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1 Introduction and summary

The chiral magnetic effect (CME) [1–3] and chiral separation effect (CSE) [4, 5] characterize

the response of vector/axial current to the axial/vector chemical potential in external

magnetic field. Both effects are manifestation of axial anomaly and are of phenomenological

interest in heavy ion collision experiment. In particular, CME leads to charge separation

and the interplay of CME and CSE gives rise to chiral magnetic wave (CMW) [6], which

leads to charge dependent flow [7]. There have been significant experimental efforts in

search of CME [8–10] and CMW [11, 12], see [13–15] and references therein.

While CME and CSE share many similarities, they are known to differ in certain

aspects. The chiral magnetic current is known to be independent from quark mass, tem-

perature etc [2]. Correction may arise in dynamical cases, where axial chemical potential is

not well defined and the dynamics of axial charge becomes important [16–19]. The chiral

separation current does not suffer from the issue of axial chemical potential, but it does

receive correction from quark mass [4, 20–23]. In the static case, the correction to CSE

can be derived in an ad-hoc way:

∇ · j5 = CẼ · B̃+ 2Mqiψ̄γ
5ψ, (1.1)

with C = −Nce2Q2

2π2 . In the massless limit, we can write Ẽ = −∇µq, with µq being the

quark chemical potential. Since ∇ · B̃ = 0, we easily arrive at the celebrated CSE

∇ · j5 = −∇ ·
(

CµqB̃
)

⇒ j5 = −CµqB̃. (1.2)

To obtain the mass correction to j5, we first write the pseudoscalar operator σ5 ≡ iMqψ̄γ
5ψ

as the response to quark chemical potential: σ5(x) =
∫

d4yGσ5n(x−y)µq(y). The structure
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of the Green’s function Gσ5n can be deduced from discrete symmetry: σ5 is odd in both

parity and time reversal, thus it should contain magnetic field B, which is odd in time

reversal and spatial gradient ∇, which is odd in parity. Therefore, to the lowest order in

gradient, we have

σ5 = g(M2
q , T, µ, B̃)B̃ · ∇µq. (1.3)

Following the same steps as (1.2), we find correction to j5,

j5 = −CµqB̃+ 2g(M2
q , T, µq, B̃)µqB̃. (1.4)

The function g is related to the Green’s function as (in momentum space)

g =
Gσ5n

ikB̃
. (1.5)

This relation will be confirmed analytically in model study. Note that g vanishes when the

quark mass Mq vanishes. We can expand it in small Mq regime:

g = #
M2

q

T 2
+ o(M2

q ) (1.6)

assuming µq ≪ T, B̃ ≪ T 2. The dimensionless prefactor # is to be determined by

dynamics. In fact, the analytic form of g also constraints the response of σ5 to quark mass

Mq. Note that we have assumed a spatially inhomogeneous µq and constant Mq. Instead,

we can assume an inhomogeneous Mq and constant µq. This should induce vev of σ5(x) =
∫

d4yGσ5σ(x−y)Mq(y). Consistency with (1.3) and (1.6) indicates the following correction

σ5 = 2#
Mqµq

T 2
B̃ · ∇Mq + o(M2

q ), (1.7)

which implies Gσ5σ = 2i#MqkB̃µq + o(Mq). We will provide clear numerical evidence

for this correlator in model study. The correction to j5 is more interesting in regime of

large µq and B̃. When B̃ = 0 and µq large, different instabilities have been discussed in

large Nc field theory with spontaneous generation of chiral density wave [24, 25], current

density [26–28] and quarkyonic spiral [29–31] etc. At strong magnetic field, formation of

chiral magnetic spiral [32–34] is possible. Here we discuss a different type of instability

characterized by pseudoscalar condensate. This instability is already identified in [35] see

also [36] in low temperature confined phase. We extended the discussion and found it only

exists within a window of magnetic field. Formation of this instability leads to spontaneous

generation of chiral shift, first introduced in [37], which induces further correction to j5.

The paper is organized as follows: in section 2, we give a brief review of the holographic

model and the finite density and magnetic field background; section 3 contains a study of

correlators among pseudoscalar condensate, quark condensate and quark number density in

small momentum regime; section 4 extends the study of correlators in arbitrary momentum

regime and discussed the instability towards formation of spiral phase. We close the paper

in section 5 with some outlooks.

