KK modes then follows

from the formulas in section 3.

We now discuss the UV-brane mass term of the various tachyonic scalars. As empha-

sized before, we focus on compactifications where all moduli are stabilized by fluxes and

non-perturbative effects along the lines of [1, 10]. Let us first assume for simplicity that

both complex structure and Kähler moduli are stabilized at the UV scale. In 5d language

this means that the UV brane theory has only one energy scale: k ∼ R−1 ∼ L−1 ∼Mstring.

(For simplicity, we ignore the hierarchy between L−1 and Mstring, assuming it to be small.)

Since the full construction is stable, we know that all tachyonic scalars will receive a UV-

brane mass term with λ ≥ λ0 in this context. Given that there is no small energy scale

around (which could correspond to λ − λ0 ≪ 1) and no obvious reason for the tuning

λ = λ0, we make the assumption that λ = λ0 +O(1). As we will see in section 7, even with

this conservative assumption the cosmological effects of tachyonic scalars can be dramatic.

There are, however, at least two possible loopholes in this conclusion. The first loophole

is related to the question where the massless mode of a 5d tachyon with tuned UV-brane

mass is localized. To see this, let us first strengthen our previous argument for detuning

in the following way: Recall that the wavefunction of the massless mode for supersym-

metric boundary conditions, ψ ∝ z
1

2
−α, is UV-localized for α > 1 (cf. sections 3.2 and 5).

Therefore, even if we change the boundary condition at the IR brane (e.g. by choosing a

different boundary mass term), this mode only picks up an exponentially small mass. It

is then clear that, for tuned UV mass term and α > 1, there is always an exponentially

light UV-localized mode in the spectrum. However, with all Calabi-Yau moduli stabilized

at the high scale, there should, in 5d language, be no light fields at or near the UV brane.

Thus, the UV-localized mode can not be light, implying that the UV mass term has to

be detuned. For α < 1, however, this argument does not apply as the wavefunction is

IR-localized in this case. The zero mode of such a tachyon can be light without violating

the requirement that there are no light fields in the UV sector. Furthermore, for generic

IR-boundary condition, this mode picks up a mass of the order the IR scale. Thus, for

α < 1, the UV mass term can in principle be tuned. Of course, we still have no reason for

the required tuning, but we can also not dismiss the tuned situation on general grounds.

The second loophole lies in our assumption that there are no light fields in the UV

sector. There is obviously the possibility that the Kähler stabilization scale is much smaller

than the flux stabilization scale, which may be the natural choice for low-scale SUSY. In
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this case, the UV-brane theory has a second, smaller energy scale with corresponding light

fields. In the 5d description, these fields could be the lowest KK modes of tachyons. More

precisely, for tuned λ = λ0 and α > 1, such a mode is massless and localized in the

UV, corresponding to an unstabilized modulus. Stabilization of the Kähler moduli, in the

5d description, is then due to a detuning of the mass on the UV brane. If the Kähler

stabilization scale is lower than the flux stabilization scale (which we assume to be of the

order the AdS scale), this detuning is small, λ− λ0 ≪ 1, giving the modulus a small mass

compared to the AdS scale. Of course, as far as some generic Kähler modulus is concerned,

such a connection is far from obvious because the throat has no 2- or 4-cycles.21 However,

such an approximate tuning can potentially be related to the universal Kähler modulus.22

If the detuning is sufficiently small, the higher KK modes of the corresponding tachyon

would decay with the enhanced rates derived in section 3.2.

In summary, we have very good reasons to consider decays mediated by tachyons in

throat cosmology. While the situation with detuned UV mass term appears to be generic,

we can not exclude the possibility that certain tachyonic fields have a UV mass tuned to

the minimal allowed value. Establishing this, which would imply even larger decay rates

than we discuss in the following, would be an interesting subject for future research.

