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1 Introduction

There has been considerable recent interest over the possibility (first raised by Cardy [1])

of a four-dimensional generalisation of Zamolodchikov’s c-theorem [2] in two dimen-

sions; namely a function a(g) of the couplings gI which has monotonic behaviour under

renormalisation-group (RG) flow or which is defined at fixed points such that aUV−aIR > 0.

These two possibilities are referred to as the strong or weak a-theorem, respectively. A

proof of the weak a-theorem has been proposed by Komargodski and Schwimmer [3, 4]

with further analysis in ref. [5].

The strong a-theorem has been proved valid for small values of the couplings [6, 7],

using Wess-Zumino consistency conditions for the response of the theory defined on curved

spacetime, and with x-dependent couplings gI(x), to a Weyl rescaling of the metric [8]. A

function A is defined which satisfies the crucial equation

∂IA = TIJβ
J , (1.1)

for a function TIJ which is defined in terms of RG quantities and may in principle be

computed perturbatively within the theory extended to curved spacetime and x-dependent

gI . Eq. (1.1) implies

µ
d

dµ
A = βI ∂

∂gI
A = GIJβ

IβJ (1.2)
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where GIJ = T(IJ); thus verifying the strong a-theorem so long as GIJ is positive-definite,

a property which holds at least for weak couplings in four dimensions. It is clear that if A

satisfies an equation of the form eq. (1.1) then so does

A′ = A+ gIJβ
IβJ (1.3)

for any gIJ (for a different TIJ , of course).

Further extensions of this general framework have been explored in refs. [9–11]. We

should mention explicitly here that for theories with a global symmetry, βI in these equa-

tions should be replaced by a BI which is defined, for instance, in ref. [7]. However, it was

shown in refs. [12, 13] that the two quantities only begin to differ at three loops for theories

in four dimensions.

It was shown in ref. [14] that equations of a similar form to the above may be derived

(in a similar manner) for a renormalisable theory in six dimensions;1 though the definition

of A and TIJ as renormalisation-group quantities is of course different. For instance,

A = 6a+ b1 −
1

15
b3 +WIβ

I (1.4)

where WI , like TIJ , has a definition in terms of RG quantities, a is the β-function corre-

sponding to the six-dimensional Euler density

E6 = ǫµ1µ2µ3µ4µ5µ6ǫν1ν2ν3ν4ν5ν6R
µ1µ2ν1ν2Rµ3µ4ν3ν4Rµ5µ6ν5ν6 (1.5)

and b1 and b3 are the β-functions corresponding respectively to

L1 = − 1

30
K1 +

1

4
K2 −K6, L3 = − 37

6000
K1 +

7

150
K2 −

1

75
K3 +

1

10
K5 +

1

15
K6, (1.6)

where (following the notation of ref. [14])

K1 = R3, K2 = RRκλRκλ, K3 = RRκλµνRκλµν , K4 = RκλRλµR
µ
κ,

K5 = RκλRκµνλR
µν , K6 = RκλRκµνρRλ

µνρ. (1.7)

We use the notation A to avoid confusion with the ã of ref. [14] which differs by a factor

of 6. In six dimensions, GIJ has recently been computed to be negative definite at leading

order for a multiflavor φ3 theory [19, 20]. The six-dimensional case has also been considered

in more general terms in ref. [21]. Our purpose here is to extend the results of ref. [19, 20]

to higher orders, again for the multiflavor φ3 theory. However, we shall do this by using the

β-functions together with eq. (1.1) to construct the quantities A and TIJ order by order

(rather than by a direct perturbative computation). We shall compute the function A up

to 5 loop order in the standard MS renormalisation scheme, requiring a knowledge of the

three-loop MS β-function. We shall find that a solution for A and TIJ is only possible if the

β-function coefficients satisfy a set of consistency conditions, and we shall be able to show

1See ref. [15] for an analogous extension to three dimensions; and ref. [16] for a recent explicit construction

of an a-function in three dimensions. See also ref. [17, 18] for attempts to derive a weak a-theorem in six

and general d dimensions using the methods of ref. [3, 4].
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that these conditions are invariant under the coupling redefinitions which must relate any

pair of renormalisation schemes. We illustrate the redefinition process using the example

of the MOM (momentum subtraction) scheme. We accordingly present for the first time

the three-loop β-functions for MOM (the three-loop MS β-functions may be read off from

the results presented in ref. [22], although they were not written down explicitly there2).

We shall also provide full details of the three-loop calculation for the MS β-functions, and

then give a precise definition of the MOM scheme, explaining how the calculation may be

adapted for this case. In the general case we shall be considering, the theory has a global

symmetry; and just as in four dimensions, we shall find that at three loops the consistency

conditions can only be satisfied if we replace βI by the quantity BI defined in ref. [7].

The layout of the paper is as follows: in section 2 we present the one and two loop

results for the β-functions and also the lowest-order results for A and TIJ . In section 3 we

give an explanation of our computational methods and how they may be applied to the

computation of the β-functions in both the MS and MOM schemes, and then go on to list

the results for the three-loop MS β-function. In section 4 we present our results for A(5)

together with consistency conditions on the β-function coefficients, which must be satisfied

in any scheme in order for eq. (1.1) to hold. In section 5 we discuss the implementation

of renormalisation scheme changes in general terms and then go on to focus on the case

of the MOM scheme. We present our concluding remarks in section 6, and finally the

explicit three-loop MOM β-function together with some calculational details are given in

the appendices.

2 One and two-loop results

We consider the theory

L =
1

2
∂µφ

i∂µφi +
1

3!
gijkφiφjφk, (2.1)

involving a multiplet of fields φi coupled via the tensor gijk. The one and two loop β-

functions are given by

β(1) = −g(1a) +
1

12
g(1A),

β(2) = c(2B)g(2B) + c(2C)g(2C) + c(2b)g(2b) + c(2c)g(2c) + c(2d)g(2d), (2.2)

where the tensor structures are defined by

gijk(1a) = gilmgjmngknl, gijk(2b) = gjpqgkprgiqr(1a),

gijk(2c) = giprgjpqgqs1Ag
ksr, gijk(2d) = gimngjpqgkrsgnqsgmpr, (2.3)

with also

gij(1A) = giklgjkl, gij(2B) = gipqgjpq(1a), gij(2C) = gimngjmqgnq(1A). (2.4)

2Earlier three-loop results were presented in ref. [23, 24], but these do not determine the results for the

general theory unambiguously, as we shall explain later.
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g(1a) g(1A)

g(2B) g(2C) g(2b) g(2c) g(2d)

Table 1. Tensor structures appearing in the one- and two-loop β-functions.

We also define 3-index quantities corresponding to the 2-index quantities of eq. (2.4) by

gijk(1A) = gil(1A)g
ljk, etc. (2.5)

We have therefore given the same label to both a two-index and a three-index tensor, but

we hope that it will always be clear from the context which is meant. For structures which

are not three-fold symmetric, we list one symmetrisation but it is to be understood that it

is accompanied by its two symmetrised partners. We shall also, wherever possible, suppress

indices as we have done in eq. (2.2). We display the tensor structures appearing in eq. (2.2)

in table 1 (in which the index i is always at the right, except for g(2d), which is completely

symmetric in i, j and k).

The coefficients in eq. (2.2) are given in MS by

c(2B) =
1

18
, c(2C) = − 11

432
, c(2b) = −1

4
, c(2c) =

7

72
, c(2d) = −1

2
. (2.6)

Here and elsewhere we suppress a factor of (64π3)−1 for each loop order.

It was shown in refs. [19, 20] that eq. (1.1) was valid at leading order with

A(3) = −1

4
λgijk(gijk(1a) −

1

4
gijk(1A)) = −1

4
λ(gklmgknpglpqgmqn − 1

4
gmn
(1A)g

mn
(1A)),

T
(2)
IJ = G

(2)
IJ = λδIJ , (2.7)

and

λ = − 1

3240
. (2.8)

As mentioned earlier, our definition of A differs from that of ã in ref. [14] by a factor

of 6, introduced for convenience. As the notation implies, G
(2)
IJ would require a two-loop

perturbative calculation using the methods of ref. [6, 7], which was performed explicitly

in refs. [19, 20]; A(3) would correspondingly require a three-loop calculation, but its value

was inferred by imposing eq. (1.1). This is the technique we shall apply to obtain A(4),

A(5) later in this paper. We should note that A has no explicit two-loop contributions;

however there is a one-loop (free-field) contribution [19, 20].3 At this point we have all the

information required for our computation of A(4), but we shall postpone this to section 4

where we shall explain the general method we shall use to compute both A(4) and A(5).

