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1 Introduction

The notion that symmetries and mode multiplet structures of linearized perturbations con-

strain possible effects of nonlinearities in the weakly nonlinear (small amplitude) regime

is familiar from elementary mechanical settings, such as nonlinear vibrations of crystalline

lattices, see e.g. [1]. In this article, we shall deal with the implications of this phenomenon

for weakly nonlinear relativistic fields in anti-de Sitter (AdS) geometry, a maximally sym-

metric spacetime that plays a central role in the AdS/CFT correspondence. We shall also

pay special attention to the connections between the algebraic structures arising in this

context and algebras of conserved quantities of the Higgs oscillator,1 a well-known superin-

tegrable mechanical system describing a particle on a sphere in a central potential varying

as the inverse cosine-squared of the polar angle [2, 3].

Dynamics of small amplitude perturbations in AdS backgrounds has attracted a con-

siderable amount of attention since the pioneering numerical observations of [4]. Computer

simulations indicate that certain initial data of amplitude ε collapse to form black holes on

time scales of order 1/ε2, no matter how small the amplitude is. Attempts to analyze this

problem using naive perturbative expansions in powers of the amplitude ε are plagued by

secular terms which grow in time and invalidate the expansion precisely at time scales of

physical interest. Resummed (improved) expansions can be constructed, with the formal-

ism featuring effective flow equations describing slow energy transfer between linearized

normal modes due to nonlinearities. These flow equations can be shown to accurately

1No connection to the Higgs boson, or the Brout-Englert-Higgs mechanism.
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describe the dynamics on time scales of order 1/ε2, which are precisely the time scales of

interest. Further review of these approaches with references to extensive original literature

can be found in [5–7].

Once the resummation procedure we described above has been applied, the flow equa-

tions can be derived and they contain a number of terms, each corresponding to energy

transfer between a certain set of modes. The coefficients of these terms (the “interaction

coefficients”) are certain integrals of products of the corresponding mode functions (of lin-

earized fields), whose precise structure depends on the form of nonlinearities in the original

equations of motion. It turns out that a large fraction of these interaction coefficients

vanishes due to special properties of the AdS mode functions [8]. These selection rules

have a number of immediate consequences for the dynamics of the effective flow equations.

For example, they enhance the submanifolds of special solutions in which effective energy

transfer between the modes does not occur (the so-called quasiperiodic solutions) [8], as

well as the set of conserved quantities [9] of the flow equations. The enhanced set of

conserved quantities enforces “dual cascades,” meaning that any energy flow to shorter

wave-lengths (a necessary precursor of black hole formation in our weak field setting) has

to be accompanied by some energy flowing to longer wave-lengths [10].

The selection rules arise algebraically because certain integrals of products of the AdS

mode functions vanish. This is proved in practice by considering explicit expressions for

the mode functions in terms of Jacobi polynomials, and then using arguments based on

orthogonality properties of the Jacobi polynomials. For the case of spherically symmetric

perturbations of a fully dynamical asymptotically AdS geometry coupled to a scalar field,

this sort of proof for the selection rules has been given in [8]. It is often beneficial to

consider a toy model in which gravitational interactions are turned off and one is dealing

with the dynamics of a self-interacting probe scalar field in a fixed AdS background [11, 12].

This system is much simpler and allows analysis of perturbation theory without assuming

spherical symmetry,2 including a large and powerful set of selection rules [13] (a compact

proof of selection rules for the same system with spherical symmetry imposed can be found

in footnote 3 of [9]).

At a practical level, one could survive with brute force derivations of the selection

rules using properties of the Jacobi polynomials. Such derivations, however, make the

qualitative origin of the selection rules very intransparent. It is natural to believe that

the selection rules are mandated by rich symmetries of the underlying AdS background,

which is a maximally symmetric spacetime with an isometry group SO(d, 2) for AdSd+1.

Such suspicions have been voiced already in [8] and [13]. To give a simple example of

how symmetries may enforce selection rules, one might consider an integral of a product

of spherical harmonics of the form
∫
Yl1m1 · · ·YlNmN

dΩ. One can show that this integral

vanishes unless the identity representation of the rotational group is contained in the direct

product of the representations corresponding to each of the spherical harmonics. This forces

each li to be less than or equal to the sum of all the other li.

2The non-spherically-symmetric case with full-fledged gravitational interactions is forbiddingly compli-

cated, though some limited amount of progress has been made [14, 15].
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Application of symmetries to selection rules for integrals of products of the AdS mode

functions is less straightforward than the above example involving spherical harmonics. One

first has to decide what is the symmetry defining the multiplets of AdS mode functions of a

given frequency. This cannot be the AdS isometry group, since the boost generators change

the frequency. Furthermore, the mode functions form large multiplets, implying that the

relevant symmetry group is bigger than, say, the obvious group of spatial rotations.

In [16], it was shown that mode functions of the same frequency in global AdSd+1 form

multiplets of a hidden SU(d) symmetry (including the SO(d) spatial rotations). This is

demonstrated by relating the mode function equation to the Schrödinger equation of the

Higgs oscillator, which is known to possess a hidden SU(d) symmetry [2]. Historically, the

relevant energy eigenvalue problem was solved in [17] from a purely quantum-mechanical

perspective. The observed large level degeneracy prompted an investigation into enhanced

symmetries, which resulted in the discovery of the hidden SU(d) symmetry [2] and subse-

quent extensive studies of the related algebraic structures in the mathematical quantum

mechanics community. On the AdS side, explicit expressions for the mode functions in

terms of Jacobi polynomials can be found, e.g., in [18–20]. We see no evidence of con-

nections between the two bodies of literature treating these closely related structures in

two separate guises (quantum mechanics of the Higgs oscillator and field dynamics in AdS

spacetimes), until a link was made in [16].

Even though the hidden SU(d) group clearly explains the multiplet structure of global

AdSd+1 mode functions involved in the selection rules, it is difficult to employ for proving

the selection rules directly, at least with the current state of knowledge [16]. The reason

is that no explicit construction of the SU(d) generators exists due to the nonlinear nature

of the Higgs oscillator and difficulties in resolving the ordering ambiguities while quan-

tizing the classical generators [2, 3, 21]. In this paper, we take a different approach and

develop representations for global AdS mode functions in which the isometries of AdS act

manifestly as a spectrum-generating algebra. This allows one to write explicit formulas for

the global AdS mode functions in terms of isometry-based raising operators acting on the

mode function of the lowest frequency (incidentally, this representation makes the SU(d)

symmetric tensor nature of the mode function multiplets completely manifest). Using such

formulas, we succeed in proving the selection rules entirely in terms of AdS isometries.

The result is both simpler and stronger than what has been reported in [13]. In [13],

only the radial dependences of mode functions were considered, and a selection rule was

proved for the case when the number of mode functions inside the integral and the number

of spatial dimensions of AdS are not both odd. This restriction is unnecessary, however,

since in the remaining case when they are both odd, the angular integral (not considered

in [13]) vanishes automatically. Our derivations do not separate the mode functions into

radial and angular parts and produce the stronger version of the selection rules (applying

to any number of mode functions inside the integral, and any dimension of the AdS) in a

straightforward manner.

