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1 Introduction

The production of a Z-boson in association with jets is of considerable importance as a

tool for understanding the Standard Model (SM). The Z+jet process has been proposed

as a probe of both parton distribution functions and the high-energy running of the strong

coupling, αs. The production of more than one jet is especially important in the environ-

ment of the LHC, where typical jet reconstruction algorithms routinely result in multiple

jets. This means that Z+jets processes represent significant backgrounds in many searches

for New Physics, notably when the Z-boson decays to neutrinos so that it is a source of

large missing transverse energy. Therefore they must be predicted precisely within the SM.

In order to obtain the level of theoretical precision required to match the small exper-

imental uncertainties [1, 2], it is imperative to perform perturbative calculations of Z+jet

processes beyond the leading order. The dominant source of corrections arises from QCD,

with next-to-leading order (NLO) calculations available for processes involving up to four

jets [3–7]. The expected experimental precision of measurements of the Z + 1 jet state

has motivated the calculation of this process to the next order (NNLO) [8–11], so that

experimental and theoretical uncertainties in this case are commensurate over a relatively

large kinematic range. At this level of theoretical accuracy it is also necessary to have

control over corrections arising from the electroweak sector. These effects are known for

up to two jets in the final state [12–14].

With these results in hand it is important to revisit assumptions and approximations

inherent in some of the calculations performed so far. One such approximation relates to the

inclusion of the effect of the top quark in one-loop virtual corrections to these processes.

Since the mass of the top quark introduces a new scale into the problem, including its

effect results in a significantly more complex analytic calculation than the usual case in

which all quarks are considered massless. In their classic 1997 paper [15], Bern, Dixon and

Kosower (BDK) gave results for such contributions to the Z+ 1 and Z+ 2 jet processes by

performing a large mass expansion in the top-quark mass. Although this approximation

was appropriate in the last century, and in particular for e+e− annihilation at LEP energies,

it may no longer be appropriate at the LHC and higher energy machines where scales above

the top quark mass are probed.

In this paper we shall compute a class of one-loop corrections to Z + 1 and Z + 2 jet

processes, specifically considering the effects of fermion loops in which the full dependence

on the top-quark mass is retained. The one-loop results for these processes can be obtained

with a number of numerical programs, such as MadLoop/Madgraph aMC@NLO [16, 17],

GoSam [18, 19] and OpenLoops [20], since the presence of a massive particle does not

complicate the computation in the same way. Although the results of these programs are

therefore sufficient for many practical purposes, the existence of analytic results enables a

more efficient and numerically-stable evaluation of the one-loop amplitudes. This has been

important for their use in other applications, such as the evaluation of NNLO corrections to

Z+jet production [9] and matching jet substructure observables at next-to-next-to-leading

logarithmic accuracy [21].
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Figure 1. Examples of fermion loop diagrams contributing to Z + 1 jet production. The only

non-zero contribution enters through the axial coupling of the Z-boson to third-generation quarks.

The amplitudes that we have computed may be useful for other crossed, or related,

processes and are provided in the appendix. The phenomenological impact of these calcu-

lations is assessed for the Z+1 jet case in section 2 and for the Z+2 jet process in section 3.

2 Top-loop effects in Z + 1 jet production

In the case of Z + 1 jet production, top-quark loop contributions only enter through dia-

grams such as the ones shown in figure 1. Furry’s theorem means that diagrams containing

a vector coupling of the Z-boson to the quark loop vanish, so that only the axial coupling

contributes. In fact, since we consider all quarks other than the top quark to be massless,

due to the opposite weak isospin of up- and down-type quarks, the only contribution from

these diagrams comes from the third generation. In the original BDK treatment of these

diagrams [15], these contributions are computed in the limit that mt →∞, with the lead-

ing term in a 1/m2
t expansion retained. We have recomputed these contributions retaining

the full top-quark mass dependence; the analytic form of the amplitudes representing this

contribution is given in appendix A.

This expansion can be extended to include higher-order terms but in the high-energy

regime this can lead to problems since the expansion is properly of the form s/m2
t , where

s becomes large. This is illustrated in figure 2 (left), which shows results obtained using

the CT14.NN pdf set [22] with both renormalization and factorization scales equal to HT /2,

where HT is the scalar sum of the transverse momenta of all leptons and partons. The

leading term in the expansion (as presented in BDK) agrees very well with the exact result

over the range shown. Including further terms in the 1/m2
t expansion spoils this agreement.

Although the exact treatment and the 1/m6
t approximation agree up to jet transverse

momenta around 1 TeV, beyond that the approximation is no longer under control and

results in a wildly different prediction for the spectrum. The lower panel shows the ratio

of the approximation with the leading term to the exact result. The two differ by around

0.7% for a jet with 3 TeV transverse momentum. Since the number of events in this region

is negligible this is not a significant difference. We conclude that, although the exact result

should be preferred, there is no observable impact on the phenomenology of this process

when using only the leading term in the 1/m2
t expansion.

At a 100 TeV collider the differences are more significant, as shown in figure 2 (right).

Even for 10 TeV jets, which would be abundant at such a collider, the effect of the ap-

proximate top-quark loop is a few percent. Since this is at the same level as the NNLO

corrections, it is important that the exact result be available and taken into account.

– 3 –
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Figure 2. The jet pT spectrum for Z+jet production at NLO, computed for the 13 TeV LHC (left)

and a 100 TeV pp collider (right). The calculation uses a scale µr = µf = HT /2 and no cuts are

applied apart from pT (jet) > 25 GeV. The red (solid) histogram corresponds to the exact result

while the blue (dot-dash) and magenta (dash) histograms represent the large-mass expansion up to

1/m2
t and 1/m6

t respectively, as detailed in the text.

Since the thrust of this paper is to examine the impact of the top quark loops them-

selves, not to perform an exhaustive analysis of the Z+jet process, we have not considered

the uncertainty associated with the choice of scales used in figure 2. Indeed, the effects dis-

cussed here may be much smaller than other extant theoretical shortcomings. The residual

scale dependence in NNLO calculations of the Z + 1 jet process [8–11] is typically at the

level of a few percent in the bulk, but much larger at high jet transverse momentum. The

effect of virtual electroweak corrections is also known to be significant in this region [12–14]

and approximations for combining the effect of QCD and electroweak corrections gives rise

to a further uncertainty.

3 Top-loop effects in Z + 2 jet production

The Z + 2 jet process is sensitive to a much wider range of virtual corrections that involve

a closed loop of top quarks. This is partly due to the fact that the process is represented

by two separate parton-level reactions (and all appropriate crossings):

0 → q(−p1) + q̄(−p2) + g(p3) + g(p4) + e+(p5) + e−(p6) , (3.1)

0 → q(−p1) + Q̄(−p2) +Q(p3) + q̄(p4) + e+(p5) + e−(p6) . (3.2)

The labels q and Q refer to two (possibly distinct) flavours of massless quark. We will

refer to these by the abbreviated forms, qq̄ggZ and qq̄QQ̄Z processes. In the original BDK

paper, all of the top-quark loop contributions have been included using the 1/m2
t expansion.
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Figure 3. Vacuum polarization diagrams contributing to the qq̄QQ̄Z process, where the Z-boson

couples to an external line of light quarks.

Figure 4. Examples of fermion loop (top quark) diagrams in which the Z-boson couples to an

external line of light quarks in the qq̄ggZ process.

In this work we have computed all of the corrections retaining the full dependence

on the top-quark mass. The addition of the mass complicates the analytic form of the

amplitudes but we have still obtained relatively compact expressions. This is achieved

through the use of analytic unitarity methods for computing one-loop box and triangle

coefficients [23–25] and by recycling BDK results for the massless case whenever possi-

ble. Full details of our calculation, including explicit expressions for all amplitudes, are

presented in appendices B and C.

The top-quark loop contributions can be categorized according to the manner in which

the Z-boson couples to the partons:

1. Contributions where the Z boson couples to the light quark line. These correspond

to vacuum polarization contributions to the qq̄QQ̄Z process shown in figure 3 and to

the loop corrections to the qq̄ggZ process depicted in figure 4. These amplitudes are

described in detail in appendices B.3 and C.3.

2. A vector coupling of the Z-boson to a closed loop of top quarks, occurring in diagrams

such as the one shown in figure 5(c). These are only present in the qq̄ggZ process

and are described in appendix C.4.

3. An axial coupling of the Z-boson to a closed loop of quarks, as shown in figures 5 and 6

for the qq̄ggZ and qq̄QQ̄Z processes, respectively. This contribution vanishes for all

but the third generation of quarks, whose effect is captured here. For the qq̄QQ̄Z

process these corrections are discussed in appendix B.4 while the corresponding con-

tributions to the qq̄ggZ process are detailed in appendices C.5 and C.6.
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Figure 5. Examples of fermion loop diagrams contributing when the Z couples to a heavy quark

line through either a vector or an axial coupling. With a vector coupling the triangle diagrams

vanish, and hence only the box diagrams contribute.

Figure 6. Quark loop diagrams involving the axial coupling of the Z-boson in the qq̄QQ̄Z process.

We will now examine the effect of each of these contributions separately, both in the

1/m2
t approximation used in the BDK form of the amplitudes and with the improved

treatment provided by the exact expressions presented here. Our calculation is performed

by incorporating our newly-calculated amplitudes in the Monte Carlo program MCFM [26–

28], which already includes a complete calculation of Z + 2 jet production at NLO that

makes use of the BDK loop amplitudes. The expressions for the amplitudes with the exact

top-mass dependence are written in terms of the scalar integrals described in appendix D,

that are evaluated numerically using the ff [29, 30] and QCDLoop [31, 32] libraries.

For all of the results in this section we will consider the production of an on-shell Z-

boson that decays to an electron-positron pair, with no cuts applied to the leptons. This is

a choice made for the presentation of our results, and not an intrinsic limitation of MCFM.

We use the same pdf set and scale choices as in section 2.

3.1 Results: 100 TeV collider

Since we expect the problems associated with the 1/m2
t expansion used in the original

BDK expressions to be exacerbated at high energies, we first present results for a putative

100 TeV proton-proton collider. We define jets using the anti-kT clustering algorithm with

a jet separation R = 0.5 and demand that they satisfy,

pT (jet) > 500 GeV , y(jet) < 4 . (3.3)

A comparison of the NLO predictions for the lead jet transverse momentum, with various

levels of sophistication, is shown in figure 7. The approximation of the contributions

with the Z-boson coupled to a top-quark loop through axial and vector couplings lead to

– 6 –
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Figure 7. Upper panel: the distribution of the transverse momentum of the leading jet in Z +

2 jet events at 100 TeV. Predictions are shown with no top-quark loops included, using the 1/m2
t

approximation and with the exact result (including all contributions). The exact, only vector and

only axial histograms are almost indistinguishable from the result with no top-quark loops. Lower

panel: the ratio of the predictions of the approximate treatment to the one in which no top-quark

loops are included.

relatively small deviations in this range. In contrast, approximating the contributions that

involve the Z-boson coupling to light quarks in the same way leads to substantial errors

at jet transverse momenta of about 3 TeV and higher. The NLO rate is over-estimated by

a factor of four for a 10 TeV jet. Using the exact result for the top-quark loops yields a

prediction that is essentially unchanged from the one in which they are not included at all.

