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1 Introduction

Exact solutions to supergravity theories, like black holes, domain walls, plane-fronted waves

etc. have been instrumental in various developments of string theory, for instance in holog-

raphy or black hole microstate counting. Generically, one is interested both in supersym-

metric backgrounds and in solutions that break supersymmetry, like nonextremal black

holes. The latter play an important role for example in holographic descriptions of con-

densed matter systems at finite temperature, or of the quark-gluon plasma.

The supergravity equations of motion are coupled, nonlinear, second-order partial

differential equations, and as such quite difficult to solve analytically, even in presence

of a high degree of symmetry. A possible way out is to consider instead the Killing spinor

equations, which are of first order in derivatives, and imply (at least when the Killing vector

constucted as a bilinear from the Killing spinor is timelike) the second-order equations of

motion. In this way, however, one obtains only supersymmetric solutions, and therefore

interesting objects like nonextremal or extremal non-BPS black holes are excluded a priori.

A more general possibility that still involves solving first-order equations, is the

Hamilton-Jacobi approach. This includes the (symmetry-reduced) Killing spinor equa-

tions as a special subcase, but is quite easily generalizable to extremal non-BPS- or even
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nonextremal black holes. Using Hamilton-Jacobi theory is essentially1 equivalent to writ-

ing the action as a sum of squares, which can be seen as follows: suppose that, owing to

various symmetries (like e.g. staticity and spherical symmetry), the supergravity action

can be dimensionally reduced to just one dimension,2 such that

I =

∫
dr

[
1

2
GΛΣq̇

Λq̇Σ −U(q)

]
, (1.1)

where r is a radial variable (the ‘flow’ direction), the qΛ(r) denote collectively the dynamical

variables, U(q) is the potential and GΛΣ(q) the metric on the target space parametrized

by the qΛ, with inverse G ΛΣ. Now suppose that U can be expressed in terms of a (fake)

superpotential W as

U = E − 1

2
G ΛΣ∂W

∂qΛ

∂W

∂qΣ
, (1.2)

where E is a constant. Then, the action (1.1) becomes

I =

∫
dr

[
1

2
GΛΣ

(
q̇Λ − G ΛΩ∂W

∂qΩ

)(
q̇Σ − G Σ∆ ∂W

∂q∆

)
+

d

dr
(W − Er)

]
, (1.3)

which is up to a total derivative equal to

I =

∫
dr

1

2
GΛΣ

(
q̇Λ − G ΛΩ∂W

∂qΩ

)(
q̇Σ − G Σ∆ ∂W

∂q∆

)
. (1.4)

The latter is obviously stationary if the first-order flow equations

q̇Λ = G ΛΩ∂W

∂qΩ
(1.5)

hold. But (1.2) is nothing else than the reduced Hamilton-Jacobi equation, with W Hamil-

ton’s characteristic function, while (1.5) represents the expression for the conjugate mo-

menta pΛ = ∂L /∂q̇Λ = GΛΣq̇
Σ in Hamilton-Jacobi theory.3

First-order flow equations, derived either by writing the dimensionally reduced action

as a sum of squares or from the Hamilton-Jacobi formalism, appear for many different

settings in the literature, both in ungauged and gauged supergravity, and for BPS-, ex-

tremal non-BPS- and even nonextremal black holes, cf. e.g. [3–17] for an (incomplete)

list of references. In particular, ref. [18] establishes general properties of supersymmetric

flow equations for domain walls in five-dimensional N = 2 gauged supergravity coupled to

vector- and hypermultiplets.

Here we shall consider magnetically charged black strings in five-dimensional N = 2

gauged supergravity, and obtain first-order flow equations for them. This is done first for

1‘Essentially’ means that in many flow equations obtained in the literature by squaring an action, the

r.h.s. of (1.5) is not a gradient, or, in other words, the flow is not driven by a (fake) superpotential (no

gradient flow).
2When there is less symmetry, e.g. for rotating black holes, one obtains a field theory living in two or

more dimensions, instead of a mechanical system [1, 2]. In this case, the Hamilton-Jacobi formalism has to

be generalized to the so-called De Donder-Weyl-Hamilton-Jacobi theory [1].
3For further discussions of the relationship between the Hamilton-Jacobi formalism and the first-order

equations derived from a (fake) superpotential cf. [3, 4].
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the Fayet-Iliopoulos (FI)-gauged case, and then generalized to include also hypermultiplets,

where abelian symmetries of the quaternionic hyperscalar target manifold are gauged.