The techniques we employ mostly revolve around the use of a flat embedding space,

in which the AdS can be realized as a hyperboloid (our approach is largely consonant with

the presentation of [22]). This allows a simple explicit treatment of the AdS isometries,

– 3 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
1

and a simple characterization of the AdS mode functions (or the Higgs oscillator energy

eigenstates) in terms of homogeneous polynomials of the flat space Cartesian coordinates.

Such treatment is parallel to the usual relation between spherical harmonics on a d-sphere

and the solid harmonics, which are homogeneous polynomials in a (d+ 1)-dimensional flat

space. A number of representations we derive should be of interest from a purely quantum-

mechanical Higgs oscillator perspective. Thus, the isometries of AdS provide an so(d, 2)

spectrum-generating algebra for the Higgs oscillator, the conserved rank two symmetric

tensor emerges from quadratic combinations of the elements of this so(d, 2) algebra, the

energy eigenstates of the Higgs oscillator in d dimensions are realized as a peculiar subsector

of harmonic oscillator motion in a flat pseudo-Euclidean (d + 2)-dimensional space, and

the obscure ‘gnomonic’ coordinates on the sphere [2], in which the conserved quantities

take a simple form, arise with inevitability from the Cartesian coordinates on this (d+ 2)-

dimensional space. This higher-dimensional geometrization of the sophisticated algebraic

structures enjoyed by the Higgs oscillator is both highly visual and potentially useful.

The paper is organized as follows: in section 2, we review the basics of constructing the

effective flow equations for small amplitude perturbations in AdS, and the emergence of

selection rules. Section 3 is a brief summary of [16], where the structure of mode function

multiplets is explained and related to the Higgs oscillator problem. Section 4 develops a rep-

resentation for the global AdS mode functions in terms of homogeneous polynomials in the

flat embedding space and discusses how the AdS isometries operate in this context. Section

5 derives selection rules using a part of the isometry group as raising and lowering opera-

tors for the mode functions. Readers familiar with the context of nonlinear perturbation

theory in AdS and specifically interested in the selection rule problem may read this section

largely independently, though the explicit representations developed in section 3 make the

isometries action much more concrete. Section 6 discusses the spectrum-generating algebra

for the Higgs oscillator provided by the AdS isometries and the construction of conserved

quantities as quadratic combinations of the isometry generators.

2 Nonlinear AdS perturbations and selection rules

We very briefly review the basics of nonlinear perturbation theory in AdS, referring the

reader to [7] and the original publications cited therein for further details.

The metric of AdSd+1 (with the AdS radius set to 1 by rescaling) is given by

ds2 =
1

cos2 x

(
−dt2 + dx2 + sin2 x dΩ2

d−1

)
, (2.1)

where dΩ2
d−1 is the line element of an ordinary (d − 1)-sphere parametrized by angles

collectively denoted as Ω. The bulk of the research efforts (see [5–7] and references therein)

has been directed at studying spherically symmetric perturbations of the above metric

(perturbations only depending on t and x) coupled to a scalar field. It is instructive,

however, to examine (following [11–13]) a simpler ‘toy model’ in which a self-interacting

scalar field evolves in a frozen geometry of the form (2.1). The action for the field is taken
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to be

S =

∫
dd+1x

√
−g

(
1

2
gµν∂µφ ∂νφ+

m2

2
φ2 +

φN+1

(N + 1)!

)
, (2.2)

resulting in equations of motion of the form

cos2 x

(
−∂2

t φ+
1

tand−1 x
∂x(tand−1 x∂xφ) +

1

sin2 x
∆Ωd−1

φ

)
−m2φ =

φN

N !
, (2.3)

where ∆Ωd−1
is the ordinary (d− 1)-sphere Laplacian. The scalar field ‘toy model’ of this

sort encapsulates many of the interesting properties of nonlinear perturbation theory of

the full gravitational case, including the selection rules, and permits analyzing them with

greater ease, including completely general non-spherically-symmetric perturbations.

If one is interested in the weakly nonlinear (small amplitude) regime, one has to start by

solving the linearized system in which the right-hand side of (2.3) is neglected. Separation

of variables leads to solutions of the form

φlinear(t, x,Ω) =
∞∑
n=0

∑
l,k

(Anlk e
iωnlkt + Ānlk e

−iωnlkt)enlk(x,Ω), (2.4)

where Anlk are arbitrary complex amplitudes and

ωnlk = δ + 2n+ l, (2.5)

with δ = d
2 +

√
d2

4 +m2. The mode functions can be read off [18–20] and are given by

enlk(x,Ω) = cosδx sinlx P
(δ− d

2
, l+ d

2
−1)

n (− cos 2x) Ylk(Ω). (2.6)

Ylk are spherical harmonics in (d− 1) dimensions, with l(l+ d− 2) being the eigenvalue of

the corresponding sphere Laplacian, and k labelling all the different harmonics contained

in a given l-multiplet. P
(a,b)
n (y) are Jacobi polynomials orthogonal with respect to the

measure (1 − x)a(1 + x)b on the interval (−1, 1). We shall not be careful about mode

function normalizations below, since our objective is to prove that some of their integrals

are exactly zero. All the equations are meant to hold up to the mode function normalization.

The mode functions satisfy the following equation(
1

tand−1 x
∂x(tand−1 x∂x) +

1

sin2 x
∆Ωd−1

− m2

cos2 x

)
enlk(x,Ω) = −ω2

nlk enlk(x,Ω), (2.7)

Armed with the linearized solutions (2.4), one could try to analyze the leading nonlinear

corrections by performing a weak field expansion of the form

φ = εφlinear + εNφcorr. + · · · (2.8)

This approach is plagued by secular terms in φcorr. which grow in time and invalidate the

expansion precisely where one is trying to obtain predictions of qualitative relevance. The

naive perturbative expansion can be resummed with a variety of methods, leading to flow

equations describing slow energy transfer between the normal modes. The quickest (and
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equivalent) way to present these flow equations, however, is not to start with the naive

perturbative expansion (2.8), but rather to employ a procedure known as time-averaging.

The first step of time-averaging is to switch to the ‘interaction picture’ (‘periodic

standard form’ in the mathematical parlance) in (2.3). One first expands the exact φ in

linearized normal modes

φ(t, x,Ω) =
∑
nlk

cnlk(t)enlk(x,Ω), (2.9)

and then introduces complex amplitudes α(t) that would have been constant had the self-

interactions been turned off:

cnlk = ε
(
αnlke

iωnlkt + ᾱnlke
−iωnlkt

)
, ċnlk = iε ωnlk

(
αnlke

iωnlkt − ᾱnlke−iωnlkt
)
. (2.10)

This leads to the equation

2iωnklα̇nkl =
εNe−iωnlkt

N !

∑
n1l1k1

· · ·
∑

nN lNkN

Cnlk|n1l1k1|···|nN lNkN (2.11)

× (αn1l1k1 e
iωn1l1k1

t + ᾱn1l1k1 e
−iωn1l1k1

t) · · ·
× (αnN lNkN eiωnN lNkN

t + ᾱnN lNkN e−iωnN lNkN
t).

Note that ωnlk do not depend on k, but we keep the k index to be able to track later which

mode the frequency is referring to. The interaction coefficients C are given by

Cnlk|n1l1k1|···|nN lNkN =

∫
dxdΩ

tand−1 x

cos2 x
enlken1l1k1 · · · enN lNkN . (2.12)

While αnlk governed by (2.11) vary on time scales of order 1/εN , the right-hand side

of (2.11) contains terms oscillating on time scales of order 1. The main point of the

averaging method is that the effect of these terms ‘averages out’ and they can be simply

discarded. This can be embodied in mathematical theorems stating that the resulting

approximation is accurate on time scales of order 1/εN .