Finally, we note a recent paper [19] which presented a survey of decay channels of KK

modes in a KS throat. In particular, the decay rate of KK modes to moduli and their axionic

partners was determined. As the moduli can be viewed (at least partially) as fields living on

the UV brane, it is interesting to compare this decay rate with our results. More precisely,

eq. (5.5) in [19] gives the decay rate of a KK mode into axionic partners of the moduli.23

For Mp ∼Ms ∼ k and using our notation w = mIR/k and ν⋆ = α, their eq. (5.5) reads

Γ ∼
(mIR

k

)4+2α
mIR . (6.5)

This agrees with our eq. (3.14) (apart from the logarithmic suppression in the case α = 0).

However, we believe that this rate also applies to the tunneling of KK modes to other

throats. As discussed in [46] in some detail, via the AdS/CFT correspondence, other

throats can be described by large-N gauge theories which live on the UV brane. The tun-

neling rate of KK modes to these sectors is then given by eq. (6.5) times the number of

degrees of freedom, ∼ N2, of the dual gauge theories.

21Note that T 1,1 is isomorphic to S2
×S3 and thus has a nontrivial 2-cycle [60]. However, this S2 shrinks

to zero at the IR tip of the throat and thus is not a cycle of the Calabi-Yau.
22It is clear that the universal Kähler modulus belongs to the UV sector if we can work in a Kähler-Weyl

frame (the Brans-Dicke frame). In this frame, the metric in the IR region is not affected by a (small)

shift of the universal Kähler modulus. Namely, such a shift corresponds to changing the prefactor of the

4d Einstein-Hilbert term, which is dominated by the compact Calabi-Yau and the UV end of the throat.

However, it has recently been argued that this is not always the appropriate frame [83, 84]. In other frames,

the universal Kähler modulus may be viewed (at least partially) as a throat field.
23Note that the decay rate in their eq. (5.4) is additionally suppressed as it involves a transition between

states with different charges under the approximately conserved symmetries of the throat.
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7 Cosmology

To illustrate the relevance of tachyons, we will now discuss the reheating of the Standard

Model (SM)24 after warped brane inflation. For definiteness, we focus on a specific real-

ization of warped brane inflation, the KKLMMT scenario [11]. In this scenario, inflation

is driven by a D3-brane which slowly rolls towards an anti-D3-brane located at the tip of

a KS throat. As discussed in appendix C of [11], for given parameters (string coupling,

string scale, etc.), the hierarchy of this throat can be fixed by observational data.25 In the

following, we will use mIR ∼ 1014 GeV and k ∼ 1018 GeV for numerical estimates. We as-

sume that the SM is realized on D-branes which are localized in the CY outside the throat.

In the effective 5d description, the SM then lives on the UV brane of the corresponding RS

model. Furthermore, we assume that the inflationary throat is the only strongly warped

region in the compact space.

Inflation ends with the annihilation of the D3-brane and the anti-D3-brane. The

resulting energy is deposited in KK modes localized at the tip of the throat [20–23, 85].

Temperature and energy density of this gas, which is initially marginally non-relativistic,

are set by the IR scale: T ∼ mIR and ρ ∼ m4
IR

. These KK modes decay to the SM at later

times. The resulting reheating temperature of the SM can be estimated as usual: Most of

the energy is transferred when the Hubble rate is comparable to the decay rate. The Hubble

rate is related to the total energy density by H2 = ρtot/3M
2
4 . For radiation at temperature

T and with gSM degrees of freedom, the energy density is given by ρtot = π2

30 gSMT
4. The

reheating temperature can then be estimated as

TRH ∼
(

10

gSM

) 1

4 √
M4Γ . (7.1)

It is probable that the energy density in the throat is in the form of different species of KK

modes with different lifetimes. After one species of KK modes has decayed to the SM, KK

modes with longer lifetimes can easily come to dominate the total energy density as their

energy density scales like matter (and not like radiation). Their decay to the SM then leads

to a new phase of reheating and the final reheating temperature will be determined by the

most stable KK modes. Let us now assume that the throat has no tachyonic scalars. There

certainly are scalar KK modes in the spectrum of the KS throat (e.g. from the dilaton).