3See refs. [25–27] for earlier perturbative calculations on six-dimensional curved spacetime.
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3 Three-loop results

In this section we shall give our explicit results for the three-loop β-functions for the theory

eq. (2.1), computed using MS. We start by describing the computational methods used,4

and we shall also take the opportunity to describe the MOM scheme (which will feature in

later sections) and how to adapt our methods to obtain the MOM β-functions. The reader

uninterested in the technical details of the Feynman diagram calculations may skip to the

paragraph containing eq. (3.6).

We base our calculations on the original work of refs. [23, 24], although our couplings

are more general than those articles. However, one can always make contact with the results

of refs. [23, 24] by setting gijk = gdijk where g was the coupling constant and dijk was a

group valued object which is completely symmetric in its indices like gijk. For example, if

φi took values in the adjoint representation of SU(Nc) then dijk would be the corresponding

totally symmetric rank 3 colour tensor of that group. From the point of view, however,

of constructing the RG functions it is the evaluation of the underlying Feynman integrals

which is required. For this aspect it is appropriate to focus for the moment on the basic

φ3 Lagrangian

L =
1

2
(∂µφ)

2 +
g

6
φ3 . (3.1)

Previously this was considered in refs. [23, 24, 29] to three loops and the wave function

and coupling constant renormalisation constants were deduced from the divergences in the

2- and 3-point functions. For the latter the pole structure was determined by exploiting

specific properties of the six dimensional spacetime. Briefly it was possible to nullify the

external momentum of one of the legs of the 3-point functions to reduce the evaluation

of the graph to a 2-point function. Such integrals are more straightforward to determine

through knowledge of the 2-point evaluation. The point is that ordinarily the nullification

of an external momentum leads to infrared problems. For instance, a propagator in a

Feynman integral of the form 1/(k2)2 leads immediately to infrared singularities in the

associated four-dimensional integral where k is the loop momentum. In six dimensions,

however, this is not the case. The corresponding propagator where such an infrared issue

would appear in that dimension is 1/(k2)3. Therefore, the nullification used in ref. [24],

which is a simple application of the infrared rearrangement technique, is perfectly valid in

six dimensions for eq. (2.1) and eq. (3.1). Moreover, this method is sufficient to determine

the RG functions in the MS scheme.

However, as our focus here will not be restricted to MS but will include the momentum

subtraction (MOM) scheme we will have to determine the Feynman integrals contributing

to the vertex function for a non-nullified external momentum and to the finite part in ǫ

(where d = 6−2ǫ). Ahead of the description of the computational tools we use it is appro-

priate to recall the definition of the MOM scheme as this informs the integral evaluation.

The particular MOM scheme we use is that developed in ref. [30] for Quantum Chromo-

dynamics. However, we note that it was used prior to that at three loops for eq. (2.1) in

4Similar methods have recently been applied to the computation of the four-loop MS β-function for this

theory [28].
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ref. [31] when the specific coupling tensor corresponded to an SU(3) × SU(3) symmetry

group. First, we recall that in the minimal subtraction scheme the renormalisation con-

stants are defined at a subtraction point in such a way that only the poles with respect to

the regularizing parameter are included in the renormalisation constant. The MS scheme

is a variant on this where a specific finite part is also absorbed into the renormalisation

constants. This additional number, which is ln(4πe−γ) where γ is the Euler-Mascheroni

constant, in effect corresponds to a trivial rescaling of the coupling constant. The renormal-

isation constants of the MOM scheme by contrast are defined at a particular subtraction

point in such a way that after renormalisation at that point there are no O(g) contributions

to the Green’s functions [30]. In other words the Green’s functions are set to their tree

values at the subtraction point [30]. The specific subtraction point used in ref. [30] for

the 3-point vertex functions is that where the squared momenta of all the external legs

are equal. Moreover, they are set equal to (−µ2) where µ is the mass scale introduced to

ensure the coupling constant or tensor is dimensionless in general d dimensions. To achieve

this for eq. (2.1) requires evaluating all the 2-point function and vertex graphs to the finite

parts in ǫ; the latter being a more involved computation than the former. While this is the

canonical definition of the MOM scheme we note that one can have variations on it. For

instance, it is acceptable to have a scheme where the renormalisation constants associated

with 2-point functions are defined in an MS way but the coupling-constant renormalisations

are determined using the MOM definition or vice versa. While it is possible to study such

hybrid schemes in order to consider different applications of our general formalism, we will

concentrate here purely on the MS and MOM schemes. However, we will provide enough

details in the evaluation of the symmetric-point 3-point integrals to allow an interested

reader to explore these hybrid schemes independently. In mentioning that a MOM scheme

had been considered in ref. [31] we need to clarify this in light of our discussion. The

renormalisation of ref. [31] was at three loops in a MOM scheme but for a very specific

coupling tensor. The consequence of the choice of the SU(3)× SU(3) colour group is that

there were no one or two loop vertex graphs to be evaluated at the symmetric point. At

three loops due to the special symmetry properties there was only one graph to evaluate

at the symmetric point, and since it was primitively divergent the evaluation was straight-

forward [31]. Therefore, in considering the general cubic theory in six dimensions eq. (2.1)

we are filling in the gap in the computation of the lower loop integrals for the momentum

subtraction scheme analysis.

One of our aims is the study of the a-theorem up to third order in various RG schemes;

it may appear a formidable task to actually calculate the MOM β-function for eq. (2.1)

at this order given the previous discussion. However, it is possible to determine it purely

from the two loop renormalisation of the vertex functions in this scheme. To illustrate

the process, we consider for the moment the simpler theory eq. (3.1), postponing the

general case of eq. (2.1) to section 5. After choosing a renormalisation scheme for a given

theory, any RG quantity will be a function of the couplings in that scheme. However,

the expressions in different schemes must be related and this is achieved by a conversion

function. If we denote the coupling constant in one scheme by g and that in another by ḡ

– 6 –
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then the conversion function Cg(g) is defined by

Cg(g) =
∂ḡ(g)

∂g
(3.2)

where the bare coupling constant go is related to the two renormalized coupling constants by

go = µǫZg g = µǫZ̄g ḡ . (3.3)

ḡ(g) has the form

ḡ(g) = g +
∞
∑

n=1

hng
2n+1 (3.4)

where the coefficients hn are related to the finite parts of the Zg and Z̄g. Once the expansion

has been established from the explicit renormalisation then the respective β-functions are

related by

β̄(ḡ) = [β(g)Cg(g)]g→ḡ (3.5)

where the mapping means that the coupling constant g is mapped back to ḡ via the inverse

of eq. (3.4). Now returning to our problem of computing the MOM β-function, if ḡ is the

MOM coupling constant and g is that in the MS scheme, it is clear from eq. (3.5) that

only h1 and h2 are required to find β̄(ḡ) at three loops . These may be derived from the

finite part of Z̄g up to two loops which in turn derives from the finite parts of the one and

two-loop vertex functions at the symmetric subtraction point. The coupling redefinition

required to generate the three-loop MOM β-function will be presented in section 5, and

the three-loop MOM β-function itself is given in appendix A.

We now turn to the algorithm we used to evaluate the two and three loop Feynman

integrals to the requisite orders in ǫ to determine the RG functions in MS and MOM. The

method we use is to apply the Laporta algorithm [32] to the two and three loop graphs

contributing to the 2-point and vertex functions. This method systematically integrates

by parts all the graphs in such a way that they are algebraically reduced to a basic set

of what is termed master integrals. Then the ǫ-expansions of the latter are substituted

to complete the computation. The masters have to be determined by direct methods or

one which does not use integration by parts and this is the more demanding aspect of the

calculation. The version of the Laporta algorithm which we used was Reduze [33, 34].

To handle the surrounding tedious algebra we used the symbolic manipulation language

Form [35, 36]. The whole evaluation proceeded automatically by generating all the Feyn-

man diagrams electronically with the Qgraf package [37]. While we have summarised

what is now a standard procedure to carry out multiloop Feynman graph evaluation, the

novel feature here is finding a method to access the six dimensional master integrals. The

most straightforward way to proceed is to realise that if the problem was in four dimensions

then the corresponding masters are already known. For instance, the three loop 2-point

functions were developed for the Mincer package [38] which was encoded in Form in

ref. [39]. Equally the two loop 3-point function masters were determined over a period

of years in refs. [40–44]. While the algorithms which were developed to determine such

four-dimensional masters could in principle be extended to six dimensions, in practice this

– 7 –
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would be tedious. Instead we have used the Tarasov method developed in refs. [45, 46].