Extremal magnetic black strings interpolate between (so-called ‘magnetic’) AdS5 at infinity

and AdS3 × Σ (with Σ a two-dimensional space of constant curvature) at the horizon.

Holographically, this corresponds to an RG flow across dimensions from a 4d field theory

to a two-dimensional CFT in the infrared [19–23]. By plugging the near-horizon data into

the flow equations, one gets the attractor equations. We solve the latter in full generality

under the additional assumption that the ‘adjoint identity’ (A.3) holds. This enables us

to compute the central charge of the 2d CFT that describes the black strings in the IR, in

terms of the string charges, the FI parameters (or, more generally, the moment maps, if

also hypermultiplets are present), and the constants CIJK that appear in the Chern-Simons

term of the supergravity action.

The remainder of this paper is organized as follows: in the next section, we briefly

review N = 2, d = 5 Fayet-Iliopoulos gauged supergravity. In section 3, we derive the BPS

flow equations for static black strings, and generalize them in 4 to the non-supersymmetric

case, by using a simple deformation of the BPS superpotential. After that, in section 5,

the presence of (abelian) gauged hypermultiplets is taken into account as well. In 6, the

flow equations are solved in the near-horizon limit, where the geometry contains an AdS3

factor. This leads to the attractor equations for black strings, that we subsequently solve

in full generality, and compute the central charge of the 2d CFT that describes the black

strings in the IR. We conclude in section 7 with some proposals for extensions of our work.

An appendix contains some useful relations in very special geometry and the construction

of the r-map in the gauged case.

2 N = 2, d = 5 Fayet-Iliopoulos gauged supergravity

The bosonic Lagrangian of N = 2, d = 5 FI-gauged supergravity coupled to nv vector

multiplets is given by [24, 25]4

e−1L =
1

2
R− 1

2
Gij∂µφi∂µφj −

1

4
GIJF

I
µνF

Jµν +
e−1

48
CIJKε

µνρσλF IµνF
J
ρσA

K
λ − g2V , (2.1)

where the scalar potential reads

V = VIVJ

(
9

2
Gij∂ihI∂jhJ − 6hIhJ

)
. (2.2)

Here, VI are FI constants, ∂i denotes a partial derivative with respect to the real scalar

field φi, and hI = hI(φi) satisfy the condition

V ≡ 1

6
CIJKh

IhJhK = 1 . (2.3)

Moreover, GIJ and Gij can be expressed in terms of the homogeneous cubic polynomial V
which defines a ‘very special geometry’ [26],

GIJ = −1

2

∂

∂hI
∂

∂hJ
logV|V=1 , Gij = ∂ih

I∂jh
J GIJ |V=1 . (2.4)

4The indices I, J, . . . range from 1 to nv + 1, while i, j, . . . = 1, . . . , nv.
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Further useful relations can be found in appendix A. We note that if the five-dimensional

theory is obtained by gauging a supergravity theory coming from a Calabi-Yau compacti-

fication of M-theory, then V is the intersection form, hI and hI ≡ 1
6CIJKh

JhK correspond

to the size of the two- and four-cycles and the constants CIJK are the intersection numbers

of the Calabi-Yau threefold [27].

3 BPS flow for a static black string

Very special real Kähler manifolds can be viewed as the pre-image of the supergravity

r-map [28, 29]. This suggests to consider the five-dimensional spacetime as a Kaluza-Klein

uplift of the usual static black holes in four dimensions. Moreover, a pure string solution

in d = 5 supports only magnetic charges, thus the field configuration reads

ds2 = e2T (r)dz2 + e−T (r)
(
−e2U(r)dt2 + e−2U(r)dr2 + e2ψ(r)−2U(r)dσ2

κ

)
,

F I = pIfκ(θ)dθ ∧ dφ , φi = φi(r) ,
(3.1)

where dσ2
κ = dθ2 + f2

κ(θ)dϕ2 is the metric on the two-dimensional surfaces Σ = {S2,H2}
of constant scalar curvature R = 2κ, with κ ∈ {1,−1}, and

fκ(θ) =
1√
κ

sin(
√
κθ) =

{
sin θ κ = 1 ,

sinh θ κ = −1 .
(3.2)