Non-oscillating terms on the right-hand side of (2.11) come from ‘resonant’ sets of

frequencies satisfying

ωnlk = ±ωn1l1k1 ± ωn2l2k2 ± · · · ± ωnN lNkN , (2.13)

where all the plus-minus signs are independent. With only these terms retained, the

resulting ‘flow equation’ takes the following schematic form:

2iωnklα̇nkl =
εN

N !

∑
resonance

Cnlk|n1l1k1|···|nN lNkN

?
αn1l1k1 · · ·

?
αnN lNkN , (2.14)

where
?
α denotes either α or ᾱ, depending on whether the corresponding ω appears with

plus or minus sign in the resonance relation (2.13) corresponding to the particular term

in question.

– 6 –
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For the case of a massless field, δ = d and all the frequencies (2.5) are integer. This

gives the resonance condition (2.13) a tremendous number of solutions. However, explicit

computations show that the interaction coefficients defined by (2.12) corresponding to

some choices of signs in (2.13) vanish. In particular, the C coefficients corresponding

to all plus signs in (2.13) always vanish. The subject of dynamical consequences of this

sort of selection rules has been discussed at length in the literature, and we shall not

delve into that here. In the rest of the paper, giving a maximally transparent geometrical

understanding to selection rules in the interaction coefficients defined by (2.12) will form

one of our main objectives.

3 AdS mode function multiplets and the Higgs oscillator

Before we proceed with investigating the role of symmetries in the selection rules of nonlin-

ear perturbation theory, where they restrict (2.12), we note that some intriguing symmetry

related patterns are seen in AdS already at the linearized level. Indeed, the multiplets of

mode functions enlk with a given frequency ωnlk = δ+2n+l are abnormally large. Not only

does the frequency not depend on k within each given l-multiplet (this is trivially dictated

by the rotation symmetry of the (d− 1)-sphere in the AdS metric), but it also depends on

n and l in one particular combination 2n+ l which leads to many distinct values of n and l

producing the same frequency. Such high degeneracy is familiar from quantum-mechanical

examples, such as the hydrogen atom, where its existence is explained by the presence of

hidden symmetries.

The issue of the symmetry origins of the abnormally high degeneracies in (2.5)–(2.6)

has been resolved in [16]. One simply rewrites (2.7) in terms of ẽnlk ≡ enlk/ cos(d−1)/2 x,

obtaining

(−∆Ωd
+ V (x)) ẽnlk = Enlkẽnlk, (3.1)

with

V (x) =
(2δ − d)2 − 1

4 cos2 x
and Enlk = ω2

nlk −
(d− 1)2

4
. (3.2)

The d-sphere Laplacian in the above expression is given by the standard formula:

∆Ωd
≡ 1

sind−1 x
∂x(sind−1 x ∂x) +

1

sin2 x
∆Ωd−1

. (3.3)

Geometrically, the variable redefinition we have performed is linked to the conformal trans-

formation that maps AdS to one half of the Einstein static universe. Note that even though

the Laplacian is defined on the whole sphere, in practice only one half of the sphere with

x ∈ [0, π/2) plays a role because of the infinite ‘potential well’ provided by V (x) ∼ 1/cos2 x.

One can understand (3.1) as the Schrödinger equation for a particle on a d-sphere mov-

ing in a potential proportional to 1/cos2 x. The hidden symmetries of this system, which

is often called the Higgs oscillator, have been widely discussed following the investigations

of [2, 3]. It is known that (3.1) admits a hidden SU(d) symmetry group which includes

explicit SO(d) rotations around the point x = 0 as its subgroup. The mode functions

of the Nth energy level above the ground state transform in the fully symmetric rank N

– 7 –
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tensor representation of the SU(d). The generators of the SU(d) are not known explic-

itly [2, 3, 21]. Even though the conserved quantites of the classical problem corresponding

to the Schrödinger equation (3.1) are known explicitly and can be assembled in combi-

nations that form an su(d) algebra with respect to taking Poisson brackets [2], it is not

known how to resolve the ordering ambiguities while quantizing these classical conserved

quantities in a way that reproduces the Lie algebra at the quantum level, except for the

relatively simple d = 2 case [2].

Implications of the hidden SU(d) symmetry for (3.1) and the AdS mode functions are

discussed in greater detail in [16], and we shall limit ourselves here to the multiplicity

counting and some basic comments. As we have remarked, the Nth energy level of the

Higgs oscillator supports the fully symmetric rank N tensor representation of the SU(d)

group. The degeneracy is then just the dimension of this representation, which can be

counted as the number of possible sets of d non-negative integers pi satisfying
∑

i pi = N

(the integers pi simply encode how many times the index value i occurs among the indices

of the fully symmetric tensor). The number of partitions of N into pi is easily counted as

the number of ways to place d − 1 separators in N + d − 1 positions (with the numbers

of empty places left between the d − 1 separators interpreted as p1, p2, . . . pd). Thus the

degeneracy of level N in d dimensions is just

#(N, d) =
(N + d− 1)!

N !(d− 1)!
. (3.4)

On the other hand, we have an explicit specification of the spectrum (2.5), which says that

level N consists of multiplets with angular momentum N , N −2, N −4,. . . , one copy each.

Thus, it should be possible to recover the degeneracy (3.4) by summing the dimensions of

the above angular momentum multiplets. The angular momentum multiplets are simply

fully symmetric traceless tensors of the corresponding rank. The number of fully symmetric

traceless tensors of rank N can be obtained as the number of fully symmetric tensors of

rank N minus the number of fully symmetric tensors of rank N−2 (which are just the traces

that need to be subtracted). Thus, we get for the multiplicity (#(N, d) −#(N − 2, d)) +

(#(N − 2, d)−#(N − 4, d)) + · · · = #(N, d), recovering (3.4). Explicit decompositions of

SU(d) representations into rotational SO(d) multiplets can be found in [23] and conform to

the notion of (2.6) with a given value of frequency forming appropriate SU(d) multiplets.

We note that the multiplet structures of the Higgs oscillator are identical to those of the

ordinary (flat space) isotropic harmonic oscillator, whose hidden SU(d) symmetry can be

made manifest with ease.

4 Mode functions in the embedding space

As mentioned in [16] the lack of explicitly constructed generators for the Higgs oscillator’s

hidden symmetries makes it difficult to investigate the consequences of these symmetries

in integral expressions like (2.12). We shall therefore approach the problem from a dif-

ferent perspective trying to characterize more transparently the spaces spanned by mode

functions (2.6).

– 8 –
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AdSd+1 can be realized as a hyperboloid in a flat pseudo-Euclidean space of dimension

d+ 2 with the metric ηIJ = diag(−1,−1, 1, · · · , 1), being defined by the equation

ηIJX
IXJ ≡ −X2 − Y 2 +XiXi = −1, I, J ∈ {X,Y, 1, · · · , d} . (4.1)

It is known that many properties of the AdS spacetime become more transparent if viewed

from the embedding space. Thus, the isometries of AdS are the obvious linear transforma-

tions of XI leaving ηIJ invariant, which coincides with the definition of SO(d, 2).

