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1 Introduction

Quasinormal modes (QNM’s) are exponentially damped collective excitations [1, 2] that de-

fine the characteristic behavior of fluctuations of black holes and black branes (for reviews,

see [3–6]). The spectra of QNM’s collectively describe the linear part of the decaying fluc-

tuations of a disturbed black hole, a phenomenon known as “quasinormal ringing”, which

is analogous to the decaying sound emitted by a brass bell when struck by a mallet [7].

For this reason, QNM’s are of great interest to astrophysical and cosmological observations

since they describe the ringdown of possible black hole remnants of binary stars and black

hole mergers, which were pivotal to the direct detection of gravitational waves earlier this

year [8, 9].

In the context of the holographic gauge/gravity duality [10–13], the QNM’s of asymp-

totically Anti-de Sitter (AdS) spacetimes carry wealthy information about the near equi-

librium behavior of the dual strongly interacting quantum field theory (QFT). In fact, the

QNM’s associated with the fluctuations of a given bulk field are related to the poles of
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the retarded Green’s function of the dual operator in the QFT [14, 15]. These poles de-

scribe hydrodynamic and non-hydrodynamic dispersion relations with which one can not

only compute hydrodynamic transport coefficients but also derive upper bounds for charac-

teristic equilibration times of the dual QFT plasma [16]. Additionally, non-hydrodynamic

modes play an important role in determining the applicability of the hydrodynamic gradient

series, as demonstrated by studies in holography [17, 18] and also in kinetic theory [19–21].

Previous works [22–24] have dealt with QNM’s in bottom-up Einstein-dilaton con-

structions [25–28] exhibiting different kinds of phase transitions at zero chemical potential.

Additionally, ref. [29] investigated the QNM’s associated with scalar operators in a top-

down N = 2∗ non-conformal plasma also at zero chemical potential. On the other hand,

in [30] some of us investigated how the QNM’s of an external scalar perturbation and, in

particular, the equilibration time associated with the imaginary part of the lowest non-

hydrodynamical quasinormal frequency, depends on the temperature and baryon chemical

potential in a bottom-up, QCD-like Einstein-Maxwell-dilaton model at finite baryon den-

sity [31]. In general, through the holographic correspondence, any question regarding the

thermalization process in a given strongly coupled gauge theory necessarily involves a study

of the QNM’s of its gravity dual. These modes describe different timescales in the gauge

theory and, close to a critical point, one may expect that the QNM’s of the corresponding

gravity dual display critical behavior.

Near a critical point, thermodynamical quantities typically display fast variations

which enable the definition of critical exponents. Static properties such as single time

correlation functions and linear response coefficients to time-independent perturbations

display critical behavior which are determined by the underlying equilibrium distribution.

However, anomalous behavior is also observed in many dynamical quantities such as the

transport coefficients, which depend on the properties of multi-time correlations functions

and are not determined by the information contained in the equilibrium distribution. In

fact, while static thermodynamical properties of several different physical systems may be

grouped into a few different (static) universality classes, dynamical properties associated

with slowly varying hydrodynamical fluctuations of a system near criticality do not fit

into this static classification scheme, as discussed in detail in [32] nearly 40 years ago. As

a matter of fact, the dynamic universality classes reviewed in [32] require the study of

hydrodynamic modes, i.e., collective excitations whose frequency vanishes in the case of

homogeneous disturbances. While these modes dominate the long time behavior of the

system (since they are associated with conserved currents) and can be used to study how

transport coefficients (such as the shear viscosity) behave near a critical point, it is con-

ceivable that there is more information about dynamical critical phenomena in multi-time

correlation functions that cannot be obtained from their zero frequency limit.

In this paper we initiate the investigation of the critical behavior displayed by non-

hydrodynamic modes in strongly coupled gauge theories with gravity duals, i.e., QNM’s

corresponding to collective excitations in the dual plasma whose frequency does not van-

ish in the zero wavenumber limit. This novel type of critical phenomena determines the

behavior of different characteristic equilibration times of the system at zero wavenumber

and, since these QNM’s are not directly associated with conserved currents, their behavior

at criticality does not follow from the analysis made in ref. [32]. In the present work, as the
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first exploration in this new arena, we compute QNM’s for an external scalar perturbation

and also for the diffusion channel associated with a vector perturbation in the so-called

1-R charge black hole (1RCBH) model [33–38]. This is an analytical top-down construction

obtained from (4 + 1)-dimensional maximally supersymmetric gauged supergravity, which

is holographically dual to a strongly coupled N = 4 super Yang-Mills (SYM) plasma in

flat (3+1) dimensions with a finite chemical potential under a U(1) subgroup of the global

SU(4) symmetry of R-charges. This theory is conformal and its phase diagram is a function

of a single dimensionless ratio µ/T , where µ and T are the U(1) R-charge chemical potential

and temperature of the black brane background, respectively. The model has a very simple

phase diagram with a critical point at µ/T = π/
√

2 and its static critical exponents were

computed in [39] and [40]. Also, the fact that the R-charge conductivity remains finite at

the critical point [39] shows that this model belongs to the type B dynamical universality

class [32] and the anomalous static critical exponent was found to vanish in [40]. Thus, this

model is of mean-field type [40], which was later argued [41] to be a general consequence

of the underlying large Nc approximation. This simple model provides a useful arena for

investigating dynamical phenomena in a strongly coupled plasma at finite temperature and

density, even though it does not possess the full set of physical properties (such as chiral

symmetry) displayed by the real world quark-gluon plasma (QGP) [42]. In fact, such a

model may be useful for discovering new dynamical phenomena associated with critical

endpoints in strongly coupled non-Abelian plasmas which could be further investigated in

more realistic models of the QGP such as [30, 31] , with a view towards applications to

the ongoing beam energy scan program at RHIC. Other studies of critical phenomena in

holography include refs. [43–47].

As we are going to show in the next sections, the real and imaginary parts of non-

hydrodynamical modes in the external scalar and vector diffusion channels display an

infinite slope at the critical point of the phase diagram of the 1RCBH model. This holds

true also for higher order QNM’s, showing that high frequency modes are also sensitive to

the presence of the critical point. In particular, from the imaginary part of the QNM’s

it is possible to extract the behavior of different characteristic equilibration times in the

finite density plasma at criticality (at zero wavenumber) and define a dynamical critical

exponent associated with their derivatives with respect to the dimensionless ratio µ/T .

We find the same critical exponent 1/2 for all the equilibration times investigated in the

different channels. Except close to the critical point, we observe that by increasing the

chemical potential one generally increases the damping of the quasinormal black brane

oscillations which, consequently, leads to a reduction of the characteristic equilibration

times of the dual plasma. However, as one approaches the critical point these equilibration

times are enhanced (though they remain finite) and they acquire an infinite slope. We

also find a purely imaginary, non-hydrodynamical mode in the vector diffusion channel at

nonzero chemical potential and zero wavenumber which dictates the critical behavior of

the equilibration time in this channel (this mode was also found in ref. [48] in the context

of a (4 + 1)-dimensional Einstein-Maxwell model).