– 2 –



J
H
E
P
0
1
(
2
0
1
7
)
1
1
1

2 A brief review of the model

2.1 The finite density background

We use the D3/D7 model to study the effect of finite quark mass. The background consists

of Nc D3 branes and Nf D7 branes. In the probe limit Nf ≪ Nc, the background is

simply given by black hole background sourced by D3 branes, with suppressed backreaction

from D7 brane. The D3/D7 model is dual to N = 4 Super Yang-Mills (SYM) fields and

N = 2 hypermultiplet fields, which transform in adjoint and fundamental representations

of SU(Nc) gauge group respectively. By analogy with QCD, we loosely refer to the N = 4

and N = 2 fields as gluons and quarks respectively. The black hole background of D3

branes is given by [38]:

ds2 = −r20
2

f2

H
ρ2dt2 +

r20
2
Hρ2dx2 +

dρ2

ρ2
+ dθ2 + sin2 θdφ2 + cos2 θdΩ2

3. (2.1)

where

f = 1− 1

ρ4
, H = 1 +

1

ρ4
. (2.2)

The temperature of the gluon plasma is given by T = r0
π . Note that we set AdS radius

L = 1. It can be reinstated by dimension. We also explicitly factorize S5 into S3 and two

additional angular coordinates θ and φ. There is also a nontrivial Ramond-Ramond form

C4 =

(

r20
2
ρ2H

)2

dt∧dx1∧dx2∧dx3 − cos4 θdφ∧dΩ3. (2.3)

The D7 branes share the worldvolume coordinates with D3 branes. In addition, they

occupy the coordinates x4-x7 parametrized by the S3 coordinates. Their position in x8-x9
plane can be parametrized by radius ρ sin θ and polar angle φ. The rotational symmetry

in the x8-x9 plane corresponds to U(1)R symmetry in the dual field theory. The D7 branes

has an additional U(1)B symmetry carried by its worldvolume gauge field. We will use the

U(1)R and U(1)B symmetries as axial and vector symmetries respectively.

We are interested in the field theory state at finite temperature and finite quark chemi-

cal potential µq with background magnetic field B̃. To this end, we introduce worldvolume

gauge field At(ρ) and F̃xy = B̃. The embedding function θ(ρ) of D7 branes in D3 back-

ground is determined by minimizing the action including a DBI term and WZ term

SD7 = SDBI + SWZ ,

SDBI = −NfTD7

∫

d8ξ

√

−det
(

gab + 2πα′F̃ab

)

,

SWZ =
1

2
NfTD7(2πα

′)2
∫

P [C4]∧F̃∧F̃ . (2.4)

Here TD7 is the D7 brane tension. gab and F̃ab are the induced metric and worldvolume

field strength respectively. Defining

B =
2πα′

r20
B̃, At =

2πα′

r0
Ãt,

N = NfTD72π
2 =

NfNcλ

(2π)4
, (2.5)
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the action simplifies to

SDBI = − N
2π2

∫

d8ξ
√

−det (gab + Fab),

SWZ =
1

4π2
N

∫

P [C4]∧F∧F. (2.6)

The asymptotic behavior of θ is given by

sin θ =
m

ρ
+

c

ρ3
+ · · · . (2.7)

The coefficients are related to bare quark mass Mq and quark condensate 〈ψ̄ψ〉 [38]:

Mq =
r0m

2πα′ , 〈ψ̄ψ〉 = −2πα′N r30c. (2.8)

Similarly, the asymptotic behavior of At determines dimensionless quark chemical potential

µ and density n:

At = µ− n

ρ2
+ · · · , (2.9)

with physical quark chemical potential and number density given by µq = r0µ
2πα′ and nq =

4πα′N r30n.

The phase diagram of the system has been obtained in [39–43]. There are two possible

embeddings with D7 branes crossing/not crossing the black hole horizons, corresponding

to meson melting/mesonic phase respectively [44]. We will focus on meson melting phase

for studying CSE in quark gluon plasma (QGP).

2.2 CSE at finite quark mass

We consider the fluctuation of embedding function φ in the above background. The part

of quadratic action containing φ can be written in the following form

S = N
∫

d5x

(

−1

2

√
−GGMN∂Mφ∂Nφ

)

−Nκ

∫

d5xΩǫMNPQRFMNFPQ∂Rφ, (2.10)

with M = t, x1, x2, x3, ρ. For the evaluation of CSE, we need

Ω = cos4 θ, κ =
1

8
. (2.11)

We do not need explicit form of GMN for now. The axial current is defined by [45]

Jµ
R =

∫

dρ
δL
δ∂µφ

. (2.12)

Using EOM of φ, we obtain the following non-conservation equation of axial current

∂µJ
µ
R +

δL
δ∂ρφ

|∞ρ=ρh
= 0. (2.13)
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We will identify JR as axial current. The non-conservation of JR follows from two boundary

terms in the integration. The boundary term at ρ = ∞ is related to axial anomaly:

Oφ ≡ − δL
δ∂ρφ

|ρ=∞

= N r40
√
−GGMρ∂Mφ|ρ=∞ + κN r40Ωǫ

MNPQFMNFPQ|ρ=∞

= Oη +N r40E ·B. (2.14)

Note that the factor r40 follows from dimension of L. In doing this, we have chosen r0 to

set unit and work with dimensionless coordinates t, x1, x2, 3, i.e. ∂µ → r0∂µ. Combin-

ing with (2.5), we obtain E = 2πα′

r2
0

Ẽ and thus NEBr40 =
NfNc

(2π)2
ẼB̃ corresponding to the

anomaly term. Therefore the term Oη corresponds to the mass term iMqψ̄γ
5ψ.1 The other

boundary term at horizon ρ = ρh is an artifact of the model. Its presence is tied to our

modeling of axial symmetry: since we make use of U(1)R symmetry for axial symmetry,

the gluon plasma is also charged under axial symmetry. The horizon term represents axial

charge exchange between the quarks (fundamental matter) and gluons (adjoint matter).