3.2 Results: LHC at
√
s = 14 TeV

We now turn to results of more immediate interest, namely predictions for the LHC oper-

ating at
√
s = 14 TeV. We adjust the jet cuts accordingly and now demand,

pT (jet) > 50 GeV , y(jet) < 2.5 . (3.4)

A comparison of our calculations under these cuts is shown in figure 8. Note that, in

comparison to the previous figure, the lower panel has a much smaller scale since we

consider transverse momenta for the jet that are much lower. In addition, having observed

that the effect of the diagrams in which the Z-boson couples to a top-quark loop is small, in

this case we simply show the sum of the contributions from the vector and axial couplings

of the Z-boson to top quarks. As expected, at the energies that are accessible at the LHC

– 7 –
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Figure 8. Upper panel: the distribution of the transverse momentum of the leading jet in Z +

2 jet events at 14 TeV. Predictions are shown with no top-quark loops included, using the 1/m2
t

approximation and with the exact result (including all contributions). The exact, and only vector

and axial, histograms are barely distinguishable from the result with no top-quark loops. Lower

panel: the ratio of the predictions of the approximate treatment to the one in which no top-quark

loops are included.

the error made when using the 1/m2
t approximation is much less severe. Even at a jet

transverse momentum of 1 TeV it only results in a 4% deviation from the result with no

top-loops included. The effect of the approximation on the cross-section for both jets above

50 GeV is an enhancement of a mere 0.05%.

4 Conclusions

In this paper we have reviewed the importance of top-quark loops in NLO corrections to

Z + 1 jet and Z + 2 jet production. To do so, we have computed the effect of these loops

with an exact treatment of the top-quark mass and given analytic forms for all the relevant

amplitudes. We find that the effect of these loops is very small and not important for

phenomenology at the LHC. For a putative 100 TeV proton-proton collider the effects are

more significant and, for the Z+1 jet case, lead to a few percent change in the prediction for

jets with transverse momentum of 10 TeV. Attempting to include the effect of these loops

by using an expansion in powers of 1/m2
t leads to the theoretical prediction being over-

estimated due to poor high-energy behaviour. While this may be at a level that is tolerable

at the LHC, it can lead to results at 100 TeV that are incorrect by factors of two or more.

– 8 –



J
H
E
P
0
1
(
2
0
1
7
)
0
2
0

Boson Feynman rule Coupling

γ −ieQfγµ

Z
−ieγµ(vfV − v

f
Aγ5) vfV =

(τf3 −2Qf sin2 θW )
sin 2θW

, vfA =
τf3

sin 2θW
, τ f3 = ±1

2

−ieγµ(vfLγL + vfRγR) vfL =
(2τf3 −2Qf sin2 θW )

sin 2θW
, vfR = −2Qf sin2 θW

sin 2θW

Table 1. Feynman rules and couplings of a photon and a Z to a fermion-antifermion pair. For

massless fermions it is convenient to use the left- and right-handed couplings, rather than the vector

and axial couplings, so both are shown. Qf is the charge of the fermion in units of the positron

electric charge.
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A Five point amplitude A(1q, 2g, 3q̄, 4ē, 5e)

In this appendix we consider the five-point amplitudes that enter the calculation of Z+1 jet

production. Specifically, we consider the process:

0→ q(−p1) + g(p2) + q̄(−p3) + e+(p4) + e−(p5) . (A.1)

A.1 Tree graphs

We write the tree-level amplitude as,

Atree
5 = 2e2g

(
−Qq + veL,Rv

q
L,RPZ(s45)

) (
T a2
) ı̄3
i1

Atree
5 (1q, 2g, 3q̄) , (A.2)

where we have omitted the labels of the electron-positron pair, (5 and 4 respectively). We

further define

sij = (pi + pj)
2, sijk = (pi + pj + pk)

2 . (A.3)

e is the QED coupling, g the QCD coupling, Qq is the charge of quark q in units of e, (the

positron charge), and the ratio of Z and photon propagators is given by

PZ(s) =
s

s−M2
Z + iΓZMZ

, (A.4)

where MZ and ΓZ are the mass and width of the Z. The definition of the Z/γ∗ couplings

is given in table 1. Colour matrices are normalized such that

TrT a1T a2 = δa1 a2 . (A.5)

For the tree amplitude A5(1+
q , 2

+
g , 3

−
q̄ , 4

−
ē , 5

+
e ), the result is,

Atree
5 (1+

q , 2
+
g , 3

−
q̄ ) = −i 〈3 4〉2

〈1 2〉〈2 3〉〈4 5〉
. (A.6)

We note that this matrix element has the same sign as BDK, eq. (D1), as do all of the

results in this section. The 〈i j〉 and [i j] are the normal spinor products for massless

vectors, such that 〈i j〉[j i] = sij . For details of their definition see refs. [33, 34].
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A.2 Fermion loop corrections to the tree level amplitude

The one-loop colour decomposition is given by

A1−loop
5 (1q, 2g, 3q̄) = 2e2 g3

{(
−Qq + veL,Rv

q
L,R PZ(s45)

)
×(T a2) ı̄3

i1

[
NcA5;1(1q, 2g, 3q̄) +

1

Nc
A5;2(1q, 3q̄; 2g)

]
+2

∑
f=t,b

vfA v
e
L,R PZ(s45)(T a2) ı̄3

i1
Af5;3(1q, 3q̄; 2g)

}
. (A.7)

The results for the functions A5;1 and A5;2 are given in BDK [15]. Since they do not involve

fermion loops we do not repeat them here. The function A5;3 contains the terms where

a Z couples to a loop of quarks via the axial coupling, as shown in figure 1, where our

conventions for the overall coupling factors are given in table 1. If we consider all quarks

except the top to be massless then there is a net contribution only for the third generation,

because of the opposite weak isospin of the up- and down-type quarks.

The result for the leading order interfered with the NLO and summed over colours is

given in terms of partial amplitudes as,

∑
colors

[A∗5A5]NLO = 8e4 g4 (N2
c − 1)Nc Re

{(
−Qq + veL,Rv

q
L,R P

∗
Z(s45)

)
Atree∗

5 (1q, 2g, 3q̄)

×
[(
−Qq + veL,Rv

q
L,R PZ(s45)

)[
A5;1(1q, 2g, 3q̄) +

1

N2
c

A5;2(1q, 3q̄; 2g)

]
+

2

Nc

∑
f=t,b

vfA v
e
L,R PZ(s45)Af5;3(1q, 3q̄; 2g)

]}
. (A.8)

Note that the axial part Af5;3 depends on the flavour of the quark (f) and we have to sum

over the contributions of the top and bottom loops. We choose to follow the conventions

of the original BDK presentation and write the subleading contributions with permuted

momentum labels. In this scheme we further define

Af5;3(1q, 2q̄; 3g) = icΓA
f
ax(1+

q , 2
−
q̄ ; 3+

g ) , (A.9)

with

cΓ =
1

(4π)2−ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (A.10)

In this case the terms of order ε and higher in cΓ are not needed because the amplitude is

finite. The result for this amplitude is, including both the top and bottom contributions,

At,bax(1+
q , 2

−
q̄ ; 3+

g ) = 2
[5 3][3 1]〈2 4〉

s45

[
f(mt; 0, s12, s45)− f(mb; 0, s12, s45)

]
, (A.11)

where mf is the mass of the quark running in the triangular loop. We shall take the bottom

quark to be massless, mb = 0.

– 10 –
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The function f is the axial triangle function that depends on mf , for which results

have been given in ref. [15] and are detailed in appendix F. For a massive quark, such as

the top quark, in the special case where one of the legs of the triangle is light-like, we have,

(cf. eq. (F.13))

f(m; 0, q2
1, q

2
3) =

1

2(q2
3 − q2

1)

[
1 + 2m2C0(q1, q3;m,m,m)

+

(
q2

3

(q2
3 − q2

1)

)[
B0(q3;m,m)−B0(q1;m,m)

]]
. (A.12)

B0 and C0 are the scalar integral functions defined in appendix D. In the limit m→∞ we

get

f(m; 0, q2
1, q

2
3) =

1

24m2

[
1 +

(2q2
1 + q2

3)

15m2
+

(2q2
1q

2
3 + 3q4

1 + q4
3)

140m4

]
+O(1/m8) . (A.13)

The result for a massless quark is,

f(0; 0, q2
1, q

2
3) =

1

2(q2
3 − q2

1)

[
1 +

q2
3

(q2
3 − q2

1)
log

(
q2

1

q2
3

)]
=

1

2q2
3

L1

(
q2

1

q2
3

)
, (A.14)

where L0, L1 are the cut-completed functions,

L0(r) =
ln(r)

1− r
, L1(r) =

L0(r) + 1

1− r
. (A.15)

Summing over the third generation isodoublet in the limit mb = 0 we get,

At,bax(1+
q , 2

−
q̄ ; 3+

g ) =
[5 3][3 1]〈2 4〉

s45

[
2 f(mt; 0, s12, s45)− 1

s45
L1

(
−s12

−s45

)]
. (A.16)

Keeping only the leading term in the m → ∞ limit given in eq. (A.13), this agrees with

BDK, eq. (D.11).

B Six point amplitude, A(1q, 2Q̄, 3Q, 4q̄, 5ē, 6e)

We now consider processes with one more parton in the final state, starting with processes

containing four quarks.1

B.1 Tree graphs

The general decomposition for the tree process requires that we include the two terms

corresponding to the Z/γ∗ attaching to one or the other of the quark lines,

Atree
6 (1q, 2Q̄, 3Q, 4q̄) = 2e2g2

[(
−Qq + veL,Rv

q
L,R PZ(s56)

)
Atree

6 (1q, 2Q̄, 3Q, 4q̄)

+
(
−QQ + veL,Rv

Q
L,R PZ(s56)

)
Atree

6 (3Q, 4q̄, 1q, 2Q̄)

]
×
(
δ ı̄2i1 δ

ı̄4
i3
− 1

Nc
δ ı̄4i1 δ

ı̄2
i3

)
. (B.1)

1We find that the overall sign for the six point processes, using the Feynman rules of ref. [35], is opposite

to that of BDK. Since it is an overall sign it is of no importance; to allow our results to be used as a

supplement to BDK, we have adjusted our overall sign to agree with the conventions of BDK.
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The result for the tree process is,

Atree
6 (1+

q , 2
+
Q̄
, 3−Q, 4

+
q̄ , 5

−
ē , 6

+
e ) = −i

[
[1 2]〈4 5〉〈3|(1 + 2)|6]

s23s56s123
+
〈3 4〉[1 6]〈5|(3 + 4)|2]

s23s56s234

]
. (B.2)

This result is in agreement with BDK eq. (12.3).

B.2 One-loop results general structure

The general structure of the decomposition at one loop is [36]

A1−loop
6 (1q, 2Q̄, 3Q, 4q̄) = 2e2g4

[
×
(
−Qq + veL,Rv

q
L,RPZ(s56)

)[
Nc δ

ı̄2
i1
δ ı̄4i3 A6;1(1q, 2Q̄, 3Q, 4q̄) + δ ı̄4i1 δ

ı̄2
i3
A6;2(1q, 2Q̄, 3Q, 4q̄)

]
+
(
−QQ + veL,Rv

Q
L,R PZ(s56)

)[
Nc δ

ı̄2
i1
δ ı̄4i3 A6;1(3Q, 4q̄, 1q, 2Q̄) + δ ı̄4i1 δ

ı̄2
i3
A6;2(3Q, 4q̄, 1q, 2Q̄)

]
+

veL,R
sin 2θW

PZ(s56)
(
δ ı̄2i1 δ

ı̄4
i3
− 1

Nc
δ ı̄4i1 δ

ı̄2
i3

)
A6;3(1q, 2Q̄, 3Q, 4q̄)

]
. (B.3)

For the case of identical quark flavours (q = Q) see ref. [36].