This paper is organized as follows: in section 2 we briefly review the 1RCBH model and

its thermodynamics and phase diagram. In section 3 we compute the QNM’s of an external
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scalar perturbation. In section 4 we compute the QNM’s for the vector diffusion channel

in the limit of long wavelengths. Finally, in section 5 we present some final remarks and

an outlook. This work is complemented by appendix A, where we compute the spectral

function in the external scalar channel, and by appendix B, where we present a brief

discussion regarding the numerical procedures we used for the computation of QNM’s and

their critical exponents.

Throughout the paper, we work with natural units ~ = c = kB = 1 and use a mostly

plus metric signature.

2 1-R charge black hole model

For the sake of completeness, in this section we review the thermodynamics of the 1RCBH

model [33–38]. We closely follow the discussion made in section 4 of ref. [49] and supplement

it with additional plots to better illustrate the behavior of the thermodynamic properties

of the model near the critical point.

2.1 Background

The 1RCBH model is described by an Einstein-Maxwell-dilaton (EMD) action,

S =
1

2κ25

∫
d5x
√
−g
[
R− f(φ)

4
FµνF

µν − 1

2
(∂µφ)2 − V (φ)

]
, (2.1)

with the dilaton potential and the coupling between the dilaton and Maxwell fields given by,

V (φ) = − 1

L2

(
8e

φ√
6 + 4e

−
√

2
3
φ
)
, f(φ) = e

−2
√

2
3
φ
, (2.2)

where κ25 is the five dimensional Newton’s constant and L is the asymptotic AdS5 radius.

With these profiles for V (φ) and f(φ), one obtains a consistent truncation of maximally

supersymmetric gauged supergravity in five dimensions, which is itself a consistent trun-

cation of type IIB superstring theory on AdS5 × S5. This model is a bona fide top-down

string theory construction, which is dual to a SYM plasma with a finite chemical potential

under a U(1) subgroup of the global SU(4) symmetry of R-charges. For simplicity, in the

following we set L = 1.

The 1RCBH solution is defined by

ds2 = e2A(r)
(
−h(r)dt2 + d~x2

)
+

e2B(r)

h(r)
dr2, (2.3)

A(r) = ln r +
1

6
ln

(
1 +

Q2

r2

)
, (2.4)

B(r) = − ln r − 1

3
ln

(
1 +

Q2

r2

)
, (2.5)

h(r) = 1− M2

r2(r2 +Q2)
, (2.6)
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φ(r) = −
√

2

3
ln

(
1 +

Q2

r2

)
, (2.7)

A = Φ(r)dt =

(
− MQ

r2 +Q2
+

MQ

r2H +Q2

)
dt, (2.8)

where r is the holographic radial coordinate and the boundary of the asymptotically AdS5

geometry is located at r → ∞. The radial position of the black brane horizon may be

written in terms of the charge Q and mass M of the black brane as follows,

rH =

√√
Q4 + 4M2 −Q2

2
. (2.9)

The 1RCBH background is, thus, characterized by two nonnegative parameters, (Q,M)

or, alternatively, (Q, rH).

The Hawking temperature of the black brane horizon is given by

T =

√
−(gtt)′(grr)′

4π

∣∣∣∣∣
r=rH

=
Q2 + 2r2H

2π
√
Q2 + r2H

, (2.10)

where ′ denotes a derivative with respect to r. On the other hand, the U(1) R-charge

chemical potential reads

µ = lim
r→∞

Φ(r) =
QrH√
Q2 + r2H

. (2.11)

2.2 Phase diagram

The class of solutions corresponding to the 1RCBH model may be parametrized by different

values of the dimensionless ratio Q/rH . By dividing eqs. (2.10) and (2.11), and then solving

for Q/rH , one obtains

Q

rH
=
√

2

1±
√

1−
(
µ/T

π/
√
2

)2
µ/T

π/
√
2

 . (2.12)

Since Q/rH is nonnegative, (2.12) implies that µ/T ∈
[
0, π/

√
2
]
. It also follows from (2.12)

that for every value of µ/T ∈
[
0, π/

√
2
)
, there are two different corresponding values of

Q/rH , which parametrize two different branches of solutions. As we are going to show in the

next subsection, by analyzing the thermodynamics of the 1RCBH solutions one concludes

that the point of the phase diagram where these two branches merge, µ/T = π/
√

2 or,

correspondingly, Q/rH =
√

2, is a critical point of a second order phase transition.

In order to simplify the equations in this paper we define below a useful variable that

smoothly connects the two branches of solutions,

y2 +

(
µ/T

π/
√

2

)2

= 1 with y ∈ [−1, 1], (2.13)
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critical point

Stable
Unstable

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

(a)

critical point

AdS5-SchwarzschildSuperstar

Unstable
Stable

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

(b)

Figure 1. Phase structure of the 1RCBH model (closely following the discussion in ref. [49]): (a)

the single dimensionless control parameter of the QFT phase diagram, µ/T , as a function of the

corresponding dimensionless ratio Q/rH on the gravity side for both stable and unstable branches

(note that the superstar solution lies at Q/rH →∞); (b) the same, now in terms of the alternative

variable y defined in eq. (2.13).

where y = 0 parametrizes the critical background geometry with µ/T = π/
√

2, while

y = 1 parametrizes the AdS5-Schwarzschild background with zero charge, corresponding

to Q = 0 and rH 6= 0, which implies µ/T = 0. For y = −1 we also have µ/T = 0, but

this time rH = 0 and Q 6= 0, which corresponds to a supersymmetric BPS solution dubbed

“superstar” [50] instead of a black hole.

As we are going to see in the next subsection, the thermodynamically stable branch

corresponds to the lower sign in eq. (2.12) with Q/rH ∈
[
0,
√

2
)

or y ∈
(
0, 1
]
, while

the thermodynamically unstable branch corresponds to the upper sign in eq. (2.12) with

Q/rH ∈
(√

2,∞
)

or y ∈
[
−1, 0

)
, with both branches of solutions being smoothly connected

at the critical point, Q/rH =
√

2 or y = 0. This is illustrated in figure 1.

2.3 Thermodynamics: equation of state and susceptibilities

For a SYM plasma, it is known [51] that

1

κ25
=
N2
c

4π2
. (2.14)

By substituting the expression above in Bekenstein-Hawking’s relation [52, 53], one can

write down the entropy density as follows

s

N2
c T

3
=
π2

16

3±

√
1−

(
µ/T

π/
√

2

)2
21∓

√
1−

(
µ/T

π/
√

2

)2
 . (2.15)

The R-charge density, ρ = limr→∞ δS/δΦ
′, may be written as

ρ

N2
c T

3
=
µ/T

16

3±

√
1−

(
µ/T

π/
√

2

)2
2

, (2.16)

– 6 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
7

critical point

Stable
Unstable

0.0 0.5 1.0 1.5 2.0
0
1
2
3
4
5
6

(a) Entropy density

critical point

Stable
Unstable

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

(b) Charge density

critical point

Stable
Unstable

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

(c) Pressure

critical point

Stable
Unstable

0.0 0.5 1.0 1.5 2.0
-10
-5
0
5
10
15
20
25

(d) Heat capacity

Figure 2. Equation of state and heat capacity for the 1RCBH model(closely following the discus-

sion in ref. [49]).

where the lower/upper signs denote the stable/unstable branches, as in eq. (2.12) (we note

that in this model any dimensionless ratio is always written in terms of µ/T , as expected).