Without tachyons, their largest possible decay rate would be that for a massless scalar,

corresponding to α = 2. As discussed in section 6, we expect that scalars generically obtain

a mass on the UV brane (in the 5d description) and that this mass is not tuned to the

special value λ0. Using the corresponding decay rate for a massless scalar, eq. (3.14), we

24We use the term ‘Standard Model’ to refer to a sector which contains the SM, e.g. the MSSM. For

definiteness, we use gSM = O(100) for the number of effective relativistic degrees of freedom at the reheating

temperature TRH. For example, the SM itself has gSM ≈ 107 for temperatures T & 300 GeV while the MSSM

has gSM ≈ 229 for T & m1/2 (with the familiar prefactor 7/8 for fermions included).
25Some fine-tuning is generically required to actually achieve slow roll inflation. A systematic study was

carried out in [87] (see also [88, 91] for earlier work). Some of the mechanisms used in these papers rely on

D7-branes wrapping 3-cycles of the throat (see e.g. [92] for an explicit realization). For our purposes, we

assume a proper fine-tuning such that a KKLMMT-type scenario is realized.
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then obtain an upper bound on the reheating temperature in a scenario without tachyons:

TRH . 1 GeV . (7.2)

This is dangerously low. In particular, it is difficult to obtain sufficient baryogenesis at

such low temperatures. Moreover, reheating temperatures below 1 MeV are excluded by

nucleosynthesis [95–97]. As tachyons lead to higher decay rates, the reheating temperature

can also be higher. We will now discuss this in more detail.

We first consider processes in the throat sector which happen on timescales shorter

than those relevant for decays to the SM. Warped KK modes are described by an effective

field theory with a low cutoff, ∼ mIR. We do not assume a large hierarchy between k

and M5 (or, from the 10d perspective, k, Ms and M10) which would suppress quantum

corrections. All possible n-point-interactions, which are allowed by the symmetries, will

therefore be induced by quantum effects (if they are not present at tree-level). In particular,

the effective action includes couplings of the type

HHGG, (7.3)

which involves two different species of KK modes H and G and allows for the processes

2 · H ↔ 2 · G. Here, we have suppressed all symmetry-indices (which are appropriately

contracted). Let G denote the lightest KK mode in the spectrum, whereas H is any heavier

KK mode. As we will see in a moment, the KK modes are in thermal equilibrium initially.

For temperatures below the mass of the heavier KK mode, the process 2 · H → 2 · G then

occurs with a much higher rate than the inverse process. The heavier KK modes thus begin

to annihilate to the lighter KK modes, leading to an exponential decrease of the relative

number density of the two states,

nH
nG

= e−(mH−mG)/T . (7.4)

Here, mH and mG are the masses of the two states and T is the temperature of the gas of

KK modes. This exponential decrease continues until the heavier KK modes are so dilute

that they decouple. This happens, when

nH · 〈σv〉 ∼ H , (7.5)

where 〈σv〉 is the thermally averaged product of cross section and relative velocity for

the scattering process and H is the Hubble rate. The latter is dominated by the energy

density ρ of the gas of KK modes, H ∼ √
ρ/M4. Due to the exponential dependence on

the temperature in eq. (7.4), the heavy KK modes decouple when the temperature is still

of the order mIR.26 By dimensional analysis, it then follows that 〈σv〉 ∼ m−2
IR as well as

ρ ∼ m4
IR

and nG ∼ m3
IR

. Using eq. (7.5), we find

nH
nG

∼ mIR

M4
∼ 10−4 . (7.6)

26More precisely, the condition on the decoupling temperature Tdec follows from eqs. (7.4) and (7.5).

Definingm ≡ mH−mG (and assuming that m ∼ mIR), the condition can be written as e−m/Tdec ∼ (m/M4),

where we have neglected powers of m/Tdec multiplying the right-hand side. For mIR/M4 ∼ 10−4, we then

find that Tdec ∼ mIR/9.
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The fact that this factor is smaller than 1 shows that the KK modes were indeed in thermal

equilibrium initially. Thus, the energy density is dominantly in the form of the lightest KK

mode. All heavier KK modes are 10−4 times less abundant.