We are only concerned with the terms containing heavy quark loops. The formulas

for the four-quark partial amplitudes, A6;i(1
+
q , 2

±
Q̄
, 3∓Q, 4

−
q̄ ), expressed in terms of primitive

amplitudes are

A6;1(1+
q , 2

+
Q̄
, 3−Q, 4

−
q̄ ) =A++

6 (1, 2, 3, 4)

− 2

N2
c

(
A++

6 (1, 2, 3, 4) +A+−
6 (1, 3, 2, 4)

)
+

1

N2
c

Asl
6 (2, 3, 1, 4)

+
ns−nf
Nc

As ,++
6 (1, 2, 3, 4)−

nf
Nc
Af,++

6 (1, 2, 3, 4)+
1

Nc
At,++

6 (1, 2, 3, 4) ,

A6;2(1+
q , 2

+
Q̄
, 3−Q, 4

−
q̄ ) =A+−

6 (1, 3, 2, 4)

+
1

N2
c

(
A+−

6 (1, 3, 2, 4) +A++
6 (1, 2, 3, 4)

)
− 1

N2
c

Asl
6 (2, 3, 1, 4)

−
ns−nf
Nc

As,++
6 (1, 2, 3, 4)+

nf
Nc
Af,++

6 (1, 2, 3, 4)− 1

Nc
At,++

6 (1, 2, 3, 4) ,

A6;3(1+
q , 2

+
Q̄
, 3−Q, 4

−
q̄ ) =Aax

6 (1, 4, 2, 3) , (B.4)

and

A6;1(1+
q , 2

−
Q̄
, 3+
Q, 4

−
q̄ ) =A+−

6 (1, 2, 3, 4)

− 2

N2
c

(
A+−

6 (1, 2, 3, 4) +A++
6 (1, 3, 2, 4)

)
− 1

N2
c

Asl
6 (3, 2, 1, 4)

+
ns−nf
Nc

As,+−6 (1, 2, 3, 4)−
nf
Nc
Af,+−6 (1, 2, 3, 4)+

1

Nc
At,+−6 (1, 2, 3, 4) ,
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A6;2(1+
q , 2

−
Q̄
, 3+
Q, 4

−
q̄ ) =A++

6 (1, 3, 2, 4)

+
1

N2
c

(
A++

6 (1, 3, 2, 4) +A+−
6 (1, 2, 3, 4)

)
+

1

N2
c

Asl
6 (3, 2, 1, 4)

−
ns−nf
Nc

As,+−6 (1, 2, 3, 4)+
nf
Nc
Af,+−6 (1, 2, 3, 4)− 1

Nc
At,+−6 (1, 2, 3, 4) ,

A6;3(1+
q , 2

−
Q̄
, 3+
Q, 4

−
q̄ ) =−Aax

6 (1, 4, 3, 2) . (B.5)

B.3 Top loops — vacuum polarization contribution

The one-loop contribution to the unrenormalized vacuum polarization is given by,

Γµν(p) = ig2cΓ

[
gµνp2 − pµpν

]
π(p2) , (B.6)

with cΓ given in eq. (A.10). The contribution of a top quark loop to π(p2) is

π(p2) = −4

3
TR

[
B0(p,m,m) +

2m2

p2
[B0(p,m,m)−B0(0,m,m)]− 1

3

]
, (B.7)

where TR = 1
2 . Renormalization is effected by performing subtraction at zero momentum

transfer (p2 = 0), so that the effect of the top quark decouples at large momentum transfer.

In this scheme both the running of the coupling and the evolution of the parton distributions

remain in the five flavour scheme. We find

π(p2)− π(0) = −2

3

[(
1 +

2m2

p2

)
[B0(p,m,m)−B0(0,m,m)] +

1

3

]
. (B.8)

In this subtraction scheme, the renormalized contribution coming from the diagrams

shown in figure 3 is,

At,+±6 (1+
q , 2

+
Q̄
, 3−Q, 4

+
q̄ , 5

−
ē , 6

+
e ) = −cΓ

2

3

[(
1 +

2m2

s23

)
(B0(p23,m,m)−B0(p3,m,m)) +

1

3

]
×Atree

6 (1+
q , 2

±
Q̄
, 3∓Q, 4

+
q̄ , 5

−
ē , 6

+
e ) . (B.9)

Performing the large mass expansion, in the limit m→∞ we get,

At,+±6 (1+
q , 2

+
Q̄
, 3−Q, 4

+
q̄ , 5

−
ē , 6

+
e ) = −cΓ

[
2

15

s23

m2
+

1

70

(
s23

m2

)2

+
2

945

(
s23

m2

)3

+O

((
s23

m2

)4)]
×Atree

6 (1+
q , 2

±
Q̄
, 3∓Q, 4

+
q̄ , 5

−
ē , 6

+
e ) . (B.10)

This result agrees with BDK, eq. (12.2).

B.4 Top loops — axial vector coupling contribution

The contribution of the top and bottom quarks to the diagrams shown in figure 6 is,

Aax
6 (1+

q , 2
−
Q̄
, 3Q, 4q̄) = −2i

1

16π2

1

s56
(B.11)

×
[(

[6 3]〈4 2〉〈2 5〉
〈1 2〉

− [6 1][1 3]〈4 5〉
[1 2]

)
(f(mt; s12, s34, s56)− f(mb; s12, s34, s56))

+

(
[6 1]〈2 4〉〈4 5〉
〈3 4〉

− [6 3][3 1]〈2 5〉
[3 4]

)
(f(mt; s34, s12, s56)− f(mb; s34, s12, s56))

]
.

The axial triangle function f is presented in appendix F. In particular, the reduction of f

to scalar integrals for the case at hand is given in eq. (F.10).
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C Six point amplitude, A(1q, 2g, 3g, 4q̄, 5ē, 6e)

We now consider the process

0→ q(p1) + g(p2) + g(p3) + q̄(p4) + e+(p5) + e−(p6) , (C.1)

where we have adopted the labelling convention of BDK for this case. The amplitudes for

this process are most conveniently defined using the operation exch34, which just represents

the exchange of labels 3 and 4,

exch34 : 3↔ 4 (C.2)

as well as the following “flip” functions:

flip1 : 1↔ 4, 2↔ 3, 5↔ 6, 〈i j〉 ↔ [i j] . (C.3)

flip2 : 1↔ 2, 3↔ 4, 5↔ 6, 〈ij〉 ↔ [ij] (C.4)

flip5 : 1↔ 2, 5↔ 6, 〈i j〉 ↔ [i j] . (C.5)

The latter symmetry operation is not defined in BDK, although it is a combination of

exch34 (eq. (C.2)) and flip2 (eq. (C.4)).

C.1 Tree graphs

Following ref. [15], the colour decomposition of the tree-level contribution to A6 is

Atree
6 (1q, 2, 3, 4q̄) = 2e2g2

(
−Qq + veL,Rv

q
L,R PZ(s56)

)
×
∑
σ∈S2

(T aσ(2)T aσ(3)) ı̄4
i1

Atree
6 (1q, σ(2), σ(3), 4q̄) . (C.6)

The independent results for helicities of the gluons in the tree amplitude are, cf. BDK

eqs. (8.4), (8.9) and (8.15).

−iAtree
6 (1+

q , 2
+
g , 3

+
g , 4

−
q̄ ) = − 〈4 5〉2

〈1 2〉〈2 3〉〈3 4〉〈5 6〉
,

−iAtree
6 (1+

q , 2
+
g , 3

−
g , 4

−
q̄ ) =

−
[
−〈3 1〉[1 2]〈4 5〉〈3|(1+2)|6]

〈1 2〉s23s123s56
+
〈3 4〉[4 2][1 6]〈5|(3+4)|2]

[3 4]s23s234s56
+
〈5|(3+4)|2]〈3|(1+2)|6]

〈1 2〉[3 4]s23s56

]
,

−iAtree
6 (1+

q , 2
−
g , 3

+
g , 4

−
q̄ ) =

−
[

[1 3]2〈4 5〉〈2|(1 + 3)|6]

[1 2]s23s123s56
− 〈2 4〉2[1 6]〈5|(2 + 4)|3]

〈3 4〉s23s234s56
− [1 3]〈2 4〉[1 6]〈4 5〉
〈3 4〉[1 2]s23s56

]
. (C.7)

The remaining helicity combination may be obtained by combining the operations of parity

(interchanging 〈i j〉 and [i j]) and charge conjugation (exchanging identities of external

fermions and anti-fermions). Thus we have,

Atree
6 (1+

q , 2
−
g , 3

−
g , 4

−
q̄ ) = flip1

[
Atree

6 (1+
q , 2

+
g , 3

+
g , 4

−
q̄ )
]
, (C.8)

where the operation flip1 is defined in eq. (C.3) (and also BDK eq. (6.7)).

– 14 –



J
H
E
P
0
1
(
2
0
1
7
)
0
2
0

C.2 General structure at one-loop

The one-loop colour decomposition is given by [15]

A1−loop
6 (1q, 2, 3, 4q̄) = 2e2 g4

{(
−Qq + veL,Rv

q
L,R PZ(s56)

)
×
[
Nc

∑
σ∈S2

(T aσ(2)T aσ(3)) ı̄4
i1

A6;1(1q, σ(2), σ(3), 4q̄) + δa2a3 δ ı̄4
i1

A6;3(1q, 4q̄; 2, 3)

]

+

nf∑
f=1

(
−Qf + veL,Rv

f
V PZ(s56)

)
×
[
(T a2T a3) ı̄4

i1
+ (T a3T a2) ı̄4

i1
− 2

Nc
δa2a3 δ ı̄4

i1

]
Av

6;4(1q, 4q̄; 2, 3)

+
∑
f=b,t

2vfAv
e
L,R PZ(s56)

×
[∑
σ∈S2

(
(T aσ(2)T aσ(3)) ı̄4

i1
− 1

Nc
δa2a3 δ ı̄4

i1

)
Aax

6;4(1q, 4q̄;σ(2), σ(3))

+
1

Nc
δa2a3 δ ı̄4

i1
Aax

6;5(1q, 4q̄; 2, 3)

]}
, (C.9)

where Qi is the electric charge (in units of the positron charge) of the ith quark and nf
is the number of light quark flavours. The partial amplitudes A6;1 and A6;3 represent

contributions where the Z couples to the fermion line as shown in figure 4. The partial

amplitudes Av
6;4, Aax

6;4 and Aax
6;5 represent the contributions from a photon or Z coupling

to a fermion loop through a vector or axial-vector coupling. The full results with massless

partons running in the loop have been given in BDK. The addition of this paper is to insert

the full top quark mass dependence of A6;1, A
v
6;4, Aax

6;4 and Aax
6;5.

The partial amplitudes were further decomposed in the original BDK paper into prim-

itive amplitudes as follows:

A6;1(1q, 2, 3, 4q̄) = A6(1q, 2, 3, 4q̄)−
1

N2
c

A6(1q, 4q̄, 3, 2)

+
ns − nf
Nc

As6(1q, 2, 3, 4q̄)−
nf
Nc
Af6(1q, 2, 3, 4q̄) +

1

Nc
At6(1q, 2, 3, 4q̄) ,

A6;3(1q, 4q̄; 2, 3) = A6(1q, 2, 3, 4q̄) +A6(1q, 3, 2, 4q̄) +A6(1q, 2, 4q̄, 3) +A6(1q, 3, 4q̄, 2)

+A6(1q, 4q̄, 2, 3) +A6(1q, 4q̄, 3, 2) ,

Av
6;4(1q, 4q̄; 2, 3) = −Avs

6 (1q, 4q̄, 2, 3)−Avf
6 (1q, 4q̄, 2, 3) ,

Aax
6;4(1q, 4q̄; 2, 3) = Aax

6 (1q, 4q̄, 2, 3) ,

Aax
6;5(1q, 4q̄; 2, 3) = Aax,sl

6 (1q, 4q̄, 2, 3) . (C.10)

We must therefore provide new expressions, containing the full top quark mass dependence,

for the following quantities:

• At6(1q, 2, 3, 4q̄), in which the Z boson couples to the light quark line.
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• Av
6;4(1q, 4q̄; 2, 3), in which the Z boson is radiated from a quark loop through the vec-

tor coupling. In our approach it is not useful to perform an additional decomposition

into Avs
6 and Avf

6 .

• Aax
6 (1q, 4q̄, 2, 3) and Aax,sl

6 (1q, 4q̄, 2, 3), where the Z boson is radiated from a top or

bottom quark loop through the axial coupling.

For the quantities Av
6;4, Aax

6 and Aax,sl
6 we will follow the conventions of the original BDK

paper and not present expressions for the momentum labelling as in eq. (C.10), but instead

do so for the configuration (1q, 2q̄; 3, 4).