From the Gibbs-Duhem relation, dp = sdT + ρdµ, one may compute the pressure,

p

N2
c T

4
=

π2

128

3±

√
1−

(
µ/T

π/
√

2

)2
31∓

√
1−

(
µ/T

π/
√

2

)2
 . (2.17)

Using eqs. (2.15), (2.16), and (2.17) one can readily evaluate the internal energy density,

ε = Ts− p+ µρ, obtaining ε = 3p, as expected for a conformal QFT in four dimensions.

The heat capacity at fixed chemical potential is given by Cµ = (∂s/∂T )µ, while the

nth-order R-charge susceptibility is given by χn = (∂np/∂µn)T (note that χ1 = ρ). At the

critical point the heat capacity Cµ and the higher order susceptibilities χn≥2 diverge. In

figure 2 we show the equation of state and the heat capacity while in figure 3 we display

the susceptibilities for the stable and unstable branches of the 1RCBH model.

Thermodynamical stability is ensured if the Jacobian J = ∂(s, ρ)/∂(T, µ) is positive.

In the 1RCBH model one obtains

J
N4
c T

4
=

3π2

256
(3− y)4

(
1 +

1

y

)
. (2.18)
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(a) 2nd-order susceptibility

critical point

Stable
Unstable
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-4
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(b) 3rd-order susceptibility

critical point
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Unstable
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-4
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(c) 4th-order susceptibility

critical point

Stable
Unstable

0.0 0.5 1.0 1.5 2.0
-4

-2

0

2

4

(d) 5th-order susceptibility

critical point

Stable
Unstable

0.0 0.5 1.0 1.5 2.0
-4

-2

0

2

4

(e) 6th-order susceptibility

critical point

Stable
Unstable

0.0 0.5 1.0 1.5 2.0
-4

-2

0

2

4

(f) 7th-order susceptibility

Figure 3. nth-order susceptibilities for the 1RCBH model.

In the equation above, the quartic term is always positive while the expression in the last

parenthesis becomes negative for y ∈
(
− 1, 0

)
, justifying the aforementioned classification

of stable and unstable branches.1

Finally, by analyzing the behavior of the R-charge density in (2.16) near the critical

point one can see that the static critical exponent δ = 2, as discussed in [39, 40, 49].

1Note that the superstar solution (y = −1) has J = 0 and corresponds to a saddle point.
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3 QNM’s for an external scalar fluctuation

3.1 Equation of motion

In the previous section we reviewed the thermodynamical equilibrium properties of the

1RCBH plasma. We now analyze near-equilibrium properties of the system encoded in

its quasinormal modes. In this section we calculate the QNM’s for an external scalar

perturbation ϕ on top of the 1RCBH backgrounds, which is described by the bulk action,

S =
1

2κ25

∫
d5x
√
−g
[
−1

2
(∂µϕ)2

]
. (3.1)

The equation of motion following from this action is just the massless Klein-Gordon

equation on top of the solution given by eq. (2.3). We take a plane-wave Ansatz for the

Fourier modes of the perturbation, ϕ = e−iωt+i
~k·~xϕ̃(ω,~k, r), which for brevity we write

simply as ϕ̃(ω,~k, r) ≡ ϕ̃(r). The resulting equation of motion then only depends on the

frequency ω, the magnitude of the spatial 3-momentum k ≡ |~k|, and the background control

parameter y.

In what follows we employ the in-falling Eddington-Finkelstein (EF) “time” coordinate

defined by,

dv = dt+

√
−grr
gtt
dr = dt+

eB−A

h
dr, (3.2)

in terms of which the metric (2.3) becomes

ds2 = e2A
(
−hdv2 + d~x2

)
+ 2eA+Bdvdr. (3.3)

One of the main advantages of the EF coordinates is that the in-falling wave condition at

the horizon, which is associated with the retarded Green’s function, becomes automati-

cally satisfied by just requiring regularity of the solutions there. In these coordinates, the

equation of motion for ϕ̃ becomes,

ϕ̃′′ +

(
4A′ −B′ + h′

h

)
ϕ̃′ − iω eB−A

h
(2ϕ̃′ + 3A′ϕ̃)− k2 e2(B−A)

h
ϕ̃ = 0. (3.4)

We map the radial coordinate r, defined on the interval rH ≤ r <∞, to a new dimensionless

radial coordinate u = rH/r, defined on the interval 0 ≤ u ≤ 1, which is more suitable to

be used in the pseudospectral method [54] (to be briefly reviewed in appendix B). In these

new coordinates, the equation of motion for the external scalar perturbation becomes,

ϕ̃′′ −
(
u4(3− y) + 2u2(1− y)− 3(1 + y)

)
ϕ̃′

u (1− u2) (u2(3− y) + 1 + y)

− 2i(ω/T )

π (1− u2)
√

3− y (u2(3− y) + 1 + y)

((
4u2(1− y) + 3(y + 1)

)
ϕ̃

u
√

2u2(1− y) + 1 + y

+ 2
√

2u2(1− y) + 1 + y ϕ̃′

)
− 4(k/T )2ϕ̃

π2 (1− u2) (3− y) (u2(3− y) + 1 + y)
= 0, (3.5)
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where the primes now denote derivatives with respect to the new radial coordinate u.

From the discussion above, and from the definition of the background control parameter y

in eq. (2.13), one concludes that the dimensionless quasinormal eigenfrequencies, ω/T , will

depend only on the dimensionless ratios µ/T and k/T .

To completely specify the eigenvalue problem to be solved in order to find the QNM

spectra associated to this external scalar perturbation, we still need to impose a Dirichlet

boundary condition. From the fact that ϕ̃ is a scalar field defined on an asymptotically

AdS5 background, it follows that asymptotically close to the boundary it may be written as

ϕ̃(u) = G(u)+u4F (u), with the leading, non-normalizable mode G(u→ 0) = J(ω,~k) being

the source for the QFT operator Ô dual to the (external) scalar field ϕ, and the subleading,

normalizable mode F (u → 0) = 〈Ô(ω,~k)〉 being its expectation value. According to the

real time holographic dictionary [55], the retarded propagator of the QFT operator Ô

is given the ratio between the normalizable and non-normalizable modes, GR
ÔÔ

(ω,~k) =

−〈Ô(ω,~k)〉/J(ω,~k), therefore, if we impose as a Dirichlet boundary condition the selection

of the normalizable mode by setting G(0) = 0 with F (0) 6= 0, we are left with an eigenvalue

problem whose eigenfrequencies correspond to dispersion relations ω/T = ω(k/T ;µ/T )/T

describing the poles of GR
ÔÔ

, which are the QNM’s we are looking for. Then, we set

ϕ̃(u) = u4F (u), with F (0) 6= 0, from which it follows that,

16u

(
1− 2

u2(3− y) + 1 + y

)
F +

(
u2
(

9− 8

u2(3− y) + 1 + y

)
− 5

)
F ′

− u
(
1− u2

)
F ′′ +

2i(ω/T )

π
√

3− y (u2(3− y) + 1 + y)

(
−
(
12u2(1− y) + 5(1 + y)

)
F√

2u2(1− y) + 1 + y

+ 2u
√

2u2(1− y) + 1 + y F ′

)
+

4(k/T )2uF

π2(3− y) (u2(3− y) + 1 + y)
= 0. (3.6)

We now have a Generalized Eigenvalue Problem (GEP) for the eigenfunction F (u) and the

quasinormal eigenfrequency ω/T , which may be solved as functions of k/T and µ/T . In

this work we use the pseudospectral method.