There are other decay processes in the throat sector. In particular, the effective ac-

tion will also contain various trilinear couplings. If kinematically allowed, KK modes can

therefore decay to two lighter KK modes. If these processes are not suppressed due to the

approximate symmetry SO(4) × Z2 × Z2 of the effective action (cf. section 6), the corre-

sponding decay rate is ∼ mIR (as follows by dimensional analysis). Moreover, we expect

various couplings of KK modes to 4d gravitons in the effective action. While such cou-

plings are forbidden by KK-mode orthogonality at the level of the two-derivative, quadratic

action [14, 16], they are certainly present in the strongly-coupled and highly non-linear ef-

fective field theory relevant for the dynamics of the low-lying KK modes.

Indeed, integrating out the heavier states, all types of multi-particle and higher-

derivative vertices are generated in the effective action for the lowest-lying KK modes.

Since any derivatives appearing in this action are covariant, various quantities derived

from the Riemann tensor naturally arise. As we assume no significant hierarchy between

the AdS scale and the Planck scale, the only scale relevant for this argument is the IR scale

mIR. Thus, for example, we naturally expect a term of the type

∼ 1

mIR

R2G (7.7)

to arise. Here, R2 is some scalar quadratic in the 4d Riemann tensor and the scalar

KK mode G is a singlet with respect to the symmetries of the effective action (otherwise,

the term would be forbidden or suppressed). We therefore believe that such terms are

generically present in the effective action and that they are not suppressed by powers of

the warp factor, a possibility raised in [19]. As discussed in [19, 93, 94], the coupling

eq. (7.7) allows for the decay of G to two 4d gravitons. By canonically normalizing the

gravitons, the relevant vertex is seen to be suppressed by 1/M2
4 , leading to the decay rate

∼ m5
IR
/M4

4 . Similar arguments can be made for couplings involving two KK modes and

a graviton. Heavier KK modes can therefore decay to lighter KK modes via the emission

of a graviton. If these processes are not suppressed due to the approximate symmetries of

the effective action, the corresponding decay rate is ∼ m3
IR
/M2

4 .

Let us summarize what we have found: At late times, the energy density is dominantly

in the form of the lightest KK mode. As we have discussed in section 6, the lightest known

KK mode in the KS throat mixes with the tachyon from the Betti multiplet. We will

assume that this KK mode is indeed the lightest state. It thus decays to the SM with the

rate for a maximally tachyonic scalar:

Γ ∼
(mIR

k

)4 mIR

ln2(k/mIR)
. (7.8)

As the lightest known KK mode is odd with respect to the I-symmetry (cf. section 6), the

decay to two gravitons is forbidden or strongly suppressed (compared to the rate ∼ m5
IR
/k4

for k ∼M4). Thus, the decay to the SM is the dominant decay channel for this state.
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The heavier KK modes are 10−4 times less abundant than the lightest KK mode. In ad-

dition, several of these states decay to lighter KK modes via trilinear couplings and graviton

emission. The timescales for these decays are ∼ m−1
IR and ∼M2

4 /m
3
IR

, respectively. At later

times, only the lightest KK modes with given charges under SO(4)×Z2 ×Z2 may survive.

Moreover, as this symmetry is only approximate, eventually all KK modes can decay to

the lightest KK mode. Such charge violating decays are, however, suppressed by additional

powers of the warp factor [15, 16, 73, 74]. If the decay rate is nevertheless higher than

eq. (7.8), all KK modes will first decay to the lightest KK mode. The latter subsequently

decay to the SM. Using eq. (7.1), the resulting reheating temperature of the SM is

TRH ∼ 107 GeV . (7.9)

This is considerably higher than 1GeV, due to the enhanced decay rate mediated by a

tachyon. It is also possible, however, that the total decay rate of the heavier KK modes

(to the SM and to the lightest KK mode) is smaller than eq. (7.8). These states will then

still be stable when the lightest KK mode has already decayed to the SM. As their energy

density scales like matter whereas the energy density of the SM scales like radiation, the

heavier KK modes might come to dominate the total energy density. Their decay to the

SM then leads to a new phase of reheating with a lower reheating temperature. Although

we have not analysed this possibility in more detail, it is clear that tachyons may also

enhance the relevant decay rates (and thus the reheating temperature) in this case.