This allows one to relate a scalar (master) integral in d-dimensions to integrals with the

same propagator topology in (d + 2) dimensions. The caveat is that the integrals in the

higher-dimensional case have increased powers of their propagators. However, the Laporta

algorithm [32] can be applied to them in order to reduce them to the corresponding master

in that dimension and integrals which involve masters where the number of propagators

in the topology have been reduced. In summary a four dimensional master can be related

to its unknown six-dimensional cousin plus already determined lower-level six-dimensional

masters. Hence one can algebraically solve the system for the masters to the order in ǫ

which they are required for the 2-point and vertex functions. One feature which invariably

arises in the use of integration by parts is the appearance of spurious poles. Consequently

in the determination of the masters in six dimensions as well as the reduction of the Feyn-

man graphs contributing to the RG functions, one sometimes has to evaluate the masters

beyond the finite part in ǫ. In the appendix we record the expressions for the nontrivial one

and two loop 3-point masters; though we stress that the expressions given there are for the

pure integral. There has been no subtraction of subgraphs as was the case in the results

presented for graphs in refs. [22, 24]. This is primarily because in the automatic Form

programmes to determine the RG functions we use the algorithm of ref. [47] to implement

the renormalisation automatically in our two schemes. Briefly this is achieved by perform-

ing the calculation in terms of the bare coupling constant or tensor. Then what would be

termed counterterms are introduced automatically by rescaling the bare parameter to the

renormalized one. The so-called constant of proportionality would ordinarily correspond

to the coupling constant renormalisation constant which therefore appends the necessary

counterterms. Finally, the definition of the renormalisation constant is implemented at

this last stage. At whatever loop order one is working to, the remaining undetermined

counterterm is defined according to whether the scheme is MS or MOM.

We can now present our three-loop results for MS. At this order we require several new

tensors. Those contributing to the one-particle irreducible (1PI) terms in the β-function are

gijk(3e) = gilm(2b)g
jlkm
22 , gijk(3f) = glmi

(2b)g
jlkm
22 , gijk(3g) = gipqgjpr(1a)g

kqr

(1a),

gijk(3h) = gilm(1a)g
nq

(1A)g
jlngkmq, gijk(3i) = gpq(1A)g

ipr

(1a)g
jqkr
22 , gijk(3j) = gilmgjlngkmqgnq(2B),

gijk(3k) = gmil
(2c)g

jlkm
22 , gijk(3l) = gilm(2c)g

jlkm
22 , gijk(3m) = gilngjmqgklmgnq(2C),

gijk(3n) = gilngjmqgklmgnq(2D), gijk(3o) = gpq(1A)g
rs
(1A)g

jpkr
22 giqs, gijk(3p) = gistgqt(1A)g

jrps
22 gkpqr22 ,

gijk(3q) = girs(1a)g
jqps
22 gkpqr22 , gijk(3r) = gipqgjrsgknps22 grnq(1a), gijk(3s) = gilm(2d)g

jlkm
22 ,

gijk(3t) = gipqgjrps22 gknrl22 gnqls22 , gijk(3u) = gkpqgjrsn22 gispl22 grlqn22 , (3.6)

where

gijkl22 = gijmgklm, gij(2D) = gim(1A)g
mj

(1A), (3.7)

and g(1a), g(1A) etc are defined in eqs. (2.3), (2.4). The tensors contributing to the anoma-

– 8 –
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lous dimension are

gij(3D) = gipqgqjp(2b), gij(3E) = gipqgjpq(2b), gij(3F ) = gipqgjpq(2c),

gij(3G) = gimngmp

(1A)g
pnj

(1a), gij(3G′) = ginp(1a)g
mp

(1A)g
jmn, gij(3H) = gipjq22 gpq(2B),

gij(3I) = gipqgjpq(2d), gij(3J) = gimngmp

(1A)g
nq

(1A)g
jpq, gij(3K) = gipjq22 gpq(2C),

gij(3L) = ginjq22 gnq(2D). (3.8)

The notation for the two-index tensors in eq. (3.8) matches the diagrams in figure 7 of

ref. [22], so that gij(3D) corresponds to the tensor structure of figure 7(d), and so on. The

notation for the three-index tensors gijk(3e) . . . g
ijk

(3u) in eq. (3.6) similarly matches the diagrams

in figures 8 and 9 of ref. [22]; and furthermore, the indices i, j, k are arranged to run anti-

clockwise around the diagram, with i at the top. Finally, gijk(3D) . . . g
ijk

(3L), as defined in

eq. (2.5) in terms of gij(3D) . . . g
ij

(3L), correspond to three-point diagrams with an insertion of

the corresponding wave-function renormalisation diagram of figure 7 of ref. [22].

As in section 2, we write the three-loop β-function as

β(3) = c(3e)g(3e) + . . .+ c(3u)g(3u) + c(3D)g(3D) + . . .+ c(3L)g(3L). (3.9)

The coefficients in eq. (3.9) corresponding to anomalous dimension contributions are

given by

c(3D) =
7

864
, c(3E) =

71

1728
, c(3F ) = − 103

10368
, c(3G) = c(3G′) = − 1

108
,

c(3H) = − 121

5184
, c(3I) =

7

96
− 1

24
ζ(3), c(3J) =

23

62208
, c(3K) =

103

7776
,

c(3L) = − 13

31104
, (3.10)

where ζ(z) is the Riemann ζ-function, and the remaining coefficients are given by

c(3e) = −3

8
, c(3f) =

1

4
,

c(3g) =
5

16
, c(3h) = − 47

864
, c(3i) = − 47

432
, c(3j) =

23

288
,

c(3k) =
5

27
, c(3l) =

11

216
, c(3m) = − 19

324
, c(3n) =

11

1728
,

c(3o) =
11

1728
, c(3p) =

11

144
, c(3q) = − 1

16
, c(3r) = −23

24
+ ζ(3),

c(3s) = −29

48
+

1

2
ζ(3), c(3t) = −1, c(3u) =

1

3
− ζ(3). (3.11)

We have computed all the coefficients in eqs. (3.10), (3.11) explicitly and independently;

and we have checked that we reproduce the wave function and β-function results of refs. [22]

and [23, 24] (in the latter case, after we specialize to the corresponding restriction on the

group theory structure used there). Although in ref. [22] the final β-function results are

given for two particular theories, the general results can be constructed from the individual

diagrammatic results. This is largely the case for ref. [23, 24] too; however, the results for

the pairs {c(3e), c(3f)}, {c(3k), c(3l)}, and {c(3D), c(3E)}, are presented together and cannot

be separated.
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A
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1 A
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2 A

(4)
3 A

(4)
4 A

(4)
5 A

(4)
6

Table 2. Contributions to A(4).

4 The a-function beyond leading order

We now turn to the derivation of A(4), A(5). At two and three loops, we have avoided

any diagrammatic computations using the methods of ref. [6, 7], as explored in the six-

dimensional context in refs. [19, 20]; instead we have proceeded to infer A by imposing

eq. (1.1). Beyond leading order (corresponding to eq. (2.7)) we need to take into account

potential higher order corrections to TIJ . We suppress the details here but the calcula-

tion proceeds along similar lines to those presented in full in the four-dimensional case in

refs. [48, 49]; a similar method was used in the pioneering work of Wallace and Zia [50].

At next-to-leading order the general form of the a-function is given by

A(4) = λ

[

− 1

12
A

(4)
1 + a2A

(4)
2 + a3A

(4)
3 + a4A

(4)
4 + a5A

(4)
5 + α1β

(1)ijkβ(1)ijk

]

, (4.1)

where λ is defined in eq. (2.8). The individual contributions to Ã(4), depicted above in

table 2, are given by

A
(4)
1 = gijkgijk(2d), A

(4)
2 = gijkgkij(2b), A

(4)
3 = gijkgijk(2c),

A
(4)
4 = gijkgijk(2C), A

(4)
5 = gij(1A)g

jk

(1A)g
ki
(1A), (4.2)

with the tensor structures again defined in eqs. (2.3), (2.4), (2.5), and (from eq. (2.2))

β(1)ijkβ(1)ijk = A
(4)
2 − 1

2
A

(4)
3 +

1

24
A

(4)
4 +

1

48
A

(4)
5 . (4.3)

Correspondingly the tensor TIJ in eq. (1.1) is automatically symmetric at this order

(so that GIJ = TIJ) and may be written in the form

T
(3)
ijk,lmn =

4
∑

α=1

t(3)α

(

T (3)
α

)

ijk,lmn
, (4.4)

where the individual structures which may arise are depicted in table 3. Here the diagrams

represent t
(3)
α (T

(3)
α )ijk,lmnβ

ijk(dg)lmn for α = 1 . . . 4. A cross denotes (dg)ijk and a diamond

represents βijk.