Note that eq. (3.6) also reveals one of the greatest virtues of the EF coordinates,

namely, the fact that it reduces the QNM eigenvalue problem from a Quadratic Eigenvalue

Problem [56] in the standard set of spacetime coordinates to a GEP, which requires far less

computational cost when numerically evaluating the QNM spectra.

3.2 QNM spectra and equilibration time

In figure 4 we show the evolution of the external scalar QNM spectra for the first 26 poles as

we evolve k/T from 0 to 100, both for the AdS5-Schwarzschild background at µ/T = 0 and

the critical geometry at µ/T = π/
√

2. We observe the usual non-hydrodynamical QNM

structure for the external scalar channel with an infinite series of QNM pairs with Im ω < 0

and Reω 6= 0 symmetrically distributed with respect to the imaginary axis [15]. When

k/T = 0, by increasing the µ/T ratio one increases the magnitude of the imaginary part of

the QNM’s, which becomes more appreciable for higher order, faster varying modes. On the

other hand, an increase in k/T enhances (suppresses) the magnitude of the real (imaginary)

– 10 –
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Figure 4. First 26 QNM’s trajectories in the external scalar channel evolved within the interval

0 ≤ k/T ≤ 100 for µ/T = 0 (beginning with a black dot for k = 0 and evolving into solid gray

lines for k > 0) and for the critical point µ/T = π/
√

2 (beginning with a red square for k = 0 and

evolving into dashed pink lines for k > 0).

part of the poles. We see that by increasing the chemical potential one generally increases

the damping of the quasinormal black hole oscillations, which qualitatively agrees with

the result found previously in [30] for a non-conformal, QCD-like bottom-up EMD model

describing the physics of the QGP at finite baryon density.

Also, we note that the non-hydrodynamic modes in figure 4 remain finite when eval-

uated at the critical point, even when k = 0. Thus, one can see that the timescales

contained in the non-hydrodynamic modes are different than the usual relaxation time

quantity τrel ∼ ξz, where ξ is the correlation length (which diverges at the critical point)

and z is the dynamical critical exponent, which becomes infinitely large at criticality de-

scribing the well-known phenomenon of critical slowing down. Nevertheless, in this strongly

coupled model the microscopic scales defined by the non-hydrodynamic QNM’s still display

some critical behavior, as we show below.

In figures 5 and 6 we display the imaginary and real parts of the first 4 QNM’s as

functions of µ/T , for both stable and unstable branches, at k/T = 0 and k/T = 1. We

see that at the critical point all the QNM’s develop an infinite slope. Moreover, we also

note that the effects on the non-hydrodynamic modes due to finite momentum are small

for k/T ∼ 1 (especially for the imaginary part), being more pronounced for the lowest

QNM’s, which seems to be a general holographic property of the dispersion relation of

non-hydrodynamics QNM’s known as “ultralocality” [57, 58].

Following [16], one may define an upper bound for the equilibration time of the plasma,

τeq, using the inverse of minus the imaginary part of the lowest non-hydrodynamical QNM

evaluated at zero momentum. This is shown in figure 7 (a), from which one can see

that far from the critical point the equilibration time of the finite U(1) R-charge density

SYM plasma decreases with increasing chemical potential, again in qualitative agreement
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Figure 5. Imaginary part of the first 4 QNM’s in the external scalar channel for k/T = 0 and

k/T = 1, as a function µ/T , for both stable and unstable branches.

with what was previously found in [30] in the context of a phenomenologically realistic

holographic model for the QGP at finite baryon chemical potential. However, for larger

chemical potentials, as one approaches the critical point of the model, this behavior is

modified and the equilibration time starts to increase, acquiring an infinite slope at the

critical point.

We may associate a new critical exponent with the derivative of the equilibration time,

d(Tτeq)/d(µ/T ), since it diverges at the critical point, as shown in figure 7 (b). Close to

the critical point,

d(Tτeq)

d (µ/T )
∼
(
π√
2
− µ

T

)−θ
, (3.7)

where θ is the dynamical critical exponent which we want to calculate. By following the

procedure discussed in section B.3, we performed numerical fits of eq. (3.7) to the data

shown in figure 7 (b) for different sets of intervals in µ/T increasingly closer to the critical

point at µ/T = π/
√

2. The final result gives a critical exponent compatible with θ = 1/2.

More generally, one may consider different characteristic equilibration times of the

medium associated with the different non-hydrodynamic QNM’s, where equilibration times

associated with higher order modes should be understood as estimates for how fast the
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Figure 6. Absolute value of the real part of the first 4 QNM’s in the external scalar channel for

k/T = 0 and k/T = 1, as a function µ/T , for both stable and unstable branches.
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Figure 7. Equilibration time (a) and its normalized derivative (b) in the external scalar channel

as functions of µ/T at zero wavenumber.

– 13 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
7

system relaxes to equilibrium depending on how rapidly varying are the perturbations to

which it is subjected. Operationally, this amounts for computing the inverse of minus the

imaginary part of the different non-hydrodynamic QNM’s. By doing so, we obtain the

same dynamical critical exponent θ = 1/2 associated with all the different characteristic

equilibration times of the plasma in the external scalar channel at zero wavenumber.

4 QNM’s in the vector diffusion channel

4.1 Equation of motion

In this section we compute the QNM’s of the vector diffusion channel in the long wavelength

limit. Differently from what was done in the last section where we considered an external

scalar perturbation on top of the 1RCBH background, now we need to consider fluctuations

of the Maxwell field Aµ which is already nonzero in the background and, therefore, we also

need to consider disturbances in the background metric gµν and dilaton field φ. At zero

spatial momentum the different channels for these fluctuations, at the linearized level, are

classified by different representations of the SO(3) rotation group [49].2 By taking the

fluctuation of the gauge field along the z direction one finds that at the linearized level it

only mixes with the fluctuation of gzt . Taking now the long wavelength limit, i.e. k = 0, we

write down for the Fourier modes of these fluctuations,

δAz = a(r)e−iωt, δgzt = s(r)e−iωt. (4.1)

Then, the linearized Maxwell’s equations, ∇µ (f(φ)Fµν) = 0, expressed in Eddington-

Finkelstein coordinates read,

−Φ′′ +

(
−2A′ +B′ − f ′(φ)φ′

f(φ)

)
Φ′ = 0, (4.2)

a′′ +

(
2A′ −B′ + h′

h
− 2iω

eA−B

h
+
f ′(φ)φ′

f(φ)

)
a′

−iωeB−A
f(φ)A′ + f ′(φ)φ′

f(φ)h
a+

Φ′

2h′
s′

+

[
f ′(φ)φ′Φ′ + f(φ)

(
(2A′ −B′)Φ′ + Φ′′

)
2f(φ)h

]
s = 0, (4.3)

where the first equation is the equation of motion for the background Maxwell field, Φ(r),

while the second equation is the equation of motion for the Maxwell perturbation, a(r).