The term is indeed non-vanishing in known examples [45, 46]. However, we will study CSE

and correlation functions in static limit. We claim the above artifact is absent in those quan-

tities because charge exchange is not possible in static case. This can be checked explicitly.

Now we proceed to evaluate CSE, which is the axial current J3
R. Note that φ = 0 in

the background, we obtain

J3
R = N r30

∫ ∞

ρh

dρ cos4 θA′
tB. (2.15)

We stress that had we assumed φ = 0 at the beginning, we would have obtained a vanishing

CSE current. The case m = 0 is trivial. In this case, the embedding function is given by

θ = 0. J3
R can be evaluated exactly

J3
R = N r30

∫ ∞

ρh

A′
tB = N r30µB =

NfNc

(2π)2
µqB̃. (2.16)

This is the standard CSE fixed entirely by anomaly upon restoring units in the last step.

Correction to standard CSE exists for m 6= 0. In this case, the embedding function θ and

gauge potential At are only known numerically. The corresponding J3
R can be obtained by

numerical integration. We obtain its dependence on m, µ and B in figure 1. To convert to

physical unit, we use

r0 = πT, α′ =
1√
λ

(2.17)

with phenomenologically relevant coupling and temperature. We observe that quark mass

tends to suppress CSE as expected. Chemical potential and magnetic field both tends to

enhance CSE. The qualitative dependence can be understood from (1.4). The leading term

−CµqB̃ gives the baseline 1, while the correction is

∆JR = #
M2

q

T 2
µqB̃. (2.18)

1Note that the normalization of JR is half of J5 in field theory.
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Figure 1. Normalized J3
R as a function of m, µ and B. The temperature of QGP is set to T =

300MeV. To guide eyes, we mark phenomenological relevant parameters (strange quark mass Mq =

100MeV, B̃ = m2
π, µq = 0.5T ) with red dots in corresponding panels. In the upper right and lower

panels we use Mq = 300MeV to magnify the dependence on µ(µq) and B(B̃). We use αs = 0.3 in de-

termination of λ. For strange quark mass Mq = 100MeV, the µ and B dependence is barely visible.

The m(Mq) dependence is quadratic, while the µq and B̃ dependence is absent at this

order. Assuming higher order terms in Mq can be ignored, the dependence in figure 1

implies the magnitude of the prefactor # drops with growing µq and B̃. Note that the

prefactor is negative, a suppressed magnitude leads to enhancement of CSE.

3 Correlators

In this section, we wish to study the correlator among scalar condensate σ ≡ ψ̄ψ, pseu-

doscalar condensate σ5 ≡ iMqψ̄γ
5ψ and quark number density nq ≡ ψ̄γ0ψ. We study the

Euclidean correlators at vanishing frequency (in static case when axial charge exchange is

absent) and finite momentum.

Gµν(k) =

∫

d4(x− y)ei
~k~x〈Oµ(x)Oν(y)〉, (3.1)

with µ, ν = σ, n, σ5. To this end, we introduce the following fluctuations to the background:

θ(z, ρ) = θ(ρ) + δθ(z, ρ), At(z, ρ) = At(ρ) + at(z, ρ), φ = φ(z, ρ). (3.2)

The open string metric up to quadratic order in fluctuation is given by

hab = h
(0)
ab + h

(1)
ab + h

(2)
ab + · · · , (3.3)
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with

h
(0)
ab =







gtt −r0A
′
t

gxx
r0A

′
t gρρ + θ′2







⊕

(

gxx r20B

−r20B gxx

)

⊕

gSS

(

gΩ3

)

,

h
(1)
ab =







−r20ȧt −r0a
′
t

r20ȧt r0δθ̇θ
′

r0a
′
t r0δθ̇θ

′ 2θ′δθ′







⊕

(

0

)

⊕

g
(1)
SS

(

gΩ3

)

,

h
(2)
ab =









r20

(

δθ̇2 + gφφφ̇
2
)

r0

(

δθ̇δθ′ + gφφφ̇φ
′
)

r0

(

δθ̇δθ′ + gφφφ̇φ
′
)

δθ′2 + gφφφ
′2









⊕

(

0

)

⊕

g
(2)
SS

(

gΩ3

)

. (3.4)

Here we use the following coordinates as D7 brane worldvolume coordinates: t, z, ρ, x, y

and Ω, with Ω denoting collectively three angular coordinates on S3. They are ordered as

they appear in the open string metric. It is straight forward but tedious task to work out

the quadratic action of the DBI and WZ terms

SDBI = − N
2π2

∫

d8ξ
√
−h

[

r20
2

(

δθ̇2 + gφφφ̇
2
)

gxx +
1

2

(

δθ′2 + gφφφ
′2)hρρ +

3

2
δg

(2)
SSg

SS

+
1

2
r40ȧ

2
th

ttgxx +
1

2
r20a

′
t
2htthρρ − 1

2
r20

(

δθ̇θ′
)2

gxxhρρ − r30ȧtδθ̇θ
′htρgxx

− r0a
′
tθ

′δθ′htρhρρ − 1

2

(

δθ′θ′
)2

hρρ2

× 3

8
δg

(1)
SS

2
(

gSS
)2

+
3

2
δg

(1)
SSg

SSr0a
′
th

tρ +
3

2
δg

(1)
SSg

SSθ′δθ′hρρ
]