A careful analysis leads to a system of linear equations whose solution imposes a single

consistency condition on the β-function coefficients:

6c(2C) + c(2c) + c(2B) = 0. (4.5)
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(1)
(1) (1)

(1)

T
(3)
1 T

(3)
2 T

(3)
3 T

(3)
4

Table 3. Next-to-leading-order metric terms T (3).

This is satisfied by the MS coefficients as given by eq. (2.6). Similar integrability conditions

(on three-loop β-function coefficients) were found in ref. [48]. In eq. (4.1), α1 is arbitrary,

reflecting the general freedom expressed in eq. (1.3); and in particular for MS we have

a2 = −1

8
+ α1, a3 =

7

48
− 1

2
α1, a4 = − 7

288
+

1

24
α1, a5 = − 5

864
+

1

48
α1. (4.6)

Our methods therefore specify A up to the freedom expressed in eq. (1.3). The metric

coefficients in eq. (4.4) are given by

t
(3)
2 = − 7

24
λ+

1

2
α1, t

(3)
3 + t

(3)
4 = −1

8
λ+ α1, t

(3)
1 = −6α1, (4.7)

where once more λ is defined in eq. (2.8). The metric coefficients therefore also reflect

the freedom expressed in eq. (1.3); but there is an additional arbitrariness since only the

combination t
(3)
3 + t

(3)
4 is determined.

At the next order (corresponding to the three-loop β-function) we need to face the

possibility that βI in eq. (1.1) should be replaced by a generalisation BI due to the invari-

ance of the Lagrangian eq. (2.1) under O(N) transformations of the real fields φi. It was

shown in ref. [7] that in this situation, in the general case with couplings gI we have

βI → BI = βI − (vg)I (4.8)

where v is an element of the Lie algebra of the symmetry group. In the case at hand, this

corresponds to

βijk → Bijk = βijk − vl(igjk)l (4.9)

where v is an antisymmetric matrix. In principle v could be computed using similar meth-

ods to those described in ref. [7] and carried out explicitly in the four-dimensional case in

ref. [48]; but it is clear a priori that the relevant tensor structures are the same as those

appearing in the three-loop anomalous dimension. Since most of those are symmetric, the

only possible 1PI contributions to v correspond to

v = cv(3G)(g(3G) − g(3G′)) (4.10)

with g(3G), g(3G′) as defined in eq. (3.8).
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The solution of eq. (1.1) leads to a complex system of linear equations whose solution

imposes several consistency conditions on the β-function coefficients:

c(3q) − c(3s) − 12c(3I) = −6c(2B),

c(3r) − 2c(3s) + 12c(3p) = 12c(2c),

c(3e) − c(3g) − 24c(3h) − 144c(3o) − 72Z = −3(c(2B) + 2c(2c)),

c(3e) − c(3g) − 6c(3i) + 6c(3k) + 72Z = 3c(2B) + 144c2(2c),

c(3j) + 12c(3n) − c(3E) + 12c(3H) + 36c(3K) + 72c(3L)

−12(c(3ρ) + c(3σ))− 72(c(3τ) + c(3χ)) + 6Z = 12(2c2(2c)+2c(2c)c(2B)−c2(2B)),

2c(3h)+6c(3m)−12c(3n)+18c(3o)+c(3D)+12c(3F )+72c(3J)

+36c(3K) − 72c(3L) =
11

144
[1 + 24(c(2B) − c(2c))],

c(3e) −
1

2
c(3f) + 6c(3k) − 12c(3l) = 0,

c(3j) + 6c(3m) + 6c(3H) + 36c(3K) = 12c(2B)c(2c),

c(3h) − c(3i) + c(3l) − c(3D) − 12c(3F ) + 12Z = 12c(2c)(c(2B) + 2c(2c)), (4.11)

and

12cv(3G)+6(c(3G)−c(3G′))+12(c(3ρ)−c(3σ))+72(c(3τ)−c(3χ)) = c(3j)+6c(3m)+12c2(2c), (4.12)

where

Z = c(3G) + c(3G′) − c(3o) +
1

6
c(3E) − 2c(3F ) + 12c(3J). (4.13)

We have included in our calculations potential contributions to the three-loop β-functions

defined according to eq. (2.5) in terms of one-particle-reducible (1PR) anomalous dimension

structures given by

gij(3ρ) = gil(2B)g
lj

(1A), gij(3σ) = gil(1A)g
lj

(2B), gij(3τ) = gik(2C)g
kj

(1A), gij(3χ) = gik(1A)g
kj

(2C), (4.14)

using again tensors defined earlier in eq. (2.4). Such contributions cannot of course arise

in MS but are potentially present in other schemes, in particular the MOM scheme which

we shall be considering later as an example. (There are other potential 1PR contributions

in a general scheme, but we have included only the ones which are relevant for MOM.) In

deriving eqs. (4.11), (4.12), we have imposed the two-loop consistency condition eq. (4.5)

and also used the MS values of eq. (2.6) for all two-loop β function coefficients except c(2B)

and c(2c), since as we shall see later (in eq. (5.5)), these are the only scheme-dependent

values. The conditions in eq. (4.11) are readily checked to be satisfied by the MS three-loop

β-function coefficients given in eq. (3.10), (3.11); however, eq. (4.12) may only be satisfied

within MS by taking a non-zero value of cv(3G), namely

(

cv(3G)

)

MS
= − 137

10368
. (4.15)

We shall assume this value from now on, though of course it would be reassuring to compute

it directly along the lines of ref. [13].
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Given that the consistency conditions are satisfied, we may solve eq.(1.1) for the a-

function. With the three-loop MS coefficients we find

A(5) =

16
∑

i=1

a
(5)
i A

(5)
i , (4.16)

where

A
(5)
1 = gijkgijk(3I) = gijkgijk(3p), A

(5)
9 = gijkgijk(3M) = gijkgijk(3N) = gijkgijk(3n),

A
(5)
2 = gijkgijk(3q) = gijkgijk(3r) = gijkgijk(3s), A

(5)
10 = gijkgijk(3j),

A
(5)
3 = gijkgijk(3u), A

(5)
11 = gijkgijk(3H) = gijkgijk(3m),

A
(5)
4 = gij(1A)g

jk

(1A)g
kl
(1A)g

li
(1A), A

(5)
12 = gijkgijk(3e) = gijkgijk(3f) = gijkgijk(3g),

A
(5)
5 = gijkgijk(3L)= gijkgijk(3P )= gijkgijk(3Q), A

(5)
13 = gijkgijk(3D)= gijkgijk(3h)= gijkgijk(3k)= gijkgijk(3l),

A
(5)
6 = gijkgijk(3K), A

(5)
14 = gijkgijk(3E) = gijkgijk(3i),

A
(5)
7 = gijkgijk(3J), A

(5)
15 = gijkgijk(3o) = gijkgijk(3G),

A
(5)
8 = gijkgijk(3t), A

(5)
16 = gijkgijk(3F ), (4.17)

with the tensor structures gijk(3p) etc. as defined in eq. (3.6). The invariants A
(5)
1 . . . A

(5)
16 are

depicted in table 4. The coefficients a
(5)
i in eq. (4.16) are given by

a
(5)
1 =

(

9

64
− 1

16
ζ(3)

)

λ− 1

4
α1, a

(5)
9 =

47

1152
λ+

1

36
α1 +

1

144
α̃1 −

1

6
α̃2 −

1

6
α̃3,

a
(5)
2 =

(

−29

48
+

1

2
ζ(3)

)

λ+ α1, a
(5)
10 = − 23

576
λ− 1

3
α1 + α̃3,

a
(5)
3 =

(

1

8
− 3

8
ζ(3)

)

