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1 Introduction and results

The understanding of the properties of high-temperature superconductivity, especially its

microscopic origin, is significant in theory and application. Conventional superconductors

are well described by BCS theory in which the condensate is a Cooper pair of electrons

weakly bound together through lattice vibrations known as phonons. However, many ma-

terials of significant theoretical and practical interests, such as high-Tc cuprates and heavy

fermion systems, are beyond BCS theory. The intrinsic interaction for those materials are

believed to be in the strongly coupled regime, thus the conventional approaches, such as

quasi-particle paradigm of Fermi liquid theory, seem at least in part of the phase diagram

inapplicable. Some new concepts have been developed, such as the spin fluctuation super-

glue [1], the resonating valence bond (RVB) gauge approach [2, 3] and the SO(5) theory [4],

which indeed provide useful insights into such strongly-coupled materials and superconduc-

tors. Nevertheless, a deeper understanding of the unconventional superconductivity is still

an open question [5–7]. Any new idea would be helpful to shed light on the quest for

understanding strongly correlated electron systems.

The holographic duality, also known as the gauge/gravity duality or AdS/CFT cor-

respondence [8–10], originated from string theory and has been used recently to under-

stand theories that are at finite density and may be in the universality class of interesting,

strongly-coupled condensed matter systems. The holographic duality relates the dynamics

of a lower-dimensional quantum field theory to a dual gravitational/string theory living in

higher dimensions. The key point is that, in the classical limit, the gravity side can be

well described by generalisations of general relativity, while the dual field theory involves
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dynamics with strong interactions, thus providing an invaluable source of physical intu-

ition as well as computational power to deal with strongly coupled problems. Progress has

been made in the application of the holographic description towards phenomena at finite

densities, relevant for condensed matter systems, in the last few years, such as strange

metals [11–13], (non-) Fermi liquid [14–16], superconductivity (superfluidity) [17, 18] and

Néel phase transition [19], see [20–23] for reviews and [24] for an excellent book on this

emergent topic.

In an attempt to build a consistent overall picture of those unconventional materials,

mapping out and forming a rudimentary understanding of the temperature-doping phase

diagram becomes a primary focus of research. The phase diagram is a landscape of exotic

states of matter. Typical phase diagrams of many unconventional superconductors, such as

cuprates and iron-based pnictides, have some similarities among them. At low temperature

T and doping (or in general any other control parameter) x the phase diagram is dominated

by an antiferromagnetic (AF) phase. As the doping is increased to some intermediate

region, a superconducting (SC) order appears below a critical temperature and will finally

take over the phase diagram. Nevertheless, for sufficiently large x the superconductivity

can be destroyed. Therefore, there is typically a superconducting dome in the global

phase diagram. Besides antiferromagnetism and superconductivity as two fundamental

and common states of matter, in other regions of (T,x) plane there are different kinds of

phases that could emerge, depending on the concrete materials one is considering. One

particularly interesting regime, typically in cuprates, is the underdoped pseudogap phase.

Although a true understanding of this mysterious state is an open question, it is plausible

that competing orders are at work and the evidence points to a whole collection of exotic

phenomena. The exotic orders that have been identified in the pseudogap regime include

the stripes, the quantum liquid crystal orders, the spontaneous diamagnetic currents and

so on [5, 6, 25–28]. To illustrate this, in figure 1 we provide a schematic sketch of the

phase diagram for high-Tc cuprates. Although many efforts have been made, (see, for

example, [3, 4]), so far the phase diagram in the temperature-doping plane, putting all

ingredients together, has not been assembled.

The purpose of the present work is to study a similar class of problems: namely

the competition of various phases that are similar to those we discussed above, namely

the antiferromagnetic order, the striped order and the superconducting order, using the

techniques of holography. We will use the techniques of effective holographic theories [30,

31] in order to analyse the competition of phases and the related phase diagrams.

We construct a holographic theory by picking the relevant bulk fields corresponding to

the most important operators of the dual field theory and then writing down a natural bulk

action.1 This effective holographic description has the advantage of being general, i.e., the

results might be valid for many different dual field theories upon varying parameters in the

bulk Lagrangian. The bulk gravitational theory captures the macroscopic dynamics of the

order parameters and symmetry breaking pattern, but can not explain their microscopic

1There is a complementary approach called top-down in which a theory is uniquely determined by a

consistent truncation from string theory or supergravity.
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Figure 1. Schematic phase diagram of the high-Tc cuprates. The subplot in the pseudogap region

is used to stress the possible striped order and checkerboard order. This figure is adapted from [29].

origin. Nevertheless, we hope that the holographic approach would uncover some universal

aspects of the strongly-coupled superconductivity.

There are two key steps in this direction. The theory, should be able to accommo-

date the phases that we are interested in. Depending on the values of the temperature

and the doping, the boundary system can be in antiferromagnetic phase, superconducting

phase, normal metallic phase2 or some exotic phase in pseudogap region. Next and more

importantly, the theory should have a degree of freedom to realise the desired patten of

each phase in the (T,x) plane. Comparing with figure 1, we should have a superconduct-

ing dome, a corner region of antiferromagnetism at low doping level, a normal metallic

phase at high doping and a pseudogap region between antiferromagnetic and supercon-

ducting phases. As a consequence of holography, our dual field theory is scale invariant

which typically appears at some quantum critical point of strongly correlated systems. The

quantum phase transition is one major theme in the context of theories of unconventional

superconductivity.

The (3 + 1) dimensional (gravitational) “toy” theory we shall consider contains the

following bulk fields.

• A metric gµν dual to the stress tensor of the boundary theory.

• A triplet real scalar Φa which is dual to the order parameter for antiferromagnetism.

2Notice that in figure 1 there is also a state above the SC regime known as strange metal characterised

by a resistivity linear in temperature. We do not include the strange metal phase in the present study, but

we shall do it in the future. There are several holographic strange metal candidates, [11–13], that can be

included.
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• An SU(2) gauge field gaµ dual to the conserved spin (antiferromagnetic) current. The

scalar field Φa transforms in the adjoint of the SU(2) gauge group.

• Two U(1) gauge fields Aµ, Bµ that are dual to two conserved U(1) currents in the

theory. One corresponds to the total charge of the dual system and the other one is

associated with the doping x. The association to the doping parameter is motivated

as follows. In standard cuprates there are two charge densities: one is intrinsic to

the basic material and the other is related to added charges. In such materials such

an addition is associated to the doping parameter. This resembles our case where

there are two charge densities and their relative charge density defines our “doping”

variable x. This is our definition of the doping variable and in the rest of the paper

we will use this name without any additional explanation

• A scalar χ which is in general charged under two U(1) gauge fields and in particular

under electromagnetism. It will be the order parameter for superconductivity.

• A neutral (real) pseudo-scalar α which is dual to antisymmetric tensor that couples

to string defects. It will play a pivotal role in the realisation of a striped phase.

The two control parameters in our holographic setup are temperature T and a doping-

like parameter x. By tuning T and x several phases can appear:

• A normal metallic phase without any symmetry breaking.

• An antiferromagnetic phase.

• A superconducting phase.

• A spatially modulated phase with charge density wave (CDW) order.

In our setup the latter three kinds of phases appear spontaneously without any deformation

from the the dual field theory point of view. The spatially modulated phase can have

striped or checkerboard structure. The AF and SC condensates can also be spatially

modulated and there are in principle coexisting phases in which more than one orders can

exist simultaneously, resulting in, such as AF+SC, SC+CDW and AF+CDW states.

We find that this simple bulk theory can exhibit many interesting features. A schematic

picture of a likely phase diagram incorporating our study is given in figure 2.3 At low

doping on the far left, the phase diagram is dominated by the antiferromagnetic phase.

As one increases the doping parameter, the antiferromagnetic phase will be destroyed

and be replaced by a striped or checkerboard phase which would be reminiscent of the

“pseudogap” phase. More interestingly, there is a dome-shaped superconducting region in

the (T,x) phase diagram, separated from the spatially modulated state at smaller values of

the doping parameter and a metallic normal phase at larger values of the doping parameter.

In particular, the characteristic temperature for each broken phase is comparable with

3To obtain figure 2 some assumptions are made which will be discussed in detail in the text. Moreover,

a much more complex phase diagram will also be discussed.
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Figure 2. A schematic figure of a plausible phase diagram in the temperature-doping plane that

can be proposed from our holographic setup.

others. Moreover, the temperature at which the phase transition occurs can be tuned to

zero by the doping parameter x. Therefore, the dual system would contain quantum phase

transitions.

It should be stressed that if one scans all possible parameters of the effective holo-

graphic theory, then many possible phase diagrams can appear. These are classified and

discussed in section 7. We argue however that simple assumptions about the stability prop-

erties of the undoped (AF ground state and no superconductivity) and extrermely doped

theory (no AF ground state, no superconductivity) give, for natural values of parameters,

a phase diagram that is qualitatively similar to the one in figure 2.

The rest of the paper is arranged in the following way:

• Section 2 motivates our choice of holographic theory and fields and introduces the

holographic theory that will be investigated in detail in the following sections.

• The instabilities towards developing antiferromagnetic phase and superconducting

phase are discussed in section 3 by studying the modes that violate the Breitenlohner-

Freedman (BF) bound of the AdS2 IR geometry of the normal phase at zero temper-

ature.

• In section 4 and section 5 we construct the superconducting phase and the antifer-

romagnetic phase at finite temperatures, respectively. We explicitly show that there

can be a superconducting dome as well as a corner region of antiferromagnetic phase

in the (T,x) plane.

• section 6 is devoted to studying the striped instabilities which result in charge den-

sity wave seen from the dual field theory perspective. We also briefly discuss the

checkerboard structure.

• In section 7 we classify possible phase diagrams for each broken phase that could be

realised in our theory. Then we combine the basic necessary ingredients together to

construct the full phase diagram.
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• We conclude with a discussion of some possible future research directions in section 8.

• In appendix A we briefly introduce the theory which is a natural generalisation of

holographic superconductors.

• The most general equations of motion for homogeneous and isotropic background are

presented in appendix B.

• In appendix C we demonstrate that the linearised fluctuations of SU(2) gauge field

and triplet scalar in symmetry breaking directions form a closed system, from which

we show that the holographic description displays the associated spin wave with linear

dispersion.

• The method we use to search for the static zero modes of the striped instabilities is

described in appendix D.

• We give much more details of checkerboard instabilities in appendix E.

• Finally in appendix F, the striped zero mode is analysed around the condensed phase

of antiferromagnetism.

2 Construction of the holographic theory

2.1 Condensed matter related motivations

During the past three decades, intense experimental and theoretical research have discov-

ered many common features in the properties of materials that are on the border with

magnetism. Such materials show a strong interplay and interaction between spin and

charge (electrons), lead generically to strong electron correlations and in some cases show

“high-temperature” superconductivity. Their phase diagrams have similar topologies. This

definition encompasses a wider variety of unconventional superconductors, such as some

organic superconductors and heavy fermion compounds despite the critical temperature

can be lower than many conventional superconductors. To develop a rigorous theory for

such strongly correlated materials and high-temperature superconductivity remains one of

the major problems in physics and has proven to be a difficult challenge.

High-temperature superconducting materials are characterised by strong electronic cor-

relations which are responsible for a number of anomalous properties and competing orders.

Those low temperature orders interact with superconductivity in an intricate way. Besides

the antiferromagnetic (AF) and the superconducting (SC) states, one of the prominent

orders is known as the stripe order and has been identified, for example, in the pseudogap

region of high-Tc cuprates [5, 6, 25–28]. The phase diagram of the high-temperature super-

conductors is in that sense a landscape of exotic states of matter. Although different classes

of high-temperature superconductors have their unique characters, their phase diagrams

share many similarities. A representative phase diagram is the one of cuprates as shown in

figure 1. To establish a consistent overall picture of those unconventional superconductors,
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mapping out and forming a rudimentary understanding of the temperature-doping phase

diagram can be a primary focus of research.

Holography provides a novel approach for studying strongly correlated systems. It

has been widely used to describe dual systems in various phases and to discuss phase

transitions at finite temperature and densities. To reproduce the phase diagram of the

high-temperature superconductors by a dual theory is an idea worth trying. Since a number

of important unconventional superconductors, such as the cuprates, have layered structure

and much of the physics is (2+1) dimensional, we will consider a dual gravitational theory

in (3 + 1) dimensions.

In order to construct a holographic dual to a doped superconductor, the first challenge

is how one can introduce the effect of doping into the holographic theory. One crucial point

in our theory is to introduce two bulk U(1) gauge fields, which in turn correspond to two

currents in the dual boundary theory. The two independently conserved currents can be

related to different kinds of charge in the theory. One may be reflecting “bound” charge

while the other itinerant charge but this is not necessarily the only interpretation.

The ratio of these two charges plays the role of the additional control parameter that

we will call “doping” x in the holographic setup. Theories with two tuneable chemical

potentials or charge densities are often called imbalanced mixtures, because the two kinds

of charges are present in imbalanced numbers. Typical examples include two component

Fermi gas [32] and QCD at finite baryon and isospin chemical potential [33].4 It is the

competition between them that determines the macroscopic behaviours of the real system,

such as the whole phase diagram and transport coefficients. In the rest of the papers we

will drop the quote marks from the “doping” parameter x.

We will also not consider transitions that covert one kind of U(1) charge into the other.

It is however an interesting project to investigate the effect of such transitions to the phase

diagrams we are studying.

2.2 The holographic theory and its possible phases

The normal phase without any symmetry breaking is described by the AdS Reissner-

Nordstriöm (AdS-RN) black brane with two charges corresponding to two U(1) gauge

fields. The zero temperature solution is a domain wall interpolating between AdS2×R2 in

the far infrared (IR) and AdS4 in the ultraviolet (UV). The near horizon AdS2 geometry

with two charges will be used to analyse the global (T,x) phase diagram.

Besides the normal phase, there are three kinds of phases, i.e., superconducting phase,

antiferromagnetic phase as well as spatially modulated phase, such as striped phase and

checkerboard phase. Those phases are associated with a particular type of symmetry

breaking. We call them broken phases. In the following, we will give the gravity duals

for the three kinds of broken phases in our setup and then write down a general effective

action.

4Holographic studies with such imbalanced mixtures can be found, for example, in [34–37].
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2.2.1 Gravity dual of broken phases

The superconducting phase transition is associated with spontaneously breaking of U(1)

gauge symmetry. The first holographic superconductor is known as the Abelian-Higgs

model [18], in which a charged scalar, say ψ, is minimally coupled with a bulk U(1) gauge

field. When the temperature is below a critical one, the scalar obtains a nontrivial bulk

configuration, which means that the dual operator acquires a non-vanishing vacuum expec-

tation value (VEV) breaking the U(1) symmetry spontaneously. This s-wave model was

soon generalised to p-wave models [38–41] as well as d-wave models [42, 43]. Reviews can be

found in [29, 44–46]. In this paper we adopt a generalised version of previous holographic

superconductors, i.e., in the generalised symmetry breaking theories, with the most general

allowed interactions at the two-derivative level [47]. In particular we allow kinetic terms

to depend in general on the condensates.