Plugging the ansatz (3.1) into the equations of motion following from (2.1) yields a set of

ordinary differential equations that can be derived from the one-dimensional effective action

Seff =

∫
dr

[
e2ψ

(
U ′2 +

3

4
T ′2 − ψ′2 +

1

2
Gijφ′ iφ′ j

)
− Veff

]
,

Veff = κ− e2ψ−2U−T g2V − 1

2
e2U+T−2ψGIJp

IpJ ,

(3.3)

imposing in addition the zero energy condition Heff = 0. In the Hamilton-Jacobi formula-

tion the latter becomes the partial differential equation

e−2ψ

(
(∂UW )2 − (∂ψW )2 +

4

3
(∂TW )2 + 2Gij∂iW∂jW

)
+ Veff = 0 , (3.4)

where W is Hamilton’s characteristic function that we will sometimes refer to also as (fake)

superpotential.

A solution of (3.4) permits to write the action as a sum of squares and to derive a set of

first-order flow equations by setting the squares to zero.5 Guided by the four-dimensional

case [9, 13, 17], the ansatz for the simplest non-trivial solution is

W = aeU+T
2 pIhI + be2ψ−U−T

2 VIh
I , (3.5)

5As explained in the introduction, these are of course equivalent to the usual first-order equations in the

Hamilton-Jacobi formalism.
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where a, b are constants. Using (A.1), one can show that (3.5) solves (3.4) if one imposes

a = −3

4
, b =

3

2
g , VIp

I = − κ

3g
. (3.6)

The last of (3.6) is a sort of Dirac quantization condition for the linear combination VIp
I

of the magnetic charges in terms of the inverse gauge coupling constant g−1. This solution

for W leads to the first-order flow

U ′ = −3

4
eU+T

2
−2ψpIhI −

3

2
g e−U−

T
2 VIh

I ,

ψ′ = −3g e−U−
T
2 VIh

I , T ′ =
2

3
U ′ ,

φ′ i = 3Gij
(
−1

2
eU+T

2
−2ψpI∂jhI + g e−U−

T
2 VI∂jh

I

)
.

(3.7)

One can check that (3.7) coincides with the system obtained in [30] from the Killing spinor

equations. In particular, it is easy to verify that the supersymmetric magnetic black string

solution of [31] satisfies (3.7). Moreover, introducing a new radial coordinate R and the

warp factors f and ρ such that

U =
3

2
f , ψ = 2f + ρ , T = f ,

dR

dr
= e−3f , (3.8)

and specifying to the stu model, one shows that (3.7) is precisely the system of equations

derived in appendix 7.1 of [19] from the Killing spinor equations.

4 Non-BPS flow

One of the main advantages of the Hamilton-Jacobi formalism is to allow for a simple

generalization of the first-order flow driven by (3.5) to a non-BPS one. Similar to the

case of N = 2, d = 4 abelian gauged supergravity [14, 17], one introduces a ‘field rotation

matrix’ SIJ such that

GLKS
L
IS

K
J = GIJ . (4.1)

A nontrivial S (different from ±Id) allows to generate new solutions from known ones

by ‘rotating charges’. This technique was first introduced in [6, 7], and generalizes the

sign-flipping procedure of [32]. Using (4.1), one easily verifies that

W̃ = −4

3
eU+T

2 hIS
I
Jp

J +
2

3
ge2ψ−U−T

2 VIh
I (4.2)

satisfies again the Hamilton-Jacobi equation (3.4), provided the modified quantization con-

dition

VIS
I
Jp

J = − κ

3g
(4.3)

holds. This leads to the first-order flow driven by W̃ ,

U ′ = −3

4
eU+T

2
−2ψhIS

I
Jp

J − 3

2
g e−U−

T
2 VIh

I ,

ψ′ = −3g e−U−
T
2 VIh

I , T ′ =
2

3
U ′ ,

φ′ i = 3Gij
(
−1

2
eU+T

2
−2ψ∂jhIS

I
Jp

J + g e−U−
T
2 VI∂jh

I

)
.

(4.4)
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An interesting example for which (4.1) admits nontrivial solutions, is the model V =

h1h2h3 = 1 (cf. e.g. [30]), for which

GIJ =
δIJ

2(hI)2
. (4.5)

In this case a particular solution of (4.1) is given by

SIJ =

ε1 0 0

0 ε2 0

0 0 ε3

 , (4.6)

with εI = ±1. These matrices form a discrete subgroup D = (Z2)3 ⊂ GL(3,R). Since

there are two equivalent BPS branches, the independent solutions correspond to elements

of the quotient group D/Z2.