Finally, we briefly consider the decay of fermionic KK modes. If supersymmetry is

broken outside the throat, we expect that the fermionic decay rates are of the same order

of magnitude as those of the scalars in the same multiplet. However, the decays of fermions

are somewhat model-dependent as the supersymmetry breaking scale (or the gravitino mass

m3/2) determines the allowed decay channels. If supersymmetry is broken at low scales,

m3/2 < mIR,27 the fermionic KK modes can decay to lighter KK modes under the emission

of a gravitino. Another possible channel is the decay to a graviton and a gravitino. These

processes are the analogue of the decay of bosonic KK modes to gravitons. The resulting

abundance of gravitinos leads to the well-known gravitino problem. If the supersymmetry

breaking scale is high, m3/2 > mIR, decays to gravitinos and decays to superpartners

of standard model particles are kinematically forbidden. As we have assumed that the

inflationary throat is the only strongly warped region (and the fermionic KK modes can

thus not decay to such sectors), the fermionic KK modes may then be absolutely stable. In

order to avoid the resulting overclosure of the universe, one can invoke the neutrino portal

which allows their decay to a neutrino and a Higgs [17, 101].

8 Conclusions

In this paper, we have analysed the effect of tachyonic scalars on couplings between IR- and

UV-localized sectors in warped compactifications. We gave an introduction to tachyonic

27In some scenarios of brane inflation the gravitino mass provides an upper bound on the inflationary

Hubble scale, HI . m3/2 [98, 99]. Since HI ∼ m2

IR/M4, the case m3/2 < mIR is possible also in these

scenarios.
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scalars in a slice of AdS5 in section 2. In particular, we explained the origin of an instability

and its removal via a UV-brane-localized mass term for the field, both of which can be

easily understood in a quantum mechanical analogue. In section 3 we considered decays

of IR-localized KK-modes to a UV-localized gauge theory in a 5d Randall-Sundrum toy

model and derived the dependence of the decay rates on the warp factor. As expected, this

dependence is governed by the 5d mass of the scalar. There is also a further suppression

due to the UV-localized mass term.

We have developed the dual CFT description of our results in section 5. In this

approach, the dependence on the 5d mass M is encoded in the dimension of the dual

operator, given by ∆ = 2 +
√

4 +M2/k2 . As long as the UV-brane mass term takes

generic values above the boundary for stability, its effect on decay rates can be understood

as a simple propagator suppression on the CFT side. If this boundary mass term is tuned

to its minimal allowed value, decay rates are correspondingly enhanced. While this is

straightforward to see for ∆ > 3, the analysis of such a tuned situation in the regime

with ∆ < 3 is more subtle: Here, one has to use the alternative CFT description with an

operator of dimension ∆′ = 4 − ∆.

In section 6, we have worked out the applicability of our 5d analysis to throat geome-

tries in string compactifications. As a specific example, we have considered the Klebanov-

Strassler throat with its approximate AdS5 × T 1,1 geometry in the UV region. Due to

the (gauge) symmetries of the solution, tachyonic 5d scalars saturating the Breitenlohner-

Freedman bound are present. We have argued that, generically, the UV-brane mass of

these tachyons is detuned from its minimal value.28 The spectrum of light KK modes

in the Klebanov-Strassler throat has been studied (cf. e.g. [75–82]) and the lightest state

found so far is a singlet under the continuous symmetries of the throat. This state results

from the mixture of two 5d scalars, one of which has maximally tachyonic 5d mass. Using

the equations of motion of the two coupled scalars, we have checked that the two fluctu-

ations decouple in the UV and that one of the resulting wavefunctions correctly describes

a maximally tachyonic scalar. The lightest (known) KK mode of the Klebanov-Strassler

throat thus decays to the UV brane with the decay rate derived in section 3.