The complex scalar ψ (dual to the superconducting order parameter) is replaced by

two real scalars χ and θ (see appendix A for a short introduction). Spontaneous breaking of

the boundary U(1) symmetry at a particular temperature is dual to the condensation of the

scalar χ in the bulk. A nontrivial solution of χ corresponds to the superconducting phase

and the scalar θ is the source of the Goldstone excitation of the broken U(1) symmetry

as the breaking is spontaneous. Holographic superconductors in similar models have been

considered in a number of works [48–51].

In the low energy limit of an electron system, spin rotation is a symmetry even though

the rotational symmetry could be broken by a presence of lattice or other effects. The

low-energy theory is then characterised by an SU(2) global symmetry which describes the

spin rotation. From the symmetry breaking point of view, antiferromagnetic ordering is

described by a spontaneous breaking from SU(2) to U(1) which corresponds to rotations

about the remaining axis. The gravity dual of AF phase can be constructed by adopting

a real scalar Φa which transforms as a triplet under SU(2) in the bulk [19]. Spontaneous

breaking of the boundary SU(2) symmetry at some critical temperature translates in the

holographic dual into the condensation of the scalar Φa. A bulk background with vanishing

SU(2) gauge field but with a normalisable Φa in one direction is then holographically dual

to an AF phase or spin density wave phase in the boundary theory.5

Spatially modulated phases such as charge density wave (CDW) phase and checker-

board structure in high-temperature superconductors are associated with spontaneously

breaking spatially translational invariance. There are some studies of the spontaneous

breaking of translational invariance in variety of holographic theories [54–65]. The corre-

sponding broken solutions could be related to the spatially modulated phases of condensed

matter systems in which, for example, superconducting order can compete or coexist with

CDWs or checkerboard orders in the pseudogap region. In practice, in order to break

the translational invariance spontaneously, one needs to introduce particular static mixing

modes, such that the stable branch of the solution to the holographic theory shifts from

the homogeneous state to the state with nonzero momentum, resulting in spontaneous

5An alternative approach for antiferromagnetism in holography was realised by introducing two real

antisymmetric tensor fields on the gravity side [52, 53].
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translational symmetry breaking. In this paper we introduce striped instabilities while

keeping the charged AdS-RN as the unbroken phase by adopting a pseudo-scalar α (dual

to a CP-odd operator) which couples with Chern-Simons terms of U(1) gauge fields.6

2.2.2 The holographic theory

Now we have gravity duals for each broken phase from a symmetry breaking point of view.

We can then write down a general effective gravitational theory,

S =
1

2κ2
N

∫
d4x
√
−g
[
R− 2Λ + Lm + Lcs

]
, (2.1)

Lm = −ZG
4
GaµνG

aµν − 1

2
DµΦaDµΦa − ZA

4
AµνA

µν − ZB
4
BµνB

µν − ZAB
2

AµνB
µν

− 1

2
∇µχ∇µχ−F(χ)(∇µθ − qAAµ − qBBµ)2 − 1

2
∇µα∇µα− Vint , (2.2)

Lcs = −ϑ1(α)εµνλσAµνAλσ − ϑ2(α)εµνλσAµνBλσ .

Further explanation of the action is given as follows.

• gaµ is an SU(2) gauge field, dual to the global SU(2) spin currents of the boundary

theory. The field strength is

Gaµν = ∂µg
a
ν − ∂νgaµ + εabcgbµg

c
ν ,

where a, b, c = (1, 2, 3) are the index of the SU(2) algebra and εabc is antisymmetric

with ε123 = 1.

• Φa is a triplet scalar charged under the bulk SU(2) gauge field. It corresponds to the

AF order parameter. The covariant derivative of Φa is defined by

DµΦa = ∂µΦa + εabcgbµΦc.

• Aµ with its field strength Aµν = ∂µAν − ∂νAµ is one of the two U(1) gauge fields

dual to boundary conserved U(1) currents.

• Bµ with its field strength Bµν = ∂µBν − ∂νBµ is the second U(1) bulk gauge field

dual to a boundary conserved current.

• Both χ and θ are real scalar fields and are related to the superconducting complex

condensate. θ is the phase of the condensate while χ is related non-linearly to the

amplitude of the condensate. χ is charged under the two U(1) gauge fields with

charges qA or qB.7

6This is the simplest way to generate such an order. There are more involved ways that can use CP-even

operators [64], but we would need to introduce extra interactions from the most general scalar operator in

our theory. This will be included in future work.
7We will show later that, in general, one can set either qA or qB to be zero without changing the global

phase diagram.
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• The field α is a CP-odd pseudo-scalar field (also known as an axion if it has no

potential). The last two terms in Lcs are Chern-Simons like terms in which εµνλσ =√
−gεµνλσ with εtxyr = 1. The pseudo-scalar α couples with Chern-Simons terms.8

• The cosmological constant is Λ = − 3
L2 with L the AdS radius.

• Vint is the gauge invariant interaction potential for the scalars and is further discussed

below.

This action will be supplemented later by the Gibbons-Hawking term and boundary counter

terms for renormalisation.

The solution with nontrivial χ and F(χ) 6= 0 describes holographic physics in the U(1)

symmetry broken phase. Note that the scalar θ is the source of the Goldstone boson of

the broken U(1) symmetry if the breaking is spontaneous. The symmetry broken solution

with a nonzero order parameter Φa but zero background gauge field gaµ corresponds to the

antiferromagnetic phase. We always turn on the third component of Φ, i.e., Φ = (0, 0, φ)

and set gaµ = 0. The bulk solution with nontrivial α is dual to a phase breaking both

time-reversal and parity symmetry. We will show in below that the axion-like terms can

induce striped instabilities.

As a consequence of SU(2) symmetry, Φa should appear in any function in terms of the

combination ΦaΦa. We take the coupling ZG to be a constant while other couplings are

analytic functions of ΦaΦa, χ and α. We choose to work with functions ZA, ZB, ZAB and

Vint that admit the electrically charged AdS Reissner-Nordstriöm (AdS-RN) black brane

when Φ = χ = α = 0.

Without loss of generality, we will parametrise the functions in the following expansion9

as Φ, χ, α→ 0.

ZA(ΦaΦa, χ, α) = 1 +
a1

2
ΦaΦa +

a2

2
χ2 +

a3

2
α2 + · · · ,

ZB(ΦaΦa, χ, α) = 1 +
b1
2

ΦaΦa +
b2
2
χ2 +

b3
2
α2 + · · · ,

ZAB(ΦaΦa, χ, α) =
c1

2
ΦaΦa +

c2

2
χ2 +

c3

2
α2 + · · · ,

Vint(Φ
aΦa, χ, α) =

1

2
m2χ2 +

1

2
M2ΦaΦa +

1

2
m̃2α2 · · · ,

ϑ1(α) =
n1

2
α+ · · · , ϑ2(α) =

n2

2
α+ · · · , F(χ) =

1

2
χ2 + · · · ,

(2.3)

where the dots denote the higher order corrections, like χ4, ΦaΦaχ2 and χ2α4. As we will

show below, these leading quadratic terms are enough to compute the temperature at which

8In a general effective theory, one can also add a term ϑ3(α)εµνλσBµνBλσ into Lcs. Nevertheless, this

term will not affect our results, and therefore we do not include it in the action for the sake of simplicity.
9A way to think about this basis of currents is as follows. Consider a gauge field A1 dual to the charge of

electrons in material without doping and A2 dual to the charge associated to doping. There will be terms,

in the effective action proportional to F1F2 induced by higher operators that are charged under both kinds

of U(1) symmetries, and we neglect a mass term that is due to transitions that convert one kind of charge

into another. The superconducting condensate χ will be expected to involve only the second kind of charge

and therefore q1 = 0, q2 6= 0. By an appropriate rotation we can set the constant part of Z12 to zero and

we rotate F1, F2 to the basis above, i.e., Aµν , Bµν . Then qA 6= 0, qB 6= 0 in general.

– 10 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
7

the AdS-RN black brane becomes perturbatively unstable with respect to an exponentially

growing mode of the dual operator. Note also that as the scalar fields are dimensionless

the parameters ai, bi, ci are also dimensionless.

Note that in the effective holographic theory, coupling parameter can be taken to have

general values. However, such constants are constrained by unitarity constraints. We may

obtain some of them from the requirement that the diagonal coupling constants of the two

gauge fields should not diverge (should be regular) at finite values of the scalars. This

requires that

Z± =
ZA + ZB ±

√
(ZA − ZB)2 + 4Z2

AB

2
, (2.4)

when expanded in terms of the scalars should have positive coefficients, indicating that the

coefficients ci cannot be large10 compared to |ai − bi|.
The coefficients ai, bi, ci etc control the overall size of the four-point correlators involv-

ing two scalars (condensates) and two currents. In holographic theories the size of such

correlators is naturally small controlled by a small string coupling constant in the dual

theory.

From the action we can derive the equations of motion for the matter fields

∇µ
[
F(χ)(∇µθ − qAAµ − qBBµ)

]
= 0 , (2.5)

ZG∇νGνµa + ZGε
abcgbνG

νµc = εabcΦbDµΦc, (2.6)

∇µ∇µα−
(
∂αZA

4
A2 +

∂αZB
4

B2 +
∂αZAB

2
AB

)
− ∂αVint =

∂αϑ1ε
µνλσAµνAλσ + ∂αϑ2ε

µνλσAµνBλσ , (2.7)

∇µDµΦa+εabcgbµD
µΦc−

(
2∂ΦVint+

∂ΦZA
2

A2+
∂ΦZB

2
B2+∂ΦZABAB

)
Φa = 0 , (2.8)

∇µ∇µχ−∂χF(∂µθ−qAAµ−qBBµ)2−
(
∂χZA

4
A2+

∂χZB
4

B2+
∂χZAB

2
AB

)
−∂χVint = 0 , (2.9)

∇ν(ZAA
νµ + ZABB

νµ) + 2FqA(∇µθ − qAAµ − qBBµ) =

4∂αϑ1ε
µνλσAλσ∇να+ 2∂αϑ2ε

µνλσBλσ∇να ,
(2.10)

∇ν(ZBB
νµ + ZABA

νµ) + 2FqB(∇µθ − qAAµ − qBBµ) = 2∂αϑ2ε
µνλσAλσ∇να ,

(2.11)

where we have used A2 = AµνA
µν , B2 = BµνB

µν and AB = AµνB
µν for short, and ∂Φ, ∂χ

and ∂α denote the derivative with respect to ΦaΦa, χ and α, respectively. The equations

of motion for the metric gµν read

Rµν −
1

2
Rgµν −

3

L2
gµν = Tµν , (2.12)

10This argument can be eventually avoided, however it suggests what are natural values for the coefficients.
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where the energy-momentum tensor is given by

Tµν =
ZG
2
GaµρG

a
ν
ρ +

1

2
DµΦaDνΦa +

ZA
2
AµρAν

ρ +
ZAB

2
(AµρBν

ρ +AνρBµ
ρ)

+
ZB
2
BµρBν

ρ + F(∇µθ − qAAµ − qBBµ)(∇νθ − qAAν − qBBν) (2.13)

+
1

2
∂µχ∂νχ+

1

2
∂µα∂να+

1

2
Lmgµν .

Note that the Chern-Simons terms in Lcs do not contribute to the energy-momentum

tensor.

Since the dual system lives in a spatial plane, we choose Poincaré coordinates with

r the radial direction in the bulk. Near the AdS boundary, say r → ∞, one obtains the

following asymptotic form,

φ =
φs

r∆φ
−

+ · · ·+ φv

r∆φ
+

+ · · · , At = µ+ · · · − ρ

r
+ · · · ,

χ =
χs

r∆χ
−

+ · · ·+ χv

r∆χ
+

+ · · · , Bt = µB + · · · − ρB
r

+ · · · , (2.14)

α =
αs

r∆α
−

+ · · ·+ αv

r∆α
+

+ · · · ,

with

∆φ
± =

3±
√

9 + 4M2L2

2
, ∆χ

± =
3±
√

9 + 4m2L2

2
, ∆α

± =
3±
√

9 + 4m̃2L2

2
.

(2.15)

The dots denote higher order corrections which can be extracted by analysing the equations

of motion near r →∞ order by order.

According to the standard AdS/CFT dictionary, µ is regarded as the chemical poten-

tial in the dual boundary theory, while ρ is the charge density and similarly for ρB and

µB. φ is interpreted as corresponding to the staggered magnetisation, in which the source

φs is considered as the staggered magnetic field while φv gives the response of the antifer-

romagnetic order parameter in the presence of source φs. χ is dual to the superconducting

order parameter. The leading term χs has the interpretation of the source, while χv is

the expectation value of the dual operator. αs is the source for the dual pseudo-scalar

operator. Since we expect all the broken phases to arise spontaneously, we will turn off all

source terms, i.e., φs = χs = αs = 0.11 We shall work in the canonical ensemble with the

charge densities ρ and ρB fixed.

There are a number of parameters in the effective holographic theory. We classify all

parameters into two types. One type is called “theory parameters” which correspond to

the parameters appearing in the bulk gravitational action (2.1), including ZG, qA, qB as

well as all the parameters that appear in (2.3).

The other class are “state parameters”, such as temperature, charge density, and VEVs

(condensates). They appear in the asymptotic expansions (2.14) as well as in the expansion

11In this paper we only consider the standard quantisation, i.e., the leading term is regarded as source

while the subleading term as response.
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of the metric. Such parameters are directly related to the solution or state of an action

such as (2.1), specified by theory parameters.

Since we want to give a complete phase diagram of different phases in a unified theory,

we should fix all theory parameters to specify the action and the control parameters of our

phase diagram should belong to the second type, i.e., state parameters.

We start from the homogeneous and isotropic case at finite temperature and charge

density. The bulk metric as well as matter part takes the generic form,

ds2 = gµνdx
µdxν = E(r)dr2 −D(r)dt2 + C(r)(dx2 + dy2) ,

gaµ = 0 , Φ =
(
0, 0, φ(r)

)
, α = α(r) ,

A = At(r)dt , B = Bt(r)dt , χ = χ(r) , θ = θ(r) .

(2.16)

Substituting the ansatz into the equations of motion, one obtains the concrete equations of

motion for each field, that are presented in appendix B. Note that the equations of motion

demand θ(r) to be a constant. We set it to zero without loss of generality.12

3 The T = 0 normal phase and its instabilities

The development of new branches of black brane solutions at finite temperature is asso-

ciated with the instability around the symmetric, normal phase black brane solutions. A

simple diagnostic can often be obtained by investigating the zero temperature limit of the

symmetric (normal) solutions. In this section we will focus on the instability conditions

for the normal phase towards the development of a nontrivial profile of each scalar. Our

starting point is the extremal limit of the normal solution, with the semilocal geometry

AdS2 × R2 in the far IR. The instability would appear if the IR dimension of the dual

operator for each scalar can violate the AdS2 Breitenlohner-Freedman (BF) bound. Then,

by continuity, the finite temperature normal background would become unstable at a suf-

ficiently low temperature.