5 Inclusion of hypermultiplets

We now generalize our analysis to include also the coupling to nH hypermultiplets. The

charged hyperscalars qu (u = 1, · · · , 4nH) parametrize a quaternionic Kähler manifold with

metric huv(q), i.e., a 4nH-dimensional Riemannian manifold admitting a locally defined

triplet ~K v
u of almost complex structures satisfying the quaternion relation

hstKx
usK

y
tw = −δxyhuw + εxyzKz

uw , (5.1)

and whose Levi-Civita connection preserves ~K up to a rotation,

∇w ~K v
u + ~ωw × ~K v

u = 0 , (5.2)

where ~ω ≡ ~ωu(q) dqu is the connection of the SU(2)-bundle for which the quaternionic

manifold is the base. The SU(2) curvature is proportional to the complex structures,

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = −Kx . (5.3)

Here we shall consider only gaugings of abelian isometries of the quaternionic Kähler metric

huv. These are generated by commuting Killing vectors kuI (q). For each Killing vector one

can introduce a triplet of moment maps, P xI , such that

DuP
x
I ≡ ∂uP xI + εxyzωyuP

z
I = −2Ωx

uvk
v
I . (5.4)

One of the most important relations satisfied by the moment maps is the so-called equiv-

ariance relation. For abelian gaugings it has the form

1

2
εxyzP yI P

z
J − Ωx

uvk
u
I k

v
J = 0 . (5.5)
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The bosonic Lagrangian is now given by6

e−1L =
1

2
R− 1

2
Gij∂µφi∂µφj − huv∂̂µqu∂̂µqv −

1

4
GIJF

I
µνF

Jµν

+
e−1

48
CIJKε

µνρσλF IµνF
J
ρσA

K
λ − g2V , (5.6)

with the covariant derivative

∂̂µq
u = ∂µq

u + 3gAIµk
u
I , (5.7)

and the scalar potential

V = P xI P
x
J

(
9

2
Gij∂ihI∂jhJ − 6hIhJ

)
+ 9huvk

u
I k

v
Jh

IhJ . (5.8)

Varying (5.6) w.r.t AIµ, one obtains the Maxwell equations

∂µ
(
eGIJF Jµν

)
+

1

4
εµλρσνCIJK∂µA

J
λ∂ρA

K
σ = 6gehuvk

u
I ∂̂

νqv . (5.9)

Imposing the ansatz (3.1), the t-, θ- and z-components of (5.9) are automatically satisfied,

while the r- and ϕ-components become respectively

huvk
u
I q
′ v = 0 , kuI p

I = 0 . (5.10)

The remaining equations of motion can be derived from the effective action

Seff =

∫
dr

[
e2ψ

(
U ′2 +

3

4
T ′2 − ψ′2 +

1

2
Gijφ′ iφ′ j + huvq

′uq′ v
)
− Veff

]
,

Veff = κ− e2ψ−2U−T g2V − 1

2
e2U+T−2ψGIJp

IpJ ,

(5.11)

supplemented by the Hamiltonian constraint Heff = 0. The latter leads to the Hamilton-

Jacobi equation

e−2ψ

(
(∂UW )2 − (∂ψW )2 +

4

3
(∂TW )2 + 2Gij∂iW∂jW + huv∂uW∂vW

)
+Veff = 0 . (5.12)

Guided by the FI-gauged case and by previous work in four dimensions [17], we use

the ansatz

W = ceU+T
2 Z + de2ψ−U−T

2 L , (5.13)

where

Z = pIhI , L = QxWx , Qx = pIP xI , Wx = hJP xJ . (5.14)

Using some relations of very special geometry as well as (5.1), (5.3) and (5.5), one can show

that (5.13) solves indeed (5.12) provided that

c = −3

4
, d = −9

2
κg2 , QxQx =

1

9g2
. (5.15)

6(5.6) can be obtained from the Lagrangian in [18] by rescaling aIJ → 2
3
GIJ , CIJK → 1

6
CIJK , kI → 2kI ,

AI →
√

3
2
AI , g →

√
3
2
g.
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The solution (5.13) leads then to the first-order flow equations

U ′ = −3

4
eU+T

2
−2ψZ +

9

2
κg2e−U−

T
2 L , T ′ =

2

3
U ′ ,

ψ′ = 9κg2e−U−
T
2 L ,

φ′ i = Gij
(
−3

2
eU+T

2
−2ψ∂jZ − 9κg2e−U−

T
2 ∂jL

)
,

q′u = −9

2
κg2e−U−

T
2 huv∂vL .