In section 7, we have used a specific example, the reheating of the standard model after

warped brane inflation, to demonstrate the relevance of tachyons in throat cosmology. Since

tachyons affect the decay rate to the UV brane, their role is decisive in settings where

the SM is localized outside the inflationary throat. We have focused on such scenarios

assuming, for definiteness, that the SM is realized in the bulk of the Calabi-Yau.29 An

important consequence of tachyons is that they lead to a larger reheating temperature of

the standard model. More precisely, without tachyons, one finds an upper bound on the

reheating temperature TRH . 1 GeV. Including the tachyons, one instead has TRH ∼

28We have, however, also pointed out potential loopholes in this argument. Thus, the case of a tuned

UV mass term can not be completely dismissed. Such a tuning would allow for decay rates which are even

higher than those which we found in the generic situation.
29We believe, however, that our results also apply to situations where the SM lives in another throat. In

this case, our decay rates have to be multiplied by the number of degrees of freedom, ∼ N2, of the large-N

gauge theory which is dual to the additional throat.
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107 GeV. Charged KK modes may have smaller decay rates and correspondingly larger

lifetimes. Their decay may lead to another phase of reheating, resulting in a lower reheating

temperature. Although we have not determined the decay rate of a generic charged KK

mode, it is likely that their decay rates are also enhanced by tachyons.

To discuss this in more detail, we recall that the UV region of the Klebanov-Strassler

throat can be approximated as AdS5 × T 1,1. In this region, the KK reduction on T 1,1,

which was performed in [32–34], is applicable. Close to the IR end of the throat, the

approximation as AdS5 × T 1,1 becomes unreliable. We expect that a given AdS5 field

(coming from the KK reduction on T 1,1) mixes with all other fields with the same quantum

numbers in this region. This is likely already the case at tree-level as follows e.g. from the

analysis in [75, 76, 81]. Moreover, there generically is no large hierarchy between the

10-dimensional Planck scale and the AdS curvature scale which could strongly suppress

quantum corrections. Thus, we expect all bilinear mixing terms, which are allowed by

the symmetries, to appear in the effective 5d action. A 4d KK mode with given quantum

numbers will therefore couple to the UV-brane via all AdS5 fields with the same quantum

numbers. It is then clear that the decay rate of a scalar KK mode will be determined by

the AdS5 field with the smallest (or possibly most tachyonic) mass-squared for the given

charges. As the spectrum of these fields is known [32–34], it should be possible to determine

the decay rate of a generic scalar KK mode from its charges under the (approximate)

symmetries of the throat. This would be an interesting project for future research.

Another important cosmological application of our results is to throat dark matter [14–

19, 21]. Let us first consider scenarios in which the standard model is localized outside

the throat. Measurements of the cosmic diffuse γ-ray background give a lower bound of

∼ 1026 s for the lifetime of dark matter with decay channels to photons (assuming an O(1)

branching ratio for decays via hadrons) [100]. As we have discussed in section 6, the lightest

known KK mode of the Klebanov-Strassler throat couples to the UV-brane via a maximally

tachyonic scalar. Generically, a considerable fraction of the dark matter will be in the form

of this lightest state. In order to fulfill the above bound, the dark matter throat then

has to have an IR scale which is smaller than ∼ 105 GeV (assuming k ∼ 1018 GeV). This

effectively excludes KK modes in an inflationary throat à la KKLMMT [11] as a viable

dark matter candidate. Dark matter in sufficiently long throats, which may be produced by

tunneling from the inflationary throat [14, 21] or thermally from the standard model [17],

can however still be viable. It may, of course, turn out that the lightest KK mode of the

Klebanov-Strassler throat is not the one considered in section 6. However, the mass of a

glueball can roughly be expected to decrease with the dimension of the operator which

creates the state [75, 76]. Or, correspondingly, the mass of KK modes generically decreases

with the mass of the corresponding AdS5 field [15]. It is therefore likely that any lighter KK

mode is also associated with a 5d tachyon which determines its decay rate. Finally, dark

matter can be formed by fermionic KK modes which can decay to the standard model via

the neutrino portal [17, 101]. The decay rate is likely to be determined by the superpartner

of a tachyonic 5d scalar and can be suppressed by (approximate) R-parity.