3.1 The normal phase and its extremal limit

The normal phase corresponds to the solutions in which φ, χ and α are vanishing. By

considering the ansatz (2.16) as well as the condition (2.3), the normal phase is described

by the AdS Reissner-Nordstriöm (AdS-RN) black brane,

ds2 =
1

g(r)
dr2 − g(r)dt2 + r2(dx2 + dy2) ,

g(r) =
r2

L2

(
1−

r3
h

r3

)
+
ρ2 + ρ2

B

4r2

(
1− r

rh

)
,

At = ρ

(
1

rh
− 1

r

)
= µ− ρ

r
,

Bt = ρB

(
1

rh
− 1

r

)
= µB −

ρB
r
,

(3.1)

12We show in appendix C that the present holographic description in terms of the spontaneous breaking

of SU(2) symmetry can display the associated spin wave with linear dispersion, which is reminiscent of the

Néel phase in a spin system.
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where the boundary of the spacetime is at r →∞ and the planar outer horizon is at r = rh.

The black brane temperature reads

T =
rh
4π

[
3

L2
−
ρ2 + ρ2

B

4r4
h

]
. (3.2)

We are interested in the extremal limit T = 0. In this limit the horizon radius has a

fixed value

r4
h =

L2(ρ2 + ρ2
B)

12
, (3.3)

and the near horizon limit of the blackening factor behaves

g(r) =
1

2
g′′(rh)r̃2 + · · · , r̃ = r − rh , g′′(rh) =

12

L2
. (3.4)

The near horizon metric then becomes

ds2 =
L2

(2)

r̃2
dr̃2 − r̃2

L2
(2)

dt2 + r2
h(dx2 + dy2) , (3.5)

which is the AdS2 × R2 metric with the AdS2 radius

L(2) = L/
√

6 . (3.6)

The two U(1) gauge fields in this coordinate system can be rewritten as

At =
2
√

3

L

ρ√
ρ2 + ρ2

B

r̃ , Bt =
2
√

3

L

ρB√
ρ2 + ρ2

B

r̃ . (3.7)

The IR background (3.5) and (3.7) is our starting point to study instabilities towards

broken phases.

3.2 Instabilities in the AdS2 picture

According to the AdS/CFT correspondence, the dual field theory in the IR contains a

one dimensional CFT which depends on a single dimensionless parameter ρB/ρ. We ex-

pect potential phase transitions towards a superconducting phase with nonzero χ and an

antiferromagnetic phase with nonzero φ as we change ρB/ρ = x. Two kinds of phase tran-

sitions should be triggered by particular instabilities in the normal state. In order to obtain

these instabilities we consider fluctuations of the charged scalar χ and the neutral scalar φ

above the extremal background (3.5) and (3.7). We also give the instability conditions for

the pseudo-scalar α in the homogeneous case. In this paper we restrict ourselves to cases

with x > 0.

3.2.1 The neutral scalar φ

We first consider the neutral scalar which is used to describe the antiferromagnetism in the

dual field theory. The linearised equation of motion for its fluctuation, δφ, is given by

δφ′′ +
2

r̃
δφ′ −

M2
(2)L

2
(2)

r̃2
δφ = 0 , (3.8)
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Figure 3. The curve m2
eff(x) for two distinct cases. (a) Left c1 > 0. (b) Right c1 < 0. For both

cases ∆m2
eff is negative. When ∆m2

eff has other values the shape is qualitatively similar.

with

M2
(2)L

2
(2) = M2L2

(2) −
a1ρ

2 + b1ρ
2
B + 2c1ρρB

ρ2 + ρ2
B

,

=
1

6

[
M2L2 − 6(b1x

2 + 2c1x + a1)

(1 + x2)

]
, (3.9)

where the prime denotes a derivative with respect to r̃. We have used L(2) = L/
√

6 as

given in (3.6) and x = ρB/ρ. The theory parameters (M2, a1, b1, c1) are defined in (2.3)

before. This equation is the equation of motion for a scalar in AdS2 with effective mass

squared M2
(2)L

2
(2). It is clear that the IR dimension of the dual operator can be tuned by

changing x. The fluctuation will become unstable if M2
(2)L

2
(2) is lower than the AdS2 BF

bound, i.e., M2
(2)L

2
(2) < −1/4.

The quantity that determines in which case we have a nontrivial condensation is

m2
eff(x) = M2

(2)L
2
(2) +

1

4
=

1

6

[
M2L2 +

3

2
− 6(b1x

2 + 2c1x + a1)

(1 + x2)

]
. (3.10)

The two important parameters that determine the shape of the curve m2
eff(x) are

∆m2
eff ≡ m2

eff(0)−m2
eff(±∞) , (3.11)

with

m2
eff(0) =

1

6

[
M2L2 +

3

2
− 6b1

]
, m2

eff(±∞) =
1

6

[
M2L2 +

3

2
− 6a1

]
, (3.12)

as well as c1. In particular the sign of c1 determines the shape of the curve as seen in

figure 3.

The unbroken and the broken phases are determined by the part of the curve above

or below the m2
eff = 0 axis.

We want to determine the (T,x) phase diagram and in particular there is a corner

region of the antiferromagnetism as x is small. Therefore, we will assume that the AF phase

appears at zero x. We will also assume that at x→∞ there is no antiferromagnetism.
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According to our discussion, in the effective holographic theory these two conditions

translate to demanding that M2
(2)L

2
(2) should below the AdS2 BF bound −1/4 at x = 0

and above for x→∞. This requirement leads to

M2L2 − 6a1 < −3/2 , M2L2 − 6b1 > −3/2 . (3.13)

Then there is always a unique critical point x0 > 0 fixed by the condition m2
eff = 0. There

is also a unique critical point for negative x̄0 < 0. This implies that if we reverse the sign

of the charge of the doping charge density ρB → −ρB there is still a quantum critical point

for the AF transition.

The role of the parameter c1 is subtler. When

c1 = 0 , or c1 < 0 , (3.14)

the mass squared (3.9) and therefore the critical temperature TN monotonically decreases

until the critical point. On the other hand, if

c1 > 0 , (3.15)

the critical temperature TN for the AF phase transition increases first and then decreases

until it vanishes at the quantum critical point. Interestingly, in hole-doped strange metals

the shape of the Néel curve is similar to figure 3 (a), while in electron-doped systems is still

similar to the same figure in the sense that the condensed region is sensibly larger than the

one in the hole-doped case.

3.2.2 The charged scalar χ

We then consider the charged scalar χ dual to the superconducting condensate. The

equation of motion for this fluctuation δχ is given by

δχ′′ +
2

r̃
δχ′ −

m2
(2)L

2
(2)

r̃2
δχ = 0 , (3.16)

where

m2
(2)L

2
(2) = m2L2

(2) −
2(qAρ+ qBρB)2

ρ2 + ρ2
B

L2
(2) −

a2ρ
2 + b2ρ

2
B + 2c2ρρB

ρ2 + ρ2
B

,

=
L2

6

[
m2 − 2(QA +QBx)2 + 6a2 + 12c2x + 6b2x

2

(1 + x2)L2

]
, (3.17)

=
1

6

[
m2L2 −

(6b2 + 2Q2
B)x2 + (12c2 + 4QAQB)x + (6a2 + 2Q2

A)

(1 + x2)

]
,

with the prime denoting a derivative with respect to r̃. We have also defined the dimen-

sionless charges

QA,B = qA,B L . (3.18)

The theory parameters have been given in the expansion (2.3). This equation is the equa-

tion of motion for a scalar in AdS2 with effective mass squared m2
(2)L

2
(2). It is clear that

– 16 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
7

the IR dimension of the dual operator depends on the value of x. The fluctuation is stable

until m2
(2)L

2 is below −3/2, i.e., the AdS2 BF bound. For this we define again

m2
eff(x) = M2

(2)L
2
(2) +

1

4
. (3.19)

When m2
eff < 0 we expect condensation.

We will now investigate the (T,x) phase diagram. Although the general case is de-

scribed in a later section, we will examine here the case of most interest. This involves the

assumption that in the x = 0 and x→∞ limits there is no superconducting instability.

Absence of a superconducting instability at x = 0 implies the inequality

m2L2 − 2(Q2
A + 3a2) > −3/2 . (3.20)

Absence of a superconducting instability at x→∞ implies

m2L2 − 2(Q2
B + 3b2) > −3/2 . (3.21)

When the sign of QAQB + 3c2 > 0, there might be a superconducting phase in an inter-

mediate range

xa < x < xb . (3.22)

That follows if the AdS2 BF bound is violated as xa < x < xb. This will happen if the

value at the minimum violates the BF bound

QAQB + 3c2 > 0 , m2
(2)L

2
(2)(x = xmin) < −1/4 , (3.23)

where

xmin =
Q2
B −Q2

A + 3b2 − 3a2 +
√

(Q2
B −Q2

A + 3b2 − 3a2)2 + 4(QAQB + 3c2)2

2QAQB + 6c2
, (3.24)

is the minimum of the function m2
(2)L

2
(2)(x). Two critical points xa and xb can be uniquely

determined by the equation m2
(2)L

2
(2)(x) = −1/4.

According to our discussion, since the condensate is expected to form from the same

charges as the ones in the charge density, we obtain

QAQBρAρB > 0 . (3.25)

Therefore, if the absolute value |QAQB| is substantially larger then c2, then a supercon-

ducting dome is expected. This is shown in figure 4.

3.2.3 The pseudo-scalar α

We now consider the pseudo-scalar, which is very similar with the neutral scalar case. The

equation of motion for the fluctuation δα is given by

δα′′ +
2

r̃
δα′ −

m̃2
(2)L

2
(2)

r̃2
δα = 0 , (3.26)
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Figure 4. The curve m2
eff(x) for two distinct cases. (a) Left c2 > 0. (b) Right c2 < 0. For both

cases ∆m2
eff = 0. When ∆m2

eff has other values the shape is qualitatively similar. The right-hand

diagram shows condensation for charges, while the left one shows condensation for holes.

with

m̃2
(2)L

2
(2) = m̃2L2

(2) −
a3ρ

2 + b3ρ
2
B + 2c3ρρB

ρ2 + ρ2
B

,

=
1

6

[
m̃2L2 − 6(b3x

2 + 2c3x + a3)

(1 + x2)

]
. (3.27)

Note that L2
(2) = L2/6 and (m̃2, a3, b3, c3) are given in (2.3). This equation is just the

equation of motion for a scalar in AdS2 with effective mass squared m̃2
(2). It is clear that

the IR dimension of the dual operator is determined by x. The fluctuation will become

unstable if m̃2
(2) is lower than the AdS2 BF bound, i.e., m̃2

(2)L
2 < −3/2. For the region

x > 0, the function m̃2
(2)(x) can be monotonic or non-monotonic and violate the BF bound

or not, depending on the three theory parameters (a3, b3, c3).

One should keep in mind that our analysis on α is valid only for the homogeneous case

where Chern-Simons couplings have no effect on the instability. Nevertheless, the presence

of Chern-Simons terms in Lcs will lead to a new kind of instability towards developing

spatially modulated solutions which we discuss in section 6. We will show later that the

parameter space of the instability region for α can be significantly enlarged in general.

In principle, we can construct various kinds of (T,x) phase diagrams by tuning theory

parameters in (2.3). Those parameters, for example, determine the critical values of x,

such as x0, xa, xb, at which a broken phase may occur. In subsection 7.1 we will classify

different kinds of instability regions for each scalar by analysing the effective mass squared

on the AdS2 background and propose possible phase diagrams in the (T,x) plane. Two

of them will be explicitly checked by numerical calculation in the next two sections. We

believe that other types of phase diagrams can also be constructed by choosing appropriate

couplings. Nevertheless, the exact shape of a phase diagram should depend on the details

of the theory itself.

In the rest of the paper, without loss of generality, we shall work with L = 1 for

simplicity by fixing in such a way the length unit.
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4 The superconducting phase

In this section, we will illustrate how to realise the superconducting dome in the (T,x) plane

in our theory. More precisely, we expect that the superconducting phase would appear at

a nonzero x = xa and then vanish above a certain larger value x = xb. We will focus on

the superconducting order χ and work out the behaviour of the critical temperature Tc by

changing x.

4.1 Linear analysis

We have derived the instability conditions in the normal state at zero temperature in the

previous section. We continue to study the case at a finite temperature. The supercon-

ducting transition corresponds to the process in the bulk as follows. As the black brane

temperature is below a critical value T = Tc, the normal solution becomes unstable to de-

veloping nontrivial scalar hair of χ. This is, in most cases, the point of a superconducting

phase transition. The critical temperature Tc can be determined by numerically solving

the equations of motion in appendix B with φ(r) = α(r) = 0. This approach is involved

since one has to solve five coupled nonlinear ordinary differential equations (ODEs). Nev-

ertheless, one can, in some sense, complete this task by just turning the problem around.

The phase transition is associated with the formation of scalar hair around the normal

solution. In the vicinity of the temperature where the scalar hair begins to develop, the

value of χ should be very small. Therefore it can be treated as a perturbation on the

AdS-RN background,

δχ′′+

(
2

r
+
g′

g

)
δχ′− 1

g

[
m2− b2x

2 + 2c2x + a2

2r4
− (qA + qBx)2

g

(
1

rh
− 1

r

)2]
δχ = 0 , (4.1)

where we have used the expansion in (2.3) and set ρ = 1. Note that our perturbative

analysis does not depend on the exact form of each coupling but only on the quadratic

coefficients appearing in the leading expansion (2.3).

An instability of the normal solutions towards formation of the scalar hair is associated

with the existence of a static zero mode. The zero mode is a kind of marginally-unstable

mode corresponding to a bulk solution that is regular at the horizon and source free at

the boundary, i.e., a regular normalisable solution of (4.1). After fixing seven theory pa-

rameters, i.e., (m2, qA, qB, a2, b2, c2), we are left with two state parameters, namely, doping

x and temperature T which is equivalent to rh. Therefore, for a given x, one expects a

normalisable solution to exist, if at all, for a certain critical value of temperature.13 This

is precisely the static zero mode at the onset of the superconducting instability.

According to the analysis at zero temperature, to realise the superconducting dome one

can choose theory parameters satisfying the condition (3.23). A typical phase diagram is

presented in figure 5, from which one can see a nice superconducting dome (red region). As

a concrete example, to produce figure 5 we have chosen a specific set of theory parameters.

In particular, qB is chosen to be zero, which means that χ in only charged under the gauge

13In practice, one will obtain a set of discrete values of temperature. It is the highest temperature that

corresponds to the zero mode we are looking for.
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Figure 5. The critical temperature T at the onset of the superconducting instability as a function

of x. The red region in the (T,x) plane corresponds to the superconducting phase. Blue dots

are directly from our numerical calculation. Two endpoints of the superconducting region are at

xa ≈ 1.28 and xb ≈ 5.51. We have fixed the theory parameters as m2 = −4/5, QA = 1, QB = 0,

a2 = −10, b2 = −4/3, c2 = 14/3 and worked in the unites with ρ = L = 1.

field Aµ. One may worry that this case with qB = 0 would be too special. Nevertheless,

we also checked many other cases in which the effective mass squared (3.17) is the same

as the one adopted in figure 5 but with non-vanishing qA and qB. The resulted critical

temperature at each x depends on the theory parameters we are taking, but the non-

monotonic behaviour is similar to figure 5.