(5.16)

One can recast (5.16) into a form very similar to that of the first-order flow in four dimen-

sions, cf. eqs. (3.43) in [17]. Integrating T ′ = 2
3U
′ and plugging this into the remaining

equations of (5.16), one gets

T ′ = −1

2
e2T−2ψZ + 3κg2e−2TL ,

ψ′ = 9κg2e−2TL ,

φ′ i = Gij
(
−3

2
e2T−2ψ∂jZ − 9κg2e−2T∂jL

)
,

q′u = −9

2
κg2e−2Thuv∂vL .

(5.17)

Using the equation for φ′ i together with (hI)′ = φ′ i∂ih
I and (A.2), the equations for T

and φi can be rewritten as

e2ψ
(
e−2ThI

)′
+ 9g2κe2ψ−4TQxP xJGIJ − pI = 0 . (5.18)

Note that the FI case can be recovered imposing P 1
I = P 2

I = 0 and P 3
I = VI . Then the

charge quantization condition QxQx = 1/(9g2) boils down to Q3 = pIVI = ±κ/(3g) (use

κ2 = 1), while L in (5.14) becomes L = ± κ
3gh

JVJ , which is the expression appearing

in (3.5). The two signs correspond to the two equivalent BPS branches; in section 3 the

lower sign was chosen.

6 Attractors and central charge of the dual CFT

In this section we want to investigate the near-horizon configurations of the black string.

To keep things simple, we shall first concentrate on the hyperless FI-gauged case considered

in section 3, and set g = 1. The geometry is of the type AdS3 × Σ with Σ = {S2,H2},
and we assume that the scalars stabilize regularly at the horizon, i.e., φ′ i = 0. Note that

a similar problem was solved in four dimensions in [33] for the case of symmetric special

Kähler manifolds with cubic prepotential.7

In the coordinates (t, R, z, θ, φ), where R was introduced in (3.8), the metric (3.1) takes

the form

ds2 = e2f (−dt2 + dR2 + dz2) + e2ρdσ2
κ , (6.1)

7Supersymmetric Bianchi attractors in N = 2, d = 5 gauged supergravity coupled to vector- and

hypermultiplets were analyzed recently in [34].
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and the first-order flow equations (3.7) become

f ′ = −ef
(
hIVI +

1

2
e−2ρZ

)
,

ρ′ = −ef
(
hIVI − e−2ρZ

)
,

φ′ i = 3Gijef
(
∂jh

IVI −
1

2
e−2ρ∂jZ

)
,

(6.2)

where the primes now denote derivatives w.r.t. R. For a product space AdS3 ×Σ we have

e2f =
R2

AdS3

R2
, e2ρ = R2

H . (6.3)

Plugging this together with φ′ i = 0 into (6.2), one obtains a system of algebraic equations

whose solution fixes the near-horizon values of the scalars in terms of the charges and the

FI parameters,

hIVI =
2

3RAdS3

, Z = R2
Hh

IVI , ∂iZ = 2R2
H∂ih

IVI . (6.4)

For the ansatz (6.3), the FI-version of (5.18) (obtained by taking QxP xJ = Q3P 3
J =

−κVJ/(3g)) reduces to

ef+2ρ(e−2fhI)′ − 3e2ρGIJVJ − pI = 0 . (6.5)

Using (6.3) and (6.4), this can be rewritten as

pI + 3R2
HG

IJVJ = 3ZhI . (6.6)

We want to solve the attractor equations (6.4) (or equivalently (6.6)) in order to express

RAdS3 , RH and hI in terms of pI and VI . To this end, contract the third relation of (A.2)

with VI to get

Gij∂ihIVI∂jhJ = −2

3
VJ +

2

3
hIVIhJ . (6.7)

With (6.4), this becomes

R2
HVJ = −3

4
Gij∂iZ∂jhJ + ZhJ . (6.8)

Using hI = 1
6CIJKh

JhK and (A.2), one obtains

R2
HVJ =

1

6
CJKLp

KhL . (6.9)