Not only the isometries, but also properties of geodesics in AdS become extremely

transparent if viewed from the embedding space. Each AdS geodesic lies in a 2-plane

in the embedding space passing through the origin. AdS has the remarkable property

that all geodesics are closed, which is something of a ‘classical’ precursor to the peculiar

Klein-Gordon frequency spectrum (2.5) and simple periodicity properties of solutions to the

Klein-Gordon equation. (Spaces in which all geodesics are closed are known to possess very

special features [24]. For example, the set of all geodesics of such spaces is itself a manifold.

This space, for AdS, is a pseudo-Euclidean version of a Grassmanian.) Viewed from the

embedding space, the geodesic motion on AdSd+1 becomes a subset of trajectories of an

ordinary harmonic oscillator in the (d + 2)-dimensional embedding space (see, e.g., [22]).

On the other hand, the shapes of geodesics in the coordinates (2.1) can be straightforwardly

related to the orbits of the Higgs oscillator, as we demonstrate in appendix A.

Given the dramatic simplification of the geodesic motion if viewed from the embed-

ding space, it is natural to look for a similar simplification in solutions to the Klein-Gordon

equation and the corresponding mode functions (2.6). In particular, one could try to find a

relation to quantum harmonic oscillator motion in the pseudo-Euclidean embedding space.

We shall see below that such a picture can indeed be developed. Our strategy is very similar

to the embedding of a sphere in an ordinary Euclidean space and extending the spherical

harmonics into solid harmonics rlYlm(Ω). Solid harmonics are simply homogeneous polyno-

mials satisfying the Laplace equation and their properties are much more transparent than

those of spherical harmonics viewed on the sphere. The pseudo-Euclidean version of the

same story, leading to a construction of the mode functions (2.6) in terms of homogeneous

polynomials, is similar, even if less straightforward.

Mode functions (2.6), which are functions of x and Ω can be trivially extended to the

entire hyperboloid (2.1) as eiωnlktenlk(x,Ω). We then have to decide how to conveniently

extend this expression into the embedding space. This is essentially done by trial-and-error,

but the simple prototype treatment of spherical harmonics provides some hints. Just like

the spherical harmonics are extended in the Euclidean space by foliating the Euclidean

space with spheres and parametrizing it with the standard coordinates on each sphere plus

the sphere radius, one can foliate the flat target space with hyperboloids ηIJX
IXJ = −L2

and parametrize it with the coordinates of the form (2.1) on each hyperboloid, together

with L (this foliation does not cover the entire embedding space, but our derivations will

not be impeded by this flaw). More specifically, we parametrize (a part of) the embedding

space (including the AdS hyperboloid) by (L, t, x,Ω) as

X =
L cos t

cosx
, Y =

L sin t

cosx
, X i = Lni(Ω) tanx, (4.2)
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where ni(Ω) is the unit vector pointing in the direction given by Ω. L = 1 corresponds

to our original hyperboloid (2.1). It is more convenient to view the same foliation after

introducing polar coordinates (S, T ) in the (X,Y )-plane and spherical coordinates (R,Ω)

instead of Xi, so that the embedding space metric is

ds2
target ≡ ηIJXIXJ = −dS2 − S2dT 2 + dR2 +R2dΩ2

d−1, (4.3)

and (4.2) takes the form

S =
L

cosx
, T = t, R = L tanx, (4.4)

with the Ω-coordinates identical on the target space and on the foliating hyperboloids. The

x-coordinate of our hyperbolic foliation can then be expressed through the coordinates on

the target space as x = arcsin(R/S). The idea is then to extend functions φ(t, x,Ω)

defined on the AdS hyperboloid in the embedding space as φ(T, arcsin(R/S),Ω), possibly

multiplied with a suitably chosen function of L ≡
√
S2 −R2. In other words, the numerical

data are copied from the AdS hyperboloid to other hyperboloids of the foliation (4.2) and

then possibly scaled independently (but uniformly) on each hyperboloid as a function of

its radius.

We can now apply the type of embedding space extensions we have outlined above to

φ(t, x,Ω) satisfying the AdS Klein-Gordon equation,(
2AdS −m2

)
φ = 0. (4.5)

It is a matter of straightforward algebra to show that

Φ(T, S,R,Ω) ≡ e(S2−R2)/2(S2 −R2)−δ/2φ

(
T, arcsin

R

S
,Ω

)
(4.6)

satisfies the Schrödinger equation for a harmonic oscillator on the pseudo-Euclidean

space (4.3):
1

2

(
∆target + (S2 −R2)

)
Φ =

(
δ − d

2
− 1

)
Φ, (4.7)

where

∆target = − 1

S

∂

∂S

(
S
∂

∂S

)
− 1

S2

∂2

∂T 2
+

1

Rd−1

∂

∂R

(
Rd−1 ∂

∂R

)
+

1

R2
∆Ωd−1

. (4.8)

Equation (4.7) validates our expectation that the AdS Klein-Gordon equation can be re-

lated to quantum harmonic oscillator motion in the embedding space.

One can take a particular solution of the Klein-Gordon equation, based on one normal

mode, φ = eiωnlktenlk(x,Ω) and extend it in the target space using the above procedure (we

shall omit the indices of ω from now on for brevity, keeping in mind that ω = δ + 2n+ l).

This yields

Enlk =
eiωT

Sω

(
S2nP

(l+ d
2
−1,δ− d

2
)

n

(
1− 2R2

S2

))(
RlYlk(Ω)

)
e(S2−R2)/2. (4.9)
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Note that the first brackets contain a homogeneous polynomial of degree n in S2 and R2,

while the second brackets contain a homogeneous polynomial of degree l in Xi (the latter

are just the solid harmonics).

It turns out that the subspace of solutions to (4.7) spanned by functions of the

form (4.9) is straightforwardly characterized in the Cartesian coordinates. Namely, any

function of the form

1

(X − iY )ω
P(X2 + Y 2, X i) e(X2+Y 2−XiXi)/2, (4.10)

satisfying the Schrödinger equation (4.7), where P is a homogeneous polynomial of degree

ω−δ, P((λX)2+(λY )2, λX i) = λω−δP(X2+Y 2, X i), can be expanded in terms of (4.9). To

see this, one can always re-express (4.10) in terms of the polar-spherical coordinates (4.3)

and expand it in spherical harmonics as

eiωT

Sω
e(S2−R2)/2

∑
lk

Plk(S,R)Ylk(Ω). (4.11)

Plk are still homogeneous polynomials of degree ω − δ and can therefore be written as

Plk(S,R) = Sω−δPlk(1, R/S). Since the only remaining unknown function depends on a

single variable R/S, substituting such functions in (4.7) results in a second order ordinary

differential equation (related to the Jacobi polynomial equation) that has a unique poly-

nomial solution, which can be verified to agree (up to normalization) with (4.9). Hence,

any function of the form (4.10) satisfying (4.7) is a target space extension of a linear com-

bination of AdS mode functions of frequency ω. Note that (4.9) is itself manifestly of the

form (4.10).