,

SWZ =
N
2π2

r40

∫

d8ξ

[

cos4 θB
(

ȧtφ
′ − a′tφ̇

)

+ 4 cos3 θ sin θδθBA′
tφ̇

]

. (3.5)

Here

gSS = cos2 θ, δg
(1)
SS = − sin 2θδθ, δg

(2)
SS = − cos 2θδθ2,

htt =
gρρ + θ′2

gtt (gρρ + θ′2) + r20A
′
t
2
, hρρ =

gtt
gtt (gρρ + θ′2) + r20A

′
t
2
, htρ =

−r0A
′
t

gtt (gρρ + θ′2) + r20A
′
t
2
,

∫

d8ξ
√
−h = 2π2

∫

d5x
√

−
(

gtt (gρρ + θ′2) + r20A
′
t
2
) (

g2xx + r40B
2
)

gxxg3SS . (3.6)

We use dot and prime for derivatives with respect to z and ρ respectively. Note that we

work with dimensionless z, i.e. ∂z → r0∂z. This amounts to setting the scale of spatial

momentum by temperature. The rescaling makes the r0 dependence of SDBI and SWZ

appears as an overall r40 factor, thus r0 drops out completely from the EOM. The EOM

– 7 –
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following from (3.5) are given by
[

2
√
−h

(

3 tan2 θ − 3

2

)

δθ − 3
√
−hhtρ tan θa′t + 3

(√
−hhρρ tan θθ′

)′
δθ+

+
(√

−hhtρhρρθ′a′t
)′

−
(√

−hhρρ
(

1− θ′2hρρ
)

δθ′
)′

+
√
−hhtρθ′gxxät

−
√
−hgxx

(

1− hρρθ′2
)

θ̈

]

− 4 cos3 θ sin θBA′
tφ̇ = 0,

[

3
(√

−hhtρ tan θδθ
)′

−
(√

−hhtthρρa′t
)′

+
(√

−hhtρhρρθ′δθ′
)′

−
√
−hhttgxxät

+
√
−hhtρgxxθ′δθ̈

]

−
(

cos4 θ
)′
Bφ̇ = 0,

[ (√
−hhρρ sin2 θφ′

)′
+
√
−hgxx sin2 θφ̈

]

−
(

cos4 θ
)′
Bȧt − 4 cos3 θ sin θδθ̇BA′

t = 0. (3.7)

By observation, we find the ansatz

φ(z, ρ) = sin(kz)φk(ρ), at(z, ρ) = cos(kz)at(ρ), δθ(z, ρ) = cos(kz)δθ(ρ), (3.8)

solves the z-dependence of (3.7). To proceed, we note that a generic set of solution has

the following asymptotic expansion

φ = f0 +
f2
ρ2

+
fh
ρ2

ln ρ+ · · · ,

at = a0 +
a2
ρ2

+
ah
ρ2

ln ρ+ · · · ,

δθ =
t1
ρ
+

t3
ρ3

+
th
ρ3

ln ρ+ · · · , (3.9)

where fh = −k2f0, ah = −k2a0 and th = −k2t1. The leading coefficients are the sources

to operators σ5, δn and δσ respectively. The subleading coefficients are related to their

vevs. A holographic renormalization procedure is needed to determine the vevs. We will

elaborate this procedure in appendix A. Here we only show results of correlator Gab

Gσσ

(2πα′)2N r20
=

1

2
Sσσ,

Gnn

(2πα′)2N r20
=

1

2
Snn,

Gσ5σ5

N r40
=

1

2
Sσ5σ5,

Gσn

(2πα′)2N r20
=

1

2
Sσn,

Gnσ

(2πα′)2N r20
=

1

2
Snσ

Gσσ5

(2πα′)N r30
=

1

2
Sσσ5,

Gσ5σ

(2πα′)N r30
=

1

2
Sσ5σ,

Gnσ5

(2πα′)N r30
=

1

2
Snσ5,

Gσ5n

(2πα′)N r30
=

1

2
Sσ5n, (3.10)

where we have defined individual responses Sab

Sσσ =
∂t3
∂t1

, Sσn =
∂t3
∂a0

, Sσσ5 =
∂t3
∂f0

,

Snσ = −2
∂a2
∂t1

, Snn = −2
∂a2
∂a0

, Snσ5 = −2
∂a2
∂f0

,

Sσ5σ = m2∂f2
∂t1

, Sσ5n = m2 ∂f2
∂a0

, Sσ5σ5 = m2∂f2
∂f0

. (3.11)
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We proceed to solve (3.7). Since we have three coupled differential equations, we expect to

have three independent solutions. We solve (3.7) by numerical integration from the horizon

to the boundary. The initial condition we impose at the horizon is regularity condition. In

practice, we start off the horizon with the following three independent solutions:

δθ(1)(1 + ǫ) = 1 +O(ǫ2), a
(1)
t = O(ǫ2), φ(1) = O(ǫ2),

δθ(2)(1 + ǫ) = O(ǫ2), a
(2)
t = ǫ2 +O(ǫ3), φ(2) = O(ǫ2),

δθ(3)(1 + ǫ) = O(ǫ2), a
(3)
t = O(ǫ2), φ(3) = 1 +O(ǫ2). (3.12)

These solutions give rise to the following asymptotics at the boundary

φ(i) = f
(i)
0 +

f
(i)
2

ρ2
+

f
(i)
h

ρ2
ln ρ+ · · · ,

a
(i)
t = a

(i)
0 +

a
(i)
2

ρ2
+

a
(i)
h

ρ2
ln ρ+ · · · ,

δθ(i) =
t
(i)
1

ρ
+

t
(i)
3

ρ3
+

t
(i)
h

ρ3
ln ρ+ · · · , (3.13)

with i = 1, 2, 3 labeling different solutions. In order to calculate individual responses Sab,

we need to construct proper solution for which the other two sources vanish. This can be

done efficiently in the following way







Sσσ Snσ Sσ5σ

Sσn Snn Sσ5n

Sσσ5 Snσ5 Sσ5σ5






=







t
(1)
1 a

(1)
0 f

(1)
0

t
(2)
1 a

(2)
0 f

(2)
0

t
(3)
1 a

(3)
0 f

(3)
0







−1





t
(1)
3 −2a

(1)
2 m2f

(1)
2

t
(2)
3 −2a

(2)
2 m2f

(2)
2

t
(3)
3 −2a

(3)
2 m2f

(3)
2






. (3.14)

On general ground, we expect the Euclidean correlator to be real and symmetric Gab =

G∗
ab = Gba. Our numerical results confirm that this is indeed the case. We also find the

following scaling of all individual responses at small k.

Sσσ, Sσn, Snσ, Snn ∼ O(k0),

Sσσ5, Snσ5, Sσ5σ, Sσ5n, ∼ O(kB),

Sσ5σ5 ∼ O(k2) (3.15)

The first line of (3.15) is closely related to thermodynamics of the system. At k = 0, we have

Sσn =
∂c(m, µ)

∂µ
, Snσ =

∂n(n, µ)

∂m
. (3.16)

Similarly, the diagonal responses Sσσ and Snn are related to ∂c
∂m and ∂n

∂µ .
2 We have com-

pared the results of individual responses at k = 0 and those of thermodynamics, finding

expected agreement.

The second line of (3.15) is of more interest to us. It follows from (3.10) that

Gσσ5, Gnσ5 ∼ O(kB). This is consistent with parity (P) and time-reversal (T) symme-

try of the corresponding operators: σ5 is odd under both P and T, while σ and n are even

2For Sσσ, there is correction proportional to m
2.
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under P and T . The external B and momentum k are odd under T and P respectively.

These Euclidean correlators characterize response of the system to external parameter φ:

σ ∼ Gσσ5φ, n ∼ Gnσ5φ. (3.17)

Here we use φ to denote the field theory source coupled to σ5. The scaling O(k) can be

understood as follows: the source φ enters field theory Lagrangian as Mqψ̄e
iφγ5

ψ. If we

perform a chiral rotation, ψ → e−iγ5φ/2ψ, the relevant terms in the Lagrangian is modified

as [45]

Mqψ̄e
iφγ5

ψ → Mqψ̄ψ − ∂µφ

2
ψ̄γµγ5ψ. (3.18)

This implies that only ∂µφ appears as physical parameter. In our case, φ only depends on

z in field theory coordinates, therefore the physical parameter is φ̇. Interestingly, φ̇ can be

identified as the chiral shift parameter proposed in [20, 37]. Assuming the response of σ and

n to φ̇ is O(1) at small k, we naturally explain the O(k) scaling of correlators Gσσ5, Gnσ5.

The third line of (3.15) indicates Gσ5σ5 ∼ O(k2). Gσ5σ5 is by definition the suscepti-

bility of σ5. The susceptibility Gσ5σ5 is parity even, thus it scales as even power of k. As we

argued above, any response to φ has to start from O(k), the most probable scaling is O(k2).