Let us introduce the charge-dependent matrix

Cp IJ ≡ CIJKpK . (6.10)

Using the adjoint identity (A.3), one easily shows that Cp IJ is invertible, with inverse

CIJp = 3
CIJKCKMNp

MpN − pIpJ

Cp
, (6.11)
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where Cp = CIJKp
IpJpK . (6.9) implies then

hI = 6R2
HC

IJ
p VJ . (6.12)

Plugging (6.12) into (2.3), one can derive a general expression for RH in terms of the

intersection numbers, the charges and the FI parameters,

R2
H =

(
36CIJKC

IM
p CJNp CKPp VMVNVP

)− 1
3 . (6.13)

Using this in (6.12) gives the values of the scalars at the horizon,

hI =
6CIJp VJ(

36CKLMCKNp CLPp CMR
p VNVPVR

) 1
3

. (6.14)

Contracting (6.12) with VI and using the first equation of (6.4) as well as (6.13), we obtain

an expression for the AdS3 curvature radius RAdS3 ,

RAdS3 =

(
36CIJKC

IM
p CJNp CKPp VMVNVP

) 1
3

9CRSp VRVS
. (6.15)

Finally, one can plug (6.11) into (6.13), (6.14) and (6.15), and use (A.3) to write the

solutions of (6.4) and (6.6) as

R2
H = (C IJK(p)VIVJVK)−

1
3 ,

hI =
6κ

Cp

pI + 3κCIJKCKLMp
LpMVJ

(CNPR(p)VNVPVR)
1
3

,

RAdS3 =
Cp
27

(C IJK(p)VIVJVK)
1
3

CLMNCNRS pRpSVLVM − 1
9

,

(6.16)

where

C IJK(p) = −108

Cp

[
2CIJK − 9

Cp
p(ICJK)MCMNP p

NpP +
9

Cp
pIpJpK

]
. (6.17)

The central charge of the two-dimensional conformal field theory that describes the black

strings in the infrared [19, 35, 36], is given by [37]

c =
3RAdS3

2G3
, (6.18)

where G3 denotes the effective Newton constant in three dimensions, related to G5 by

1

G3
=
R2

Hvol(Σ)

G5
. (6.19)

In what follows, we assume Σ to be compactified to a Riemann surface of genus g, with

g = 0, 2, 3, . . .. The unit Σ has Gaussian curvature K = κ, and thus the Gauss-Bonnet

theorem gives

vol(Σ) =
4π(1− g)

κ
. (6.20)
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Using (6.19) and (6.20) in (6.18) yields for the central charge

c =
6π(1− g)RAdS3R

2
H

κG5
. (6.21)

The curvature radii RAdS3 and RH can be expressed in terms of the constants CIJK , the

magnetic charges pI and the FI parameters VI by means of (6.16). This leads to

c =
2π(1− g)Cp

κG5(9CIJKCKMNpMpNVIVJ − 1)
. (6.22)

If the hyperscalars are running, one has to consider also the near-horizon limit of the last

equation of (5.17). Assuming q′u = 0 at the horizon and using (5.4), one easily derives the

algebraic condition

kuI h
I = 0 . (6.23)

As far as the remaining equations of (5.17) are concerned, one can follow the same steps as

in this section, with the only difference that VI has to be replaced everywhere by −3κQxP xI .

7 Final remarks

Let us conclude our paper with the following suggestions for possible extensions and ques-

tions for future work:

• Try to solve the flow equations in presence of hypermultiplets obtained in section 5

for some specific models, e.g. like those considered in [18], to explicitely construct

black strings with running hyperscalars, similar in spirit to the black holes found

in [38]. To the best of our knowledge, no such solutions are known up to now.

• Derive first-order equations for electrically charged black holes (rather than magnet-

ically charged black strings) in five-dimensional matter-coupled gauged supergravity.

• Extend our work to the nonextremal case, similar to what was done in [5, 8, 10, 11, 15]

in different contexts. Up to now, the only known nonextremal black string solutions

in AdS5 were constructed in [39] for minimal gauged supergravity.

• It would be interesting to see how the BPS flow equations derived in section 5 arise

precisely in the general classification scheme of supersymmetric solutions obtained

in [40].