The colour sum for e+ e− → q̄qgg in terms of partial amplitudes is,

∑
colors

[A∗6A6]NLO = 8e4 g6 (N2
c − 1)Re

{(
−Qq + veL,Rv

q
L,R P

∗
Z(s56)

)
Atree∗

6 (1q, 2, 3, 4q̄)

×
[(
−Qq + veL,Rv

q
L,R PZ(s56)

)[
(N2

c − 1)A6;1(1q, 2, 3, 4q̄)

−A6;1(1q, 3, 2, 4q̄) +A6;3(1q, 4q̄; 2, 3)
]

+

nf∑
f=1

(
−Qf + veL,Rv

f
V PZ(s56)

)(
Nc −

4

Nc

)
Av

6;4(1q, 4q̄; 2, 3)

+
∑
f=t,b

2veL,Rv
f
A PZ(s56)

[(
Nc−

2

Nc

)
Aax

6;4(1q, 4q̄; 2, 3)− 2

Nc
Aax

6;4(1q, 4q̄; 3, 2)

+
1

Nc
Aax

6;5(1q, 4q̄; 2, 3)

]]}
+ {2↔ 3} . (C.11)

C.3 Result for At
6(1q, 2, 3, 4q̄)

The aim of this section is to calculate the full mass dependence of the quantity At6, which

is part of A6;1 that is defined in eq. (C.10). The relevant diagrams do not contribute to

A6;3. The minus sign for the fermion loop is included in At6. For this case the only non-zero

amplitudes occur when the gluons have the same helicity.

The amplitude can be written as

At6(1q, 2
+, 3+, 4q̄) = As6(1q, 2

+, 3+, 4q̄)× F t(s23,m
2) , (C.12)

where

As6(1q, 2
+, 3+, 4q̄) = i

cΓ

3

1

〈2 3〉2s56

[
−〈4 5〉[6|(1 + 2)|3〉[3 1]

s123
+

[1 6]〈5|(4 + 2)|3]〈3 4〉
s234

]
. (C.13)

This agrees with BDK eq. (8.2). The function As6 is anti-symmetric under the exchange of

2 and 3. The mass-dependence enters through the function

F t(s23,m
2) = −

[
1 + 6m2C0(p2, p3,m,m,m) +

12m2

s23

(
B0(p23,m,m)−B0(p2,m,m)

)]
,

(C.14)
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which accounts for the effect of vertex and bubble corrections such as those shown in

figure 4. In our renormalization scheme there is no net effect from top-quark self-energy

corrections on external gluons. The large mass expansion of F t(s,m2) is

F t(s,m2) =
1

20

s

m2
+

1

210

(
s

m2

)2

+
1

1680

(
s

m2

)3

+O

((
s

m2

)4)
. (C.15)

After using this expansion the result for At6 agrees with BDK eq. (8.3).

C.4 Result for Av
6;4(1q, 2q̄, 3, 4)

The result for loops of massless quarks that couple via a vector coupling have been given in

BDK, in particular through their eqs. (11.1-11.2) and eqs. (11.5-11.7). In their approxima-

tion, which retains only terms of order 1/m2
t , the top quark loop does not contribute since

it enters only at order 1/m4
t and beyond. We therefore introduce the extra contribution of

the top quark loop through,

Av
6;4(1q, 2q̄, 3, 4) = Av,BDK

6;4 (1q, 2q̄, 3, 4) +Av,t
6;4(1q, 2q̄, 3, 4) . (C.16)

We will not present explicit results for the term Av,t
6;4 since they can be simply related

to previously published results for the process gg → ZZ [37]. This exploits the fact that

Av,t
6;4 only receives contributions from box (not triangle) diagrams, so that replacing a single

Z → `¯̀ current by a g∗ → qq̄ one is trivial. We have,

Av,t
6;4(1q, 2q̄, 3, 4) = − [ALL(3g, 4g, 1e, 2ē, 6µ, 5µ̄) +ALR(3g, 4g, 1e, 2ē, 6µ, 5µ̄)] . (C.17)

This is in accord with the procedure for extracting the vector-vector contribution given in

eq. (24) of ref. [37], up to an expected change in the overall factor and a sign to match the

conventions of BDK.

C.5 Result for Aax,sl(1q, 2q̄, 3g, 4g)

The sub-leading colour piece receives contributions from the diagram of the type shown in

figure 5a. The full result for the third generation isodoublet is

−iAax,sl(1+
q , 2

−
q̄ , 3

+
g , 4

+
g )=cΓ

〈2 5〉[4 6]〈2|(1 + 3)|4]

〈1 3〉〈2 3〉s56

[
2f(mt; 0, s123, s56)−

L1(−s123−s56 )

s56

]
+exch34 ,

(C.18)

where exch34 is defined in eq. (C.2). This expression agrees with BDK eq. (11.4). The

result when the gluons have opposite helicities is,

−iAax,sl
6 (1+

q , 2
−
q̄ , 3

+
g , 4

−
g ) = cΓ

〈2 4〉〈4 5〉〈2|(1 + 3)|6]

〈1 3〉〈2 3〉s56

[
2f(mt; 0, s123, s56)−

L1(−s123−s56 )

s56

]
+flip2 .

(C.19)

The function L1 is defined in eq. (A.15) and f is defined in eq. (F.5). The swap flip2 is

defined in eq. (C.4).

Aax,sl
6 (1+

q , 2
−
q̄ , 3

−
g , 4

+
g ) = Aax,sl

6 (1+
q , 2

−
q̄ , 3

+
g , 4

−
g )|3↔4 . (C.20)

This agrees with BDK eq. (11.12).
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C.6 Result for Aax(1q, 2q̄, 3g, 4g)

The most complicated case in which to account for the top-quark mass is the calculation

of the leading-colour contribution from a loop of massive fermions with an axial vector

coupling to the Z-boson. For a complete isodoublet of massless quarks there is no net

contribution of this type since the diagrams precisely cancel between the isospin partners.

For the (t, b) isodoublet this is no longer the case once a non-zero mass for the top quark

is assumed. The contribution of this isodoublet has been presented, retaining only the

leading 1/m2
t terms in an expansion of the top-quark diagrams, in the paper of BDK.

The result for the massless diagrams can be extracted from their eqs. (11.3)-(11.4) and

eqs. (11.8)-(11.12), simply by discarding the terms proportional to 1/m2
t .

Our base amplitude can be written as follows,

−iAax
6 (1+

q , 2
−
q̄ , 3

h3
g , 4

h4
g , 5

−
ē , 6

+
e ) =

∑
x,y,z

dx|y|z(3
h3 , 4h4)D

x|y|z
0 +

∑
x,y

cx|y(3
h3 , 4h4)C

x|y
0

+
∑
x

bx(3h3 , 4h4)Bx
0 +R(3h3 , 4h4) . (C.21)

This is an expansion in terms of the scalar box (D
x|y|z
0 ), triangle (C

x|y
0 ) and bubble (Bx

0 )

integrals, defined explicitly in appendix D, as well as a left-over rational part (R). The box

and triangle coefficients in that expansion have a further mass expansion,

dx|y|z(3
h3 , 4h4) = d

(0)
x|y|z(3

h3 , 4h4) +m2d
(2)
x|y|z(3

h3 , 4h4) , (C.22)

cx|y(3
h3 , 4h4) = c

(0)
x|y(3

h3 , 4h4) +m2c
(2)
x|y(3

h3 , 4h4) , (C.23)

while the bubble coefficients and rational part are independent of the mass m. We use this

feature to simplify the presentation of our results by replacing the expansion of eq. (C.21)

by the more compact form,

−iAax
6 (1+

q , 2
−
q̄ , 3

h3
g , 4

h4
g , 5

−
ē , 6

+
e ) = −iAax

6,BDK(1+
q , 2

−
q̄ , 3

h3
g , 4

h4
g , 5

−
ē , 6

+
e )

+d3|12|4(3h3 , 4h4)D
3|12|4
0 + d4|3|12(3h3 , 4h4)D

4|3|12
0 + d3|4|12(3h3 , 4h4)D

3|4|12
0

+c3|4(3h3 , 4h4)C
3|4
0 + c12|3(3h3 , 4h4)C

12|3
0 + c12|4(3h3 , 4h4)C

12|4
0

+c3|124(3h3 , 4h4)C
3|124
0 + c4|123(3h3 , 4h4)C

4|123
0 + c

(2)
12|34(3h3 , 4h4)C

12|34
0 . (C.24)

The function Aax
6,BDK collects the bubble and rational terms as well as the contribution from

the triangle coefficient c
(0)
12|34, all of which may be extracted from the previous calculation of

BDK. In the paper of BDK, the bubble coefficients have been re-organized to perform cut

completion, leading to more compact expressions. It is thus more efficient to use this com-

pact form as our point of departure in presenting the results. Note though that, in our case,

the relevant completed functions will be replaced by combinations of scalar bubble integrals

that involve the internal top-quark mass. This is a consequence of the fact that the bubble

coefficients are unchanged in the massive case, but the integrals themselves are changed.

Apart from the contribution that can be extracted from the results of BDK, eq. (C.24)

also enumerates all of the remaining box and triangle integral coefficients that must be
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specified to complete the amplitudes. Although it appears that we should specify three

box integral coefficients and six triangle coefficients this is not the case. A number of

relations between the various coefficients can be used to minimize the number of indepen-

dent expressions that must be given explicitly. The simplest relations are those that just

correspond to a relabelling of momenta, for example,

d4|3|12(3h3g , 4
h4
g ) = −d3|4|12(4h4g , 3

h3
g ) . (C.25)

An additional simplification is due to the structure of the infrared divergences that are

present when m = 0, which requires that the box and triangle coefficients are related.

Explicitly, we make use of the identities,

c
(0)
3|4(3h3g , 4

h4
g ) = −

d
(0)
4|3|12(3h3g , 4

h4
g )

s123
−
d

(0)
3|4|12(3h3g , 4

h4
g )

s124
, (C.26)

and

c
(0)
123|4(3h3g , 4

h4
g ) = (s56 − s123)

d(0)
4|3|12(3h3g , 4

h4
g )

s34s123
−
d

(0)
3|4|12(3h3g , 4

h4
g )

s34s124
−
c

(0)
12|4(3h3g , 4

h4
g )

s124 − s12

 ,
(C.27)

together with the partner relation that can be obtained by exchanging labels 3 and 4. The

coefficients of the m2 term in the triangle expansion of eq. (C.23), i.e. c
(2)
x|y, are related to

the rational part, R [25].2 We exploit this relation in order to determine the coefficient

c
(2)
12|34 which would normally require much simplification in an explicit analytic calculation,

c
(2)
12|34(3h3g , 4

h4
g ) = 2R(3h3g , 4

h4
g )− c(2)

123|4(3h3g , 4
h4
g )− c(2)

124|3(3h3g , 4
h4
g ) . (C.28)

Explicit results for the remaining independent coefficients will be given below.

C.6.1 Box coefficients

For the box coefficients d(i) it is sufficient to consider only 3+4+ and 3+4− helicity combi-

nations. The remaining helicities are obtained from these ones according to,

d(i)(3−, 4−) = −flip5

[
d(i)(3+, 4+)

]
, d(i)(3−, 4+) = −flip5

[
d(i)(3+, 4−)

]
, (C.29)

where flip5 is defined in eq. (C.5).