λ, a
(5)
11 = − 7

128
λ+

5

24
α1 −

1

3
α̃3,

a
(5)
4 = − 145

82944
λ+

1

144
α̃2 +

1

144
α̃3, a

(5)
12 =

107

96
λ+

3

2
α1 + α̃1,

a
(5)
5 = − 5

41472
λ− 11

864
α1 +

1

24
α̃2 +

1

36
α̃3, a

(5)
13 = − 5

32
λ− 5

6
α1 −

1

3
α̃1,

a
(5)
6 =

29

2304
λ− 11

432
α1 +

1

36
α̃3, a

(5)
14 = − 35

128
λ− 1

8
α1 −

1

6
α̃1 + α̃2,

a
(5)
7 =

1

72
α̃2, a

(5)
15 =

101

3456
λ+

7

72
α1 +

1

24
α̃1 −

1

3
α̃2,

a
(5)
8 = −1

8
λ, a

(5)
16 = − 5

2304
λ+

7

144
α1 +

1

72
α̃1, (4.18)

where λ is again defined in eq. (2.8) and we explicitly display the freedom as expressed in

eq. (1.3)

A →A+ 2α1β
(1)ijkβ(2)ijk + α̃1β

(1)ijkβ(1)klmgiljm22 + α̃2β
(1)iklβ(1)jklgij(1A)

+ α̃3β
(1)ijkβ(1)lmngjklgimn, (4.19)
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A
(5)
1 A

(5)
2 A

(5)
3 A

(5)
4 A

(5)
5 A

(5)
6

A
(5)
7 A

(5)
8 A

(5)
9 A

(5)
10 A

(5)
11 A

(5)
12

A
(5)
13 A

(5)
14 A

(5)
15 A

(5)
16

Table 4. Contributions to A(5).

using the results of eqs. (2.2), (2.6). The terms with α̃1-α̃3 correspond to the terms with

T
(3)
1 -T

(3)
3 in table 3 (note that T

(3)
3 , T

(3)
4 have the same effect at this order, as may be

observed in eq. (4.7)).

At this loop order the tensor TIJ is not inevitably symmetric. Analogously to the

previous order, the metric may be expressed in the form

T
(4)
ijk,lmn =

30
∑

α=1

t(4)α

(

T (4)
α

)

ijk,lmn
. (4.20)

The structures which may arise are depicted in table 5, using a similar convention to the

previous order. As before, a cross denotes (dg)ijk and a diamond represents βijk. We

see immediately that T
(4)
1 . . . T

(4)
16 are individually symmetric; the remaining diagrams are

grouped in pairs whose coefficients should be equal for symmetry. Solving eq. (1.1) certainly

does not guarantee that t
(4)
17 = t

(4)
18 , t

(4)
19 = t

(4)
20 etc. However it turns out that we can impose

symmetry on T
(4)
IJ provided the additional condition

c(3m) − 2c(3n) +
1

6
c(3E) − c(3H) − 12c(3L) − Z =

11

36
(c(2B) − 2c(2c)) (4.21)

is satisfied. The values in eq. (3.10), (3.11) do indeed satisfy this condition and we obtain

a symmetric metric with the values

t
(4)
1 =

13

8
λ− 3

2
λζ(3)− 3α1 − t

(4)
3 ,

t
(4)
2 =

1

4
λ− 2α1,

t
(4)
4 = −161

48
λ+

11

2
α1 + 24α̃2,

t
(4)
5 = −89

24
λ+ 11α1 + 48α̃2,
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t
(4)
6 = −31

24
λ+ 4α1 + 24α̃2,

t
(4)
7 = −13

24
λ+

1

3
α1 − 2α̃2,

t
(4)
8 =

49

144
λ− 7

12
α1 − 4α̃2,

t
(4)
9 = −11

96
λ− 2α̃2,

t
(4)
10 =

1

3
α̃2,

t
(4)
11 =

391

1728
λ− 11

72
α1 +

1

3
α̃2,

t
(4)
12 =

11

432
λ+

4

3
α̃2 − t

(4)
13 ,

t
(4)
14 =

1

192
λ+

1

3
α̃2,

t
(4)
15 = − 299

1728
λ− t

(4)
16 − 2t

(4)
17 +

11

36
α1 +

5

3
α̃2,

t
(4)
17 = t

(4)
18 ,

t
(4)
19 = t

(4)
20 = −59

72
λ+

2

3
t
(3)
4 − 12(t

(4)
16 + t

(4)
17 ) +

11

12
α1 + 6α̃2,

t
(4)
21 = t

(4)
22 =

115

288
λ− 7

6
α1 − 8α̃2,

t
(4)
23 = t

(4)
24 =

73

48
λ− 2

3
t
(3)
4 + 12(t

(4)
16 + t

(4)
17 )−

25

12
α1 − 12α̃2,

t
(4)
25 = t

(4)
26 =

101

288
λ− 7

12
α1 − 6α̃2,

t
(4)
27 = t

(4)
28 =

373

1728
λ− 11

36
t
(3)
4 + 2(t

(4)
16 + t

(4)
17 )−

11

72
α1 − α̃2,

t
(4)
29 = t

(4)
30 = −11

48
λ+

11

36
t
(3)
4 − 2(t

(4)
16 + t

(4)
17 ) +

11

72
α1 + 2α̃2. (4.22)

The values of t
(4)
3 , t

(4)
13 , t

(4)
16 , t

(4)
17 remain arbitrary, in a similar fashion to the previous

order where in eq. (4.7) only t
(3)
3 + t

(3)
4 was determined. Before imposing symmetry, the

T
(4)
IJ coefficients would also display the freedom eq. (1.3) as expressed at this order in

eq. (4.19); however, the general redefinition eq. (4.19) is not compatible with symmetry

of T
(4)
IJ . Nevertheless, as may be seen in eq. (4.22), there is still a residual two-parameter

freedom expressed in α1, α̃2, corresponding to choosing

α̃1 = −12α̃2 −
7

2
α1, α̃3 = 2α̃2 +

11

24
α1. (4.23)

It is worth remarking that the freedom in α1 is in general only preserved in the symmetric

case providing eq. (4.5) is satisfied and is therefore somewhat non-trivial. We note that in

the four-dimensional case, the requirement of symmetry of TIJ was more restrictive and

was not possible within MS [48].
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(1) (1)

(1)

(1)

(1)

(1)

T
(4)
1 T

(4)
2 T

(4)
3 T

(4)
4 T

(4)
5 T

(4)
6

(1) (1)

(1)

(1) (1)

(1)

T
(4)
7 T

(4)
8 T

(4)
9 T

(4)
10 T

(4)
11 T

(4)
12

(1)

(1)

(1)

(1)

(1)

(1)

T
(4)
13 T

(4)
14 T

(4)
15 T

(4)
16 T

(4)
17 T

(4)
18

(1) (1)

(1)

(1)

(1) (1)

T
(4)
19 T

(4)
20 T

(4)
21 T

(4)
22 T

(4)
23 T

(4)
24

(1)

(1) (1)
(1)

(1) (1)

T
(4)
25 T

(4)
26 T

(4)
27 T

(4)
28 T

(4)
29 T

(4)
30

Table 5. Next-to-next-to-leading-order metric terms T (4).

5 Scheme changes

In this section we shall turn to a fuller discussion of scheme changes such as that from MS

to MOM. As we mentioned in section 3, we have obtained the three-loop MOM β-function

by implementing the appropriate scheme change, avoiding a separate three-loop Feynman

diagram calculation for MOM. Here we wish to consider the effect of more general scheme

changes, in order to demonstrate the scheme-invariance of the consistency conditions on the

β-function coefficients, eqs. (4.11); we shall therefore give our results in full generality. We

now rewrite the coupling redefinition of eq. (3.4), which implements the change of scheme,

in the form

gijk → gijk ≡ gijk(g), (5.1)

returning to the general couplings of eq. (2.1) and a general scheme change. The effects of

eq. (5.1) may be computed from the generalisation of eq. (3.5),

β
ijk

(g) = µ
d

dµ
gijk = β · ∂

∂g
gijk(g) (5.2)
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g(2e) g(2f ) g(2D)

Table 6. Two-loop 1PR structures arising from coupling redefinitions.

(where β · ∂
∂g

≡ βklm ∂
∂gklm

) which to lowest order may be written

δβijk = β · ∂

∂g
δgijk − δg · ∂

∂g
βijk. (5.3)

The effect of a one-loop change

δg = δ1g(1a) + δ2g(1A) (5.4)

on the two-loop β-functions is easily computed as

δc(2B) = −1

6
∆, δc(2c) =

1

6
∆, ∆ = δ1 + 12δ2 (5.5)

where c(2B) and c(2c) are defined in eq. (2.2). It is readily checked that the consistency

condition eq. (4.5) is invariant under eq. (5.5), as expected.