• We have checked that our central charge (6.22) agrees with the results of [20, 35],

where black string solutions corresponding to D3-branes at a Calabi-Yau singularity

have been studied in detail. It may be of some interest to use the flow equations

obtained in section 5 to study more complicated type IIB configurations, as was

initiated in [23].

Work along these directions is in progress.
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A Useful relations in very special geometry

We list here some useful relations that can be proven using the techniques of very special

geometry:

∂ihI = −2

3
GIJ∂ih

J , hI =
2

3
GIJh

J , GIJ =
9

2
hIhJ −

1

2
CIJKh

K , (A.1)

Gij∂ihI∂jhJ = GIJ − 2

3
hIhJ , Gij∂ihI∂jhJ =

4

9
GIJ −

2

3
hIhJ ,

Gij∂ihI∂jhJ = −2

3
δIJ +

2

3
hIhJ .

(A.2)

In the special case where the tensor Tijk that determines the Riemann tensor of the vector

multiplet scalar manifold M (cf. [24] for details) is covariantly constant,8 one has also

CIJKCJ ′(LM CPQ)K′δJJ
′
δKK

′
=

4

3
δI(LCMPQ) , (A.3)

which is the adjoint identity of the associated Jordan algebra [24]. Using (A.3) and defining

CIJK ≡ δII′δJJ ′
δKK

′
CI′J ′K′ , one can show that

GIJ = −6CIJKhK + 2hIhJ . (A.4)

B Down to d = 4 via r-map

A natural question arising in the discussion of (5.17) is the relation with the flow equations

of [17, 41], coming from the abelian gauged supergravity theory in d = 4. An interesting

way to answer this question is to extend the general r-map construction in ungauged

supergravity [29] to the gauged case.

B.1 Construction of the r-map

The first step is a Kaluza-Klein reduction along the z-direction (i.e., along the string), by

using the ansatz9

ds2
5 = e

φ√
3 ds2

4 + e
− 2√

3
φ
(dz +Kµdxµ)2 , AI = BIdz + CIµdxµ +BIKµdxµ . (B.1)

8This implies that M is a locally symmetric space.
9In this subsection µ, ν, . . . are curved indices for the four-dimensional theory, and the dilaton is related

to the function T in (3.1) by T = −φ/
√

3. Further details on the notation and the theory in d = 4 can be

found in [17].
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DefiningKµν = ∂µKν−∂νKµ and CIµν = ∂µC
I
ν−∂νCIµ, the five-dimensional Lagrangian (5.6)

reduces to10

e−1
4 L (4) =

R(4)

2
− 1

8
e−
√

3φKµνKµν−
1

4
GIJe

− φ√
3 (CIµν+BIKµν)(CJµν+BJKµν)

− 1

2
e

2φ√
3GIJ∂µB

I∂µBJ− 1

2
GIJ∂µh

I∂µhJ− 1

4
∂µφ∂

µφ−huv∂̂µqu∂̂µqv

− e−1
4

16
εµνρσCIJK

(
CIµνC

J
ρσB

K+
1

3
KµνKρσB

IBJBK+CIµνKρσB
JBK

)
− e
√

3φg2BIkuIB
JkvJhuv−g2e

φ√
3V5 .

(B.2)

Now we want to rewrite L (4) in the language of N = 2, d = 4 supergravity, by using the

identifications of the ungauged case [42]. The coordinates of the special Kähler manifold,

Kähler potential, Kähler metric and electromagnetic field strengths are given in terms of

five-dimensional data respectively by

zI = −BI − ie−
φ√
3hI , eK =

1

8
e
√

3φ ,

gIJ̄ =
1

2
e

2φ√
3GIJ , FΛ

µν =
1√
2

(Kµν , C
I
µν) ,

(B.3)

where capital greek indices Λ,Σ, . . . range from 0 to nv + 1. If we introduce the matrices

RΛΣ = −

(
1
3B

1
2BJ

1
2BI BIJ

)
, IΛΣ = −e−

√
3φ

(
1 + 4g 4gJ̄

4gI 4gIJ̄

)
, (B.4)

where we defined

BIJ = CIJKB
K , BI = CIJKB

JBK , B = CIJKB
IBJBK ,

g = gIJ̄B
IBJ , gIJ̄B

J = gI = gĪ = gĪJB
J ,

(B.5)

the Lagrangian (B.2) can be cast into the form

e−1
4 L (4) =

R

2
− gIJ̄∂µzI∂µz̄J̄ − huv∂̂µqu∂̂µqv

+
1

4
IΛΣF

ΛµνFΣ
µν +

1

8
e−1

4 εµνρσRΛΣF
Λ
µνF

Σ
ρσ − Ṽ ,

(B.6)

with the four-dimensional potential given by

Ṽ = g2e
φ√
3V5 + e

√
3φg2huvk

u
I k

v
JB

IBJ . (B.7)