2This relation would normally also involve the m4 terms in the expansion of the box integral coefficients,

but they vanish in this case.
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d3|12|4 coefficients. The coefficients of the box integrals with gluons situated on opposite

corners are:

d
(0)
3|12|4(3+, 4+) =

(s123s124 − s12s56)(〈2 3〉〈4 5〉+ 〈2 4〉〈3 5〉)〈2 5〉
4〈1 2〉〈3 4〉3〈5 6〉

(C.30)

d
(2)
3|12|4(3+, 4+) =

1

2s12s56〈3 4〉3

[
〈2 3〉2〈4 5〉

(
〈4|(1 + 2)|4][1 6][2 3]− 〈4|(2 + 3)|6][1 2][3 4]

)
+

1

2
〈2 3〉〈4|(1 + 2)|3]

(
〈3 4〉〈4 5〉[1 4][4 6] + 〈3 4〉〈3 5〉[1 4][3 6]

−〈4|(1 + 2)|4]〈3 5〉[1 6]− 〈3 4〉〈2 5〉[1 2][4 6]− 2〈2 3〉〈4 5〉[1 6][2 4]
)

+
1

2
〈2 3〉〈4 5〉[1 6]〈3|(1 + 2)|4]〈4|(1 + 2)|3]

]
−

[
3↔ 4

]
, (C.31)

d
(0)
3|12|4(3+, 4−) = 0 , (C.32)

d
(2)
3|12|4(3+, 4−) =

1

2s12s34s56[3 4]

[
− [1 3][3 4]2[3 6]〈2 4〉〈3 4〉〈4 5〉

− 〈4|(1 + 2)|3]

2 〈3|(1 + 2)|4]

(
[1 3]2[1 4][4 6]〈2 5〉〈1 3〉〈1 4〉+ [2 3][1 4]〈5|(2 + 4)|3][4 6]〈2 4〉〈2 3〉

−[1 3][1 4][3 4]〈2|(1 + 3)|6](〈1 3〉〈4 5〉 − 〈1 5〉〈3 4〉)
−[1 3][1 4][4 6]〈1|(2 + 4)|3]〈2 3〉〈4 5〉+ [2 3][1 4][3 6]〈2|(1 + 3)|4]〈2 4〉〈3 5〉

+2[1 4][3 6]〈4 5〉〈3|(2 + 4)|3]〈2|(1 + 3)|4]− 2[2 1][3 4][1 3][4 6]〈2 4〉〈2 5〉〈1 3〉
)

−〈4|(1 + 2)|3]

2

(
[1 3]2[4 6]〈2 4〉〈1 5〉 − [1 3][1 4][3 6]〈2 1〉〈4 5〉 − 2[1 3][3 4][3 6]〈2 3〉〈4 5〉

+〈5|(2 + 3)|1][3 4][3 6]〈2 4〉+ [1 3][4 6]〈2 4〉〈5|(2 + 4)|3]
)]
. (C.33)

d3|4|12 coefficients. The box integrals corresponding to two contiguous gluons have the

following coefficients:

d
(0)
3|4|12(3+, 4+) = 0 , (C.34)

d
(2)
3|4|12(3+, 4+) =

〈2 5〉[1 2][3 4]

2〈3 4〉s12s56

[
〈2 3〉[3 6]− 〈2|(1 + 4)|6]− s124〈2 3〉[6 4]

〈3|(1 + 2)|4]
− s124〈2 4〉[6 3]

〈4|(1 + 2)|3]

]
,

(C.35)

d
(0)
3|4|12(3+, 4−) =

1

4
s34s124

[
〈3|(2 + 4)|1]2〈5|(1 + 2)|4]2 − [1 4]2〈3 5〉2s2

124

[2 1]〈6 5〉〈3|(1 + 2)|4]4

]
, (C.36)

d
(2)
3|4|12(3+, 4−) =

〈2 4〉s124

2〈3|(1 + 2)|4]s12s56

(
[2 1][3 6]〈2 5〉+ [1 3][6 4]〈4 5〉

)
+3

s124〈2 3〉〈4|(1 + 2)|3][4 6]〈5|(2 + 4)|1]

2〈3|(1 + 2)|4]2s12s56

+
〈4|(1 + 2)|3]

2〈3|(1 + 2)|4]s12s56

(
〈5|(2 + 4)|1]([3 6]〈2 3〉 − [4 6]〈2 4〉)− [1 6]〈2 5〉s124

+[1 4][3 6]〈2 4〉〈3 5〉
)
− [1 3][3 6]〈2 4〉〈4 5〉

2s12s56
. (C.37)
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Coefficient c(0) c(2)

c12|34 extracted from BDK rational relation, eq. (C.28)

c12|3 Section C.6.2 vanishes

c12|4 Section C.6.2+eq. (C.25) relabelling vanishes

c4|123 infrared relation, eq. (C.27) Section C.6.2

c3|124 infrared relation, eq. (C.27) Section C.6.2+eq. (C.25) relabelling

c3|4 infrared relation, eq. (C.26) vanishes

Table 2. Determination of triangle coefficients.

C.6.2 Triangle coefficients

In general there are six possible kinematic configurations of triangle integrals that may

contribute to this partial amplitude. These are:

c3|4, c12|3, c12|4, c12|34, c4|123, c3|124, (C.38)

where the third leg is clear from momentum conservation. A summary of the method for

determining each of these coefficients is shown in table 2. Note that, since the box inte-

gral coefficients d
(0)
3|4|12 and d

(0)
4|3|12 vanish in the same-sign helicity amplitudes, the infrared

relation of eq. (C.26) implies that c
(0)
3|4(3±, 4±) = 0. The only coefficients that remain to

be given explicitly are c
(0)
12|3 and c

(2)
4|123, which will be specified in sections C.6.2 and C.6.2

respectively below.

c12|3 coefficients. For the triangle coefficients c12|3 it is sufficient to consider only 3+4+

and 3+4− helicity combinations. The remaining helicities are obtained from these ones

according to,

c12|3(3−, 4−) = −flip5

[
c12|3(3+, 4+)

]
, c12|3(3−, 4+) = −flip5

[
c12|3(3+, 4−)

]
, (C.39)

where flip5 is defined in eq. (C.5). As indicated in table 2, the mass-dependent terms in

the coefficient vanish:

c
(2)
12|3(3+, 4+) = c

(2)
12|3(3+, 4−) = 0 . (C.40)

These triangle coefficients are thus fully-specified by,

c
(0)
12|3(3+, 4+) = −1

2

(s123 − s12)[1 2][3 4]

〈3 4〉2s12s56

×
[
〈2 4〉2〈3 5〉[4 6] + 〈2 3〉〈4 5〉〈2|(1 + 3)|6] + 〈2 4〉〈2 5〉〈3|(1 + 2)|6]

]
, (C.41)

c
(0)
12|3(3+, 4−) =

(
〈3|(1 + 2)|6]〈5|(3 + 4)|1]〈1 2〉[1 2]

(
−〈1 2〉[1 4] + 2〈2 3〉[3 4]

)
−〈3|(1 + 2)|6]〈2 3〉2〈4 5〉[1 2][3 4]2 + 2〈5|(1 + 2)|3]〈2 3〉2[1 2][4 6]〈2|(1 + 3)|2]

+〈5|(3 + 4)|1]〈2 3〉2[1 2]
(
〈1 2〉[2 3][4 6] + 〈1 3〉[3 4][3 6]

)
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+〈1 2〉3〈3 5〉[1 2]2[1 4][1 6] + 〈1 2〉2〈2 3〉〈2 5〉[1 2]3[4 6]

−3〈1 2〉2〈2 3〉〈3 5〉[1 2]2[1 6][3 4] + 3〈1 2〉〈2 3〉2〈3 5〉[1 2]2[3 4][3 6]

−〈1 2〉〈2 3〉2〈4 5〉[1 2][1 4][2 3][4 6] + 〈1 3〉〈1 5〉〈2 3〉2[1 2][1 3]2[4 6]

−〈1 3〉〈2 3〉2〈4 5〉[1 2][1 4][3 4][3 6]− 〈2 3〉3〈2 5〉[1 2][2 3]2[4 6]

+〈2 3〉3〈3 5〉[1 2][2 3][3 4][3 6]

)
s34(s123 − s12)

〈3|(1 + 2)|4]3
. (C.42)

c4|123 coefficients. There are no simple symmetry relations between the c4|123 coeffi-

cients of different helicities. We must therefore specify them all.

The coefficients that appear in the m → 0 limit are simply obtained by using the

infrared relation, eq. (C.27). The c(2) coefficients are more complicated:

c
(2)
4|123(3+

g , 4
+
g ) =

[
×2
〈3 4〉[1 3][4 6]

s123

(
2〈1 2〉〈2 5〉[1 2]− 〈1 5〉〈2 4〉[1 4]− 〈2 4〉〈3 5〉[3 4] + 2〈2 5〉〈3 4〉[3 4]

)
−4
〈2|(5 + 6)|4]〈4|(5 + 6)|3]

〈4|(5 + 6)|4]s123

(
〈2 5〉〈3 4〉[1 2][4 6]

)
−4

〈2|(5 + 6)|4]

〈1 3〉〈4|(5 + 6)|4]s123

(
〈1 2〉〈1 5〉〈2 4〉〈3 4〉[1 2]2[4 6]

)
+
〈2|(5 + 6)|4]

〈3|(5 + 6)|4]
〈3 4〉[4 6]

(
〈4 5〉[1 4]− 〈2 5〉[1 2]

)
+
〈2|(5 + 6)|4]

〈4|(5 + 6)|3]

(
〈4 5〉2[1 3][5 6]

)
+ 4

〈3|(5 + 6)|4]

〈1 3〉〈4|(5 + 6)|4]s123

(
〈1 2〉〈2 4〉〈2 5〉〈3 4〉[1 2][2 3][4 6]

)
+
〈4|(5 + 6)|1]

〈4|(5 + 6)|3]

(
〈1 2〉〈4 5〉[1 3][4 6]

)
+
〈4|(5 + 6)|4]

〈3|(5 + 6)|4]
〈3 5〉[1 4]

(
2〈2 4〉[4 6] + 〈2 5〉[5 6]

)
−2
〈4|(5 + 6)|4]

〈4|(5 + 6)|3]

(
〈2 4〉〈4 5〉[1 3][4 6]

)
− 4
〈1 2〉〈3 4〉〈5 6〉[1 2][4 6]

〈1 3〉〈4|(5 + 6)|4]s123

(
〈1 2〉〈2 4〉[1 2][4 6]

)
−4
〈1 2〉〈2 5〉〈3 4〉[1 2][4 6]〈4|(1 + 3)|4]

〈1 3〉〈4|(5 + 6)|4]
+ 4
〈1 2〉〈2 5〉〈3 4〉[1 2][4 6]

〈1 3〉
− 2
〈2 3〉〈4 5〉[1 4][4 6]

〈3|(5 + 6)|4]
s123

− s123

〈3|(5+6)|4]〈4|(5+6)|4]

(
〈2 4〉〈3 4〉〈5 6〉[1 4][4 6]2

)
+
〈2 4〉〈5 6〉[4 6]2

〈3|(5 + 6)|4]

(
〈3 4〉[1 4]−〈2 3〉[1 2]

)
− s123

〈4|(5 + 6)|3]

(
〈2 4〉〈4 5〉[1 6][3 4]

)
+

s123

〈4|(5 + 6)|3]〈4|(5 + 6)|4]

(
〈2 4〉〈4 5〉2[1 4][3 4][5 6]

)
+
〈4 5〉[5 6]

〈4|(5 + 6)|3]

(
〈1 2〉〈4 5〉[1 3][1 4] + 2〈2 4〉〈2 5〉[1 2][3 4]

−〈2 4〉〈3 5〉[1 3][3 4]− 〈2 5〉〈3 4〉[1 3][3 4]
)

+2
〈3 4〉〈5 6〉[1 3][4 6]

〈4|(5 + 6)|4]s123

(
〈1 3〉〈2 4〉[1 3][4 6]− 〈1 2〉〈2 4〉[1 4][2 6]− 〈1 4〉〈2 4〉[1 4][4 6]

+〈2 3〉〈2 4〉[2 6][3 4]− 2〈1 2〉〈3 4〉[1 4][3 6]− 2〈1 4〉〈2 3〉[1 3][4 6]

+2〈2 3〉〈3 4〉[3 4][3 6] + 〈2 4〉〈3 4〉[3 4][4 6]
)
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+4
〈2 4〉〈4 5〉[1 4][4 6]

〈4|(5 + 6)|4]
s123 +

[4 6]

〈4|(5 + 6)|4]

(
4〈1 4〉〈2 5〉〈3 4〉[1 3][1 4] + 2〈2 4〉2〈5 6〉[1 2][4 6]

−2〈2 4〉〈2 5〉〈3 4〉[1 2][3 4] + 2〈2 4〉〈2 5〉〈3 4〉[1 4][2 3]
)