At three loops we consider redefinitions

δg = ǫ1g(2b) + ǫ2g(2c) + ǫ3g(2d) + ǫ4g(2e) + ǫ5g(2f) + ǫ6g(2B) + ǫ7g(2C) + ǫ8g(2D), (5.6)

where

g(2e) = gilmglj(1A)g
mk
(1A), gijk(2f) = gijl(1a)g

lk
(1A), gijk(2D) = gijlglm(1A)g

mk
(1A) (5.7)

as depicted in table 6, and the remaining tensor structures are defined in eqs. (2.3); and

we also need to consider the effect at this order of the lower-order redefinitions given by

eqs. (5.4), (5.5).

In general, in addition to modifying the coefficients already present in the MS β-

function as defined in eq. (3.9) (which correspond to 1PI diagrams, or 1PI wave-function

renormalisation diagrams attached as in eq. (2.5)) these redefinitions will generate tensor

structures corresponding to 1PR diagrams given by

gijk(3α)=gil(1A)g
klj

(2b), gijk(3β)=gjl(1A)g
lik
(2c), gijk(3γ)=gil(1A)g

jlk

(2c), gijk(3δ)=gil(2B)g
ljk

(1a),

gijk(3ǫ)=gil(2C)g
ljk

(1a), gijk(3ζ)=gil(1A)g
jm

(1A)g
lmk
(1a), gijk(3η)=gil(2D)g

ljk

(1a), gijk(3κ)=gil(1A)g
jm

(2B)g
lmk,

gijk(3λ)=gim(1A)g
jl

(2C)g
lmk, gijk(3µ)=gil(1A)g

jm

(2D)g
lmk, gijk(3ν)=gil(1A)g

lm
(2D)g

mjk, (5.8)

the tensor structures on the right-hand sides again defined in eqs. (2.3). These 1PR struc-

tures are depicted in table 7; we denote the coefficients of these tensor structures in the

β-function by c3α . . . c3χ, respectively.
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g
ijk
(3α)

g
ijk
(3β)

g
ijk
(3γ)

g
ijk
(3δ)

g
ijk
(3ǫ)

g
ijk
(3ζ)

g
ijk
(3η)

g
ijk
(3κ)

g
ijk
(3λ)

g
ijk
(3µ)

g
ijk
(3ν)

Table 7. Three-loop 1PR structures arising from coupling redefinitions.

We obtain using eq. (5.2) (expanding now to 2nd order in δ1, δ2 where necessary)

δc(3g) = −2ǫ1 − 2c(2b)δ1 + δ21 ,

δc(3h) =
1

6
ǫ1 − ǫ2 − c(2c)δ1 − 2c(2b)δ2 −

1

6
δ21 ,

δc(3i) =
1

3
ǫ1 − 2ǫ2 + 2ǫ5 − 2c(2c)δ1 − 4c(2b)δ2 −

1

3
δ21 − 2δ1δ2,

δc(3j) = −2ǫ2 + 2ǫ6 − 2c(2c)δ1 + 2c(2B)δ1 −
1

3
δ21 − 4δ1δ2,

δc(3k) =
1

3
ǫ1 + 2ǫ2 + 2c(2c)δ1 − 4c(2b)δ2,

δc(3l) =
1

6
ǫ1 + ǫ2 + c(2c)δ1 − 2c(2b)δ2,

δc(3m) =
1

3
ǫ2 + 2ǫ7 − 4c(2c)δ2 + 2c(2C)δ1 − 2

(

1

3
δ1δ2 + 4δ22

)

,

δc(3n) =
1

3
ǫ2 + 2ǫ8 − 4c(2c)δ2 −

2

3
δ1δ2 − 7δ22 ,

δc(3o) =
1

3
ǫ2 + ǫ4 − 4c(2c)δ2 −

2

3
δ1δ2 − 5δ22 ,

δc(3p) =
1

3
ǫ3 − 4c(2d)δ2, δc(3q) = −ǫ3 − c(2d)δ1,

δc(3r) = −2ǫ3 − 2c(2d)δ1, δc(3s) = ǫ3 + c(2d)δ1, (5.9)
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and

δc(3D) = −1

3
ǫ1 − 2ǫ6 + 4c(2b)δ2 − 2c(2B)δ1 + 4δ1δ2 +

1

3
δ21 ,

δc(3E) = −1

6
ǫ1 − 2ǫ6 + 2c(2b)δ2 − 2c(2B)δ1 +

1

4
δ21 + 4δ1δ2,

δc(3F ) = −1

6
ǫ2 +

1

6
ǫ6 + 2c(2c)δ2 − 2c(2B)δ2 + 4δ22 +

1

3
δ1δ2,

δc(3G) = δc(3G′) = −1

6
ǫ2 +

1

3
ǫ6 − ǫ7 −

1

6
ǫ5

+ 2c(2c)δ2 − 4c(2B)δ2 − c(2C)δ1 +
1

2
δ1δ2 + 8δ22 ,

δc(3H) = −1

3
ǫ6 − 2ǫ7 + 4c(2B)δ2 − 2c(2C)δ1,

δc(3I) = −1

6
ǫ3 + 2c(2d)δ2,

δc(3J) = −1

6
ǫ4 +

1

6
ǫ7 − 2c(2C)δ2 −

1

6
δ22 ,

δc(3L) =
1

3
ǫ7 −

1

3
ǫ8 − 4c(2C)δ2 −

1

6
δ22 , (5.10)

and also for the 1PR structures

δc(3α) = −2ǫ5 + 2δ1δ2, δc(3β) =
1

6
ǫ5 −

1

6
δ1δ2, δc(3γ) = 2ǫ4 +

1

3
ǫ5 −

1

3
δ1δ2 − 2δ22 ,

δc(3δ) = −2ǫ5 + 2δ1δ2, δc(3ǫ) =
1

3
ǫ5 −

1

3
δ1δ2, δc(3ζ) = −ǫ4 + δ22 ,

δc(3η) =
1

6
ǫ5 −

1

6
δ1δ2, δc(3κ) = −4ǫ4 + 4δ22 , δc(3λ) =

2

3
ǫ4 −

2

3
δ22 ,

δc(3µ) =
1

3
ǫ4 −

1

3
δ22 , δc(3ν) =

1

6
ǫ8 −

1

4
δ22 ,

δc(3ρ) = − 1

12
ǫ5 +

1

12
ǫ6 − 2ǫ8 − c(2B)δ2 + 4δ22 +

1

12
δ1δ2,

δc(3σ) = − 1

12
ǫ5 −

1

12
ǫ6 − 2ǫ8 + c(2B)δ2 + 2δ22 +

1

12
δ1δ2,

δc(3τ) = −1

6
ǫ4 +

1

12
ǫ7 +

1

3
ǫ8 − c(2C)δ2 −

1

2
δ22

δc(3χ) = −1

6
ǫ4 −

1

12
ǫ7 +

1

3
ǫ8 + c(2C)δ2 −

1

6
δ22. (5.11)

One may now verify that the consistency conditions eqs. (4.11) are invariant under the

coupling redefinitions of eq. (5.6); and so is eq. (4.12), provided we assume that cv(3G) is

scheme-independent, as is natural for a quantity appearing for the first time at this loop

order. Finally, it is interesting to note that the condition required for symmetry of T
(4)
IJ ,

eq. (4.21), is also invariant under these transformations so that a symmetric TIJ can be

obtained in any renormalisation scheme at this order.

The coefficients c(3α)–c(3ν) corresponding to 1PR diagrams, and c(3ρ)–c(3χ) correspond-

ing to 1PR contributions to the anomalous dimension, are of course zero in MS. It would

be natural to restrict ourselves to transformations which take us to other schemes with
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the same property; which indeed one might expect to be shared by any well-defined dia-

grammatic renormalisation scheme. Now it is clear from eq. (5.11) that any scheme change

such that

ǫ4 = δ22, ǫ5 = δ1δ2, ǫ8 =
3

2
δ22 , (5.12)

will preserve the vanishing of c(3α)–c(3ν), but will then inevitably give

δc(3ρ) = −δc(3σ) =
1

12
ǫ6 + δ22 − c(2B)δ2,

δc(3τ) = −δc(3χ) =
1

12
ǫ7 −

1

6
δ22 − c(2C)δ2. (5.13)

The values of c(3ρ), c(3σ) are opposite in sign, but not manifestly zero; likewise c(3τ), c(3χ).

Of course one could decide to choose ǫ6, ǫ7 so as to ensure the vanishing of c(3ρ)–c(3χ)
in eq. (5.13), but this seems rather restrictive and would not necessarily correspond to a

natural diagrammatic renormalisation prescription. We shall therefore approach the issue

from a different angle and consider in some detail the example of MOM, which certainly

is defined by a diagrammatic prescription as described in detail in section 3.