We could have equivalently rephrased (4.10) by saying that P(X2 +Y 2, X i)/(X−iY )ω

has to satisfy the pseudo-Euclidean wave equation on the target space. Whether the

Schrödinger picture or the wave equation picture is advantageous, depends on the question

one is trying to address. The harmonic oscillator Schrödinger equations has very explicit

symmetries to which we shall return below. In any case, P satisfies

4(σ∂2
σ − (ω − 1)∂σ)P =

∑
i

∂2
i P, (4.12)

as well as the homogeneity condition

(2σ∂σ +Xi∂i)P = (ω − δ)P. (4.13)

For convenience, we have introduced σ ≡ S2 ≡ X2 + Y 2. Being a polynomial, P can be

written explicitly as a sum of terms of the form σ(N−
∑
pi)/2Xp1

1 · · ·X
pd
d , where N = ω − δ

and pi have to be such that N −
∑
pi is non-negative and even. Equation (4.12) will

then say that the coefficients of the terms with
∑
pi = N are arbitrary, however, once

those are specified, the coefficients of the terms with lower values of
∑
pi are completely

fixed by (4.12). The number of independent solutions is then the same as the number

of monomials of the form Xp1
1 · · ·X

pd
d with

∑
pi = N . This is (3.4), which is the total
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number of independent AdS mode functions of frequency ω, highlighting once again that

our representation of the mode functions does not miss anything.

For general values of ω, because of the presence of a noninteger power, defining (4.10)

requires a codimension 1 cut in the pseudo-Euclidean embedding space emanating from

the (codimension 2) hypersurface X = Y = 0 and extending to infinity. (Viewed within

2-planes satisfying Xi = const and parametrized by the complex coordinate X − iY , the

cut looks like an ordinary branch cut from the branching point X − iY = 0 to infinity.

With this cut, (X − iY )ω appearing in (4.10) is single-valued.) Whether this feature

demands any special attention depends on the problem one is considering. For example,

when dealing with selection rules in the next section, we shall be confined to the case of

integer ω (because this is when non-trivial selection rules arise), where the cuts are absent

and (4.10) is well-defined globally.

Solutions to the Schrödinger equation (4.7) can be constructed straightforwardly by

separation of variables. The relation of such product solutions to the basis (4.9) is highly

non-trivial however, and relies on elaborate identities between families of orthogonal poly-

nomials. Since we shall not be using this relation directly, we refer interested readers to

appendix B for further details.

The Schrödinger equation (4.7) presents the advantage of having a set of symmetries

which are easy to characterize. To start with, one has an SU(d, 2) group with the generators

HIJ = a†IaJ + a†JaI and LIJ = i
(
a†IaJ − a

†
JaI

)
. (4.14)

Here, a and a† are creation and annihilation operators defined by

aI =
1√
2

(
∂

∂XI
+ ηIJX

J

)
and a†I =

1√
2

(
− ∂

∂XI
+ ηIJX

J

)
(4.15)

and satisfying the commutation relation

[aI , a
†
J ] = ηIJ . (4.16)

Note that the definition of the creation-annihilation operators is non-standard for the

(negative metric signature) X- and Y -directions. The SU(d, 2) symmetry with the above

generators is a straightforward modification of the standard SU(d + 2) symmetry for an

isotropic oscillator in a (d+ 2)-dimensional Euclidean space.

Since the AdS mode functions (and hence the Higgs oscillator eigenstates) are realized

as a subset of solutions of the Schrödinger equation (4.7), one should expect that a complete

set of symmetries of the mode functions can be recovered as a subset of all symmetries

of (4.7). Note however, that we do not mean mere linear combinations of (4.14), but rather

their arbitrary polynomial combinations, since any product of symmetry generators is also

a symmetry generator in the quantum context. We shall give some consideration to this

type of nonlinear structures in the last section. Before going in that direction, however, we

shall explain how the ordinary SO(d, 2) transformations generated by LIJ of (4.14), which

can also be written more straightforwardly as

LIJ = i

(
ηIKX

K ∂

∂XJ
− ηJKXK ∂

∂XI

)
, (4.17)

explain the selection rules in the interaction coefficients (2.12).
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5 AdS isometries and selection rules

Before proceeding with selection rule analysis, we note that a part of the AdS isometry

group generated by LIJ of (4.17) acts as raising and lowering operators on mode functions

of the form (4.10). Indeed, for ψ of the form (4.10), acting with L+i = LXi + iLY i and

L−i = LXi − iLY i generates

L+iψ =
e(σ−XiXi)/2

i(X − iY )ω+1

(
σ∂iP + 2Xiσ∂σP − 2ωX iP

)
, (5.1)

L−iψ =
e(σ−XiXi)/2

i(X − iY )ω−1

(
∂iP + 2Xi∂σP

)
. (5.2)

The right-hand sides above are themselves manifestly of the form (4.10), but with the

values of ω shifted by ±1. The commutation relation of the raising and lowering operators

are given by

[L+i, L+j ] = [L−i, L−j ] = 0, [L+i, L−j ] = 2(iLij − δijLXY ). (5.3)

LXY , which would be called the dilatation operator in the conformal group interpretation

of SO(d, 2), acts on functions ψ of the form (4.10) simply as LXY ψ = ωψ.

Using the above algebra of raising and lowering operators, one can construct any mode

function of frequency δ+N starting from the lowest mode ψ0 ≡ e(σ−XiXi)/2(X − iY )−δ of

frequency δ:

ψ ∼ L+i1 · · ·L+iNψ0. (5.4)

The mode number counting is manifestly correct, given by the number of totally symmetric

rank N tensors. The representation given by (5.4) is of course directly parallel to the stan-

dard construction of descendants from primary operators in conformal field theory, where

the SO(d, 2) isometries are interpreted as the conformal group. Our formulation in terms

of homogeneous polynomials of the embedding space coordinates makes this representa-

tion very concrete. (Further systematic considerations of the implications of the conformal

group for the AdS dynamics can be found, e.g. in [20], or the very recent work [25]. A

good review of the SO(d, 2) representations relevant to the dynamics of fields in AdS can

be found in [26].)

Armed with the mode function representation of the form (5.4), we can return to the

selection rule problem. We restrict ourselves to the massless field case, where δ = d is an

integer, and so are all the frequencies (2.5). Then, the sum in (2.14) in principle includes

contributions from resonances of the form ωnlk = ωn1l1k1 +ωn2l2k2 +· · ·+ωnN lNkN , but these

contributions drop out, because the corresponding C coefficients of (2.12) in fact vanish.3

We therefore set out to prove that

C =

∫
dx dΩ

tand−1 x

cos2 x
e1 · · · eK (5.5)

3Our proof should in fact work equally well for any other value of the mass for which δ is such that

there are solutions to the resonance condition with all plus signs. One just needs to replace the number of

raising operators needed to produce frequency ω in our derivation below, which is ω − d for the massless

scalar field, by ω − δ.
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vanishes whenever the frequencies ω1, · · · , ωK corresponding to any set of K AdS mode

functions e1, · · · , eK satisfy ω1 = ω2 + · · · + ωK . The integral in (5.5) is inconvenient

in that it runs only over one spatial slice of the AdS space (2.1). For symmetry-related

considerations, it is much more natural to rewrite (5.5) as an integral over the entire AdS

hyperboloid (4.1). This is straightforwardly done by defining ψn = eiωnten and introducing

a (trivial) integral over t from 0 to 2π, resulting in the following representation for C as

an integral over the entire AdS hyperboloid (for notation convenience, we shall work up to

the overall normalization of C for the rest of this section):

C =

∫
dt dx dΩ

tand−1 x

cos2 x
ψ∗1ψ2 · · ·ψK . (5.6)

The integrand is, of course, t-independent by virtue of ω1 = ω2 + · · ·+ ωK .