+〈2 4〉〈2 5〉[1 2][4 6]− 2〈2 4〉〈4 5〉[1 4][4 6]− 3〈2 5〉〈4 5〉[1 4][5 6]

]
/(4〈3 4〉2s12s56) , (C.43)

c
(2)
4|123(3−g , 4

−
g ) =

[
×2
〈4 5〉
s123

(
2〈1 2〉〈1 3〉[1 3][1 4][1 6] + 〈1 2〉〈2 3〉[1 3][1 6][2 4]− 2〈1 2〉〈2 4〉[1 2][1 4][4 6]

−2〈1 2〉〈3 4〉[1 4]2[3 6] + 2〈1 3〉〈2 3〉[1 3][1 6][3 4]− 〈1 4〉〈2 3〉[1 4]2[3 6]

−〈2 3〉2[1 2][3 4][3 6] + 2〈2 3〉2[1 3][2 6][3 4]− 2〈2 3〉〈2 4〉[1 4][2 3][4 6]

−〈2 3〉〈2 4〉[1 6][2 4][3 4] + 〈2 3〉〈2 5〉[1 2][3 4][5 6] + 〈2 3〉〈3 4〉[1 4][3 4][3 6]

−2〈2 3〉〈3 4〉[1 6][3 4]2 + 〈2 3〉〈4 5〉[1 4][3 4][5 6]
)

+
〈2|(5 + 6)|4]

〈3|(5 + 6)|4]
〈4 5〉

(
2〈2 3〉[1 2][4 6]− 〈1 3〉[1 4][1 6]− 〈2 3〉[1 4][2 6]− 4〈3 4〉[1 4][4 6]

)
−2
〈4|(5 + 6)|1]〈1 2〉〈2 3〉〈4 5〉[1 4][2 6][3 4]

〈4|(5 + 6)|4]s123
+
〈4|(5 + 6)|3]

s123

(
2〈1 5〉〈2 3〉[1 4][1 6]

)
+2

〈4|(5 + 6)|3]

〈4|(5+6)|4]s123
[1 4][1 6]

(
〈1 3〉〈2 3〉〈4 5〉[3 4]+〈1 4〉〈2 3〉〈5 6〉[4 6]−2〈1 2〉〈1 3〉〈4 5〉[1 4]

)
+2
〈4|(5 + 6)|4]

〈4|(5 + 6)|3]
〈4 5〉[1 3]

(
2〈2 4〉[4 6] + 〈2 5〉[5 6]

)
+4

〈5|(2 + 3)|1]

〈4|(5 + 6)|4]s123

(
〈2 3〉〈3 4〉〈4 5〉[3 4]2[5 6]

)
−8
〈1 2〉〈2 4〉〈4 5〉[1 2][1 4][1 6][3 4]

[1 3]〈4|(5 + 6)|4]
+

1

〈3|(5 + 6)|4]
s123[1 4][4 6]

(
〈2 3〉〈4 5〉+ 4〈2 5〉〈3 4〉

)
+
〈2 4〉〈3 4〉〈5 6〉[1 4][4 6]2

〈3|(5 + 6)|4]〈4|(5 + 6)|4]
s123 −

〈2 3〉〈5 6〉[4 6]

〈3|(5 + 6)|4]

(
〈2 4〉[1 2][4 6] + 4〈3 4〉[1 4][3 6]

)
+
〈2 4〉〈4 5〉[1 4][3 6]s123

〈4|(5 + 6)|3]
− 〈2 4〉〈4 5〉2[1 4][3 4][5 6]s123

〈4|(5 + 6)|3]〈4|(5 + 6)|4]
− 4
〈2 4〉〈4 5〉[1 4][4 6]s123

〈4|(5 + 6)|4]

+2
〈4 5〉[3 4][5 6]

〈4|(5 + 6)|3]

(
2〈2 3〉〈4 5〉[1 3] + 〈2 4〉〈2 5〉[1 2] + 〈2 5〉〈3 4〉[1 3]

)
+2

〈4 5〉[1 4][5 6]

〈4|(5 + 6)|4]s123

(
2〈1 2〉〈3 4〉〈4 5〉[1 4][3 4]− 〈1 2〉〈2 3〉〈4 5〉[1 2][3 4]

−〈1 4〉〈2 3〉〈5 6〉[1 3][4 6]
)

+2
〈4 5〉

〈4|(5 + 6)|4]

(
2〈2 3〉〈2 4〉[1 2][3 4][4 6]− 2〈2 5〉〈3 4〉[1 4][3 4][5 6]

−〈1 2〉〈4 5〉[1 4]2[5 6]− 〈1 4〉〈2 3〉[1 3][1 4][4 6]− 〈2 3〉〈4 5〉[1 4][3 4][5 6]
)

+〈2 3〉〈4 5〉[1 3][4 6] + 4〈2 3〉〈4 5〉[1 6][3 4]− 〈2 4〉〈2 5〉[1 2][4 6]− 5〈2 4〉〈4 5〉[1 4][4 6]

−〈2 5〉〈3 4〉[1 3][4 6] + 〈2 5〉〈4 5〉[1 4][5 6]

]
/(4[3 4]2s12s56) , (C.44)
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c
(2)
4|123(3+

g , 4
−
g ) =

[
×2
〈4 5〉
s123

(
3〈1 4〉〈2 4〉[1 3][1 6][3 4]− 〈1 2〉〈2 4〉[1 3]2[2 6]− 2〈1 4〉〈2 5〉[1 3]2[5 6]

−4〈2 4〉2[1 2][3 4][3 6] + 2〈2 4〉2[1 3][2 6][3 4]− 〈2 4〉〈2 5〉[1 3][2 3][5 6] + 〈2 4〉〈3 4〉[1 3][3 4][3 6]
)

−〈2|(5 + 6)|4]〈4|(5 + 6)|3]〈2 5〉〈3 4〉[1 2][4 6]

〈3|(5 + 6)|4]2
+
〈2|(5 + 6)|4]〈4|(5 + 6)|3]〈4 5〉[1 6]

〈3|(5 + 6)|4]

+
〈2|(5 + 6)|4]

〈3|(5 + 6)|4]
〈4 5〉[3 6]

(
〈3 4〉[1 3]− 〈2 4〉[1 2]

)
− 〈4|(5 + 6)|1]〈4|(5 + 6)|3]〈2 5〉[4 6]

〈3|(5 + 6)|4]

+4
〈4|(5 + 6)|1]

〈1 3〉〈4|(5 + 6)|4]s123

(
〈1 2〉〈1 4〉〈2 5〉〈4 5〉[1 2][3 4][5 6]

)
− 〈4|(5 + 6)|1]

〈3|(5 + 6)|4]2
s123

(
〈2 4〉〈3 5〉[3 4][4 6]

)
+
〈4|(5 + 6)|1]

〈3|(5 + 6)|4]
〈4 5〉[3 4]

(
3〈2 4〉[4 6] + 〈2 5〉[5 6]

)
−4
〈4|(5 + 6)|3]〈4|(5 + 6)|4]

〈3|(5 + 6)|4]2

(
〈2 5〉〈3 4〉[1 4][4 6]

)
− 〈4|(5 + 6)|3]

〈3|(5 + 6)|4]

(
〈2 3〉〈4 5〉[1 3][4 6]

)
+4

〈4|(5 + 6)|3]

〈1 3〉〈4|(5 + 6)|4]s123
〈1 2〉〈3 4〉〈4 5〉[1 2][3 4]

(
〈1 2〉[1 6]− 〈2 3〉[3 6]

)
+3
〈4|(5 + 6)|3]

〈3|(5 + 6)|4]2
s123

(
〈2 5〉〈3 4〉[1 4][4 6]

)
− 〈4|(5 + 6)|3]

〈3|(5 + 6)|4]2
〈2 4〉〈5 6〉[4 6]2

(
〈2 3〉[1 2] + 4〈3 4〉[1 4]

)
+2
〈4|(5 + 6)|3]〈4 5〉
〈4|(5 + 6)|4]s123

(
〈1 2〉〈2 4〉[1 3][1 4][2 6] + 2〈1 2〉〈3 4〉[1 3][1 6][3 4]

+2〈1 4〉〈2 5〉[1 3][1 4][5 6]− 〈2 3〉〈2 4〉[1 3][2 6][3 4]− 2〈2 3〉〈3 4〉[1 3][3 4][3 6]

−2〈2 4〉〈2 5〉[1 2][3 4][5 6] + 〈2 4〉〈2 5〉[1 3][2 4][5 6]
)

+
〈4|(5 + 6)|4]

〈3|(5 + 6)|4]
〈4 5〉[1 6]

(
〈2 4〉[3 4]− 〈1 2〉[1 3]

)
+4
〈1 2〉〈2 4〉〈4 5〉[1 2][3 4]

〈1 3〉s123

(
2〈1 4〉[1 6] + 〈3 4〉[3 6]

)
+4
〈1 2〉〈2 4〉〈4 5〉[1 2][3 4][5 6]

〈1 3〉〈4|(5 + 6)|4]s123

(
〈2 5〉〈3 4〉[2 3]− 〈3 4〉〈4 5〉[3 4]− 〈1 4〉〈2 5〉[1 2]− 2〈1 4〉〈4 5〉[1 4]

)
+
〈2 4〉〈3 4〉〈5 6〉[1 3][4 6]2s123

〈3|(5 + 6)|4]2
+

〈2 4〉
〈3|(5 + 6)|4]

(
2〈2 4〉〈5 6〉[1 2][3 6][4 6]

−〈2 5〉〈4 5〉[1 2][3 4][5 6]− 〈3 4〉〈5 6〉[1 3][3 6][4 6]− 〈4 5〉2[1 4][3 4][5 6]
)

+2
〈2 4〉〈4 5〉[3 4][5 6]

〈4|(5 + 6)|4]s123

(
4〈2 4〉〈4 5〉[1 2][3 4]− 3〈1 4〉〈4 5〉[1 3][1 4]− 2〈1 4〉〈2 5〉[1 2][1 3]

−2〈2 4〉〈2 5〉[1 2][2 3]− 2〈2 4〉〈4 5〉[1 3][2 4]− 〈1 3〉〈4 5〉[1 3]2 − 〈3 4〉〈4 5〉[1 3][3 4]
)

−2
〈2 4〉〈4 5〉2[1 3][3 4][5 6]

〈4|(5 + 6)|4]
+ 〈2 4〉〈4 5〉[1 3][3 6]

]
/(4〈3 4〉[3 4]s12s56) , (C.45)

c
(2)
4|123(3−g , 4

+
g ) =

[
×2
〈2 3〉〈3 4〉[1 4][4 6]

s123

(
〈1 5〉[1 4]− 〈3 5〉[3 4]

)
− 4

〈2|(5 + 6)|4]

〈4|(5 + 6)|4]s123

(
〈2 3〉〈3 4〉〈5 6〉[1 2][4 6]2

)
+4
〈3|(5 + 6)|4]

〈4|(5 + 6)|3]2
〈2 4〉〈4 5〉[3 4][5 6]

(
〈2 5〉[1 2] + 〈3 5〉[1 3]

)
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+
〈3|(5 + 6)|4]

〈4|(5 + 6)|3]

(
4〈2 3〉〈4 5〉[1 3][4 6] + 2〈2 4〉〈2 5〉[1 2][4 6] + 〈2 4〉〈4 5〉[1 4][4 6]

+2〈2 5〉〈3 4〉[1 3][4 6] + 3〈2 5〉〈4 5〉[1 4][5 6]
)

+4
〈3|(5 + 6)|4]〈3 4〉[4 6]

〈4|(5 + 6)|4]s123

(
〈1 2〉〈2 5〉[1 2][1 4] + 〈2 3〉〈2 5〉[1 2][3 4] + 〈2 3〉〈3 5〉[1 3][3 4]

)
−4
〈3|(5 + 6)|4]

〈4|(5 + 6)|4]

(
〈2 5〉〈3 4〉[1 4][4 6]

)
− 8
〈1 2〉〈2 5〉〈3 4〉[1 2][1 4]2[4 6]