One should keep in mind that the linear approach only determines the value of T (x)

at which the system becomes unstable but not the real phase boundary in general. For a

continuous phase transition the two values coincide, while for a first order phase transition

the transition always occurs before the instability is reached. Furthermore, to obtain a

physical superconducting dome, one must make sure that the free energy of the broken

phase should be lower than the unbroken phase. Nevertheless, the above calculation via

marginally-unstable modes is helpful to obtain a general outline of the phase diagram. Our

next task is to determine the order of the phase transition as well as the thermodynamically

preferred phase by comparing free energies of the normal phase and broken phase.

4.2 Superconducting transition in the canonical ensemble

Using perturbative analysis near the critical point, we have caught a glimpse of the existence

of a superconducting dome. We will confirm the existence of the dome by solving the

coupled equations for the fully back-reacted geometry. Although the leading expansion of

each coupling in (2.3) is enough to determine the zero mode at the critical temperature, as

we will show, the nonlinear details of the couplings are important away from the critical

temperature.

This subsection aims at providing more numerical details we will adopt. We shall work

in the canonical ensemble with two U(1) charges ρ and ρB (or equivalently x = ρB/ρ) fixed.
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After fixing the gauge degrees of freedom, one can adopt a much simpler form of metric

as well as matter fields,

ds2 = −g(r)e−ξ(r)dt2 +
1

g(r)
dr2 + r2(dx2 + dy2) ,

χ = χ(r) , At = At(r) , Bt = Bt(r) , φ(r) = α(r) = θ(r) = 0 .

(4.2)

The equations of motion can be obtained from general equations in appendix B by letting

E(r) = g(r)e−ξ(r), D(r) = 1/g(r), C(r) = r2 and φ(r) = α(r) = θ(r) = 0. More precisely,

g and ξ satisfy first order differential equations and other functions satisfy second order

equations.

To solve the coupled ODEs, we need to specify suitable boundary conditions at the

horizon rh as well as at the conformal boundary r →∞. We are looking for finite temper-

ature black brane solutions that are regular at the horizon, which demands the following

analytic expansion in terms of (r − rh), i.e.,

g = gh(r − rh) + · · · , At = ah(r − rh) + · · · , Bt = bh(r − rh) + · · · ,
ξ = ξ0

h + ξ1
h(r − rh) + · · · , χ = χ0

h + χ1
h(r − rh) + · · · .

(4.3)

By substituting into the equations of motion, one finds that there are only five independent

coefficients (rh, ah, bh, χ
0
h, ξ

0
h). Near the UV as r → ∞, we demand asymptotically AdS

geometry with the falloff14

g = r2

(
1 +

gv
r3

+ · · ·
)
, ξ =

ξv
r3

+ · · · , χ =
χv

r∆φ
+

+ · · · ,

At = µ− ρ

r
+ · · · , Bt = µB −

ρB
r

+ · · · ,
(4.4)

which is specified by seven parameters (gv, ξv, χv, µ, ρ, µB, ρB). One will see later that as a

consequence of the conformal invariant ξv = 0. So one is left with six constants. Note that

the expansion of χ is chosen such that the dual scalar operator has no source, therefore can

spontaneously acquire an expectation value proportional to χv. We have a useful scaling

symmetry,

r → c r , (t, x, y)→ (t, x, y)/c , g → c2g , (At, Bt)→ c (At, Bt) , (4.5)

where c is a constant. This scaling symmetry can be used to set ρ = 1. To solve the coupled

equations, we need to specify eight integration constants. We now have ten parameters on

two boundaries at hand after fixing ρ. Thus, we expect to leave with a two parameter family

of black brane solutions, which can be chosen as temperature T and doping x = ρB/ρ.

To determine which phase is thermodynamically favoured, we should compare the free

energy. Remind that we work in the canonical ensemble where ρ and ρB (and equivalently

x) are fixed. The holographic dictionary tells us that Helmholtz free energy F of the

boundary thermal state is identified with temperature T times the on-shell bulk action in

14In general, ξ approaches to a constant ξs as r → ∞. However, in order for the Hawking temperature

of the black brane to be the temperature of the boundary field theory, the constant ξs should vanish.
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Euclidean signature. Given the fact that the system is stationary, the Euclidean action is

related to the Minkowski case by a total minus.

−2κ2
NSEuclidean =

∫
dx4√−g(R+ 6 + Lm + Lcs)

+

∫
r→∞

dx3√−γ(AνnµZAA
µν +BνnµZBB

µν) +

∫
r→∞

dx3√−γ(2K − 4) ,

(4.6)

where γµν is the induced metric on the boundary r → ∞, Kµν is the associated extrinsic

curvature and nµ is the outward pointing unit normal vector to the boundary. The last term

includes the Gibbons-Hawking term for a well-defined Dirichlet variational principle and

further a surface counter term for removing divergence.15 The middle term is supplemented

because we fix the charge density instead of chemical potential.

The temperature of the black brane is given by

T =
g′(rh)e−ξ(rh)/2

4π
, (4.7)

and the thermal entropy density is given by the Bekenstein-Hawking entropy in terms of

the area of the horizon, i.e.,

s =
2π

κ2
N

Area

V
=

2π

κ2
N

r2
h , (4.8)

where we have defined V =
∫
dxdy which is the spatial volume of the Minkowski space.

Employing the equations of motion, the on-shell action reduces to

−2κ2
NSEuclidean = lim

r→∞

[
2βV r

√
ge−ξ/2(rK−2r−√g)−βV r2eξ/2(AtA

′
t+BtB

′
t)
]
, (4.9)

with β = 1/T . After substituting the UV expansion (4.4), one can obtain the free energy

F = TSEuclidean =
V

2κ2
N

(gv + µρ+ µBρB) . (4.10)

According the above equation, the free energy for the normal phase (3.1) is given by

FRN =
V

2κ2
N

[
− r3

h +
3

4

ρ2 + ρ2
B

rh

]
. (4.11)

The expectation value of the energy-momentum tensor of the dual field theory is given

by [66]

Tij = lim
r→∞

[
r(Kγij −Kij − 2γij)

]
, (4.12)

with i, j = t, x, y. By substituting the UV expansion (4.4), we find

E = Ttt =
1

2κ2
N

(−2gv) , (4.13)

P = Txx = Tyy =
1

2κ2
N

(−gv + 3ξv) , (4.14)

15In principle, we should also consider the counter term for the scalar χ. However, since we always deal

with solutions without source, this term makes no contribution to the free energy.
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with vanishing non-diagonal components. Here E is the energy density and P is the pres-

sure. Since we are considering a dual conformal field theory at the AdS boundary, the dual

energy-momentum tensor is traceless, which in turn demands ξv = 0. We have numerically

checked that ξv indeed vanishes within numerical errors. Note that the grand canonical

potential Ω = F − V
2κ2
N

(µρ + µBρB) = V
2κ2
N
gv, which matches the general expectation for

a (2+1) CFT that the grand canonical potential is Ω = −EV/2. Using the conserved

quantity (B.10), we obtain the relation between IR and UV data,

− 2κ2
NTs = µρ+ µBρB + 3gv . (4.15)

Hence, the system satisfies the expected thermodynamical relation

E + P = Ts+
1

2κ2
N

(µρ+ µBρB) . (4.16)

4.3 Condensate and free energy

Since the differential equations depend on the precise form of the couplings, the condensate

as well as the free energy should also depend on the details of the theory. To make it more

clear, we shall consider two representative couplings,

(a) : ZA = 1− 5χ2, ZB = 1− 2

3
χ2, Vint = −5

8
χ2, (4.17)

(b) : ZA = sech(
√

10χ) , ZB = sech

(√
4

3
χ

)
, Vint = 6− 6 cosh

(√
5

24
χ

)
, (4.18)

with ZAB = 7χ2/3 and F = χ2/2 the same.16 We further choose QA = 1 and QB = 0 as

before. One can check that two kinds of couplings give the same small χ expansion (2.3)

with a2 = −10, b2 = −4/3, c2 = 14/3 and m2 = −5/4, thus a linear analysis yields identical

equation of motion for δχ (4.1).

We are interested in black brane solutions with regular event horizon. The VEV of the

dual operator 〈Oχ〉 = χv can be read off from the asymptotical expansion of χ in the UV,

χ =
χv

r5/2
+ · · · , (4.19)

and the free energy is given by

F =
V

2κ2
N

(gv + µρ+ µBρB) , (4.20)

where V is a volume of spatial region and (gv, µ, ρ, µB, ρB) are given in (4.4). In the

following, we will provide the plot of the condensate and compare the free energy between

the normal phase and superconducting phase for each theory.

16Observe that in case (a) we must have |χ| < 1/
√

5. The coupling function in which a field has some

special value restriction can also be found in some top-down theories [67]. An alternative way is to take

the absolute value of ZA and ZB in (4.17), which can result in the non-analyticity of the action. However,

for all the examples we shall study, the solutions remain well inside the region of ZA > 0 and ZB > 0 for

all radial positions.

– 23 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
7

Figure 6. The superconducting condensate 〈Oχ〉 (blue line in the left) and the free energy difference

∆F = F − FRN (red line in the right) for a fixed branch x = 2.4 of theory (a). The condensate

appears continuously below a critical temperature Tc ≈ 0.04597. It is a second order phase transition

from the RN branch (black dashed line). We have worked in the unites with ρ = L = 1.

4.3.1 Case (a)

The condensate as a function of temperature is presented in the left plot of figure 6. It is

clear that as one lowers the temperature, the normal phase with vanishing charged scalar

becomes unstable to developing scalar hair breaking the U(1) symmetry spontaneously in

the dual field theory. By fitting the data near Tc, we find that for small condensate there

is a critical behaviour with critical exponent 1/2, suggesting a continuous phase transition.

From the data presented in the right plot of figure 6, one can ensure that the bro-

ken phase is thermodynamically preferred at the normal phase. This phase transition is a

second order one. Therefore, our previous analysis by linear perturbation in the vicinity

of critical temperature does work for case (a). As have been expected, we indeed ob-

tain a superconducting dome shown in figure 5. In particular, our numerical calculation

suggests the tendency that the lower the effective mass squared on AdS2, the higher the

critical temperature for the broken phase. We stress that this empirical rule can only hold

qualitatively.

4.3.2 Case (b)

We now comment on the second bulk theory (b). For comparison with the result of case (a)

we also focus on the branch with x = 2.4. Unsurprisingly, we obtain the same critical tem-

perature at which the scalar hair begins to appear. However, we find drastically different

behaviour from the first case, once we move away from the “critical” temperature.

The condensate 〈Oχ〉 versus temperature is presented in figure 7. One can find that

the condensate becomes multi-valued and there are two new sets of solutions with non-

vanishing 〈Oχ〉 developing below a particular temperature, involving an upper-branch with

large 〈Oχ〉 and a down-branch with small 〈Oχ〉. Therefore, there are three states that are

available to the system at some temperature, i.e., one is for 〈Oχ〉 = 0 and two for 〈Oχ〉 6= 0.

To determine which state is the physical one, we draw the free energy in the right plot

of figure 7. There is a characteristic “swallow tail”, suggesting that the normal phase
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Figure 7. The superconducting condensate 〈Oχ〉 (blue line in the left) and the free energy difference

∆F = F − FRN (red line in the right) for a fixed branch x = 2.4 of theory (b). The critical

temperature is Tc ≈ 0.06689 at which the condensate has a sudden jump from zero to the upper

solid blue curve. It is a first order phase transition from the RN branch (black dashed line). We

have worked in the unites with ρ = L = 1.

is thermodynamically favoured at higher temperatures while the upper-branch of broken

phase dominates as the temperature is lowered down to Tc by a first order phase transition.

In case (b) the critical temperature Tc at a fixed x is larger than the one in case (a), be-

cause the real phase transition always occurs before the perturbative instability is reached.

So the phase diagram in figure 5 obtained by linear analysis should be modified. The SC

phase will occupy a much larger region than case (a) in the (T,x) plane. In particular,

the boundary of the superconducting region now becomes the line of the first order super-

conducting phase transition. However, this modification is only quantitative and will not

change the key feature, i.e., the existence of a superconducting dome.17

By comparing two cases, we see that the condensate can appear continuously at a

particular temperature, but it might be thermodynamically unstable in the vicinity of that

temperature. The order of the phase transition depends closely on the nonlinear details

of the theory. The critical temperature from perturbative analysis may be the point of an

actually continuous phase transition, as it was in case (a), or it may label a spinodal point

in a first order phase transition as in case (b). Nevertheless, our analysis shows that the

existence of a superconducting dome is a rather generic feature of our theory provided the

theory parameters are within the region (3.23), independent of the choice of the coupling

functions.

5 The antiferromagnetic phase

In nature, at the corner near zero doping the antiferromagnetic phase dominates the (T,x)

phase diagram. However, as the doping grows, the antiferromagnetic phase will disappear.

For simplicity, we consider the case in which the critical temperature of antiferromagnetic

17There is also a phenomenon called “retrograde condensation” that was reported in some holographic

theories [30, 31, 68–72]. In that case, a hairy black brane solution exists only for temperatures above a

critical value with the free energy much larger than the black brane without hair. However, for the theory

parameters we have checked, we do not observe this kind of behaviour.
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Figure 8. The critical temperature TN as a function of x. In the orange region the system is

in the antiferromagnetic phase while in the white region it is in the normal phase. Blue dots are

determined by numerically solving (5.1). We have chosen the theory parameters as M2 = −2,

a1 = 6, b1 = −7, c1 = 0 and worked in the unites with ρ = L = 1.

phase transition, TN , decreases monotonically as doping increases and then vanishes at a

certain value of doping.18 To consider such a kind of diagram one is suggested to choose

theory parameters within the region (3.14).

We first suppose that the transition from the normal phase to antiferromagnetic phase

is continuous, something we will check explicitly later for the theory parameters we choose.

To determine the boundary of the AF phase in the (T,x) plane, which is the line of the

antiferromagnetic phase transition, we can start in the normal phase, at larger values of

temperature, and determine when it becomes unstable towards formation of the scalar

hair of φ.

The perturbation equation for φ in the vicinity of the phase transition point reads

δφ′′ +

(
2

r
+
g′

g

)
δφ′ − 1

g

(
M2 − b1x

2 + 2c1x + a1

2r4

)
δφ = 0 , (5.1)

where we have used the expansion in (2.3) and set ρ = 1. Note that the value of TN will

be determined once the quadratic coefficients appearing in the expansion (2.3) are given,

if the phase transition is continuous. Following the same procedure as before, we look

for the static zero mode by solving (5.1) with regular condition in the IR and source free

condition in the UV. The critical temperature TN versus x is plotted in figure 8. We see

that the critical temperature decreases monotonically as x is increased. However, before

moving on, we should first check that the phase transition is continuous and the AF phase

is thermodynamically favoured at least for the particular couplings we are considering.