Let us take a closer look at correlators involving σ5. We will present results primarily

on these correlators at small k. In fact, we can confirm the linear scaling relation described

above by perturbative calculation in k. Note that φ ∼ O(k), at, δθ ∼ O(1). To the lowest

non-trivial order in k, we only need to solve the following equations

2
√
−h

(

3 tan2 θ − 3

2

)

δθ − 3
√
−hhtρ tan θa′t + 3

(√
−hhρρ tan θθ′

)′
δθ+

(√
−hhtρhρρθ′a′t

)′
−
(√

−hhρρ
(

1− θ′2hρρ
)

)′
= 0,

3
(√

−hhtρ tan θδθ
)′

−
(√

−hhtthρρa′t
)′

+
(√

−hhtρhρρθ′δθ′
)′

= 0,
(√

−hhρρ sin2 θφ′
)′

−
(

cos4 θ
)′
Bȧt − 4 cos3 θ sin θδθ̇BA′

t = 0. (3.19)

From the first two equations of (3.19), we can solve for δθ and at. Plugging the solution

into the third equation and integrating from the horizon to the boundary, we obtain

√
−hhρρ sin2 θφ′|∞ρh =

∫ ∞

ρh

dρ
(

cos4 θ
)′
Bȧt + 4 cos3 θ sin θδθ̇BA′

t (3.20)

On the left hand side (l.h.s.), the boundary term at the horizon vanishes, the boundary

term at infinity is just −m2f2
2 . On the right hand side (r.h.s.), it is related to the sources

t1 and a0. There are two independent solutions. We denote their asymptotics as

δθ(i) =
t
(i)
1

ρ
+

t
(i)
3

ρ3
+

t
(i)
h

ρ3
ln ρ+ · · · ,

a
(i)
t = a

(i)
0 +

a
(i)
2

ρ2
+

a
(i)
h

ρ2
ln ρ+ · · · , (3.21)
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with i = 1, 2. Using (3.20), each solution give rise to vev of σ5 ∼ m2f
(i)
2 . Similar to (3.14),

we obtain the correlators as

(

Sσ5σ

Sσ5n

)

=

(

t
(1)
3 a

(1)
0

t
(2)
3 a

(2)
0

)−1(

m2f
(1)
2

m2f
(2)
2

)

. (3.22)

Note that at the boundary ȧt ∼ E, δθ̇ ∼ δṁ. The correlator Sσ5n(Gσ5n) measures the

response of σ5 to parallel E and B fields. To study the response in more detail, we define

a dimensionless ratio

r = − σ5
NE ·Br40

(3.23)

Note that we have included a minus sign in the definition of r such that r is always positive.

In terms of correlators, r = Sσ5n

2ik . Since Sσ5n ∼ O(k), r approaches a constant in the limit

k → 0. We plot the m and µ-dependence of r(k → 0, µ = 0) in figure 2. We find r

increases with m, but decreases with µ. The dependence is in qualitative agreement with

our discussion before: r ∼ g ∼ #
M2

q

T 2 , which grows with m, and drops with µq from the

µq dependence of the prefactor #. Now we are in a position to confirm the claim (1.4) in

Sec I. We begin by working in the background with µ = 0 (At = 0). The corresponding

correlator Gσ5n becomes particularly simple then

Gσ5n(k → 0) = −
(

2πα′)N r30

∫∞
ρh

dρ
(

cos4 θ
)′
Bȧt

at(ρ → ∞)
. (3.24)

Noting that r0µ
2πα′ = µq, we obtain

σ5 = Gσ5n(k → 0, µ = 0)µq = −iN r40k

∫ ∞

ρh

(

cos4 θ
)′
atB. (3.25)

One the other hand, the correction to CSE can be obtained by performing an integration

by part on (2.15)

J3
R = N r30

∫

dρ cos4 θA′
tB = N r30

(

cos4 θA′
tB|∞ρh −

∫ ∞

ρh

(

cos4 θ
)′
AtB

)

= N r30

(

µB −
∫ ∞

ρh

(

cos4 θ
)′
AtB

)

. (3.26)

The first term of (3.26) corresponds to the standard CSE, while the second term comes

from mass correction, which is precisely (3.25). In this case, r(k → 0) takes the form

r(k → 0) =

∫∞
ρh

dρ
(

cos4 θ
)′
at

at(ρ → ∞)
. (3.27)

It is instructive to analyze the coupling dependence of r: we first note that in the case

µ = 0, the coupling enters only through m = 2√
λ

Mq

T . On the other hand, we have argued

in the introduction that r ∼ g ∼ #
M2

q

T 2 , which suggests the following dependence r ∼ 1
λ

M2
q

T 2 .

This seems to imply that stronger interaction leads to weaker response of σ5 to external

– 11 –



J
H
E
P
0
1
(
2
0
1
7
)
1
1
1

0.2 0.4 0.6 0.8 1.0 1.2

m

0.2

0.4

0.6

r

0.1 0.2 0.3 0.4 0.5

Μ

0.0020

0.0025

0.0030

0.0035

r

Figure 2. r defined in (3.23) as a function of m at µ = 0 (left). Note that m is related to physical

quark mass Mq by m = 2√
λ

Mq

T
. The right plot shows r as a function of µ at m = 0.1. The ratio r

increases with m, but decreases with µ.

electromagnetic fields. This interpretation is misleading for the following reason: in D3/D7

model, the electromagnetic coupling to quark is the same as strong coupling, thus NEB ∼
O(λ), so the actual response of σ5 is O(λ0). It is also interesting to compare r with the

same quantity studied in [47], which is defined in the regime ω → 0, k = 0. In fact, we can

show analytically that they do not agree. For monotonic at, we have

r(k → 0, ω = 0) =

∫∞
ρh

dρ
(

cos4 θ
)′
Bat

at(ρ → ∞)
<

∫ ∞

ρh

dρ
(

cos4 θ
)′
B =

(

1− cos4 θh
)

B

= r(ω → 0, k = 0). (3.28)

This reveals noncommutativity of the limits ω → 0, k → 0 and k → 0, ω → 0 in the

response of σ5. The correlator Gσ5n tells us more than the response of σ5. Note that we

have Gσ5n = Gnσ5 by symmetry. Gnσ5 characterizes the response of n to chiral shift φ̇.