[1 3]〈4|(5 + 6)|4]

−〈4|(5 + 6)|4]

〈4|(5 + 6)|3]
〈2 5〉

(
2〈2 3〉[1 2][4 6] + 2〈3 4〉[1 4][4 6] + 〈3 5〉[1 4][5 6]

)
+

[1 4]

〈4|(5 + 6)|3]

(
〈1 2〉〈2 4〉〈3 5〉[1 2][4 6] + 〈1 2〉〈3 4〉〈3 5〉[1 3][4 6]− 〈2 4〉〈3 4〉〈5 6〉[4 6]2

−2〈1 2〉〈3 5〉〈4 5〉[1 4][5 6]− 2〈2 3〉〈3 5〉〈4 5〉[3 4][5 6] + 〈2 3〉〈4 5〉〈5 6〉[4 6][5 6]
)

+2
〈3 4〉[1 4][4 6]

〈4|(5 + 6)|4]s123

(
2〈1 2〉〈2 3〉〈3 5〉[1 2][3 4]− 2〈1 2〉2〈3 5〉[1 2][1 4]

+5〈1 2〉〈2 3〉〈5 6〉[1 2][4 6] + 〈1 2〉〈2 3〉〈5 6〉[1 4][2 6] + 2〈1 3〉〈2 3〉〈5 6〉[1 4][3 6]

+〈1 4〉〈2 3〉〈5 6〉[1 4][4 6] + 〈2 3〉2〈5 6〉[2 4][3 6]− 〈2 3〉〈3 4〉〈5 6〉[3 4][4 6]
)

+2
〈3 4〉[1 4][4 6]

〈4|(5 + 6)|4]

(
〈2 3〉〈3 5〉[3 4]− 〈1 2〉〈3 5〉[1 4]− 〈1 3〉〈2 5〉[1 4]− 〈2 3〉〈5 6〉[4 6]

)
−3〈2 3〉〈3 5〉[1 4][4 6]

]
/(4〈3 4〉[3 4]s12s56) . (C.46)

C.6.3 BDK contribution

The final contribution in eq. (C.24) that must be specified is Aax
6,BDK . This consists of

terms representing the contributions of the bubble integrals and rational terms, as well as

the mass-independent coefficient of the triangle c12|34. Although the bubble and triangle

coefficients are the same as in the original BDK paper, the integrals that they multiply are

of course the ones with non-zero masses in the loop. Our recasting therefore necessitates

the introduction of the following functions related to scalar bubble integrals,

L−1(x, y,m2) = B
py
0 −B

px
0

L0(x, y,m2) =
y

(y − x)
L−1(x, y,m2)

L1(x, y,m2) =
y

(y − x)

[
L0(x, y,m2) + 1

]
(C.47)

such that x = p2
x, y = p2

y. In the limit m→ 0 these reduce to the standard BDK functions,

Li(x, y,m
2)
∣∣
m→0

= Li

(
−p2

x

−p2
y

)
, (C.48)

with L−1(x, y, 0) ≡ ln(−x)− ln(−y). The overall sign of our expressions is also opposite to

the one of BDK, due to the fact that our result describes the amplitudes for a top quark

(τ f3 = +1/2) rather than the (massless) bottom quark (τ f3 = −1/2) in BDK. As in the
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massless case, we only need consider three helicity combinations. The final one is related by,

Aax
6,BDK(1+

q , 2
−
q̄ , 3

−
g , 4

−
g , 5

−
ē , 6

+
e ) = flip2

[
Aax

6,BDK(1+
q , 2

−
q̄ , 3

+
g , 4

+
g , 5

−
ē , 6

+
e )
]
. (C.49)

With the preliminaries understood we can make use of BDK eq. (11.3) to write the

amplitude with two gluons of positive helicity as,

−iAax
6,BDK(1+

q , 2
−
q̄ , 3

+
g , 4

+
g , 5

−
ē , 6

+
e )=

[
− 〈2 5〉2

〈1 2〉〈5 6〉〈3 4〉2
L−1(s123, s56,m

2
t )

+
〈2|4|6]〈2 5〉
〈1 2〉〈3 4〉2s56

(
s34

s56
L1(s123, s56,m

2
t )+L0(s123, s56,m

2
t )

)

+
〈5|3|1]〈2 5〉
〈5 6〉〈3 4〉2

L0(s123, s12,m
2
t )

s12
− exch34

]
−(s14 + s34)

〈2 5〉[4 6]

〈1 3〉〈3 4〉
1

s2
56

L1(s123, s56,m
2
t )

−〈2|3|1]〈2 5〉[3 6]

〈2 4〉〈3 4〉
1

s2
56

L1(s124, s56,m
2
t ) . (C.50)

The amplitudes with gluons of opposite helicity are not related by a symmetry, but do

share a common structure. We note also that the recasting of BDK eqs. (11.9) and (11.10)

also requires the following replacements to be made in the BDK formulae,

Ls2mh
−1 (s34, s123, s12, s56) −→

(
δ34

2
+
s12s56

s123

)
I3m

3 (s12, s34, s56) ,

I3m
3 (s12, s34, s56) −→ −C12|34

0 . (C.51)

in order to isolate the contribution of the triangle with three off-shell legs (cf. BDK

eq. (B.3)) in the notation of this paper. By adapting the formulae in this way we obtain,

−iAax
6,BDK(1+

q , 2
−
q̄ , 3

+
g , 4

−
g , 5

−
ē , 6

+
e ) = −Cax +

〈2 4〉〈1 4〉[4 6]〈2|(1 + 3)|6]

〈1 2〉〈1 3〉[5 6]〈3|(1 + 2)|4]

L1(s56, s123,m
2
t )

s123

+
〈2|(1 + 3)|6]〈3|(1 + 2)|6][1 3]

[5 6]〈3|(1 + 2)|4]2
L0(s123, s12,m

2
t )

s12

+
〈2 4〉〈1|(2 + 3)|4]〈2|(1 + 3)|6]〈3|(1 + 2)|6]

〈1 2〉〈1 3〉[5 6]〈3|(1 + 2)|4]2
L0(s123, s56,m

2
t )

s56

− 〈2 4〉〈3 5〉〈4|(1 + 3)|6]

〈1 3〉〈3 4〉s56〈3|(1 + 2)|4]
+ flip2 , (C.52)

and,

−iAax
6,BDK(1+

q , 2
−
q̄ , 3

−
g , 4

+
g , 5

−
ē , 6

+
e ) = Cax(3↔ 4)

− [1 4]2〈4 5〉〈5|(2 + 3)|1]

[1 2][1 3]〈5 6〉〈4|(1 + 2)|3]

L1(s56, s123,m
2
t )

s123

+
〈5|(2 + 3)|1]〈5|(1 + 2)|3]〈2 3〉

〈5 6〉〈4|(1 + 2)|3]2
L0(s123, s12,m

2
t )

s12
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− [1 4]〈4|(2 + 3)|1]〈5|(2 + 3)|1]〈5|(1 + 2)|3]

[1 2][1 3]〈5 6〉〈4|(1 + 2)|3]2
L0(s123, s56,m

2
t )

s56

− [1 4]2〈2 5〉[3 6]

[1 3][3 4]s56〈4|(1 + 2)|3]
+ flip2 . (C.53)

The auxiliary common quantity is adapted from BDK eq. (11.9) and is given by,

Cax = −
[
− 3

2
(〈5|2|1]〈2|1|6] + 〈5|6|1]〈2|5|6]− 〈5|3|1]〈2|4|6]− 〈5|4|1]〈2|3|6])

〈4|(1 + 2)|3]

〈3|(1 + 2)|4]∆3

−3
δ34(〈5|2|1]δ12 − 〈5|6|1]δ56)〈4|(1 + 2)|3]〈2|(1 + 3)|6]

〈3|(1 + 2)|4]∆2
3

− [1 3]〈4 5〉〈2 4〉[3 6]

∆3

+
[1 4]〈3 5〉(s123 − s124)〈4|(1 + 2)|3]〈2|(1 + 3)|6]

〈3|(1 + 2)|4]2∆3
− 1

2

[1 3]〈4 5〉〈2|(1 + 3)|6]

s123〈3|(1 + 2)|4]

−1

2

〈2|(1 + 3)|4]2〈3|(1 + 2)|6]2 − 〈2 3〉2[4 6]2s2
123

〈1 2〉[5 6]〈3|(1 + 2)|4]4

(
δ34

2
+
s12s56

s123

)]
C

12|34
0

+Cax
1 + Cax

1 (1↔ 6, 2↔ 5)

+
〈2|(1 + 3)|6]2

〈1 2〉[5 6]〈3|(1 + 2)|4]2
L−1(s56, s34,m

2
t ) (C.54)

+
〈2 4〉[3 6]

〈3|(1+2)|4]

(
〈2|4|6]δ34

〈1 2〉[5 6]∆3
−〈2 4〉〈3 5〉δ56

〈1 2〉〈3 4〉∆3
− [1 3][4 6]δ12

[3 4][5 6]∆3
−2
〈5|3|1]

∆3
+
〈2 4〉〈3 5〉
〈1 2〉〈3 4〉s56

)
,

where the function Cax
1 is defined as,

Cax
1 =

(
− 6

[1 2]〈2|(1+3)|6](〈2 5〉δ34−2〈2 1〉[1 6]〈6 5〉)〈4|(1+2)|3]

〈3|(1 + 2)|4]∆2
3

− [1 3][4 6]〈2|(1+3)|6]

[3 4][5 6]〈3|(1+2)|4]2

+[1 4]
〈2|(1 + 3)|6](3〈3|(1 + 2)|4][3 6]− [4 6](s123 − s124))〈4|(1 + 2)|3]

[3 4][5 6]〈3|(1 + 2)|4]2∆3

− [1 3]〈2 4〉[3 6]2

[3 4][5 6]∆3

)
L−1(s12, s34,m

2
t ) . (C.55)

These functions are defined in terms of the additional quantities,

∆3 = s2
12 + s2

34 + s2
56 − 2s12s34 − 2s34s56 − 2s56s12 ,

δ12 = s12 − s34 − s56, δ34 = s34 − s56 − s12, δ56 = s56 − s12 − s34 . (C.56)

Finally, we note that the determination of the triangle coefficient c
(2)
12|34 using eq. (C.28)

requires knowledge of the rational part of the amplitudes. We do not list these explicitly

here since they may be simply obtained from the expressions for Aax
6,BDK through the

relation,

R(3h3 , 4h4) =
[
Aax

6,BDK(1+
q , 2

−
q̄ , 3

h3
g , 4

h4
g , 5

−
ē , 6

+
e )
]
C

12|34
0 →0, L−1(x,y,m2)→0

(C.57)
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D Definition of scalar integrals

The scalar integrals themselves are defined as follows,

Bx
0 ≡ B0(px;m1,m2) =

µ4−d

iπ
d
2 rΓ

∫
ddl

1

d(l,m1) d(l + px,m2)

C
x|y
0 ≡ C0(px, py;m1,m2,m3) =

1

iπ2

×
∫
d4l

1

d(l,m1) d(l + px,m2) d(l + px + py,m3)
(D.1)

D
x|y|z
0 ≡ D0(px, py, pz;m1,m2,m3,m4) =

1

iπ2

×
∫
d4l

1

d(l,m1) d(l + px,m2) d(l + px + py,m3) d(l + px + py + pz,m4)
(D.2)

where the denominator function is

d(l,m) = (l2 −m2 + iε) . (D.3)

For the purposes of this paper we take the masses in the propagators to be real. Near four

dimensions we use d = 4 − 2ε (and for clarity the small imaginary part which fixes the

analytic continuations is specified by +i ε). µ is a scale introduced so that the integrals

preserve their natural dimensions, despite excursions away from d = 4. We have removed

the overall constant which occurs in d-dimensional integrals

rΓ ≡
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
=

1

Γ(1− ε)
+O(ε3) = 1− εγ + ε2

[
γ2

2
− π2

12

]
+O(ε3) . (D.4)

E Numerical values of coefficients

The test momenta are, in the notation p = (E, px, py, pz) (in GeV),

p1 = (−3.0, 2.1213203435596424, 1.0606601717798212, 1.8371173070873839) ,

p2 = (−3.0,−2.1213203435596424,−1.0606601717798212,−1.8371173070873839) ,

p3 = (0.85714285714285710,−0.31578947368421051, 0.79685060448070799, 0.0) ,

p4 = (2.0, 2.0, 0.0, 0.0) , (E.1)

p5 = (1.0,−0.18421052631578949, 0.46482951928041311, 0.86602540378443860) ,

p6 = (2.1428571428571432,−1.5,−1.2616801237611210,−0.86602540378443860) .

with

p1 + p2 + p3 + p4 + p5 + p6 = 0 . (E.2)

We use mt = 0.4255266775 GeV.