Alternatively, in scenarios in which the standard model is located in the dark matter

throat [14–16, 19, 21], our results are relevant for the decay of dark matter to other throats
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(which are likely to be present in a given compactification [7]). If the dark matter consists of

the lightest (known) KK mode,30 the requirement that the dark matter lives longer than the

current age of the universe gives an upper bound of ∼ 107 GeV on the IR scale of the throat

(again assuming k ∼ 1018 GeV). The preferred scale ∼TeV thus still allows for a viable dark

matter candidate (provided it is sufficiently stable against decay to the standard model).

As we have discussed above, even if the dark matter instead consists of other charged KK

modes, tachyons are again likely to determine their decay rate to the UV sector.
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A Decay rates with Bessel functions

The purpose of this appendix is to compute the decay rates estimated in section 3 explicitly

in terms of Bessel functions. Similar calculations to those below can be found e.g. in [12,

31, 102, 103].

The analytic solution to eq. (3.5) in terms of Bessel functions is given by

ψn =
1

aα,n
ẑ 1/2 [Jα(ẑ) + bα,n Yα(ẑ)] , (A.1)

where aα,n and bα,n are constants determined from the normalization of ψn, eq. (3.9), and

the boundary conditions, eq. (3.6).

In order to relate the analytic solution to the previous estimates, we consider the

asymptotic expansions of the Bessel functions in the regions of small and large argu-

ment [104]. For 0 < z ≪
√
α+ 1:

Jα(z) ≃ 1

Γ(α+ 1)

(z
2

)α
(A.2)

and

Yα(z) ≃






2
π (γ − ln 2 + ln z) for α = 0

−Γ(α)

π

(
2

z

)α

− cos(πα)Γ(−α)

π

(z
2

)α
for α > 0 .

(A.3)

Here, γ ≃ 0.5772 is the Euler constant and Γ(α) is the gamma function. The second term

in the expansion for Yα is important in the limit α→ 0. Furthermore, for z ≫
∣∣α2 − 1

4

∣∣:

Jα(z) ≃
√

2

πz
cos
(
z − απ

2
− π

4

)
(A.4)

30Note that this state is odd under a Z2-symmetry and may therefore be stable against decay to the

standard model.
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and

Yα(z) ≃
√

2

πz
sin
(
z − απ

2
− π

4

)
. (A.5)

From these expansions it is clear that the Bessel functions explicitly realize the matching

of UV and IR solutions discussed in section 3, cf. eqs. (3.7) and (3.8).

Moreover, the Bessel functions satisfy certain identities which are useful in the calcu-

lation of the decay rates below. For any linear combination Cα(z) of Bessel functions Jα(z)

and Yα(z) in which the coefficients are independent of α and z, the following identities are

valid [104]:

2α

z
Cα(z) = Cα+1(z) + Cα−1(z) , (A.6)

2
d

dz
Cα(z) = Cα−1(z) − Cα+1(z) (A.7)

and ∫ b

a
dz z C2

α =
z2

2

[
C2

α(z) − Cα+1(z)Cα−1(z)
]
|ba . (A.8)

In addition, for integer α, Cα satisfies:

C−α(z) = (−1)αCα(z) . (A.9)

Furthermore, the following relation holds for all α and z:

Jα+1(z)Yα(z) − Jα(z)Yα+1(z) =
2

πz
. (A.10)

We will use these identities frequently throughout the computations to simplify the results.

By inserting the solution eq. (A.1) into the boundary conditions eq. (3.6), we find:

− bα,n =
ẑIRJα−1(ẑIR) + (2 − α− λ)Jα(ẑIR)

ẑIRYα−1(ẑIR) + (2 − α− λ)Yα(ẑIR)
=
ẑUVJα−1(ẑUV) + (2 − α− λ)Jα(ẑUV)

ẑUVYα−1(ẑUV) + (2 − α− λ)Yα(ẑUV)
.

(A.11)

From eq. (A.11) we see that the masses mn are determined by

[ẑIRJα−1(ẑIR) + (2 − α− λ)Jα(ẑIR)] + bα,n [ẑIRYα−1(ẑIR) + (2 − α− λ)Yα(ẑIR)] = 0 .