We may decouple the perturbations a(r) and s(r) by using Einstein’s equations for the

metric field,

Rµν −
gµν
3

(
V (φ)− f(φ)

4
F 2
αβ

)
− f(φ)

2
FµαF

α
ν −

1

2
∂µφ∂νφ = 0. (4.4)

2At nonzero k such classification is no longer valid and the corresponding fluctuations are organized in a

more complicated way under a smaller SO(2) symmetry group. We are not going to pursue the investigation

of this more involved case in the present work.
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By taking the vz-component minus the rz-component of the above equation of motion, one

obtains the constraint,

s′ = −f(φ)Φ′e−2Aa. (4.5)

By using the zeroth order eq. (4.2) to eliminate the s(r) term from eq. (4.3) and substi-

tuting (4.5) into (4.3), one obtains a decoupled equation of motion for the radial profile

of the vector field perturbation, which is associated with the diffusion of the U(1) R-

charge [15, 49],

a′′ +

[
2A′ −B′ + h′

h
+
f ′(φ)φ′

f
− 2iω

eB−A

h

]
a′

−e−2A

h

[
iωeA+B

(
A′ + φ′

f ′(φ)

f(φ)

)
+ f(φ)Φ′2

]
a = 0. (4.6)

Once again we apply the radial coordinate transformation r → rH/u, which yields,

a′′ +

(
−

10u6(y − 3)(y − 1)− 3u4(5(y − 2)y + 1) + 4u2
(
y2 − 1

)
+ (y + 1)2

u (u2 − 1) (u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2

−
4i(ω/T )

√
(3− y) (−2u2(y − 1) + y + 1)

π (u2 − 1) (y − 3) (u2(y − 3)− y − 1)

)
a′

+

(
− 8u4(y − 3)(y − 1)(y + 1)

(u2 − 1) (u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2

−
2i(ω/T )

(
4u2(y − 1) + y + 1

)
π (u2 − 1)u (u2(y − 3)− y − 1)

√
(y − 3) (2u2(y − 1)− y − 1)

)
a = 0. (4.7)

For the vector perturbation the normalizable mode at the boundary corresponds to set

a(u) = u2F (u), with F (0) 6= 0, from which one finally obtains,

F ′′ +

[
−

18u6(y − 3)(y − 1)− 7u4(5(y − 2)y + 1) + 20u2
(
y2 − 1

)
− 3(y + 1)2

(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)

−
4iu(ω/T )

√
(3− y) (−2u2(y − 1) + y + 1)

π(y − 3) (u2(y − 3)− y − 1)

]
1

u(u2 − 1)
F ′

+
1

u(u2 − 1)

[
8u
(
6u6(y − 3)(y − 1)2 − 2u4(y(7(y − 3)y + 9) + 5)

)
(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2

+
8u
(
u2(y + 1)(3y − 5)(3y − 1)− 2(y − 1)(y + 1)2

)
(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2

−
6i(ω/T )

(
4u2(y − 1)− y − 1

)
π (u2(y − 3)− y − 1)

√
(y − 3) (2u2(y − 1)− y − 1)

]
F = 0. (4.8)

4.2 QNM spectra and equilibration time

With the QNM eigenvalue problem completely specified as discussed above, we can now

apply the pseudospectral method (see appendix B) to numerically solve it. In figure 8 we
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display the QNM spectra for the first 30 symmetric poles in the vector diffusion channel

in the limiting cases of µ/T = 0 (AdS5-Schwarzschild) and µ/T = π/
√

2 (critical point).

In figures 9 and 10 we show the imaginary and real parts of the first 4 complex QNM’s as

functions of µ/T , for both stable and unstable branches. We see that also in the vector

diffusion channel both the real and imaginary parts of the QNM’s develop an infinite slope

at the critical point.

We remind the reader that at k = µ = 0 the QNM spectra in the vector diffusion

channel may be analytically calculated [15],

ω

T
= 2πn(1− i), n ∈ N at µ = 0. (4.9)

Our numerical calculations at µ/T = 0 agree with this analytical result. The standard

hydrodynamical mode ω(k/T = 0)/T = 0 is depicted by the blue diamond in figure 8.

Since this is a hydrodynamical pole, it does not evolve with the chemical potential if we

keep k = 0. This mode determines the R-charge conductivity of the model and the zero

frequency limit of this transport coefficient was found in [49] to remain finite at the critical

point, as expected for a type B dynamic universality class. However, it was noticed in [49]

that the derivative of this quantity near the critical point has infinite slope described by

an exponent equal to 1/2, which matches the exponent found in the previous section in

the study of non-hydrodynamic modes of different nature corresponding to external scalar

perturbations.

On the other hand, the main effect of the chemical potential on the symmetric non-

hydrodynamical modes is to increase the magnitude of both the imaginary and real parts of

these poles. Therefore, also in the vector diffusion channel one sees that the inclusion of a

chemical potential leads to additional damping for the quasinormal black hole oscillations.

A novel feature we observe in figure 8 is the emergence of a new purely imaginary,

non-hydrodynamical pole at finite chemical potential, which comes from ω/T → −i∞ at

µ/T = 0 and lies at ω/T ≈ −7.315i at the critical point µ/T = π/
√

2. For µ/T & 2, this

new purely imaginary pole becomes the lowest non-hydrodynamical mode, while for lower

values of the chemical potential the lowest non-hydrodynamical mode is given by any of

the first two symmetric poles with respect to the imaginary axis. Therefore, this new non-

hydrodynamical imaginary mode plays a crucial role in the description of the equilibration

time of the system in the vector diffusion channel when the chemical potential is large,

specially at criticality, when it dominates the physics of the slowest varying perturbations.

The appearance of such a purely imaginary mode is an interesting feature of this model

that shows that the distinction between transient phenomena at weak and strong coupling,

currently understood in terms of their different pattern of non-hydrodynamic modes at zero

wavenumber [59] (see also [60]) corresponding to fluctuations around global equilibrium,

can become more complicated near a critical point.

We define the upper bound for the equilibration time of the system in the vector

diffusion channel as before by taking the inverse of minus the imaginary part of the lowest

non-hydrodynamical QNM. The result is shown in figure 11 (a). The kink observed in the

equilibration time at µ/T ≈ 2 is due to the shift from the regime dominated by the first
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Figure 8. QNM spectra of the first 30 symmetric poles in the vector diffusion channel for

µ/T = 0 (black circles) and µ/T = π/
√

2 (red squares) at k/T = 0. The hydrodynamical dif-

fusive pole is depicted by the blue diamond. Note also the emergence of a new purely imaginary,

non-hydrodynamical mode which comes from −i∞ at µ/T = 0 and remains at a finite distance

from the origin at the critical point µ/T = π/
√
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Figure 9. Imaginary part of the first 4 QNM’s in the vector diffusion channel for k/T = 0, as a

function of µ/T , for both stable and unstable branches.
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Figure 10. Absolute value of the real part of the first 4 QNM’s in the vector diffusion channel for

k/T = 0, as a function µ/T , for both stable and unstable branches.

symmetric poles to the regime dominated by the new purely imaginary mode. This also

causes a discontinuity in the derivative of the equilibration time, as seen in figure 11 (b).