For concreteness, we consider the theory by fixing the form of all couplings as follows,

ZA = 1 +
a1

2
φ2, ZB = 1 +

b1
2
φ2, ZAB = 0 , Vint =

1

2
M2φ2, (5.2)

18In principle, there is a possibility that the transition temperature TN first increases and then monoton-

ically decreases to zero as the doping grows. See case 8 in subsection 7.1.

– 26 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
7

Figure 9. The condensate 〈Oφ〉 (purple line in the left) and the free energy difference ∆F = F−FRN

(orange line in the right) for a fixed branch x = 0.5. The condensate begins to arise below a critical

temperature TN ≈ 0.15863 smoothly. It is a second order phase transition from the RN branch

(black dashed line). We have worked in the unites with ρ = L = 1.

without higher order corrections. We consider similar ansatz adopted by superconducting

case in subsection 4.2, which reads

ds2 = −g(r)e−ξ(r)dt2 +
1

g(r)
dr2 + r2(dx2 + dy2) ,

φ = φ(r) , At = At(r) , Bt = Bt(r) , χ(r) = α(r) = 0 .

(5.3)

The independent equations are much simpler than the superconducting case and we give

the precise form here.

φ′′ +

(
g′

g
+

2

r
− ξ′

2

)
φ′ − 1

g

[
M2 − 1

2
eξ(a1A

′2
t + b1B

′2
t )

]
φ = 0 , (5.4)(

1 +
a1

2
φ2

)
A′′t +

[
2

r
+
ξ′

2
+ a1

(
1

r
φ+

ξ′

4
φ+ φ′

)
φ

]
A′t = 0 , (5.5)(

1 +
b1
2
φ2

)
B′′t +

[
2

r
+
ξ′

2
+ b1

(
1

r
φ+

ξ′

4
φ+ φ′

)
φ

]
B′t = 0 , (5.6)

φ′2 +
4g′

rg
+
eξ

g

[(
1 +

a1

2
φ2

)
A′2t +

(
1 +

b1
2
φ2

)
B′2t

]
+M2φ

2

g
− 12

g
+

4

r2
= 0 , (5.7)

1

2
φ′2 +

ξ′

r
= 0 . (5.8)

Adopting the same procedure as shown in subsection 4.2, one can obtain the condensate

as well as the free energy by solving above coupled equations with regular condition in the

IR and source free condition in the UV. To match figure 8, the theory parameters in (5.2)

are chosen to be M2 = −2, a1 = 6, b1 = −7. Our numerical data is presented in figure 9.

As anticipated, we find that the phase transition from the normal phase to AF phase is

second order. The AF phase has a lower free energy than the normal phase, and thus is

thermodynamically stable. Therefore, the phase diagram shown in figure 8 can be actually

realised.19

19Since b1 we are taking is negative, one may worry about that the coefficient ZB can be negative for

sufficiently large value of φ of our numerical solutions. In our calculation, we checked that this situation

does not happen.
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We can not exclude the possibility that for other particular form of couplings which

is different from (5.2) the antiferromagnetic phase transition would become no longer con-

tinuous. In that case, the value of TN can not be determined by linear analysis from (5.1).

One has to find the real TN by comparing free energy between the AF phase and the

normal phase. However, the sharp of the region for the broken phase should not change

qualitatively. In practice, we have a great deal of freedom to choose an appropriate theory.

We should stress out that the form of coupling functions, ZA and ZB, adopted in

figure 5 and figure 8 might not be a good choice from theoretical point of view, as it does

not ensure positivity of the kinetic terms for an arbitrary value of fields. One should not take

those coupling functions so seriously and they are only chosen for illustration. However,

as discussed above, one can modify the coupling functions in order to keep the positivity

of ZA and ZB in (2.2) without changing the phase diagram qualitatively. Indeed, we have

explicitly checked that the theory is almost the same as the one considered in figure 8. The

only difference is that we add a higher order term into the coupling ZB. The new function

is given by

ZB = 1 +
b1
2
φ2 + τφ4, τ >

b21
16
, (5.9)

thus is positive definite. As a typical example, considering b1 = −7 and τ = 4, we have

numerically solved the resulted equations and find a second order phase transition from

the normal phase to the AF phase. Therefore we can obtain the same critical temperature

as shown in figure 8 with both coupling functions ZA and ZB positive definite. A similar

discussion can be, in principle, applied for case (a) (4.17) in the previous section by choosing

some configuration of ZA and ZB which is positive definite and can give the same expansion

coefficients a1 and b1 as χ → 0. Actually, case (b) (4.18) is in fact a particular kind of

modification of case (a). It is clear that ZA and ZB in (4.18) are both positive definite.

A dramatic change after such modification is that the superconducting phase transition

becomes first order. But the superconducting dome is still preserved after modification.

6 The striped phase

In the previous two sections, we have constructed desirable phase diagrams in the (T,x)

plane for superconducting phase and antiferromagnetic phase. Looking at the phase dia-

gram in figure 1, between the two phases there is a so called “pseudogap” region on which

people have no good understanding so far. One representative order in the pesudogap

region is known as striped order [5, 6, 25, 26]. Such a spatially modulated order is the

consequence of spontaneously breaking of space translational symmetry. As a replacement

of the real “pesudogap” region, our next goal is to investigate the presence of a spatially

modulated phase which breaks translational invariance spontaneously. Then we will try to

find a proper parameter space such that the striped phase is located between SC and AF

phases.

Our attention mainly focuses on the striped instabilities corresponding to black brane

solutions that are modulated in only one spatial direction. It is referred to as striped

black branes, dual to the striped phases on the field theory side. This kind of solutions
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have been numerically constructed in [73–78] by solving a nonlinear system of partial

differential equations (PDEs). In most cases that have been studied, there is a second

order phase transition to the striped solution. One exception is the theory in [78] where

the author reported the existence of a branch of striped solutions but no continuous phase

transition. However, one can also obtain a second order transition by modifying the form

of couplings in that theory. Another possibility corresponds to the spontaneous breaking

of translational invariance in both boundary spatial directions, referred to as checkerboard

phases with periodic modulation in two spatial directions. Checkerboard solutions have

been numerically constructed in [79] where it was shown that the checkerboard phase has

lower free energy than the normal phase, while it may or may not be thermodynamically

preferred from the striped phase, depending on the theory one considered.

Instead of dealing with PDEs, to identify the spatially modulated phase we use a

perturbative analysis around the normal solution, namely, the AdS-RN solution (3.1).

More precisely, we need to look for the spatially modulated static mode in the spectrum

of fluctuations around the normal background. The presence of these modes would mark

the instability of the homogeneous phase and the onset of the spatially modulated phases.

The strategy, at first, is to consider the zero temperature case in which there is an

emergent electrically charged AdS2×R2 solution in the far IR. We try to identify possible

spatially modulated modes that violate the AdS2 BF bound. If such BF-violating mode

exists, analogous modes would appear as well as in AdS-RN black brane away from zero

temperature. Then we consider finite temperature background (3.1) to fix the critical

temperature T ∗ at which the spatially modulated phase begins to appear. We will give

the behaviour of critical temperature T ∗ with respect to x for striped phases and briefly

discuss the instabilities towards checkerboard structures.

6.1 Striped instabilities of AdS2 × R2 geometry

We want to investigate striped instabilities of the electrically charged AdS-RN black

brane (3.1). The starting point is to consider linearised perturbations in the AdS2 × R2

background arising as the IR limit of the AdS-RN geometry at zero temperature,

ds2 =
1

6r2
dr2 − 6r2dt2 + r2

h(dx2 + dy2) , r2
h =

√
1 + x2

2
√

3
ρ ,

At =
2
√

3ρ√
ρ2 + ρ2

B

r =
2
√

3√
1 + x2

r , Bt =
2
√

3ρB√
ρ2 + ρ2

B

r =
2
√

3x√
1 + x2

r ,
(6.1)

where we have set the AdS radius L = 1 and omitted the tilde of r for convenience. We

try to turn on the following perturbations,20

δgty = λ rh hty(r) sin(kx) , δAy = λ rh ay(r) sin(kx) ,

δBy = λ rh by(r) sin(kx) , δχ = λυ(r) cos(kx) ,

δφ = λϕ(r) cos(kx) , δα = λw(r) cos(kx) ,

(6.2)

20One can easily find that the perturbation of θ does not appear at linear order.
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in which λ is a formal expansion parameter that will be eventually set to unity. What we are

really expanding in is the smallness of all perturbations to the background solution (6.1).

By substituting into the equations of motion and working at linear level, we find that

the above fluctuations satisfy

6∂r(r
2∂rϕ)−

(
M2

(2) +
k2

r2
h

)
ϕ = 0 , (6.3)

6∂r(r
2∂rυ)−

(
m2

(2) +
k2

r2
h

)
υ = 0 , (6.4)

6∂r(r
2∂rw)−

(
m̃2

(2) +
k2

r2
h

)
w − 4

√
3(2n1 + n2x)√

1 + x2

k

rh
ay −

4
√

3n2√
1 + x2

k

rh
by = 0 , (6.5)

6∂r(r
2∂ray) +

2
√

3√
1 + x2

h′ty −
4
√

3(2n1 + n2x)√
1 + x2

k

rh
w − k2

r2
h

ay = 0 , (6.6)

6∂r(r
2∂rby) +

2
√

3x√
1 + x2

h′ty −
4
√

3n2√
1 + x2

k

rh
w − k2

r2
h

by = 0 , (6.7)

−3r2h′′ty −
6
√

3r2

√
1 + x2

a′y −
6
√

3xr2

√
1 + x2

b′y +
1

2

k2

r2
h

hty = 0 , (6.8)

where n1 and n2 denote two Chern-Simons couplings given in (2.3), and M2
(2), m

2
(2) and

m̃2
(2) have been defined in equations (3.9), (3.17) and (3.27), respectively. It is clear that the

equations of motion for ϕ and υ decouple from other modes. Furthermore, after turning on

momentum dependence there is an additional positive contribution, k2/r2
h, to the effective

mass squared of ϕ and υ, see (6.3) and (6.4), and thus will stabilise the normal background.

The striped instabilities can only happen for other mixed modes including w, ay, by, hty.

To move forward, we further introduce the field redefinition

η = −1

2
h′ty −

√
3√

1 + x2
ay −

√
3x√

1 + x2
by , (6.9)

and define the four vector VT = (η, ay, w, by). By differentiating equation (6.8), we can

rewrite the last four equations of motion in a compact form, which reads

6∂r(r
2∂rV)−M2V = 0 , (6.10)

with the mass matrix

M2 =



k2

r2
h

√
3√

1+x2
k2

r2
h

0
√

3x√
1+x2

k2

r2
h

4
√

3√
1+x2

k2

r2
h

+ 12
1+x2

4
√

3(2n1+n2x)√
1+x2

k
rh

12x
1+x2

0 4
√

3(2n1+n2x)√
1+x2

k
rh

m̃2
(2)(x) + k2

r2
h

4
√

3n2√
1+x2

k
rh

4
√

3x√
1+x2

12x
1+x2

4
√

3n2√
1+x2

k
rh

k2

r2
h

+ 12x2

1+x2

 . (6.11)

Here m̃2
(2) is defined in (3.27), and two Chern-Simons coupling constants n1, n2 are given

in (2.3). Note that

k2

r2
h

=
k2/ρ

r2
h/ρ

=
2
√

3(k/
√
ρ)2

√
1 + x2

, (6.12)

depends on x and k/
√
ρ is the dimensionless wave number.
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This is the standard system of four mixed modes propagating at the AdS2 back-

ground (6.1). Thus a diagnostic for an instability is whether the mass matrix M2 has

an eigenvalue that violates the AdS2 BF bound. More precisely, for fixed theory parame-

ters as well as x we look for a range of k where the smallest eigenvalue, say M2
min[k], among

four eigenvalues of 4× 4 matrix M2 violates the BF bound, which means

M2
min[k] < −3/2 , (6.13)

in our units with L = 1. Such BF-violating modes are associated with striped phases

with periodic modulation in the x direction. Among those BF-violating modes there is a

particular value k0 which gives the smallest eigenvalue M2
min[k0] among all wave numbers.

It is worth noting that the off-diagonal terms originating from Lcs (2.2) in M2 provide a

mechanism which drives down the smallest eigenvalue at a nonzero k. Indeed, if one sets

n1 = n2 = 0, one will find that the smallest eigenvalue can be only at k = 0, and therefore

there will be no striped instabilities.

The value of M2
min[k] has to be determined numerically. However, before doing a

numerical calculation, one can find some useful properties of M2
min[k] from, for example,

the characteristic polynomial of M2.

1) M2
min[−k] = M2

min[k], which means that if there is an unstable mode at k, there

should be an unstable mode at −k. So we can only consider modes with positive k.

2) M2
min[k] is invariant under the transformation (n1, n2) → (−n1,−n2). It can effec-

tively reduce the (n1, n2) parameter space by half. As a consequence, when n2 = 0,

M2
min[k] does not change under the substitution n1 → −n1. Similarly, when n1 = 0,

M2
min[k] is also independent of the sign of n2.

3) For the particular case x = 0, M2
min[k] is invariant under (n1, n2) → (n1,−n2) and

(n1, n2)→ (−n1, n2).

By using the above symmetries, the parameter space of BF-violating modes can be signif-

icantly reduced. In order to find the striped phase in the (T,x) plane, it is not necessary

to know all the details of the parameter space of BF-violating modes, although it will be

interesting to work out the complete parameter space in terms of (m̃2, a3, b3, c3, n1, n2,x)

where the theory parameters are given in the expansion (2.3).

In the present paper, we focus on a simple situation of the theory (2.2), where (ZA, ZB,

ZAB) are independent of α, (ϑ1, ϑ2) depend on α linearly and α is massless. This situation

with m̃2 = a3 = b3 = c3 = 0 is natural from string theory point of view. We are left with

two Chern-Simons coupling constants n1 and n2 defined in (2.3).

We show the the domain in which there exists a range of wave numbers violating the

corresponding AdS2 BF bound in figure 10 for n2 = 0 and figure 11 for n1 = 0, respectively.

Both shaded regions include only unstable modes with non-vanishing wave number k. In

the first case, as one increases x, a much larger value of n1 is needed to “excite” the striped

instability. In contrast, in the latter case the boundary between unstable modes and stable

modes first rises then falls as x is increased. The maximum is precisely at x = 1 and the
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n1

Figure 10. The shaded region in the (x, n1) plane includes unstable modes with non-vanishing

wave number k in the AdS2 × R2 background. The phase boundary is given by M2
min[k0] = −3/2

where M2
min[k0] denotes the most smallest eigenvalue of M2. We chose n2 = 0 and m̃2

(2) = 0, i.e.,

m̃2 = a3 = b3 = c3 = 0.