(A.12)

Using the asymptotic expansions for small arguments, eqs. (A.2) and (A.3), as well as

eq. (A.11), we find that (up to O(1) prefactors)

bα,n ∼






ẑ 2α
UV

for generic λ

α (1 − α) ẑ 2α−2
UV for λ = λ0 .

(A.13)

For ke−kℓ ≪ mn ≪ k and generic α and λ, one then finds that the masses mn are

determined by the zeros of Jα−1(ẑIR). This gives (see e.g. [31]):

mn ≃
(
n+

α

2
− 3

4

)
πke−kℓ . (A.14)
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As can be seen from the second line of eq. (A.13), the masses are also determined by the

zeros of Jα−1(ẑIR) for a tuned UV mass term, as long as α > 1. For α < 1, the mass

spectrum is instead given by the zeros of Yα−1(ẑIR). However, this only leads to a shift in

the spectrum.

Next, we want to verify the approximate results for the decay rates, eqs. (3.14), (3.15)

and (3.21). Defining Zα(z) ≡ Jα(z)+bα,nYα(z), with bα,n given by eq. (A.11), the boundary

conditions can be rewritten as

Zα−1(ẑIR) = −2 − α− λ

ẑIR

Zα(ẑIR) and Zα−1(ẑUV) = −2 − α− λ

ẑUV

Zα(ẑUV) . (A.15)

Furthermore, we have to determine the normalization constant aα,n from eq. (3.9). Using

the above identities for Bessel functions and the boundary conditions eq. (A.15), we find

aα,n =
1

mn

√
(ẑ2

IR
+ c)Z2

α(ẑIR) − (ẑ2
UV

+ c)Z2
α(ẑUV) , (A.16)

where c = 2α (2 − α− λ) + (2 − α− λ)2 ∼ O(1) for generic λ.

From the definition of the coupling constant, eq. (3.3), and our result for the normaliza-

tion constant, eq. (A.16), we see that we have to compute the ratio of Zα evaluated at the

IR brane to Zα evaluated at the UV brane. By repeatedly using the boundary conditions

eq. (A.15), as well as eq. (A.11) and the identities given above, this ratio can be simplified to

Zα(ẑIR)

Zα(ẑUV)
=
ẑUVYα−1(ẑUV) + (2 − α− λ)Yα(ẑUV)

ẑIRYα−1(ẑIR) + (2 − α− λ)Yα(ẑIR)
. (A.17)

Since we assume that ẑUV ≪ 1, we can use the small argument expansion, eq. (A.3), to

simplify the nominator. Furthermore, assuming that ẑIR ≫ 1, we obtain the following ap-

proximation (again up to O(1) prefactors) for the denominator using the mass quantization

condition eq. (A.12):

ẑIRYα−1(ẑIR) + (2 − α− λ)Yα(ẑIR) ∼






√
ẑIR for generic α and λ

√
ẑIR for α > 1 and λ = λ0

√
ẑIR ẑ

2−2α
UV

for α < 1 and λ = λ0 .

(A.18)

Combining the resulting simplified expression for eq. (A.17) with eqs. (3.3) and (A.16), we

can estimate the decay rates on dimensional grounds:

Γn ∼






(mn

k

)4+2α
mIR for generic α > 0 and λ

(mn

k

)4 mIR

ln2(k/mn)
for α = 0 and generic λ

(mn

k

)2α
mIR for α > 1 and λ = λ0

(mn

k

)4−2α
mIR for α < 1 and λ = λ0 .

(A.19)

– 29 –



J
H
E
P
0
2
(
2
0
1
0
)
0
6
3

Here, we have replaced ẑUV by mn/k and ẑIR by mn/mIR. The logarithmic factor for

α = 0 and generic λ arises from the logarithm in the expansion of Y0 for small argument,

eq. (A.3), inserted into eq. (A.17). The decay rates in eq. (A.19) agree with the results of

our simplified calculation, eqs. (3.14), (3.15) and (3.21).
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