We have seen in the previous section that the qualitative properties of the AdS mode

functions ψn are particularly transparent in terms of Cartesian coordinates in the flat

embedding space. We shall now transform (5.6) to a coordinate system which makes the

embedding space properties manifest. One welcome circumstance is that, after we have

reintroduced t in (5.6), − tan2(d−1) x sec4 x is simply the determinant of the metric (2.1)

of the spacetime over which one is integrating, and dt dx dΩ tand−1 x sec2 x is simply the

corresponding invariant measure that can be easily transformed to other coordinates.

To make use of the simplifications afforded by the flat embedding space, we parametrize

the AdSd+1 hyperboloid (4.1) by the d embedding coordinates Xi and t, with the two

remaining embedding coordinates given by

X =
√

1 +XkXk cos t, Y =
√

1 +XkXk sin t. (5.7)

The AdS metric can now be written as

ds2 = −(1 +XkXk)dt2 +

(
δij −

XiXj

1 +XkXk

)
dX idXj . (5.8)

Interestingly, if we recall that the AdS spacetime is conformal to a direct product of time

and a spatial half-sphere (often referred to as ‘one half of the Einstein static universe’),

then parametrizing the AdS using the above coordinates implies parametrizing the said half-

sphere via the so-called gnomonic projection (casting images from the center of the sphere

on a tangent plane). It has been known since [2] that such gnomonic coordinates allow

simple expressions for the conserved quantities of the Higgs oscillator. In that context, they

emerge as peculiar, even if useful, entities. In our context, the gnomonic coordinates are

imposed on us by the geometry under consideration as the simplest Cartesian coordinates

in the flat embedding space.

The raising and lowering operators L+i = LXi + iLY i and L−i = LXi − iLY i can be

written through the coordinates (5.8) as

L±n = e±it
(
± Xn

√
1 +XkXk

∂

∂t
− i
√

1 +XkXk
∂

∂Xn

)
. (5.9)
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The determinant of the metric (5.8) is simply −1, and hence (5.6) can be expressed as4

C =

∫
dt dX i ψ∗1ψ2 · · ·ψK . (5.10)

It can be straightforwardly verified that L+i and−L−i are Hermitian conjugate with respect

to the integration measure in (5.10). Furthermore, being first order differential operators,

they possess the obvious property

L±i(fg) = (L±if)g + f(L±ig). (5.11)

With the structures we have displayed, one can immediately prove the selection rules

in (5.10) and hence in (2.12). ψ1 can be written as ω1 − d = ω2 + · · · + ωK − d raising

operators acting on ψ0, as in (5.4). Hermiticity properties allow us to turn these into the

same number of lowering operators acting on ψ2 · · ·ψK . By (5.11), the lowering operators

will simply be distributed among the various factors in the product ψ2 · · ·ψK in different

ways. However, each ψn is given by acting on ψ0 by ωn − d raising operators, whereas

L−iψ0 is 0. Hence there are simply too many lowering operators coming from ψ1 and they

will annihilate all the terms, leaving no non-zero contributions in the final result. This

completes our proof of the selection rules for (2.12).

We remark that the structure we have displayed above may superficially appear overly

constraining. The resonance condition ω1 = ω2 + · · · + ωK is minimal in the sense that

decreasing ω1 by just one, i.e., ω1 = ω2 + · · ·+ ωK − 1, no longer results in selection rules

(which can be verified by simple Jacobi polynomial manipulations). However, the number

of the lowering operators coming from ψ1 in our above derivation is much greater than

what would have been minimally necessary to annihilate the product ψ2 · · ·ψK , which may

seem paradoxical. The resolution is that, if we had imposed ω1 = ω2 + · · ·+ωK −1 in (5.5)

instead of the correct resonance condition, we would not be able to extend the integrals to

run over the entire AdS hyperboloid, as in (5.6), and the rest of our derivation would no

longer apply.

We comment on the apparent minor discrepancy between the selection rules we have

derived and the ones reported on [13]. In [13], the condition that Kd (in our present

notation) should be even was imposed (in addition to the resonant relation between the

frequencies) in order for the selection rules to hold, whereas we see no need for such a

condition. The reason, we believe, is that [13] has focused exclusively on the radial part

of the integral (5.5) and the corresponding radial parts of the mode functions (2.6). It is

then claimed that the radial (x-)integral in (5.5) vanishes only if Kd is even. We recall

that ωk = d+ 2nk + lk, where nk and lk are the radial and angular momentum ‘quantum

numbers’ of the mode functions (2.6). If Kd is odd and ω1 = ω2 + · · ·+ωK , it is easy to see

that the sum l1 + l2 + · · ·+ lK is odd. However, spherical harmonics of angular momentum l

have inversion parity (−1)l. Hence, with all the above specifications, the integrand in (5.5)

4That the determinant of (5.8) is −1 can be quickly seen by noticing that at each point (t,Xi), (5.8)

possesses the following eigenvectors: (1, 0) with the eigenvalue −(1 + XkXk), (0, Xi) with the eigenvalue

1/(1 + XkXk) and (d − 1) eigenvectors with zero t-components orthogonal to (0, Xi), all of which have

eigenvalues 1. The product of all these eigenvalues of (5.8) is simply −1.
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has a negative inversion parity and is guaranteed to vanish upon the integration over the

angles. The constraint on Kd is therefore unnecessary for formulating the selection rules

(and only the resonance condition ω1 = ω2 + · · ·+ωK has to be satisfied). Our derivations

have taken advantage of the embedding space representation for the mode functions that

does not require separating the mode functions into radial and angular parts, and the

selection rules that emerge automatically take into account all possible constraints from

the integrations in (5.5).

6 Isometries, hidden symmetries and the Higgs oscillator algebra

Having established the selection rules, we would like to return to the question of algebraic

structures and hidden symmetries of the Higgs oscillator, and see in particular what light

can be shed on these questions using the connections to the AdS spacetime and the flat

embedding space we have described above.

The Higgs oscillator is a particle on a d-sphere with the polar angle θ moving in a

potential proportional to 1/ cos2 θ. It is straightforward to show that all the orbits of this

motion are closed and the system possesses a large set of classical conserved quantities,

which form an su(d) Lie algebra under taking Poisson brackets [2]. The system is in

fact maximally superintegrable, which explains why its trajectories are only dense in 1-

dimensional manifolds in the phase space. (General review of superintegrability can be

found in [27].) Quantum-mechanically, one can solve exactly for the spectrum and discover

that the degeneracies of the energy levels are again dictated by a hidden SU(d) symmetry,

however, no explicit closed form construction for the corresponding symmetry generators

is known [2, 3, 21].

It was demonstrated in [16] that the mode functions of a scalar field in Anti-de Sitter

spacetime are in a one-to-one correspondence with the Higgs oscillator energy eigenstates.

The relation can be read off (3.1)–(3.2). In particular, the multiplet structures are com-

pletely identical. The AdSd+1 spacetime enjoys many special properties such as an SO(d, 2)

isometry group and a simple embedding as a hyperboloid in a (d+2)-dimensional flat space.

We have extended the AdS mode functions in the embedding space and found a very simple

structure in terms of homogeneous polynomials (4.10). The extended functions satisfy a

harmonic oscillator Schrödinger equation (with a pseudo-Euclidean signature) on the em-

bedding space, given by (4.7). The AdS isometries provide a spectrum-generating algebra

for the Higgs oscillator, with raising and lowering operators given by (5.1)–(5.2). (Dis-

cussion of spectrum-generating algebras, including generalized orthogonal algebras, can be

found in [28].)