The result of r indicates that chiral shift can also induce correction to n in the presence of

B, with the correction increases with m, but decreases with µ.

Now we turn to Sσ5σ. This correlator measures the response of σ5 to spatially varying

quark mass δm. We plot the m-dependence and µ-dependence of Sσ5σ in figure 3. Indeed,

we can see in figure 3 that Gσ5σ vanishes approximately linearly in µ and m, which is clear

evidence for (1.7). By symmetry Sσ5σ = Sσσ5, we also obtain that chiral shift φ̇ can induce

correction to σ. The correction increases with both µ and m.

Finally we plot them and µ dependence of Sσ5σ5 in figure 4. The scaling Sσ5σ5 ∼ O(k2)

allows for the following parametrization of σ5

∇ · j5 = 2σ5 = h(m2, µ, B)∇2φ. (3.29)

From (3.29), we easily obtain an induced j5 in the presence of chiral shift φ̇:

j5 = h(m2, µ, B)∇φ. (3.30)

A similar current from spatial gradient of axion is also discussed in [48]. As we discussed

before, ∇φ is just the chiral shift parameter, which couples to the axial current in the

– 12 –
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Figure 3. limk→0
Sσ5σ

Bk
as a function of µ at m = 0.1 (left) and the same quantity as a function of

m at µ = 0.1 (right). The response of σ5 to spatially varying mass increases with both µ and m.

0.2 0.4 0.6 0.8 1.0

m
2

0.05

0.10

0.15

SΣ5Σ5�m
2
k

2

0.1 0.2 0.3 0.4 0.5

Μ

0.05

0.10

0.15

0.20

SΣ5Σ5�m
2
k

2

Figure 4. limk→0
Sσ5σ5

m2k2 as a function of m at µ = 0.1 (left) and the same quantity as a function of

µ at m = 0.1 (right). The left plot is suggestive of the expansion limk→0
Sσ5σ5

m2k2 = a+ bm2 + o(m2).

The right plot shows the response of σ5 to φ increases with µ.

Lagrangian. The function h can be viewed as an effective susceptibility. Figure 4 suggests

the following dependence h
N = am2 + bm4. Converting to physical parameters, we have

h = #M2
q +O(M2

q ), with # ∼ O(λ0).

4 Normalizable mode

Now we extend our study to correlators in regime of arbitrary k. Instead of calculating all

components of correlators, we look for normalizable modes. The existence of normalizable

mode means that it costs no energy to support such a mode. It usually corresponds

to spontaneous generation of spiral phase with the spatial period set by the momentum

of the normalizable mode. The normalizable mode corresponds to the point where the

determinant vanishes:
∣

∣

∣

∣

∣

∣

∣

t
(1)
1 a

(1)
0 f

(1)
0

t
(2)
1 a

(2)
0 f

(2)
0

t
(3)
1 a

(3)
0 f

(3)
0

∣

∣

∣

∣

∣

∣

∣

= 0 (4.1)
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Figure 5. Momentum of normalizable mode as a function of B atm = 0.05 (left). The normalizable

modes appear in a pair for each B, giving rise to two banches. The blue dots and green squares

correspond to the cases with µ = 3 and µ = 1 respectively. There is a critical Bc marked by red dots

(squares) for each case, corresponding to the point where two momenta merge. The normalizable

modes start to appear with finite k beyond Bc, indicating a first order transition. At larger B, the

state possibly become metastable. Momentum of normalizable mode as a function of m for µ = 1

and B = 8 (right).

We show the momentum k of the mode as a function of B in figure 5. We find that

normalizable modes exist for medium with general nonvanishing µ beyond certain critical

magnetic field Bc. For each B > Bc, there are two normalizable modes with different

momenta k. The low momentum branch appears monotonic decreasing function of B,

while the high momentum branch is non-monotonic. The normalizable modes we find are

numerically consistent with the quasi-normal mode reported in [35]. It is interesting to note

that the critical magnetic field corresponds to the point where the two momenta merge.

Furthermore, the modes extend to the region of large B, where the state possibly becomes

metastable [43]. We do not keep the corresponding mode in figure 5. Turning to the µ

dependence, we see that as µ is lowered, Bc grows. This is qualitatively in agreement with

the chiral soliton solution found in [36] in confined phase. We also show k as a function

of m in figure 5, which clearly shows the low/high momentum branches. As a function

of m, the high momentum branch appears monotonic increasing function, while the low

momentum branch is non-monotonic.