As before, one can calculate the critical exponent associated with this derivative at the

critical point and the result is once again compatible with θ = 1/2. This shows that in this

model both the hydrodynamic and the non-hydrodynamic modes in this vector diffusion

channel have the same critical exponents.

5 Final remarks

In the present work we investigated the behavior of the QNM’s for the external scalar

and vector diffusion channels of the 1RCBH model, which is a top-down gauge/gravity

construction dual to a SYM plasma at nonzero U(1) R-charge density. We analyzed the

behavior of the QNM’s through the phase diagram of the model, which displays a critical

point at a second order phase transition. We found that, except close to the critical point,

by increasing the chemical potential one generally increases the damping of the quasinormal

black hole oscillations, which leads to a reduction of the characteristic equilibration times

of the dual plasma. However, as one approaches the critical point these equilibration
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Figure 11. Equilibration time (a) and its normalized derivative (b) in the vector diffusion channel

as functions of µ/T .

times are enhanced and they acquire an infinite slope at the criticality. We found that

the derivatives of all the characteristic equilibration times of the medium, obtained from

the non-hydrodynamic QNM’s at zero wavenumber, share the same critical exponent θ =

1/2. Previously, the same value was also found for the critical exponent associated to

the derivative of the DC conductivity extracted from the R-charge diffusive hydrodynamic

mode in this model [49]. We also found a purely imaginary, non-hydrodynamical mode

in the vector diffusion channel at nonzero chemical potential which dictates the critical

behavior of the equilibration time in this channel.

The observation that the quasinormal black hole oscillations away from the critical re-

gion are additionally damped by a nonzero chemical potential, obtained here for a top-down

conformal construction dual to a SYM plasma at finite R-charge density, is consistent with

the behavior found previously in [30] for a rather different holographic construction, which

involves a bottom-up model with black brane solutions that are engineered to describe the

realistic non-conformal physics of the QGP both at zero baryon density [28] and also at

finite density [31]. This may indicate that this additional damping in the quasinormal black

hole oscillations due to a nonzero chemical potential, and the consequent attenuation of the

equilibration time of the dual plasma away from criticality, may be a general holographic

property of strongly correlated quantum fluids.

Regarding the purely imaginary, non-hydrodynamical mode found in the diffusion

channel at finite density, the common link between the 1RCBH model studied here and the

Einstein-Maxwell model investigated in ref. [48] (where this mode was also found, although

with no critical behavior, due to the lack of a phase transition in the model of ref. [48]) is

the presence of bulk electromagnetic fields. Somehow, the Maxwell field changes qualita-

tively the dynamical response of the system to perturbations. From the point of view of

the gravitational dynamics in five dimensions, what we see is that this purely imaginary

non-hydrodynamic mode appears for electromagnetically charged asymptotically AdS black

holes and that, when the charge of the black hole is large enough, this new mode dominates

the dynamics of relaxation towards equilibrium when the black hole is disturbed. From
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the point of view of the four dimensional dual quantum field theory at the boundary of

the asymptotically AdS spacetime background, this new mode dominates the dynamics

responsible for the characteristic equilibration time of the plasma at large enough densities

in the diffusion channel. Since bulk electric fields map to boundary states at finite density,

this may be a general feature of holographic models at finite density. Therefore, one could

investigate if the behavior of non-hydrodynamic modes in other holographic models that

display critical phenomena possess similar properties to those found in the present study,

i.e., the corresponding equilibration times have infinite slope characterized by a single crit-

ical exponent θ. In particular, we intend to investigate in the near future these features in

two bottom-up constructions of phenomenological relevance for the physics of the QGP: the

EMD model at finite baryon chemical potential [30, 31] and the anisotropic EMD model

at finite magnetic field from refs. [61, 62]. Such studies may be relevant to understand

how the presence of a critical endpoint in the QCD phase diagram may lead to new ob-

servables associated with, for instance, baryon transport in the baryon rich quark-gluon

plasma produced in heavy ion collisions within the beam energy scan program at RHIC.
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A Spectral function for the external scalar channel

In this appendix we study the spectral function associated with the external scalar fluc-

tuation in the bulk. The motivation for this pursuit comes from the fact that QNM’s

are associated with poles of the retarded Green’s function, whose imaginary part defines

the spectral function. Therefore, one should expect that the critical behavior found for

the QNM’s leave somehow an imprint in the spectral function. Here we investigate this

issue by considering the spectral function of the external scalar field fluctuation. Also, we

note that due to the universal character of the δgyx fluctuation of the metric [63], the same

calculation also gives the shear viscosity spectral function.

For the sake of completeness, let us begin by briefly reviewing the holographic compu-

tation of the spectral function based on the real time holographic prescription [55] recast

using the holographic membrane paradigm [64]. From linear response theory, the expec-

tation value of the QFT operator Ô dual to the scalar perturbation is associated with the

retarded correlator according to (see [65]),

〈Ô(ω,~k)〉 = −GR
ÔÔ

(ω,~k)J(ω,~k), (A.1)
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where, as before, J(ω,~k) denotes the leading mode of the scalar fluctuation at the boundary,

which sources the QFT operator Ô, while the expectation value is associated with the

subleading mode, being given by,

〈Ô(ω,~k)〉 = lim
r→∞

Π(r, ω,~k) = lim
r→∞

δS

δϕ̃′
, (A.2)

where Π is the radial canonical momentum conjugate to the scalar perturbation ϕ̃. Once

more, we impose that the scalar perturbation satisfies an in-falling wave condition at the

horizon, which gives the retarded propagator.

Our goal here is to compute the spectral function defined by,

Fs ≡ − ImGR
ÔÔ

= lim
r→∞

Im
Π

ϕ̃
. (A.3)

To do so, we have to first solve the equation of motion that follows from the action (3.1)

in the usual coordinates of (2.3),

ϕ̃′′ +

(
4A′ −B′ + h′

h

)
ϕ̃′ +

e2(B−A)

h2
(
ω2 − k2h

)
ϕ̃ = 0, (A.4)

with an in-falling horizon condition at r = rH and lim
r→∞

ϕ̃(r, ω,~k) = J(ω,~k).

We introduce a bulk response function [64],3

ζ ≡ 2κ25
Π

ωϕ̃
, (A.5)

which allows us to reduce the linear second order differential equation (A.4) to a first order

nonlinear Riccati equation,

ζ ′ +
ωgrr√
−g

[
ζ2 + g3xx

(
1 +

gtt
gxx

k2

ω2

)]
= 0. (A.6)

By requiring regularity at the horizon, one obtains the following horizon condition needed

to solve the first order flow equation above,

ζ(r = rH , ω,~k) = ±igxx(rH)3/2, (A.7)

where we choose the positive sign, which corresponds to the in-falling wave at the horizon.