The results for the various contributions to the Aax
6 partial amplitudes are shown

in tables 3–7. We show results for the non-zero box and triangle coefficients as well as

the remaining contribution Aax
6,BDK that includes both bubbles and rational terms. The

coefficient c
(0)
12|34 is not shown explicitly for the amplitudes with opposite gluon helicity even

though it is non-zero, since its effect is also included in Aax
6,BDK .
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Coeff Re y(0)(3+, 4+) Im y(0)(3+, 4+) Re y(2)(3+, 4+) Im y(2)(3+, 4+)

c3|124 -0.13353418 -0.49827218

c4|123 -0.79126348 0.38570625

b56 0.20772009 0.22131702

b123 -0.13126100 0.06398398

b124 -0.07645909 -0.28530101

R -0.46239883 -0.05628296

Coeff Re y(0)(3−, 4+) Im y(0)(3−, 4+) Re y(2)(3−, 4+) Im y(2)(3−, 4+)

c3|124 0.20571266 -0.0325607

c4|123 -0.29104980 1.0411831

b56 -0.06950546 -0.15407601

b123 -0.04828163 0.17271964

b124 0.11778709 -0.01864363

R -0.04266857 0.50431124

Coeff Re y(0)(3+, 4−) Im y(0)(3+, 4−) Re y(2)(3+, 4−) Im y(2)(3+, 4−)

c3|124 0.01389374 -0.00477234

c4|123 -0.01145015 0.07951003

b56 -0.00605585 -0.01045720

b123 -0.00189944 0.01318975

b124 0.00795529 -0.00273255

R 0.00122180 0.03736885

Coeff Re y(0)(3−, 4−) Im y(0)(3−, 4−) Re y(2)(3−, 4−) Im y(2)(3−, 4−)

c3|124 0.01389374 -0.00477234

c4|123 -0.01145015 0.07951003

b56 0.03831823 -0.00009208

b123 -0.01341259 0.00497689

b124 -0.02490565 -0.00488480

R -0.06217526 0.01073516

Table 3. Non-zero integral coefficients for the axial contribution to Aax,sl
6 (1+

q , 2
−
q̄ , 3g, 4g). Only the

contribution of the isospin + 1
2 quark is included.
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Coeff Re y(0)(3+, 4+) Im y(0)(3+, 4+) Re y(2)(3+, 4+) Im y(2)(3+, 4+)

d3|12|4 0.9847638139 -0.8139317869 -0.0826002899 0.2135941623

d4|3|12 0.0291379239 -0.5509736787

d3|4|12 0.2392276202 0.0407498609

c12|34 0.1143994146 -0.2174992557

c12|3 0.1299341143 -0.1073937774

c12|4 0.3031796001 -0.2505854807

c3|124 -0.0706659218 0.0584071421 0.0542191910 0.1995748531

c4|123 -0.2439114076 0.2015988454 0.1822387437 -0.0369792184

Aax
6,BDK 0.0744415301 -0.0504750372

Table 4. Non-zero box and triangle coefficients and Aax
6,BDK contribution for the partial amplitude

Aax
6 (1+

q , 2
−
q̄ , 3

+
g , 4

+
g ).

Coeff Re y(0)(3−, 4+) Im y(0)(3−, 4+) Re y(2)(3−, 4+) Im y(2)(3−, 4+)

d3|12|4 -0.6553781232 0.2267711354

d4|3|12 3.4035534642 4.4512143946 0.7044032221 0.0506388969

d3|4|12 -1.5958557084 0.0483030299 -0.5569345916 0.1188692057

c12|34 — — 0.0862624911 0.0311702697

c12|3 0.2901747505 0.3794945606

c12|4 -0.6802846449 0.0205907147

c3|124 0.1585625864 -0.0047993395 -0.0253157939 0.0094553225

c4|123 -0.5447140053 -0.7123845260 0.0537029872 -0.2691326008

c3|4 0.0006275632 -0.1771280345

Aax
6,BDK 0.2424976515 0.0640430134

Table 5. Non-zero box and triangle coefficients and Aax
6,BDK contribution for the partial amplitude

Aax
6 (1+

q , 2
−
q̄ , 3

−
g , 4

+
g ). Note that the coefficient c

(0)
12|34 is non-zero, but not listed explicitly here since

it is included in Aax
6,BDK .

F Axial triangle

The amplitude for a Z coupling to two gluons is denoted by TµνρAB . We calculate the triangle

shown in figure 9, where all momenta are outgoing q1 + q2 + q3 = 0 and q2
i 6= 0.

The result for the two triangle diagrams shown in figure 9, (including the minus sign

for a fermion loop) is,

TµνρAB (q1, q2) = i
g2e

16π2
δAB 2vfA Γµνρ , (F.1)
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Coeff Re y(0)(3+, 4−) Im y(0)(3+, 4−) Re y(2)(3+, 4−) Im y(2)(3+, 4−)

d3|12|4 0.0211964344 0.0565331937

d4|3|12 -1.6787391821 3.5273786346 -0.0813082954 0.1402683777

d3|4|12 -0.0292425126 -0.0031829012 -0.0630934240 -0.0104948556

c12|34 — — -0.0042375804 0.0022554921

c12|3 -0.1431232764 0.3007316400

c12|4 -0.0124655582 -0.0013568136

c3|124 0.0029055061 0.0003162498 -0.0025971585 -0.0016437585

c4|123 0.2686700101 -0.5645313242 -0.0144060528 -0.0236227320

c3|4 0.0677211776 -0.1369105940

Aax
6,BDK -0.0513599766 0.1115536722

Table 6. Non-zero box and triangle coefficients and Aax
6,BDK contribution for the partial amplitude

Aax
6 (1+

q , 2
−
q̄ , 3

+
g , 4

−
g ). Note that the coefficient c

(0)
12|34 is non-zero, but not listed explicitly here since

it is included in Aax
6,BDK .

Coeff Re y(0)(3−, 4−) Im y(0)(3−, 4−) Re y(2)(3−, 4−) Im y(2)(3−, 4−)

d3|12|4 0.3650137298 1.8497925731 0.0537351845 0.2954518713

d4|3|12 0.1734167739 0.0931722390

d3|4|12 -0.0895807857 0.0584032726

c12|34 0.0357377770 0.0646139200

c12|3 0.0481615338 0.2440698534

c12|4 0.1123769122 0.5694963246

c3|124 -0.0261931149 -0.1327397448 0.0196845554 -0.0097033679

c4|123 -0.0904084933 -0.4581662160 -0.0075863869 -0.0498510937

c3|4

Aax
6,BDK 0.0071292120 -0.0070092524

Table 7. Non-zero box and triangle coefficients and Aax
6,BDK contribution for the partial amplitude

Aax
6 (1+

q , 2
−
q̄ , 3

−
g , 4

−
g ).

Figure 9. Triangle graphs with an axial coupling to the Z-boson.
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where vfA is given in table 1 and

Γµνρ(q1, q2,m) =
1

2

1

iπ2

∫
ddl Tr

{
γργ5

1

/l −m
γµ

1

/l + /q1
−m

γν
1

/l + /q1
+ /q2

−m

}
. (F.2)

The most general form of Γ consistent with QCD gauge invariance,

qµ1 Γµνρ = qν2Γµνρ = 0 , (F.3)

can be written as,

Γµνρ = G1

{
Tr[γργν /q1 /q2γ5]qµ1 + Tr[γργµγν /q2γ5]q2

1

}
+G2

{
Tr[γργµ /q2 /q1γ5]qν2 + Tr[γργνγµ /q1γ5]q2

2

}
+G3 (qρ1 + qρ2)

{
Tr[γµγν /q1 /q2γ5]

}
+G4 (qρ1 − q

ρ
2)
{

Tr[γµγν /q1 /q2γ5]
}
. (F.4)

The functions Gi are Lorentz invariant functions of q2
i , (i = 1, 3) and m. By direct calcula-

tion it is found that G4 = 0. To define the other Gi we define the axial triangle function f ,

f(m; q2
1, q

2
2, q

2
3) =

∫ 1

0
d3aiδ(1− a1 − a2 − a3)

a2a3

[m2 − a1a2q2
1 − a2a3q2

2 − a3a1q2
3]
. (F.5)

Full results for the function f have been given in ref. [15]. We further define the integral

I[j, k] =

∫ 1

0
d3aiδ(1− a1 − a2 − a3)

ajak
[m2 − a1a2q2

1 − a2a3q2
2 − a3a1q2

3]
, (F.6)

so that we have,

G1 = f(m; q2
2, q

2
1, q

2
3) = I[1, 2]

G2 = f(m; q2
1, q

2
2, q

2
3) = I[2, 3]

G3 = f(m; q2
1, q

2
3, q

2
2) = I[3, 1] . (F.7)

Contracting with the momentum of the Z boson we find that,

(q3)ρ Γµνρ =
[
− q2

1 G1 − q2
2 G2 − q2

3 G3

]
Tr[γµγν /q1 /q2γ5] . (F.8)

The divergence of the axial current is easily seen to be,

(q3)ρ Γµνρ =

[
m2C0(q1, q2;m,m,m) +

1

2

]
Tr[γµγν /q1 /q2γ5] , (F.9)

showing the contribution of the pseudoscalar current proportional to m2 and the anoma-

lous term. Summation over one complete quark doublet (τf = ±1/2) cancels the anomaly

term and solely the piece proportional to the top-quark mass remains.
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The function f can be reduced to scalar integrals,

f(m; q2
1, q

2
2, q

2
3) = −

[
3q2

1q
2
2q

2
3

δ2

∆2
3

− (q2
1q

2
3 −m2δ2)

∆3

]
C0(q1, q2,m,m,m)

+

[
3q2

1q
2
3

δ3

∆2
3

− q2
1

2∆3

](
B0(q2,m,m)−B0(q1,m,m)

)
+

[
(3q2

1q
2
3

δ1

∆2
3

− q2
3

2∆3

](
B0(q2,m,m)−B0(q3,m,m)

)
− 1

2

δ2

∆3
,(F.10)

in terms of the kinematic quantities,

δ1 = q2
1 − q2

2 − q2
3 , δ2 = q2

2 − q2
1 − q2

3 , δ3 = q2
3 − q2

1 − q2
2 ,

∆3 = q2
1δ1 + q2

2δ2 + q2
3δ3 . (F.11)

In the limit q2
1 = 0 we get

δ1 = −q2
2 − q2

3, δ2 = −δ3 = q2
2 − q2

3, ∆3 = (q2
2 − q2

3)2 , (F.12)

and the result is,

f(m; 0, q2
2, q

2
3) =

1

2(q2
3 − q2

2)

[
1 + 2m2C0(q2, q3;m,m,m)

+
q2

3

(q2
3 − q2

2)

(
B0(q3;m,m)−B0(q2;m,m)

)]
, (F.13)

f(0; 0, q2
2, q

2
3) =

1

2(q2
3 − q2

2)

[
1 +

q2
2

(q2
3 − q2

2)
log

(
q2

2

q2
3

)]
. (F.14)

When we are interested in the special case of an on-shell Z, with q2
2 = ε2 · q2 =

0, ε3 · q3 = 0, then we only get a contribution from G1. The result for G1 in this limit is

G1 = f(m; 0, q2
1, q

2
3).
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