0 1 2 3 4 5
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n2

Figure 11. The shaded region in the (x, n2) plane includes unstable modes with non-vanishing

wave number k in the AdS2 × R2 background. The phase boundary is determined by requiring

M2
min[k0] = −3/2. We chose n1 = 0 and m̃2

(2) = 0, i.e., m̃2 = a3 = b3 = c3 = 0. Due to the

exchange symmetry between Aµ and Bµ in this case, if there is an instability at x, there must have

the same instability at 1/x.

critical value of n2 is exactly the same at x and 1/x. This behaviour is a consequence of

the exchange symmetry between two U(1) gauge fields when ϑ1 = 0. Actually, one can

easily check that under the substitution ay → by and x→ 1/x, the form of (6.10) does not

change when n1 = 0.

In figure 12 we show the density plot of M2
min[k0] in the (n1, n2) plane when x = 0.

Remember that k0 denotes the wave number at which M2
min[k] as a function of k takes

the minimum value. We only give the case in the first quadrant. However, according to

the argument in 3) one can easily obtain the results in the other three quadrants. One
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Figure 12. The density plot of the most smallest eigenvalue of M2, i.e., M2
min[k0] in the (n1, n2)

plane when x = 0. The modes in the white region do not violate the AdS2 BF bound, while the

shaded region includes unstable modes with non-vanishing wave number in the AdS2 background.

Note that the BF-violating modes correspond to cases with M2
min[k0] < −3/2. We chose m̃2 = a3 =

b3 = c3 = 0.

can see from figure 12 that the larger the values of n1 and n2, the lower the effective mass

squared of BF-violating modes. Therefore, to increase the critical temperature at the onset

of striped instabilities, one is suggested to choose a larger value of n1 or n2.

In an effective theory, one can in principle choose general coupling constants (m̃2, a3,

b3, c3) of (2.3). Correspondingly, the region of unstable modes towards striped solutions can

be changed. Two representative plots are schematically shown in figure 13 and figure 14.

In both cases, there is a red region where the AdS2 BF bound is violated even at k = 0.

Nevertheless, after turning on Chern-Simons couplings n1 and n2 in (2.3), the k = 0 mode is

in general not the one with the smallest AdS2 mass squared. In the latter case of figure 14,

there would be a dome for striped phases near the red region as n1 is neither too large nor

too small.

6.2 Striped instabilities of AdS-RN black brane

In the last subsection the spatially modulated instabilities that we analysed on the AdS2

background happen at zero temperature. Nevertheless, it suggests that analogous instabil-

ities would appear as well as in AdS-RN black brane (3.1) at finite temperatures. We will

then calculate the critical temperature at which the AdS-RN geometry becomes unstable

as a function of x.
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0 x0

x0

n1

Figure 13. The schematic plot for the case in which m̃2
(2)(x) < −3/2 as x < x0 (red region) and

m̃2
(2)(x) > −3/2 as x > x0 (blue region). In the former case, m̃2

(2)(x) violates the AdS2 BF bound.

The red region has unstable modes including k = 0, while the blue region only has unstable modes

with k 6= 0.

0 xa xb

x0

n1

Figure 14. The schematic plot for the case in which m̃2
(2)(x) < −3/2 as xa < x < xb (red region)

while m̃2
(2)(x) > −3/2 as x < xa (green region) and x > xb (blue region). In the red region, m̃2

(2)(x)

violates the AdS2 BF bound, thus this region has unstable modes including k = 0, while the green

and blue regions only have unstable modes with k 6= 0. This plot corresponds to a dome of striped

phase in the (T,x) phase diagram.

Motivated by the analysis in the AdS2 geometry case, we only need to turn on fluctu-

ations as21

δgty = λ r(r − rh)h(r) sin(kx) , δα = λw(r) cos(kx) ,

δAy = λ ay(r) sin(kx) , δBy = λ by(r) sin(kx) .
(6.14)

21We have refined our parameterisation of perturbations in (6.2) to include some explicit r-dependent

term, for numerical convenience.
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By expanding around the AdS-RN background to linear order, one can obtain four coupled

linear ODEs,

w′′ +

(
2

r
+
g′

g

)
w′ − 1

g

(
m̃2
α +

k2

r2
− b3x

2 + 2c3x + a3

2r4

)
w

−2k(2n1 + n2x)

r4g
ay −

2kn2

r4g
by = 0 , (6.15)

a′′y +
g′

g
a′y +

r − rh
rg

h′ − 2k(2n1 + n2x)

r2g
w − k2

r2g
ay +

rh
r2g

h = 0 , (6.16)

b′′y +
g′

g
b′y +

(r − rh)x

rg
h′ − 2kn2

r2g
w − k2

r2g
by +

rhx

r2g
h = 0 , (6.17)

h′′ +
4r − 2rh
r(r − rh)

h′ +
a′y + xb′y
r3(r − rh)

− k2(r − rh)− 2rhg

r2(r − rh)g
h = 0 . (6.18)

We have worked in units with ρ = 1. The instabilities towards the formation of striped order

correspond to the normalisable zero modes with non-vanishing wave number k allowed by

four coupled linearised equations. Those marginally-unstable zero modes have to be found

using numerics.

We demand the fluctuations to be regular on the horizon at r = rh. Therefore, near

the horizon, the four functions h, ay, by, w behave as

h(r) = hh +O(r − rh) , w(r) = wh +O(r − rh) ,

ay(r) = ah +O(r − rh) , by(r) = bh +O(r − rh) .
(6.19)

The most general asymptotical behaviour in the UV as r →∞ is given by

h(r) = hs + · · ·+ hv
r3

+ · · · , w(r) = ws + · · ·+ wv
r3

+ · · · ,

ay(r) = as + · · ·+ av
r

+ · · · , by(r) = bs + · · ·+ bv
r

+ · · · .
(6.20)

Since we are interested in the case that breaks translational invariance spontaneously, we

turn off the parameters (hs, ws, as, bs) which correspond to the sources of the dual operators

in the boundary field theory.

We now have four coupled second order ODEs with regular condition in the IR and

source free condition in the UV. In order to integrate from the outer horizon, r = rh, to

asymptotical boundary, r →∞, one needs to specify eight integration constants. For given

wave number k and doping parameter x, there are nine parameters (rh, h
h, wh, ah, bh, hv,

wv, av, bv) entering the ODEs. Since the equations are linear, we can always scale one

of these parameters to unity. Therefore, for given k and x, we are expected to find a

normalisable zero mode, if at all, appearing at a particular temperature.

We solve this problem numerically by using of the double side shooting method from

both the IR and UV (see appendix D for more details). For a given set of theory parameters

and x that admit striped instabilities associated with BF-violating modes, we try to look

for the normalisable zero modes and then find that these modes exist for a range of k with

the critical temperature depending on k. The curve is expected to give the usual “bell
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Figure 15. The red solid curve denotes k∗ versus x, while the red dashed curve gives the wave

number k0 at which the eigenvalue of M2 has a global smallest value for all k at each x. The

blue solid curve represents the smallest eigenvalue of M2 at k∗ and the blue dashed curve indicates

the smallest eigenvalue of M2 at k0. The horizontal black dotted line is the AdS2 BF bound.

Note that two blue curves are both below the horizontal line. We have chosen n1 = 0.8 and

m̃2 = a3 = b3 = c3 = n2 = 0.

curve” type behaviour: the critical temperature versus k first increases and then decreases.

Hence, there exists a particular wave number k∗ associated with the most highest critical

temperature T ∗. At T = T ∗ a new branch of black branes with wave number k∗ will appear

breaking translation symmetry along the x direction spontaneously. Note that the value

of T ∗ as well as k∗ depends on x.

We consider a particular case with n1 = 0.8 and m̃2 = a3 = b3 = c3 = n2 = 0, where

all parameters are given in (2.3). As one can see from figure 10, the striped instabilities

will appear as x < 4.335. One can see from figure 15 that although the mode at k0 has the

smallest eigenvalue M2
min[k0] that violates the AdS2 BF bound, it is in general not the mode

that appears first at finite temperatures. Nevertheless, the difference between k∗ (red solid)

and k0 (red dashed) is reduced as one increases x. This is reasonable since as x is increased

the range of k that allows striped instabilities shrinks. At the particular value x ' 4.335

where the instability region shrinks to one point with k0 ' 1.404, k∗ and k0 are expected

to coincide with each other. The smallest eigenvalue of M2 at k∗ (blue solid) is obviously

above the one at k0 (blue dashed). As shown in figure 15, both increase monotonically by

increasing x and arrival at the BF bound from below at x ' 4.335. The critical temperature

T ∗ as a function of x is given in figure 16. T ∗ decreases with the increase of x and vanishes

as x > 4.335.22 The current result also suggests the tendency: the lower the effective mass

squared M2[k∗] on AdS2, the higher the critical temperature for the broken phase. We also

checked other values of n1 while keeping m̃2 = a3 = b3 = c3 = n2 = 0. Just as expected,

the critical temperature T ∗ is below the curve in figure 16 for a smaller value of n1.

22Due to the lake of numerical control at sufficiently low temperatures, it is very difficult to calculate the

values of k∗ and T ∗ very closed to the critical point x ' 4.335. Nevertheless, we solve the theory up to the

temperature as low as 10−7 and find good agreements with AdS2 analysis.
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Figure 16. The maximum critical temperature T ∗ at which a striped solution appears as a function

of x. The blue dots are from numerical calculation in the AdS-RN black brane, while the red point

(4.335, 0) at far right is obtained from the AdS2 geometry which is the external limit of AdS-RN

background. We have chosen n1 = 0.8 and m̃2 = a3 = b3 = c3 = n2 = 0.

6.3 Striped phase and charge density wave

We have found the static normalisable zero modes in the electrically charged AdS-RN

background by virtue of perturbation analysis. By working at leading order, for each

doping x, one can obtain the critical temperature versus wave number at which the AdS-

RN geometry becomes unstable to the formation of a spatially modulated phase. They

form a typical “bell curve” from which one can read off the highest critical temperature

T ∗ and the corresponding wave number k∗.

From the leading order perturbations we find that the spatially modulated solutions

are associated with nonzero hv, av, bv and wv of (6.20). A non-vanishing hv means that

there is momentum transfer in the y direction. A non-vanishing av (bv) implies that the

dual current component 〈ĴyA〉 (〈ĴyB〉) acquires a spatially modulated VEV, thus the dual

system exhibits current density wave with spatial modulation k∗ given at T ∗. Finally, a

nonzero wv means that the scalar operator dual to α is acquiring a spatially modulated

VEV which breaks the time-reversal and parity invariance spontaneously. Note that at the

linear order, the charge density is still space independent. To see whether the spatially

modulated charge density (CDW) exists or not, we need to study our perturbation theory

at next to leading order.

Working at next to leading order, we find that the system is also accompanied with

CDWs with a spatial modulation given by 2k∗ at T ∗. More specifically, we turn on the

following second order perturbations,

δgtt = λ2
[
h

(0)
tt (r) + h

(1)
tt (r) cos(2kx)

]
,

δgxx = λ2
[
h(0)
xx (r) + h(1)

xx (r) cos(2kx)
]
,

δgyy = λ2
[
h(0)
yy (r) + h(1)

yy (r) cos(2kx)
]
,

δAt = λ2
[
a

(0)
t (r) + a

(1)
t (r) cos(2kx)

]
,

δBt = λ2
[
b
(0)
t (r) + b

(1)
t (r) cos(2kx)

]
.

(6.21)
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Expending the total field fluctuations in (6.21) together with (6.14) up to order O(λ2), we

can obtain a closed set of inhomogeneous ODEs for the perturbations above, which are

sourced by the linear order zero mode solutions. Actually, there are thirteen equations for

ten functions. However, the two equations from the tt component of Einstein’s equations

are implied by the other equations. By using the equation from the rx component and the

one from the rr component one finds that h
(1)
tt satisfies an algebraic equation and hence can

be eliminated from the system. Finally, we obtain nine independent differential equations

in which the functions (h
(0)
xx , h

(1)
xx , h

(0)
yy , h

(1)
yy , a

(0)
t , a

(1)
t , b

(0)
t , b

(1)
t ) satisfy second order equations

and the function h
(0)
tt satisfies a first order equation.

By imposing a regularity condition at the horizon and demanding the source free

boundary condition in the UV, for given k and x, we are left with one free parameter

which can be chosen to be the temperature. Then from the asymptotically UV expansion

of a
(1)
t or b

(1)
t , one can see that there is a spatial modulation of charge density with wave

number given by 2k∗ at T ∗. So the spatially modulated phase is always associated with

CDW order with half the period of the condensate of pseudo-scalar and current density

waves.

To sum up, we demonstrated the instabilities towards the formation of CDWs which

occur to next to leading order in perturbation theory. Therefore, the new branch of spatially

modulated black brane solutions, assuming that they are thermodynamically preferred at

the normal solutions, will be dual to striped phases accompanying with both current density

waves and charge density waves.

6.4 Checkerboard phase

In the previous subsection we have focused on the striped order where space translation

symmetry is only spontaneously broken in one direction, resulting in a periodic phase.

There is another possibility that the symmetry is broken in both directions and the config-

uration becomes periodic in two spatial directions. This is known as checkerboard phase.

In this subsection, we shall briefly discuss the instability towards formation of checkerboard

structures.

We take AdS2 × R2 background (6.1) as our starting point. We try to turn on the

following perturbations with momentum kx in the x direction and ky in the y direction,

δgtx = λrhhtx(r) cos(kx x) sin(ky y) , δgty = λrhhty(r) sin(kx x) cos(ky y) ,

δAx = λrhax(r) cos(kx x) sin(ky y) , δAy = λrhay(r) sin(kx x) cos(ky y) ,

δBx = λrhbx(r) cos(kx x) sin(ky y) , δBy = λrhby(r) sin(kx x) cos(ky y) ,

δα = λw(r) cos(kx x) cos(ky y) ,

(6.22)

with λ a formal expansion parameter as before. We find that the finally independent

equations are given by

6∂r(r
2∂rw)−

(
m̃2

(2) +
k2
x + k2

y

r2
h

)
w − 4

√
3(2n1 + n2x)√

1 + x2

k2
x + k2

y

kxrh
ay

− 4
√

3n2√
1 + x2

k2
x + k2

y

kxrh
by = 0 , (6.23)
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Figure 17. A square checkerboard in the vicinity of the critical temperature. We show a contour

plot of the VEV of the pseudo-scalar operator, 〈Oα〉, together with some integral curves of the dual

current (〈ĴxA〉, 〈Ĵ
y
A〉).

6∂r(r
2∂ray) +

2
√

3√
1 + x2

h′ty −
4
√

3(2n1 + n2x)√
1 + x2

kx
rh
w −

k2
x + k2

y

r2
h

ay = 0 , (6.24)

6∂r(r
2∂rby) +

2
√

3x√
1 + x2

h′ty −
4
√

3n2√
1 + x2

kx
rh
w −

k2
x + k2

y

r2
h

by = 0 , (6.25)

−3r2h′′ty −
6
√

3r2

√
1 + x2

a′y −
6
√

3xr2

√
1 + x2

b′y +
1

2

k2
x + k2

y

r2
h

hty = 0 , (6.26)

together with algebraic relation kxax + kyay = kxbx + kyby = kxhtx + kyhty = 0. For more

details one can consult appendix E.