From the membrane paradigm [64], assuming that the scalar disturbance corresponds to

the δgyx fluctuation of the metric, one recognizes this result as the shear viscosity

η = lim
ω→0

lim
~k→0

Im ζ(rH , ω,~k)

2κ25
. (A.8)

Then, one may write down the following dimensionless ratio,

Fs
ωη

=
Im ζ(r →∞, ω,~k)

gxx(rH)3/2
. (A.9)

3This response function should not be confused with the bulk viscosity, which is always zero in the

conformal theory considered in this paper.
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Figure 12. Normalized spectral function as a function of ω/T for µ/T = 0 and µ/T = π/
√

2

(critical point). Both curves scale with (ω/T )3 as ω/T →∞.

(a)
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0.8
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1.2

(b)

Figure 13. (a) Full surface profile of the subtracted normalized spectral function as a function

of ω/T and µ/T , in the long wavelength limit, k/T = 0. (b) Details of ∆Fs/ωη for µ/T = 0 and

µ/T = π/
√

2 (critical point).

One can now numerically integrate eq. (A.6) and then use eq. (A.9) to obtain the normalized

spectral function. The results are shown in figure 12 for µ/T = 0 (AdS5-Schwarzschild) and

µ/T = π/
√

2 (critical point), both evaluated at k = 0. We see that, naively, an increase in

µ/T seems to have only a small effect on the spectral function, even as one approaches the

critical point. However, this is due to the fact that in the ultraviolet limit, ω/T →∞, the

dimensionless ratio Fs/ωη scales as (ω/T )3, which overwhelms any poles or fluctuations in

the plot for the spectral function.

Let us now consider a subtraction scheme which removes the scaling (ω/T )3 from the

spectral function at some ultraviolet cutoff [66–68],

∆Fs
ωη
≡ Fs(ω, k = 0)

ωη
− a

(ω
T

)3
, (A.10)
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critical point
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Figure 14. Height of the first peak of ∆Fs/ωη as a function of µ/T in the long wavelength

limit, k/T = 0.

where a is a constant defined by the asymptotic behavior of the spectral function,

a ≡ lim
ω/T→∞

Fs/ωη

(ω/T )3

∣∣∣∣
k=0

. (A.11)

We remark that in order to reliably perform the subtraction above, the flow equation (A.6)

must be solved with high numerical accuracy. This becomes more difficult for larger values

of the ultraviolet cutoff in ω/T , which also requires one to increase the ultraviolet cutoff

used to numerically parametrize the boundary in the radial coordinate. For the numerical

evaluation of the first oscillations of the subtracted spectral function, one can safely take

as the ultraviolet cutoff in the dimensionless frequency a value around ω/T ∼ 40.

In figure 13 we display the behavior of ∆Fs/ωη as a function of µ/T and ω/T at

k/T = 0, while in figure 14 we analyze the evolution of the height of its first peak as

a function of µ/T , which acquires an infinite slope at the critical point. By computing

its derivative and fitting the numerical result close to the critical region using the same

functional dependence as in eq. (3.7), one again obtains a critical exponent compatible

with 1/2. Thus, we find that the critical behavior found in the QNM’s can also be found,

albeit in an indirect manner, in the spectral function.

B Numerical procedures

The main numerical algorithm we employ in this work to find the QNM’s is the pseu-

dospectral method [54]. In this appendix, we briefly review the main steps required to

tackle the problem. The main advantage of the pseudospectral method, when compared

to other methods used in the literature to calculate QNM’s, is the ease of numerical im-

plementation and the accuracy — in general, it requires a modest number of collocation

points and basis functions in order to compute several QNM’s with high accuracy. The

main disadvantage is the requirement of high numerical precision in the intermediate cal-

culations, which still brings a drawback in terms of running time, since typical machine

precision calculations result in spurious results for any but the lowest QNM’s.
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B.1 Brief overview of the pseudospectral method

The general spectral method, of which the pseudospectral (or collocant) method is a par-

ticular case,4 aims to solve the following general non-homogeneous differential equation for

a complex function f(u),

L̂f(u) = h(u), (B.1)

where L̂ is a general differential operator and h(u) is the non-homogeneous term. One

may consider, for instance, the basic interval u ∈ [0, 1], which was used to define the radial

holographic coordinate u in the main text (with the boundary at u = 0 and the horizon

at u = 1). In finite difference methods one discretizes the basic interval using a finite

grid and introduce finite difference approximations for the derivatives. In both spectral

and pseudospectral methods, one instead introduces a subset {φi(u)}Ni=0 of a complete set

{φi(u)}∞i=0 of orthogonal basis functions defined on the basic interval, approximating f(u)

by its truncated base expansion fN (u),

f(u) ≈ fN (u) =
N∑
i=0

aiφi(u). (B.2)

Now we consider the pseudospectral method in order to determine the coefficients ai that

best provide an approximation fN (u) for f(u). First, one introduces the residual function

R (u; {ai}) defined by,

R (u; {ai}) = L̂fN (u)− h(u) =

N∑
i=0

aiL̂φi(u)− h(u). (B.3)

The strategy is to suitably choose a set of points {uj}Nj=0 (the so-called collocation points)

on the domain of the basis functions φi, and then fix ai such that the residual function

is zero at uj , that is, R(uj ; {ai}) = 0. This generates a system of N linear differential

equations with N variables, {ai},

N∑
i=0

ai[L̂φi](uj) = h(uj) (B.4)

By solving for {ai} one determines the approximate solution fN (u).

There are several possible choices for the basis functions φi and collocation points

uj , depending on the symmetries of the problem and boundary conditions. A generally

4The main difference between spectral and pseudospectral methods regards the determination of the

coefficients ai to be specified in the sequel. As explained in [54], the nomenclature used in the literature is a

bit messy: both spectral and pseudospectral methods are known as spectral methods in a broad sense, due to

the fact that they use a complete set of orthogonal functions. In the restricted sense, spectral methods (also

called non-collocant methods) determine the generalized Fourier coefficients by exploiting the orthogonality

of the basis, projecting down the unknown function f(u). On the other hand, pseudospectral methods

(also known as collocant methods) use a selected set of points on the function domain in order to build an

interpolating polynomial. For the purposes of the present work, we will consider only pseudospectral (or

collocant methods) in this restricted sense.
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proposed basis defined in the interval x ∈ [−1, 1] is given by the Chebyshev polynomials,

Tn(x).5 Since u ∈ [0, 1], we can relate these variables by x = 2u−1, then φi(u) = Ti(2u−1).

A useful accompanying set of collocant points is given by the so-called Gauss-Lobatto grid,

which for u ∈ [0, 1] can be written as,

uj =
1

2

[
1− cos

(
jπ

N

)]
, for j = 0, 1, . . . , N. (B.5)

Finally, we can solve the Generalized Eigenvalue Problem (GEP) which we are in-

terested in by extending the operator L̂ to include a dependence on a parameter λ,

L̂ → L̂(λ) = L̂0 + λL̂1, and then taking h(u) = 0, such as to search for eigenvalues

λ ≡ ω/T satisfying L̂(λ)f(u) = 0 with boundary values f(0) = f0 and f(1) = f1. The

resulting matrix GEP is then,

(A0 +A1λ) a = 0, (B.6)

where a = {ai} and Ak = {Ak,ij} = {[L̂kφi](uj)} with k ∈ {0, 1}.