The MOM and MS results first part company at two loops. The two-loop MOM

β-function coefficients may readily be computed directly using the methods described in

section 3. They are given by taking in eq. (2.2)

cMOM
(2B) =

1

36
− 2

81
π2 +

1

27
ψ′

(

1

3

)

, cMOM
(2c) =

1

8
+

2

81
π2 − 1

27
ψ′

(

1

3

)

, (5.14)

where ψ(z) is the Euler ψ-function defined by

ψ(z) =
d

dz
ln Γ(z), (5.15)

the other two-loop β-function coefficients remaining unchanged. Alternatively, we may

compute the two-loop MOM β-function coefficients by effecting the appropriate scheme

change as described above. Comparing eqs. (2.6), (5.14), we simply require to take in

eq. (5.5)

∆ =
1

6
+

4

27
π2 − 2

9
ψ′

(

1

3

)

(5.16)

to effect the change to the MOM values. Of course this does not specify δ1, δ2 in eq. (5.5)

uniquely. However, calculating the coupling redefinition required for the change from MS

to MOM as described in section 3, we find that the change to MOM corresponds to taking

δ1 =
3

2
+

4

27
π2 − 2

9
ψ′

(

1

3

)

, δ2 = −1

9
, (5.17)

and it is easy to check that eqs. (5.5), (5.17) are compatible with the difference between

eqs. (2.6) and (5.14).

The transformations required to change scheme from MS to MOM at the three-loop

level may similarly be calculated using the methods described in section 3. They are given
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by taking in eq. (5.6)

ǫ1 =
51

32
+

11

54
π2 − 11

36
ψ′

(

1

3

)

,

ǫ2 = − 703

1728
− 41

972
π2 +

41

648
ψ′

(

1

3

)

,

ǫ3 =
59

48
− 1

2
ζ(3)− 7

27
π2 +

1

144
ln(3)2

√
3π

− 1

12
ln(3)

√
3π − 29

3888

√
3π3 + 3s2

(π

6

)

− 6s2

(π

2

)

− 5s3

(π

6

)

+ 4s3

(π

2

)

+
7

18
ψ′

(

1

3

)

,

ǫ6 = −215

864
, ǫ7 =

791

10368
, (5.18)

together with ǫ4, ǫ5 and ǫ8 as given in eqs. (5.12), with δ1,2 as defined in eq. (5.17).

The explicit MOM results for the three-loop β-function coefficients obtained by combining

eqs. (3.10), (3.11), (5.9), (5.10) are somewhat lengthy and are postponed to appendix A.

Unfortunately the values of ǫ6, ǫ7 shown in eq. (5.18), do not correspond to the van-

ishing of δc(3ρ), δc(3σ), δc(3τ), δc(3χ) in eq. (5.13). The scheme transformation therefore

predicts non-vanishing MOM β-function contributions from these 1PR anomalous dimen-

sion structures, which seems somewhat counter-intuitive. Indeed, after a careful direct

calculation using the standard definition of MOM given in Sect 3, and taking account of

the fact that the relation between β-function coefficients and renormalisation constants is

less trivial in MOM than in MS, we obtain cMOM
(3χ) = cMOM

(3τ) = 0. It seems likely that the

same applies to cMOM
(3ρ) , cMOM

(3σ) . We therefore have an apparent inconsistency between the

MOM values of c(3ρ) . . . c(3χ) obtained by the coupling redefinition process from MS, and

those obtained by direct calculation. We have checked the anomalous dimension coefficients

cMOM
(3J) , cMOM

(3K) , cMOM
(3L) obtained by coupling redefinition as given in eq. (A.1) by a direct

three-loop diagrammatic computation; it therefore appears likely that the discrepancy only

affects the particular contriubtions c(3ρ) . . . c(3χ) corresponding to 1PR anomalous dimen-

sion contributions. We also see from eq. (5.10) that this check of cMOM
(3J) , cMOM

(3L) confirms

the value of ǫ7 and therefore fixes δc(3τ) = −δc(3χ) 6= 0 in eq. (5.13). This removes the

possibility that there might be a different choice of ǫ1 . . . ǫ7 in eq. (5.18) which would cor-

rectly reproduce all the directly-computed MOM coefficients including vanishing values for

c(3ρ) . . . c(3χ). It seems that one potential resolution of this problem lies in the use of a

hybrid MOM scheme as alluded to briefly in section 3, in which the wave-function renor-

malisation constant is adjusted to give MOM values of c(3ρ) . . . c(3τ) in agreement with the

coupling redefinitions (without altering the values of any other β-function coefficients). In

six dimensions the issue may appear to be simply a technicality, but it seems probable that

similar features arise in the four-dimensional case, which is of more practical interest. We

propose to return to the subject in a subsequent article where we shall give full details of

the MOM calculations reported here and show how a hybrid scheme can resolve the ap-

parent inconsistencies. We shall also show how our results extend to the four dimensional

case. Furthermore, it seems conceivable that a similar adjustment of the wave function
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renormalisation constant may be required in other schemes in order to match the results

obtained by coupling redefinition to those obtained by direct computation, at least for 1PR

anomalous dimension contributions.

We may now finally compute the MOM values of the coefficients in A(4), A(5). In order

for this to be possible we know that the MOM coefficients should satisfy the appropriate

consistency conditions derived in section 4. We have already remarked that the two-loop

MOM coefficients satisfy eq. (4.5). Consequently, starting with A(4), the MOM values of

a2 . . . a5 in eq. (4.1) may be derived by again solving eq. (1.1), but with the MOM values

as in eq. (5.14); or more easily using the fact that A transforms as a scalar under coupling

redefinitions,

A(g) = A(g). (5.19)

Using eqs. (5.4), (5.5), and (2.7), we find for a general one-loop redefinition a leading-order

change in A given by

δA(4) = λ

[

∆

(

A2 −
1

4
A3

)

− 12δ2β
(1)ijkβ(1)ijk

]

, (5.20)

and consequently for MOM using the values in eq. (5.17) we may take

aMOM
2 = a2+∆ =

1

24
+

4

27
π2 − 2

9
ψ′

(

1

3

)

, aMOM
3 = a3−

1

4
∆ =

5

48
− 1

27
π2 +

1

18
ψ′

(

1

3

)

,

(5.21)

with a4 and a5 unchanged. Clearly other choices are possible with corresponding adjust-

ments of the value of α1 in eq. (4.1).

At the next order, we have mentioned already that the three-loop MOM coefficients

in eqs. (A.1), (A.2) satisfy all the consistency conditions in eqs. (4.11) and (4.12), pro-

vided we take the non-zero MOM values of c(3ρ) . . . c(3χ) implied by eq. (5.13) (and listed

in appendix A), and assume that cv(3G) is scheme-independent, as is natural for a quan-

tity appearing for the first time at this loop order. We have suggested above that these

non-zero values correspond to a hybrid MOM scheme.5 The MOM values of a
(5)
(1) . . . a

(5)
(16)

in eq. (4.16) may then most easily be derived using eq. (5.19) and the explicit transfor-

mations given by taking eqs. (5.17), (5.18) in eqs. (5.4), (5.6) respectively. Again, one

may also solve the equations using the MOM values of the β-function coefficients as given

in eqs. (5.14), (A.1), (A.2); this will yield the same results, up to the freedom expressed

in eq. (4.19).

6 Conclusions

We have shown that, as in four dimensions, the gradient-flow equation eq. (1.1) imposes

constraints on the β-function coefficients, and we have shown that these constraints are

satisfied by the explicit results as computed for the MS and MOM schemes up to three-loop

order. We have demonstrated that the tensor TIJ which appears in eq. (1.1) may be chosen

5It is however interesting to observe that if we take c(3ρ) . . . c(3χ) to be zero, as obtained by direct

calculation in the standard MOM scheme, the MOM coefficients satisfy eq. (4.12) if we take cv(3G) = 0.
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as symmetric up to this order. We have also shown that for a general scalar theory with an

O(N) global invariance, the β-functions on the right-hand side of eq. (1.1) must be replaced

at three-loop order in the MS scheme by the generalised “B”-functions, as has also been

observed in four dimensions. It would be useful to extend the analysis of ref. [21] along

the lines of ref. [48] in order to understand the issues of theories with a global invariance

further. This would have the benefit of enabling an explicit calculation of the “v” term in

B (eq. (4.15)) and would also allow an understanding of its scheme dependence.