It would be natural to attempt characterizing the symmetries of the Higgs oscillator

as a subset of symmetries of the Schödinger equation (4.7). Indeed, since every Higgs

oscillator energy eigenstate can be related to a certain solution of (4.7), the symmetries of

the Higgs oscillator must form a subset of the symmetries of (4.7). One can immediately

construct an SU(d, 2) group of symmetries of (4.7) with the generators given by (4.14). One

then should ask which of the generators preserve the functional form of (4.10), including

the homogeneity of the polynomial P, which is a necessary condition for the corresponding
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function to represent a Higgs oscillator state. It turns out, however, that only the obvious

SO(d) generators Lij of (4.7) preserve the form of (4.10). Where can one find the remaining

SU(d) symmetry generators?

We note that given two symmetry generators for the Schrödinger equations (4.7), their

ordinary product is also a symmetry generator. We should not therefore limit our search

for the Higgs oscillator symmetries to linear combinations of (4.14). In particular, looking

at the quadratic combinations, one discovers that

Λij =
1

2

(
{LXi, LXj}+ {LY i, LY j}

)
(6.1)

preserves the functional form of (4.10) and therefore provides a symmetry generator for

the Higgs oscillator. Specifically, acting with Λij on functions of the form (4.10) returns

e
1
2

(σ−XiXi)

(X − iY )ω
(σ∂i∂jP+XiXj∂k∂kP + (2σ∂σ−ω+1)(Xi∂jP +Xj∂iP) + δij(2σ∂σ − ω)P) .

(6.2)

The commutator of Λij is given by

[Λij ,Λkl] = i ({Λik, Ljl}+ {Λil, Ljk}+ {Λjk, Lil}+ {Λjl, Lik})
−i(1 + L2

XY ) (δikLjl + δilLjk + δjkLil + δjlLik) . (6.3)

While deriving the above formula, one has to use the identity

LXnLY m − LY nLXm = −LXY (Lmn + iδmn). (6.4)

The generators Λij thus do not form a Lie algebra, but rather a quadratic algebra. They

are in fact simply the conserved quantities quadratic in momenta considered already in [2].

Here, we have managed to relate these conserved quantities to the spectrum-generating

algebra originating from the SO(d, 2) isometries of the AdS space. Quadratic algebras

have been extensively discussed in the literature in relation to the Higgs oscillator and

other superintegrable systems, see, e.g., [29–43]. (A curious application of these algebras

to constructing deformations of fuzzy sphere solutions in matrix theories can be found

in [44].) Using (4.12)–(4.13), one can show that the trace Λii is not in fact independent,

if acting on functions of the form (4.10), but can be expressed through LijLij , LXY and

L2
XY . This agrees with the observations about conserved quantities in [2]. The situation

we encounter here is in a way complementary to the more familiar ordinary quantum

Coulomb problem, where the standard conserved quantities satisfy a Lie algebra (if one

wants to treat the discrete and continuous spectrum on the same footing, one needs to work

with loop algebras [45]), whereas exotic conserved quantities satisfying quadratic Yangian

algebras can be constructed [46, 47]. For the Higgs oscillator, straightforward quantization

of classical conserved quantities leads to a quadratic algebra, while the construction of

conserved quantities satisfying an su(d) Lie algebra remains an outstanding problem.

We have generally been writing our generators either in terms of their action on the

embedding space functions of the form (4.10), or in terms of their action on the AdS mode

functions e(x,Ω) extended to the AdS hyperboloid by multiplying with eiωt, where ω is
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the corresponding frequency. Either set of functions is in a one-to-one correspondence

with the Higgs oscillator energy eigenstates at energy level number ω − δ, so in principle

our representations are all one needs. However, one can also write a (slightly more awk-

ward) representation for the generators as explicit operators acting on the Higgs oscillator

wave functions (with all of the AdS scaffolding completely purged), as we shall briefly

explain below.

The action of the raising and lowering operators (5.9) on functions of the form

eiωteω(Xi), where eω(Xi) is any AdS mode function of frequency ω expressed through

gnomonic coordinates (5.8), is given by

L±n(eiωteω(Xi)) = e±i(ω±1)t

(
± iωXn

√
1 +XkXk

− i
√

1 +XkXk
∂

∂Xn

)
eω(Xi). (6.5)

This representation can be used to consistently strip off the eiωt factors and define the

action of L±n on eω(Xi) itself. We then recall that the relation between the AdS

mode functions and the Higgs oscillator wave functions is given by multiplication with

cos(d−1)/2 x ≡ (1 +XkXk)−(d−1)/4, as indicated above (3.1). So if converting from the AdS

language to the Higgs oscillator language, the action of any operator has to be conjugated

by this multiplication. Applied to the operator above, this procedure gives

L
(Higgs)
±n = ± iXn

√
1 +XkXk

ω̂ − i(1 +XkXk)(d+1)/4 ∂

∂Xn
(1 +XkXk)−(d−1)/4. (6.6)

What remains is to define the operator ω̂ that acts by multiplying the Higgs oscillator

energy eigenfunctions by δ + N , where N is the energy level number. For the AdS mode

functions, this operator was simply LXY . For the Higgs oscillator, this operator can be

expressed as a function of the Higgs oscillator Hamiltonian. (In practice, energies of the

Higgs oscillator are quadratic functions of the energy level number, so the Higgs Hamil-

tonian is a quadratic function of ω̂, and expressing ω̂ through the Higgs Hamiltonian

will involve some square roots.) L
(Higgs)
+n defined above is Hermitian conjugate to L

(Higgs)
−n

with respect to the standard integration measure on the sphere in gnomonic coordinates

(dX i(1 +XkXk)−(d+1)/2).
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A Geodesics in AdS and the classical Higgs oscillator

We would like to demonstrate the relation between the geodesic motion in AdS and the

orbits of the classical Higgs oscillator. In both problems, it is convenient to use the rotation

symmetry and place the orbit in the equatorial plane, setting the azimuthal angles to π/2.

The motion is then described by the polar angle φ, the ‘radial’ angle called x in the AdS

metric (2.1) and θ for the Higgs oscillator, and the time variable.

The geodesic equation in AdS can be obtained by considering the Lagrangian.