B.2 Implementation details

We used a Chebyshev basis with N basis functions and collocant points, and then employed

the Arnoldi method (via the built-in Eigensystem[ ] procedure in Wolfram’s Mathemat-

ica [69]) to solve the resulting GEP for ω/T .6 For higher order QNM’s, one needs to use

high numerical precision from the outset. Denoting the number of floating-point digits

used in the calculations by M , the final error estimate of the numerical QNM’s is mainly

controlled by the number of basis functions N and the numerical precision parameter M .

We have checked that using M = 60 and N = 80 yielded the 20 first QNM’s with good

accuracy — this was the setting used in most of the paper. For higher order QNM’s, such

as the ones shown in figures 4 and 8, we used M = N = 100. We verified the stability of

the QNM spectra involving the desired modes by doubling the number of basis points N

or the numerical precision parameter M , following the error control procedure discussed

in [54].

B.3 Calculation of the critical exponents

Let us now discuss the numerical procedure we followed in order to determine the critical

exponent θ of the divergent quantities near the critical point µ/T = π/
√

2, by performing

fits of the asymptotic form (3.7) as a function of µ/T .

We used a first order central difference formula with step size h ≡ ∆(µ/T ) in order to

compute the required numerical derivatives. By varying h from 10−5 to 10−11, and taking

into account that we have an accuracy of several digits in the computed observables, we

estimated the error introduced by the numerical differentiation to be of the order of 10−7.

5The Chebyshev polynomials are defined to be the set of polynomials satisfying Tn(cos θ) = cos(nθ) for

every angle θ ∈ [0, π] and n ∈ N.
6In the particular case of the AdS5-Schwarzschild background, a didactic sample calculation of the QNM

spectra using the pseudospectral method can be found in L. Yaffe’s notebook for the 2014 Mathematica

Summer School on Theoretical Physics [70].
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Interval Starting d(Tτeq)/d(µ/T ) Ending d(Tτeq)/d(µ/T )

1 0.05 0.10

2 0.10 0.15

3 0.15 0.20

4 0.20 0.25

5 0.25 0.30

6 0.30 0.50

7 0.50 1.0

8 1.0 5.0

9 5.0 15.0

10 15.0 40.0

11 40.0 70.0

12 70.0 150.0

13 150.0 250.0

14 250.0 530.0

Table 1. d(Tτeq)/d(µ/T ) intervals used for the fit procedure.

0.1 1 10 100
0.50

0.55

0.60

0.65

0.70

Figure 15. Fit results for the critical exponent θ for each subinterval in d(Tτeq)/d(µ/T ). The

abscissas were chosen at the midpoint of the corresponding subinterval

Taking as a specific example the calculation of the critical exponent for the equilibration

time in the external scalar channel, in order to check that the asymptotic form (3.7) is valid

close to the critical point µ/T = π/
√

2, we split d(Tτeq)/d(µ/T ) into 14 subintervals and

then performed a least squares fit of eq. (3.7) to the resulting data within each subinterval,

with each of them populated by 100 points evenly spaced in µ/T . In table 1 we specify

the subintervals used for the determination of the critical exponent of d(Tτeq)/d(µ/T ) in

the external scalar channel. In figure 15 we display the convergence of the fitted critical

exponent θ to the value 1/2. The estimate of the least squares standard error in the value

of θ is of the order of 10−7 for the last interval.

– 26 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
7

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C.V. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole,

Nature 227 (1970) 936 [INSPIRE].

[2] M. Davis, R. Ruffini, W.H. Press and R.H. Price, Gravitational radiation from a particle

falling radially into a Schwarzschild black hole, Phys. Rev. Lett. 27 (1971) 1466 [INSPIRE].

[3] H.-P. Nollert, Topical review: quasinormal modes: the characteristic ‘sound’ of black holes

and neutron stars, Class. Quant. Grav. 16 (1999) R159 [INSPIRE].

[4] K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev.

Rel. 2 (1999) 2 [gr-qc/9909058] [INSPIRE].

[5] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes,

Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].

[6] R.A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to

string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].

[7] M. Kac, Can one hear the shape of a drum?, Am. Math. Mon. 73 (1966) 1 [INSPIRE].

[8] Virgo, LIGO Scientific collaboration, B.P. Abbott et al., Observation of gravitational

waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102

[arXiv:1602.03837] [INSPIRE].

[9] Virgo, LIGO Scientific collaboration, B.P. Abbott et al., GW151226: observation of

gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116

(2016) 241103 [arXiv:1606.04855] [INSPIRE].

[10] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[11] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[12] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[13] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[14] A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev. D 66 (2002)

124013 [hep-th/0207133] [INSPIRE].

[15] P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72

(2005) 086009 [hep-th/0506184] [INSPIRE].

[16] G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to

thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].

[17] M.P. Heller, R.A. Janik and P. Witaszczyk, Hydrodynamic gradient expansion in gauge

theory plasmas, Phys. Rev. Lett. 110 (2013) 211602 [arXiv:1302.0697] [INSPIRE].

– 27 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1038/227936a0
http://inspirehep.net/search?p=find+J+%22Nature,227,936%22
http://dx.doi.org/10.1103/PhysRevLett.27.1466
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,27,1466%22
http://dx.doi.org/10.1088/0264-9381/16/12/201
http://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,16,R159%22
http://dx.doi.org/10.12942/lrr-1999-2
http://dx.doi.org/10.12942/lrr-1999-2
https://arxiv.org/abs/gr-qc/9909058
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9909058
http://dx.doi.org/10.1088/0264-9381/26/16/163001
https://arxiv.org/abs/0905.2975
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2975
http://dx.doi.org/10.1103/RevModPhys.83.793
https://arxiv.org/abs/1102.4014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4014
http://dx.doi.org/10.2307/2313748
http://inspirehep.net/search?p=find+J+%22Am.Math.Mon.,73,1%22
http://dx.doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.03837
http://dx.doi.org/10.1103/PhysRevLett.116.241103
http://dx.doi.org/10.1103/PhysRevLett.116.241103
https://arxiv.org/abs/1606.04855
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.04855
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
https://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
https://arxiv.org/abs/hep-th/9803131
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803131
http://dx.doi.org/10.1103/PhysRevD.66.124013
http://dx.doi.org/10.1103/PhysRevD.66.124013
https://arxiv.org/abs/hep-th/0207133
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207133
http://dx.doi.org/10.1103/PhysRevD.72.086009
http://dx.doi.org/10.1103/PhysRevD.72.086009
https://arxiv.org/abs/hep-th/0506184
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506184
http://dx.doi.org/10.1103/PhysRevD.62.024027
https://arxiv.org/abs/hep-th/9909056
http://inspirehep.net/search?p=find+EPRINT+hep-th/9909056
http://dx.doi.org/10.1103/PhysRevLett.110.211602
https://arxiv.org/abs/1302.0697
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0697


J
H
E
P
0
1
(
2
0
1
7
)
1
3
7

[18] A. Buchel, M.P. Heller and J. Noronha, Entropy production, hydrodynamics and resurgence

in the primordial quark-gluon plasma from holography, Phys. Rev. D 94 (2016) 106011

[arXiv:1603.05344] [INSPIRE].

[19] W. Florkowski, R. Ryblewski and M. Spaliński, Gradient expansion for anisotropic
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