To have an idea on the magnitude of magnetic field, we convert Bc for the case µ = 3

to physical unit. For gluon plasma at temperature T = 300MeV and coupling αs = 0.3.

This correspond to B̃c = (389MeV)2 for µq = 504MeV.

5 Outlook

We close this paper by discussing several open questions that we may address based on

the results of this paper. Firstly, how does quark mass affect the dynamics of axial and

vector charge. As we have seen the pseudoscalar condensate responses to gradient of quark

chemical potential etc. This brings in an additional coupling between axial and vector

charges. Consequently, it should also modify the dispersion of CMW. For strange quark
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mass, we expect from the figure 1 that the modification in phenomenology is modest. Since

our study focuses on Euclidean correlators, the same quantities can be reliably studied on

the lattice, which will provide quantitative answers for quark mass effect in real world QCD.

Secondly, the normalizable mode we found at sufficient large B and µ suggests pos-

sible formation of spiral phase. To find the true ground state, we need to go beyond the

linear analysis. We expect that the true ground state is characterized by the spontaneous

generation of chiral shift, which induces further correction to axial current. The correlator

Gσσ5 and Gnσ5 indicates the correction to σ and n as well. It would be interesting to find

out detail about this state. We leave this for future work.

Last but not the least, the normalizable mode provides an explicit example of spiral

phase in meson melting phase. It would be interesting to extend this work to mesonic

phase. Such an example has been found at zero temperature in [36] based on effective field

theory models. It would be interesting to study the stability of such state against finite

temperature fluctuation.

Note added. When this work was near complete, we learned that Qun Wang et al. was

about to finish a closely related work [22]. We thank Qun Wang for sharing with us notes

of their work before publication.
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A Dictionary for Euclidean correlator

To find out correlators Gab, we first obtain on-shell action from (3.7):

S∂
ρ=Λ = −N r40

∫

d4x
√
−h

[

1

2

(

δθδθ′
(

1− θ′2hρρ
)

+ gφφφφ
′)hρρ +

1

2
ata

′
th

tthρρ

+
3

4
δg

(1)
SSg

SSθ′δθhρρ − 1

2
atθ

′δθ′htρhρρ − 1

2
a′tθ

′δθhtρhρρ +
3

4
δg

(1)
SSg

SSath
tρ

]

+
1

2
cos4 θB

(

ȧtφ− atφ̇
)

. (A.1)

The asymptotics of fields can be obtained from EOM as

φ = f0 +
f2
ρ2

+
fh
ρ2

ln ρ+ · · · ,

at = a0 +
a2
ρ2

+
ah
ρ2

ln ρ+ · · · ,

δθ =
t1
ρ
+

t3
ρ3

+
th
ρ3

ln ρ+ · · · , (A.2)
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with the coefficient of logarithmic terms fixed as

fh = −k2f0, ah = −k2a0, th = −k2t1. (A.3)

Plugging (A.2) into (A.1), we find the second line always vanishes in the limit Λ → ∞.

The first line gives the following contribution

S∂ = −N r40

[

− t21Λ
2

8
+

1

8

(

6m2t21 − 4t1t3 + t1th − 4t1th ln Λ
)

+
1

4
(2a0a2 − a0ah + 2a0ah ln Λ) +

m2

8
(−2f0f2 + f0fh − 2f0fh ln Λ)

]

+ · · · (A.4)

We need the following counter terms to remove quadratic divergence in (A.4)

Scounter
ρ=Λ =

1

2
N√−γδθ2 = N

[

t21Λ
2

8
+

1

4
(t1t3 + t1th ln ρ)

]

+ · · · . (A.5)

The coefficient of the logarithmic terms (A.3) is a special case of a more general relation:

fh = −�f0, ah = −�a0, th = −�t1. (A.6)

They do not encode dynamics of the theory. The corresponding logarithmic and finite

terms can be removed by the following counter terms with appropriate normalizations

N√−γδθ�δθ ln Λ, N√−γat�at ln Λ, N√−γφ�φ ln Λ,

N√−γδθ�δθ, N√−γat�at, N√−γφ�φ, (A.7)

Adding all counter terms to (A.1) and dropping contributions like m2t21, which do not

encode dynamics of the theory, we obtain the following renormalized on-shell action

Sren = N r40

(

− t1t3
4

+
a0a2
2

− m2f0f2
4

)

. (A.8)

Now we can do variation of (A.8) with respect to sources to obtain vev of the corresponding

operators. Note that partial derivatives hit twice in each terms in the bracket. We obtain

δσ =
δSren

δt1
= N r30(2πα

′)
(

− t3
2

)

,

δn =
δSren

δa0
= N r30(2πα

′)a2,

σ5 =
δSren

δf0
= N r40

(

−m2f2
2

)

, (A.9)

We use the δ symbol to indicate that the vev is on top of a nonvanishing background.

Taking the derivatives once more, we obtain correlators shown in (3.10).
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