The underlying prepotential of the special Kähler manifold turns out to be

F =
1

6

CIJKX
IXJXK

X0
, (B.8)

chosen the parametrization XI/X0 = zI = −BI − ie−φ/
√

3hI [42].

10We choose εµνρσz5 = −εµνρσ4 .
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The actual novelties with respect to the ungauged case are the potential and the

covariant derivative acting on the hyperscalars. The former reads

Ṽ

g2
= −9e

φ√
3P xI P

x
J

(
hIhJ − 1

2
GIJ

)
+ 9e

φ√
3huvk

u
I k

v
Jh

IhJ + 9e
√

3φhuvk
u
I k

v
JB

IBJ

= 18P xI P
x
J

(
1

4
e
φ√
3GIJ +

1

2
e
√

3φBIBJ − 4
e
√

3φ

8

(
e
− φ√

3hI
)(

e
− φ√

3hJ
)
− 1

2
e
√

3φBIBJ

)

+ 72
e
√

3φ

8
huvk

u
I k

v
J

(
e
− 2φ√

3hIhJ +BIBJ

)
. (B.9)

Now the first two terms in the second line of (B.9) combine to give−1
2I

ΛΣ (the inverse of IΛΣ

defined above), while the last two terms yield −4XIX̄J . Fixing furthermore g4 = 3
√

2g,

one has thus

Ṽ = g2
4

[
P xΛP

x
Σ

(
−1

2
IΛΣ − 4XΛX̄Σ

)
+ 4huvk

u
Λk

v
ΣX

ΛX̄Σ

] ∣∣∣
Px0 =0,ku0 =0

= g2
4V4

∣∣∣
Px0 =0,ku0 =0

,
(B.10)

which is precisely the truncated potential of the four-dimensional theory.

The final point to take care of is the covariant derivative of the hyperscalars,

∂̂µq
u = ∂µq

u + 3gCIµk
u
I = ∂µq

u + g4A
I
4µk

u
I . (B.11)

We have therefore shown that the r-map can be extended to the case of gauged supergravity,

where the scalar fields have a potential.

B.2 Comparison with the flow in N = 2, d = 4 gauged supergravity

The result of the preceeding subsection is completely general and interesting by itself,

however our aim is to use this mapping to compare the flow (5.16) for a black string in

d = 5 with the flow equations for black holes in four dimensions obtained in [17, 41]. The

latter are driven by the Hamilton-Jacobi function

W4 = eURe(e−iαZ4)− κg4e
2ψ−U Im(e−iαL4) , (B.12)

where the phase α is defined by

e2iα =
Z4 + iκg4e

2(ψ−U)L4

Z̄4 − iκg4e2(ψ−U)L̄4
. (B.13)

Specifying to a purely magnetic charge configuration p̂Λ = (0, pI/
√

2), purely electric cou-

plings with P x0 = 0, ku0 = 0, and restricting to imaginary scalars, zI = −ie−φ/
√

3hI , the

quantities defining (B.12) become

Z4 =
3

2
√

2
eT/2p̂IhI =

3

4
eT/2Z , Qx4 = P xI p̂

I =
1√
2
Qx ,

Wx
4 = − i

2
√

2
e−T/2P xI h

I = − i

2
√

2
e−T/2Wx , L4 = Qx4Wx

4 ,

(B.14)
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where the quantities Z, Qx andWx were defined in section 5. Note that axions are absent,

since for magnetically charged black strings the z-components BI of the five-dimensional

gauge potentials vanish. For this choice, (B.13) becomes e2iα = 1. Moreover, taking in

account that g4 = 3
√

2g and choosing eiα = −1, the function (B.12) boils down to (5.13).

On the other hand, the Hamilton-Jacobi equation satisfied by (B.12), namely (3.40) of [17],

becomes (5.12) once the dictionary is imposed. This proves the expected equivalence

between the flows in five and four dimensions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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