As a consistent check, by setting ky = 0 and kx = k, one recovers the linear equations

for striped perturbations in subsection 6.1 exactly. Those equations above should give very

similar unstable modes that break the AdS2 BF bound as discussed in the striped case

previously. They will also give similar marginally-unstable modes on the finite temperature

background, giving rise to black brane solutions which are spatially modulated in both

spatial directions.

Since the expectation values of the operator Oα dual to α and the current ĴµA dual to Aµ
are read off from the coefficients in the UV, they should have the same spatial dependence

on two spatial coordinates x and y as their corresponding bulk field configurations near

the boundary. As a consequence, 〈Oα〉 ∝ cos(kx x) cos(ky y) as well as (〈ĴxA〉, 〈Ĵ
y
A〉) ∝(

cos(kx x) sin(ky y),− sin(kx x) cos(ky y)
)

when the temperature is sufficiently close to the

critical temperature at which the checkerboard instability starts to appear. A schematic

plot for a square pattern kx = ky is drawn in figure 17. The current circulates with

the sense alternating between adjacent plaquettes of the checkerboard. We obtain this
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picture very close to the critical temperature. Nevertheless, this behaviour was observed

at temperatures far below the critical temperature in a similar theory [79].

7 The global phase diagram

The precise form of phase diagram depends critically on the specific choice of the theory

parameters as discussed above. A generic case allows for a much larger zoo of phase

diagrams. In this section we will first classify possible phase diagrams for a broken phase

in the homogeneous case. Then we choose theory parameters to arrive at the expected

phase diagram.

7.1 Classification of possible phase diagrams for broken phase

In this subsection we will determine the phase boundaries in the (T,x) phase diagram for

each broken phase. We will restrict ourselves to the homogeneous case. This kind of phase

transition should be triggered by an instability in the normal state.

The staring point is to consider fluctuations of each scalar around the IR background

of the extremal AdS-RN black brane. As one can see from subsection 3.2, all equations

can be regarded as for a scalar in the AdS2 background with the form of effective mass

squared given by

M2(x) = m2 − bx2 + 2cx + a

1 + x2
. (7.1)

In out units with L = 1 the AdS2 BF bound is given by M2
BF = −3/2. The value of M2

can be tuned by changing x. The instability towards the formation of nontrivial scalar hair

will appear if M2(x) < −3/2. The type of (T,x) phase diagram can be inferred from the

instability region ofM2(x). Our numerical experience suggests that the lower the value of

M2(x), the higher the critical temperature we will obtain.

Taking advantage of above argument, we can classify all possible kinds of (T,x) phase

diagram by finding the region in which M2(x) < −3/2. The BF-violating region depends

on four parameters (m2, a, b, c). After a through analysis, we find ten different phase

diagrams. We will give the parameter space and a schematic figure for each phase diagram

one by one.

7.1.1 Case 1

In this case, the critical temperature decreases monotonically with respect to x and finally

vanishes at a certain value of x, see the left plot of figure 18. This kind of phase diagram

is adopted to realise the antiferromagnetic region in the global (T,x) phase diagram.

The theory parameters satisfy the following conditions,

c = 0 , m2 − a < −3/2 < m2 − b , (7.2)

or

c < 0 , m2 − a < −3/2 < m2 − b . (7.3)

In the former oneM2 is a monotonically increasing function of x in the positive x direction,

while the latter is non-monotonic.
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x

T

x

T

Figure 18. The schematic plots for case 1 (left) and case 2 (right). The shadow region corresponds

to the broken phase. In case 1 the critical temperature becomes zero at a particular value of x,

while in the later case the critical temperature never vanishes.

x

T

x

T

Figure 19. The schematic plots for case 3 (left) and case 4 (right). The shadow region corresponds

to the broken phase. In case 3 the critical temperature appears at a nonzero x, while in the later

case the critical temperature develops at the origin x = 0.

7.1.2 Case 2

In case 2, the critical temperature also decreases monotonically with respect to x. The

difference from case 1 is that the critical temperature keeps a finite value even for very

large value of x, see the right plot in figure 18.

The theory parameters satisfy

c = 0 , b < a , m2 − b < −3/2 . (7.4)

7.1.3 Case 3

In case 3, the critical temperature is nonzero only when x is larger than a certain finite

value. Then it increases as one increases the value of x. See the right plot in figure 19.

There are two sets of parameters supporting this kind of phase diagram,

c = 0 , m2 − b < −3/2 < m2 − a , (7.5)

as well as

c < 0 , m2 − b < −3/2 < m2 − a . (7.6)
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x

T

x

T

Figure 20. The schematic plots for case 5 (left) and case 6 (right). The shadow region denotes

the broken phase. In case 5 the critical temperature appears at a nonzero x, while in case 6 the

critical temperature appears at the origin x = 0.

The difference is thatM2 is a monotonically decreasing function in the positive x direction

in the first case (7.5), while it is non-monotonic in the latter one.

7.1.4 Case 4

Case 4 in the right plot of figure 19 is similar as case 3. The only difference is that the

critical temperature is nonzero at x = 0. Then it increases monotonically as a function

of x.

The parameter space that supports this phase diagram reads

c = 0 , a < b , m2 − a < −3/2 . (7.7)

7.1.5 Case 5

For case 5, the critical temperature begins to appear above a nonzero value of x, then rises

as the value of x is increased, arrives at its maximum at a certain x, and finally decreases

monotonously. See the left plot in figure 20.

The parameter space for this type of phase diagram is given by

c > 0 , m2 − b < −3/2 , m2 − a > −3/2 . (7.8)

7.1.6 Case 6

We show the behaviour of critical temperature as a function of x in the right plot of fig-

ure 20. The non-monotonic behaviour of the critical temperature is similar as the previous

case. However, in case 6 the critical temperature does not vanish even at x = 0.

The theory parameters that can give this kind of phase diagram satisfy

c > 0 , m2 − b < −3/2 , m2 − a < −3/2 . (7.9)

One should note that the critical temperature never vanishes for sufficiently large x in

case 5 and case 6.
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x
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Figure 21. The schematic plots for case 7 (left) and case 8 (right). The shadow region denotes

broken phase. In both cases, there exists a dome for broken phase. In the former case the critical

temperature appears at a nonzero x and then vanishes at a larger value, while in case 8 the critical

temperature appears at the origin x = 0.

7.1.7 Case 7

There is a dome for case 7 shown in the left plot of figure 21. The broken phase appears

at a nonzero x and then disappears above a certain larger value of x. This kind of phase

diagram is used to construct the superconducting dome in this paper.

To obtain the dome we should choose the theory parameters as follows.

c > 0 , M2(x+
min) < −3/2 < m2 − b , m2 − a > −3/2 . (7.10)

When c > 0, there is a minimum denoted as x+
min in the positive x direction. Two critical

points at which the broken phase disappears can be uniquely obtained by solving the

algebraic equation M2(x) = −3/2.

7.1.8 Case 8

From the right plot of figure 21, one can see that as we increase the doping parameter x

the transition temperature to the broken phase first increases, arrivals at a maximum value

and then monotonically decreases to zero as x grows. This is still a kind of dome.

The parameter space for case 8 is given by

c > 0 , m2 − b > −3/2 , m2 − a < −3/2 . (7.11)

7.1.9 Case 9

In this case the broken phase can always develop for any positive value of x. As one can see

from the left plot of figure 22, the critical temperature first decreases and then increases.

The parameter space that supports this phase diagram is given by

c < 0 , M2(x−max) < −3/2 . (7.12)

Here the finite value x−max denotes the maximum in the positive x direction when c < 0.
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Figure 22. The schematic plot for case 9 (left) and case 10 (right). The shadow region denotes

the broken phase. In case 9 the critical temperature has a non-vanishing minimum value. There

are two disconnected shadow regions for the right one.

7.1.10 Case 10

The last case is shown in the left plot of figure 22, from which one can find two disconnected

regions for the broken phase. One is near the origin, and the other one happens at larger

values of x.

The parameter space for case 10 is given by

c < 0 , m2 − b < −3/2 <M2(x−max) , m2 − a < −3/2 . (7.13)

Here x−max is the location of the unique maximum in the positive x direction when c < 0.

Before the end of this subsection, we point out that the above analyses are based on

the BF-violating linear modes on the AdS2 background. However, those kinds of phase

diagrams are expected to be realised by choosing specific models within their corresponding

parameter spaces given above. Indeed, case 1 and case 7 are explicitly constructed in

section 5 and section 4, respectively. Nevertheless, to obtain a particular type of phase

diagram quantitatively, one should solve the coupled equations for the fully back-reacted

geometry and compare its free energy to the normal unbroken phase.

7.2 Towards cuprates and strange metals

We specify to the theory parameters that can arrive at the phase diagram we are interested.

As one can see our study so far provides several ingredients that are necessary for a more

realistic model, including a superconducting dome, a corner of antiferromagnetic phase and

a region with striped phase or checkerboard phase. By putting them together we arrive

at the global phase diagram shown in the temperature-doping plane in figure 23. To our

knowledge this is the first determination including all three ingredients. In particular, the

critical temperatures for all broken phases are comparable in figure 23. This figure is very

reminiscent of the phase diagram of high-Tc cuprates in figure 1.

However, that is not the whole story. There is an overlap between the homogeneous

AF phase and the striped phase. Something additional would happen within this overlap

region. One possibility is that two orders will compete with each other and only one of them

can survive, resulting in a first order phase transition. The other possibility is that both
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Figure 23. A typical phase diagram for our holographic theory. This phase diagram is the

combination of figure 5, figure 9 and figure 16. The orange region denotes the antiferromagnetic

phase and the red region denotes the superconducting phase. The region below the purple curve

indicates the possible striped phase associated with CDWs. The white region above the purple

curve represents the normal unbroken phase.

orders can coexist and there is a new phase with both AF order and striped order. To see

this more clearly, we can study the possible spatially modulated static mode in the spectrum

of fluctuations around the condensed phase of antiferromagnetism (5.3). If no such kind

of mode can exist, the homogeneous AF background is stable and one should compare the

free energy between AF phase and striped phase to find the real phase boundary between

them. There is a first order phase transition occurring at this phase boundary. In contrast,

if one can find that kind of zero mode, there might be a possibility that the AF order is

spatially modulated and can coexist with CDWs. In a very simple case, the striped zero

mode around the condensed phase of the antiferromagnetism is analysed in appendix F.

It is shown that such zero mode can be developed at some temperature range lower than

the critical temperature TN . However, it does not guarantee that a striped AF order can

really appear in the global phase diagram.23 On should construct this coexisting phase and

compare its free energy to other phases. All that can be done by solving nonlinear PDEs

which is numerically challenging and is very sensitive to the exact form of the theory we

are considering. Similar story will also hold for the superconducting case. We shall study

the competition and coexistence of different order parameters in the future.

Nevertheless, we can obtain some intuition by comparing the effective mass squared

for each broken phase on the AdS2 background. From figure 24 one can see that at small

doping region on the far left, the effective mass squared of the AF phase (orange line) is

much smaller than the one of striped phase (blue line), which suggests that the mode of

antiferromagnetism around the ground state of the normal phase is much more unstable

and thus the AF phase would first develop and dominate the phase diagram at least when

23The coexisting phase would be thermodynamically stable or unstable, depending on the nonlinear details

of the theory [80–85]. In principle, we can add higher order corrections to the theory without changing our

perturbative analysis, but the thermodynamics (free energy) of the coexisting phase can change significantly.
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Figure 24. The effective mass squared for superconducting phase (red), antiferromagnetic phase

(orange) and striped phase at k∗ (blue) on the AdS2 background. The horizontal dotted line denotes

the AdS2 BF bound. The theory parameters we choose are the same as the previous figure 23.

the doping is sufficiently small. In contrast, when x is large the SC phase dominates

the phase diagram. Therefore, we can propose a simple phase diagram shown before in

figure 2. To arrival at that diagram we have assumed that all broken solutions continue

down to T = 0 without sprouting additional branches, which seems reasonable since all

broken solutions arise as a consequence of breaking the BF bound of the ground state of

the normal, unbroken phase. We also assume that either the possible coexisting phases

will not develop, or they can develop but are not thermodynamically favoured.

The key features in the phase diagram of figure 2 are as follows. At low doping level, the

phase diagram is captured by the AF phase. By increasing doping x, some kind of spatially

modulated phase becomes dominant. One particularly interesting point is that there is a

dome-shaped superconducting region in the (T,x) plane. For sufficiently high doping, the

superconductivity can be destroyed and be replaced by the normal phase. Notice that even

the phase with striped superconducting order or antiferromagnetic order develops, the main

structure of the phase diagram will not change a lot. We still have a superconducting dome

and a corner region of antiferromagnetism but with spatially modulated condensates. A

schematic phase diagram is shown in figure 25. Compared with figure 2, there are two new

phases appearing in the (T,x) plane. The left one near the homogeneous AF phase is an

inhomogeneous AF phase known as AF+CDW phase in which both the AF condensate

and the charge density are spatially modulated. Very similarly, the right one near the

homogeneous SC region is an inhomogeneous SC phase, namely, the SC+CDW phase with

spatially modulated SC condensate and charge density wave.

To establish the exact phase diagram of a given theory, one should know, in principle,

all of the black brane solutions that exist at low temperatures, including the full back-

reacted spatially modulated black branes we mentioned above. Carrying this out in full

detail is thus potentially very involved. In the present paper, we do not address this issue

as it is not very essential for the key features of the phase diagram and too technically
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Figure 25. A plausible phase diagram in the temparature-doping plane after including the possible

spatially modulated AF order and SC order. The light orange region on the left denotes the phase

with spatially modulated AF condensate, i.e., an AF+CDW phase. The light red region on the

right corresponds to the phase with striped SC condensate, namely, a SC+CDW phase.

involved. It would be helpful to construct a full phase diagram by finding all broken phases

numerically in the future.

Besides cuprates, iron-based superconductors have become the second high tempera-

ture superconductor families. Iron-based superconductors share many characteristics with

the cuprates. Both of them are layered materials and both have similar phase diagrams:

superconductivity only emerges after doping an antiferromagnetic parent state. However,

the parent state of the iron-based superconductors is a conductor, whereas the parent state

in cuprates is an antiferromagnetic insulator. Hole doped cuprates exhibit the “pseudogap”

region which is absent in iron-based superconductors. By turning off the pseudo-scalar α

as well as Chern-Simons couplings, the striped phase will disappear. We can then obtain a

system in which superconducting dome locates near an AF phase with possible coexistence

of the superconducting and antiferromagnetic orders at certain doping levels [86, 87], which

is reminiscent of the phase diagram of iron-based superconductors. Our theory allows for

systematic improvements of the applied approximations. Actually, as it has been shown

in subsection 7.1, our theory allows phase diagrams that are significantly different from

figure 2. Nevertheless, we pay much more attention to the phase diagram as figure 2 and

we shall study other kinds of phase diagrams in more details elsewhere.

8 Conclusion and outlook

Progress in applying the holographic duality to condensed matter physics has recently

moved towards more concrete holographic theory building for strongly correlated systems.