Finally our analysis of scheme dependence has raised issues concerning the relation of

MS and MOM; specifically, the MOM values obtained for certain β-function coefficients

corresponding to 1PR contributions to the anomalous dimension are different depending

on whether they are obtained by direct calculation within the standard MOM scheme, or

by coupling redefinition from MS. We shall discuss this issue further in a subsequent article

where we shall show that the apparent discrepancy can be avoided by using a hybrid MOM

scheme; we shall also explore similar issues in four-dimensional theories.
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A Three-loop MOM results

For the MOM scheme the three-loop β-function coefficients were computed by constructing

the appropriate coupling redefinitions as described in section 3. Using the same notation

as for the MS scheme, they are given by

cMOM
(3D) =

1

432
− 1

486
π2 +

16

2187
π4 +

1

324
ψ′( 13)−

16

729
ψ′( 13)π

2 +
4

243
ψ′( 13)

2,

cMOM
(3E) =

25

432
− 5

972
π2 +

4

729
π4 +

5

648
ψ′( 13)−

4

243
ψ′( 13)π

2 +
1

81
ψ′( 13)

2,

cMOM
(3F ) =

5

5184
+

1

648
π2 − 1

432
ψ′( 13),

cMOM
(3G) = cMOM

(3G′) = − 7

432
+

31

5832
π2 − 31

3888
ψ′( 13),

cMOM
(3H) = − 107

2592
+

11

1458
π2 − 11

972
ψ′( 13),

cMOM
(3I) = − 1

48
+

1

24
ζ(3) +

7

162
π2 − 1

864
ln(3)2

√
3π +

1

72
ln(3)

√
3π +

29

23328

√
3π3

− 1

2
s2(

π

6 ) + s2(
π

2 ) +
5

6
s3(

π

6 )−
2

3
s3(

π

2 )−
7

108
ψ′( 13),

cMOM
(3J) =

103

31104
, cMOM

(3L) =
85

15552
, (A.1)
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for the anomalous dimension contributions, and

cMOM
(3g) =

1

8
+

1

9
π2 +

16

729
π4 − 1

6
ψ′( 13)−

16

243
ψ′( 13)π

2 +
4

81
ψ′( 13)

2,

cMOM
(3h) =

1

24
− 1

81
π2 − 8

2187
π4 +

1

54
ψ′( 13) +

8

729
ψ′( 13)π

2 − 2

243
ψ′( 13)

2,

cMOM
(3i) =

1

12
− 2

81
π2 − 16

2187
π4 +

1

27
ψ′( 13) +

16

729
ψ′( 13)π

2 − 4

243
ψ′( 13)

2,

cMOM
(3j) =

3

16
− 5

486
π2 − 16

2187
π4 +

5

324
ψ′( 13) +

16

729
ψ′( 13)π

2 − 4

243
ψ′( 13)

2,

cMOM
(3k) =

1

12
+

1

81
π2 − 1

54
ψ′( 13),

cMOM
(3l) =

1

162
π2 − 1

108
ψ′( 13),

cMOM
(3m) = − 1

16
− 31

2916
π2 +

31

1944
ψ′( 13),

cMOM
(3n) = − 7

288
− 1

324
π2 +

1

216
ψ′( 13),

cMOM
(3o) = − 7

288
− 1

324
π2 +

1

216
ψ′( 13),

cMOM
(3p) =

19

72
− 1

6
ζ(3)− 7

81
π2 +

1

432
ln(3)2

√
3π − 1

36
ln(3)

√
3π − 29

11664

√
3π3 + s2(

π

6 )

− 2s2(
π

2 )−
5

3
s3(

π

6 ) +
4

3
s3(

π

2 ) +
7

54
ψ′( 13),

cMOM
(3q) = −13

24
+

1

2
ζ(3) +

1

3
π2 − 1

144
ln(3)2

√
3π +

1

12
ln(3)

√
3π +

29

3888

√
3π3 − 3s2(

π

6 )

+ 6s2(
π

2 ) + 5s3(
π

6 )− 4s3(
π

2 )−
1

2
ψ′( 13),

cMOM
(3r) = −23

12
+ 2ζ(3) +

2

3
π2 − 1

72
ln(3)2

√
3π +

1

6
ln(3)

√
3π +

29

1944

√
3π3 − 6s2(

π

6 )

+ 12s2(
π

2 ) + 10s3(
π

6 )− 8s3(
π

2 )− ψ′( 13),

cMOM
(3s) = −1

8
− 1

3
π2 +

1

144
ln(3)2

√
3π − 1

12
ln(3)

√
3π − 29

3888

√
3π3 + 3s2(

π

6 )− 6s2(
π

2 )

− 5s3(
π

6 ) + 4s3(
π

2 ) +
1

2
ψ′( 13), (A.2)

for the 1PI contributions. In eqs. (A.1), (A.2), we define

sn(z) =
1√
3
I
[

Lin

(

eiz√
3

)]

, (A.3)

where Lin(z) is the polylogarithm function. The values of the coefficients c(3K), c(3e), c(3f),

c(3t), and c(3u) are identical in the two schemes. As mentioned in the main text, we have

independently computed the values of cMOM
(3J) , cMOM

(3K) , cMOM
(3L) ab initio and verified that

we obtain the same values. Also, the coefficients corresponding to the 1PR anomalous

dimension contributions obtained by coupling redefinition are

c(3ρ) = −c(3σ) = − 23

10368
,

c(3τ) = −c(3χ) =
61

41472
. (A.4)
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p

r

q p

r

q p

r

q p

r

q p

r

q

M(1)
31 M(2)

42 M(2)
43 M(2)

52 M(2)
61

Table 8. One- and two-loop master integrals.

B Master integrals

In this appendix we record the explicit values of the various one and two loop six-

dimensional master integrals which were needed to perform the renormalisation in the

MOM scheme. Their derivation is based on the values of the corresponding master inte-

grals in four dimensions, which were given in ref. [44], and are reproduced above in table 8,

where M(2)
43 involves the square of a propagator, denoted by a “dot”. Using the same

notation as ref. [44] to denote the various graphs, the one-loop triangle master integral is

M(1)
31 =

1

2ǫ
+

3

2
+

4

27
π2 − 2

9
ψ′( 13)

+

[

7

2
+

23

216
π2 + 4s3(

π

6 )−
2

9
ψ′( 13)−

35π3

324
√
3
− ln(3)2π

12
√
3

]

ǫ+O(ǫ2) . (B.1)

At two loops we have

M(2)
42 =

[

1

144ǫ2
+

65

1728ǫ
+

1

62208
[96ψ′( 13)− 136π2 + 8499]

+[288
√
3 ln(3)2π − 1728

√
3 ln(3)π + 32

√
3π3 + 12000ψ′( 13)

+62208s2(
π

6 )− 124416s2(
π

2 )− 124416s3(
π

6 ) + 82944s3(
π

2 )

−12680π2 − 34560ζ(3) + 318363]
ǫ

746496
+O(ǫ2)

]

µ4

M(2)
43 =

[

1

24ǫ2
+

5

16ǫ
+

1

2592
[−120ψ′( 13) + 62π2 + 3915]

+[−72
√
3 ln(3)2π − 216

√
3 ln(3)π − 136

√
3π3 − 2664ψ′( 13)

+7776s2(
π

6 )− 15552s2(
π

2 ) + 10368s3(
π

2 ) + 966π2 − 4320ζ(3)

+93555]
ǫ

15552
+O(ǫ2)

]

µ2

M(2)
52 =

[

1

12ǫ2
+

25

48ǫ
+

205

96
+

7

648
π2 − 1

27
ψ′( 13) +O(ǫ)

]

µ2

M(2)
61 =

1

4ǫ

+

[

59

24
− ζ(3)− 28

54
π2 + 6s2(

π

6 )− 12s2(
π

2 )− 10s3(
π

6 ) + 8s3(
π

2 )

+
7

9
ψ′( 13)−

29

1944

√
3π3 − 1

6

√
3 ln(3)π +

1

72

√
3 ln(3)2π

]

+O(ǫ) . (B.2)

The values for the remaining two-loop masters corresponding to M(1)
21 , M

(2)
31 , M

(2)
41 and

M(2)
51 of ref. [44] are trivial to construct as they correspond to products of one-loop masters,

– 25 –
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or the two-loop sunset graph in the case ofM(2)
31 . We note that the harmonic polylogarithms

are based on the theory of cyclotomic polynomials [51]

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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