LAdS =
1

cos2 x

(
−
(
dt

dλ

)2

+

(
dx

dλ

)2

+ sin2 x

(
dφ

dλ

)2
)
. (A.1)

where λ is the affine parameter. The equations are given by

d2x

dλ2
+ tan2 x

(
dx

dλ

)2

+ E2 sinx

cos3 x
− l2

tan3 x
= 0. (A.2)

where E and l are the conserved quantities defined by

E =
1

cos2 x

dt

dλ
and l = tan2 x

dφ

dλ
. (A.3)

Introducing a new curve parameter dτ = cosx dλ, (A.2) is transformed to

d2x

dτ2
+ E2 sinx cosx− l2 cosx

sin3 x
= 0. (A.4)

The Higgs oscillator equation of motion can be derived from the Lagrangian

LHiggs =
1

2

((
dθ

dt

)2

+ sin2 θ

(
dφ

dt

)2
)
− k

cos2 θ
. (A.5)

The equation of motion is given by

d2θ

dt2
− l2 cos θ

sin3 θ
+

2k sin θ

cos3 θ
= 0, (A.6)

where l = (dφ/dt) sin2 θ. Integrating (A.4) and (A.6) with respect to τ and t, respectively,

yields

1

2

(
dx

dτ

)2

− E2

2
cos2 x+

l2

2 sin2 x
= CAdS, (A.7)

1

2

(
dθ

dt

)2

+
l2

2 sin2 θ
+

k

cos2 θ
= CHiggs. (A.8)

Integrating (A.9) and (A.8) further and rewriting the result as an equation for the orbital

shapes x(φ) and θ(φ), one obtains

φAdS =

∫
l dx

sin2 x
√
E2 − l2cosec2x+ (2CAdS − l2) sec2 x

, (A.9)

φHiggs =

∫
l dθ

sin2 θ
√

2CHiggs − l2cosec2θ − 2k sec2 θ
. (A.10)
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These equations are the same, given an appropriate identification of the integration con-

stants and the strength of the Higgs oscillator potential.

We note that, while the orbital shapes are the same, the AdS geodesic equation gener-

ates, in a sense, a superior time evolution. Not only are all orbits in AdS closed, but their

periods with respect to t are also the same, unlike the time evolution generated by the Higgs

oscillator Hamiltonian. Correspondingly, in the quantum theory, the Higgs oscillator has a

spectrum with unevenly spaced levels. The mode functions of the Klein-Gordon equation

in the AdS space, which are directly related to the Higgs oscillator energy eigenstates,

possess a spectrum of equidistant frequency levels.

We also note in passing a curious self-similarity transformation afforded by the orbits

of the Higgs oscillator: under the transformation θ̃ = arctan(sin θ), Higgs oscillator orbits

get mapped to Higgs oscillator orbits (while the integration constants and the strength

of the Higgs oscillator potential get redefined). However, the new variable θ̃ only ranges

over angles less than π/4. Thus every orbit of the original system living on a half-sphere

(θ < π/2) can be recovered from an orbit moving entirely within the cone θ < π/4, with

an appropriate re-identification of parameters. This self-similarity transformation can, of

course, be repeated, yielding motion in even smaller domains containing all the information

about the orbits of the original theory.

B AdSd+1 mode functions in terms of (d+ 2)-dimensional harmonic os-

cillator

We would like to ask how to isolate (4.9) among the solutions of (4.7), of which they form

a subset. One can start by inspecting product solutions Φ = ξ(S, T )ψ(R,Ω) with{
− 1

S

∂

∂S

(
S
∂

∂S

)
− 1

S2

∂2

∂t2
+ S2

}
ξ = ((2δ − d− 2) + 2ζ) ξ, (B.1){

1

Rd−1

∂

∂R

(
Rd−1 ∂

∂R

)
+

1

R2
∆Ωd−1

−R2

}
ψ = −2ζψ. (B.2)

Upon examining (4.9), for ψ one can take a perfectly standard isotropic harmonic oscillator

basis involving the associated Laguerre polynomials:

ψnlm(R,Ω) = Rle−R
2/2L

(l+ d
2
−1)

n (R2)Ylm(Ω), ζ =
d

2
+ 2n+ l. (B.3)

A similar approach to ξ would have failed, however, since it can give neither the 1/Sω

pole, nor the growing exponential eS
2/2 in (4.9). Instead, one should be looking for special

solutions of the form

ξ =
eiωT

Sω
eS

2/2χ(S), (B.4)

where χ is a polynomial. Similar special singular solutions growing in classically forbidden

regions have been previously considered as a quantum-mechanical curiosity in [48–50]. (B.1)

then becomes
d2χ

dS2
+

(
2S − ω +

1

2

)
dχ

dS
− 2(ω − δ − 2n− l)χ = 0. (B.5)
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It is easy to verify that polynomial solutions to this equation will only exist if ω satisfies

the quantization condition ω = δ+ 2j+ l for some integer j. Rewriting the above equation

in terms of ξ = −S2 produces the associated Laguerre polynomial equation

ξ
d2χ

dξ2
+ (−δ − 2j − l + 1− ξ)dχ

dξ
+ (j − n)χ = 0 (B.6)

with solutions

χn = L
(−δ−2j−l)
j−n (−S2). (B.7)

One can then ask how to construct the extended mode functions (4.9) from our special

set of factorized solutions built from (B.3), (B.4) and (B.7). To this end, we first point out

a relation between the Laguerre and Jacobi polynomials, which is a slight generalization of

the one that had appeared in [51]. Consider the generating functions of Jacobi polynomials

and Laguerre polynomials,

∞∑
j=0

(
(y − x)t

)j
P

(α,β)
j

(
y + x

y − x

)
Γ(j + α+ 1)Γ(j + β + 1)

=
Iβ(2
√
yt)Iα(2

√
xt)√

tα+βxαyβ
(B.8)

and
∞∑
j=0

L
(α)
j (x)

tj

Γ(j + α+ 1)
=

et

(xt)α/2
Jα(2
√
xt). (B.9)

Using the Bessel function relation Jα(ix) = iαIα(x) and combining (B.8) and (B.9) yields

P
(α,β)
j

(
y + x

y − x

)
=

1

(y − x)j

j∑
n=0

(n+α+1)j−n(j−n+β+1)n(−1)nL(α)
n (x)L

(β)
j−n(−y) (B.10)

where (x)n ≡ Γ(x+ n)/Γ(x) = x(x+ 1) · · · (x+ n− 1) is the Pochhammer symbol.

Constructing a quadratic convolution of (B.3), (B.4) using the above relation, with x

identified with R2 and y identified with S2 thus indeed produces a Jacobi polynomial, as

in (4.9), but this polynomial (superficially) has strange negative order-dependent weight

(l+ d
2 − 1,−δ− 2j− l) and a ‘wrong’ argument. To connect it explicitly to (4.9), one needs

to further apply the following relation:

P
(α,β)
j (1− 2η) = (1− η)j P

(α,α−β−2j−1)
j

(
1 + η

1− η

)
. (B.11)

This relation is proved by first noticing that the right-hand side is a polynomial of degree j

and then verifying that it satisfies the Jacobi equation for weights (α, β) with respect to the

argument on the left-hand side. This establishes the identity above up to normalization,

which can be verified to be correct by comparing the coefficients of one particular power

of η on the two sides. Combining (B.10) and (B.11), one can conclude that

S2jP
(α,−α−β−2j−1)
j

(
1− 2R2

S2

)
=

j∑
n=0

(n+α+1)j−n(j−n+β+1)n(−1)nL(α)
n (R2)L

(β)
j−n(−S2).
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Note that while this identity has been derived by a succession of rather complicated and not

entirely explicit steps, the result can be straightforwardly verified, and holds, by evaluating

both sides for special values of the indices using a computer algebra system. Putting ev-

erything together, each extended mode functions (4.9) can be expressed explicitly through

solutions of the Schrödinger equation (4.7) as

Ejlk =
eiωT

Sω
e(S2−R2)/2

j∑
n=0

WnjL
(−δ−2j−l)
j−n (−S2)L

(l+ d
2
−1)

n (R2)RlYlk(Ω). (B.12)

where Wnj = (n− δ − 2j − l + 1)j−n(j − n+ l + d
2)n(−1)n (and we have not kept track of

the overall normalization).
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