As a step towards realising a holographic theory of the doped high-temperature supercon-

ductors, we analysed a very general bulk theory which has the ability to produce interesting

phase diagrams as functions of temperature T and doping-like parameter x. All couplings

specifying the action are a priori general, provided that they admit an asymptotically ex-

pansion as in (2.3). The theory exhibits a rich phase structure: depending on the values
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of the temperature and the doping the boundary system can be in superconducting phase,

antiferromagnetic phase, normal metallic phase or spatially modulated phase with striped

order or checkerboard order.

The sharp transition as well as its position for each broken phase in the global (T,x)

phase diagram can be found by changing theory parameters. We classify possible phase dia-

grams for each broken phase that can be realised in our theory in subsection 7.1. One partic-

ularly interesting point is that the existence of a superconductivity dome is a rather general

feature in our theory provided that the theory parameters are within the region (3.23). We

are aware of one holographic theory that can give a superconducting dome with respect to

a theory parameter, i.e., the magnitude of the translational symmetry breaking [88].24 In

the previous work, the height of the dome was very limited: the critical temperature was

very small (of the order of 10−8 in units of charge density) and thus not accessible through

stable numerical analysis. In our setup, it is very natural to obtain a superconducting

dome with comparable transition temperature to other phases, see figure 23.

Most of our attention is to construct a (T,x) phase diagram that is reminiscent of

real doped high-temperature superconductors as shown schematically in figure 1. To find

the desirable patten of (T,x) phase diagram, including a superconducting dome, a corner

of antiferromagnetic phase as well as a spatially modulated region between them, the in-

stability of the extremal AdS-RN black brane plays an important role. The near horizon

geometry features an AdS2 factor. Therefore, to trigger the phase transition to a certain

kind of broken phase can be related to the violation of the BF bound of the correspond-

ing dual IR operator. There might be another black brane background that describes the

normal phase much better than the AdS-RN we are considering. One can then, in princi-

ple, perform similar analysis on that background, although it is expected that it is more

involved. The holographic phase diagram in figure 2 (as well as figure 25) can be a step

towards realising the phase diagram of high-temperature superconductivity. Nevertheless,

there are still many features we need to identify and study in the future.

It should be very interesting to study the transport properties, especially the conductiv-

ity. We leave this to future work, as future improvements of the framework as mechanisms

for momentum dissipation (see, for example, [90–94]) were not included here.

There are several phase transitions in the theory. First there are three quantum phase

transitions as one changes the doping parameter, one to go from AF to striped phases,

another to go from striped to SC phases and another from SC phase to metal. As they are

all triggered by violations of the BF bound, they are in the BKT universality class [95–

100]. Then there are several finite temperature phase transitions from the high temperature

metallic phase to the AF, striped or SC phase. The theory can in principle admit mixed

phases in which more than one orders can coexist, for example, an AF+SC state. These

can be first or second order phase transition as a function of the detailed form of the

holographic theory.

24The first attempt towards finding a superconducting dome from holography has been done in the

Abelian-Higgs model [18] by introducing a modulating chemical potential [89]. It was shown that there is

a critical modulation wave number above which the critical temperature will vanish or nearly vanish.
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It would be interesting to compare our phase diagram via holographic construction with

other theoretical approaches. For example, by analysing SO(5) quantum nonlinear σ model,

the author of [101] has classified four types of transitions from the AF phase to the SC phase,

see phase diagrams in figure 1 of [101]. The topology of the phase diagram depends on the

strength of the quantum fluctuation. Similar kind of phase diagrams can be in principle

realised in our holographic theory with a proper choice of parameters. Furthermore, there is

a new ingredient, i.e., striped order in our holographic phase diagrams. Another interesting

theory is the phase string theory [3] for doped antiferromagnets, which is described by two

bosonic degrees of freedom, say the spinon and the holon, rather than a quasiparticle theory

of interacting electrons. In the phase string picture, the doping is the hole concentration

with the hole number conserved. There are two emergent U(1) gauge fields and a possible

external electromagnetic field. Therefore, in a sense, the phase string theory shares some

similarity with our holographic theory. The global phase diagram in the minimal phase

string model can be found in figure 31 of [3]. The phase diagram covers many interesting

regimes of the cuprate high-temperature superconductors. However, it needs to be modified

to describe physics for the very underdoped regime as well as the overdoped regime. Our

holographic theory, in some sense, gives the expected phase behaviours in those two doping

regions.

As we can see, the precise form of the global phase diagram depends on the nonlinear

details of the theory: the phase boundary can be second order or first order and there

also might be phases with coexisting orders. Coupling of the SC mode to other degrees of

freedom such as AF excitation and striped order is expected to give rise to a rich phase

diagram of physical phenomena. It would certainly be interesting to study whether one can

obtain a thermodynamic stable solution in which the superconducting condensate becomes

to be spatially modulated spontaneously, i.e., striped superconductors. Similarly, there

also might be a phase with the striped antiferromagnetic order. With a proper choice

of parameters, the theory should admit coexisting phase with AF and SC condensates.

It will be interesting to construct the superconducting-antiferromagnetic-superconducting

junction and the superconducting vortices with antiferromagnetic cores by virtue of such

kind of mixing phase and compare the holographic results, for example, with the SO(5)

theory of high-temperature superconductivity [4]. Finally, one of the remaining questions

is how the details of the coupling functions are mapped to the dual boundary theory, which

could shed light on the quest for the origin of high-temperature superconductors.

The class of effective holographic theories we analysed here however is expected upon

improvement to provide phase diagrams for a larger variety of strongly correlated systems.

There are several ingredients however that should be included in order to make it more

realistic:

• A regular strange-metal phase should be included by modifying the effective action

to include the most relevant scalar operator along the lines of [30, 31]. In such a case

there are several non-fermi liquid ground states possible to choose from.

• Agents for momentum dissipation should be added to make conductivity realistic.

Except for the striped phase there is now ballistic conductivity in the rest of phases
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as there is translation invariance and finite density. Ways to do this in holographic

theories are known and they can be incorporated.

• The two U(1) charge densities were taken to be independently conserved. This will

cease to be true if charge of one kind could be converted to the other. This can be

modeled by giving a field dependent mass to a linear combination of the two U(1)

vector fields.

A further problem that can be studied along similar lines is how a layered structure

of strongly coupled systems can affect the competition of phases using the formalism that

was developed in [102].

Quark matter or QCD matter is also believed to display a rich phase structure at

finite temperature and baryon density [103]. The techniques of this paper could be also

applicable in such a context. It was already shown in [104] that in holographic models

in the class of V-QCD a superconducting dome can appear in their phase diagrams for

the axial global symmetry. It would be interesting to explore further exotic phases in this

context.
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A Generalised effective holographic superconductor theory

The holographic superconducting phase was first constructed by the Abelian-Higgs

model [18] in which a complex scalar ψ is minimally coupled with a U(1) gauge field

in the bulk. The key ingredient is that the U(1) gauge symmetry can be spontaneously

broken below a critical temperature via a charged scalar condensate slightly outside the

event horizon [17]. What we do here is to write the most general two-derivative holographic

action that may break U(1) spontaneously. A mild generalisation was presented in [48],

and the most general action in [47].

To illustrate this case, we consider a holographic theory with a complex scalar ψ that

is charged under the U(1) gauge symmetry,

L0
ψ = −G(ψ∗ψ)

2
|(∂µ − iqAµ)ψ|2 − V (ψ∗ψ)− Z(ψ∗ψ)

4
H2, (A.1)
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with H = dA. We can innocuously rewrite this theory by changing variables to ψ = |ψ|eiθ,
then the theory becomes

L0
ψ = −G(|ψ|2)

2
(∂µ|ψ|)2 − G(|ψ|2)

2
|ψ|2(∂µθ − qAµ)2 − V (|ψ|2)− Z(|ψ|2)

4
H2, (A.2)

where |ψ| and θ are real scalars. The gauge symmetry becomes Aµ → Aµ+∂µβ/q together

with θ → θ + β. Remember that |ψ| is the absolute value of a complex field and hence

positive definite.

So far we have done nothing but just rewrite the theory using different variables. Nev-

ertheless, it is straightforward to generalise the theory as broad as possible while preserving

gauge invariance. Notice that one can change variable |ψ| → χ such that the kinetic term

of the new scalar χ takes the standard form, −1
2(∂µχ)2. Therefore, the generalised one

reads

Lχ = −1

2
(∂µχ)2 −F(χ)(∂µθ − qAµ)2 − V (χ)− Z(χ)

4
H2, (A.3)

where F , V and Z are three arbitrary functions of real scalar χ that takes in general any

real value. One demands F and Z to be positive, at least for a solution one is considering,

to ensure positivity of the kinetic term for θ and Aµ, respectively. We will take this

generalised theory in our present study to describe holographically a superconductor phase

transition.

B Equations of motion

In this appendix we provide the detailed equations of motion under the ansatz (2.16), which

read

θ′ = 0 , (B.1)

1√
EDC2

(√
DC2

E
α′
)′
− ∂αVint +

∂αZAA
′2
t + ∂αZBB

′2
t + 2∂αZABA

′
tB
′
t

2ED
= 0 , (B.2)

1√
EDC2

(√
DC2

E
χ′
)′
− ∂χVint +

(qAAt + qBBt)
2

D
∂χF

+
∂χZAA

′2
t + ∂χZBB

′2
t + 2∂χZABA

′
tB
′
t

2ED
= 0 , (B.3)

1√
EDC2

(√
DC2

E
φ′
)′
− 2∂ΦVintφ+

∂ΦZAA
′2
t + ∂ΦZBB

′2
t + 2∂ΦZABA

′
tB
′
t

ED
φ = 0 , (B.4)(

ZA

√
C2

ED
A′t

)′
+

(
ZAB

√
C2

ED
B′t

)′
=

√
EC2

D
2F(χ)qA(qAAt + qBBt) , (B.5)(

ZB

√
C2

ED
B′t

)′
+

(
ZAB

√
C2

ED
A′t

)′
=

√
EC2

D
2F(χ)qB(qAAt + qBBt) , (B.6)

D′C ′

DC
+

1

2

C ′2

C2
+
ZAA

′2
t + 2ZABA

′
tB
′
t + ZBB

′2
t

2D
− 1

2
(φ′2 + χ′2 + α′2)

−F(qAAt + qBBt)
2

D
E + VintE −

6

L2
E = 0 , (B.7)
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C ′′

C
− 1

2

(
C ′

C
+
D′

D
+
E′

E

)
C ′

C
+

1

2
(φ′2 + χ′2 + α′2) +

F(qAAt + qBBt)
2

D
E = 0 , (B.8)

2
D′′

D
− 2

C ′′

C
+

(
C ′

C
− D′

D
− E′

E

)
D′

D
+
C ′E′

CE
− 4F(qAAt + qBBt)

2

D
E

−2(ZAA
′2
t + 2ZABA

′
tB
′
t + ZBB

′2
t )

D
= 0 , (B.9)

where we use primes to denote radial derivatives. Note that only two of the last three

equations are independent.

Making use of equations (B.5), (B.6) and (B.9), we can obtain the following conserved

quantity

Q =
C√
DE

[
ZAAtA

′
t + ZBBtB

′
t + ZAB(AtBt)

′ − C
(
D

C

)′]
, (B.10)

which can be used to connect IR to boundary data. If there is a black brane horizon at

r = rh, then the temperature and entropy density are given by

T =
1

4π

√
dh
eh
, s =

2π

κ2
C(rh) , (B.11)

where D = dh(r− rh) + · · · and E = eh/(r− rh) + · · · near the horizon. In order for At dt

and Bt dt to be well defined at the horizon as a one form, At(rh) and Bt(rh) have to be

zero with their first derivatives finite. As a consequence, it is straightforward to check that

Q = −2κ2Ts . (B.12)

Therefore Q = 0 signals extremity, which implies that either there is no horizon, or that if

there is one it must have Ts = 0.

C Antiferromagnetism and spin waves

In the low-energy limit, spin rotations should be thought as a global SU(2) symmetry,

and then antiferromagnetic ordering corresponds to a spontaneous breaking from SU(2) to

U(1) which corresponds to rotations about a single axis. Although the background value

of spin density is vanishing, there is a staggered spin order parameter φa transforming as

a triplet under spin rotations. To construct the gravity dual of AF phase, one needs to

introduce a real scalar Φa which transforms as a triplet under SU(2) in the bulk. A bulk

solution with vanishing SU(2) gauge fields but with a normalisable Φa in one direction

is then holographically dual to an AF phase or spin density wave phase in the boundary

theory [19].

In this appendix we will briefly show that the gravity description in terms of the

spontaneous breaking of SU(2) symmetry is reminiscent of the Néel phase in a spin system

and can display the associated spin wave with linear dispersion. These can be done by

studying the linear perturbations around the background of symmetry broken phase. To

begin with, we will explicitly work out that the linear fluctuations of SU(2) gauge field and

triplet scalar in two symmetry breaking directions form a closed system even one considers

Einstein’s equations.

– 52 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
7

C.1 Linearised equations of motion

We start from the theory (2.1) and turn on the most general perturbations around the

background (2.16),

ds2 = gµν(r)dxµdxν + λhµνdx
µdxν ,

gaµ = 0 + λfaµ , Φ =
(
0 + λϕ1, 0 + λϕ2, φ(r) + λϕ

)
,

A = At(r)dt+ λaµdx
µ, B = Bt(r)dt+ λbµdx

µ,

χ = χ(r) + λυ , θ = θ(r) + λϑ, α = α(r) + λw ,

(C.1)

where λ is a formal expansion parameter. At the beginning, all perturbative fields can

depend on general coordinates (t, r, x, y).

Since we are interested in the physics of AF phase, we focus on the equations of motion

for perturbations of SU(2) gauge field and the triplet scalar. The linearised equations for

faµ can be obtained from (2.6), which read

∇νf1
νµ − φ2f1

µ = +ϕ2∇µφ− φ∇µϕ2 ,

∇νf2
νµ − φ2f2

µ = −ϕ1∇µφ+ φ∇µϕ1 ,
(C.2)

and

∇νf3
νµ = 0 , (C.3)

where we have set the coupling constant ZG = 1 for simplicity and defined the field strength

for faµ as faµν = ∂µf
a
ν − ∂νfaµ . The covariant derivative ∇ corresponds to the background

metric, i.e., ∇βgµν = 0. Note that due to the symmetry breaking in a = 1, 2 direction,

the gauge fields f1
µ and f2

µ obtain an effective mass with its value set by the condensate

φ in the third direction, while f3
µ is still massless since the symmetry in this direction is

unbroken.

The equations of motion for ϕ1 and ϕ2 can be derived from (2.8),

∇µ(∇µϕ1 + φf2
µ) + f2

µ∇µφ−M2
effϕ1 = 0 ,

∇µ(∇µϕ2 + φf1
µ) + f1

µ∇µφ−M2
effϕ2 = 0 ,

(C.4)

where the effective mass M2
eff is provided by background fields. The precise form of M2

eff

is not important here. Note that under the ansatz (2.16) the equation of motion for φ in

terms of M2
eff can be written as

∇µ∇µφ−M2
effφ = 0 . (C.5)

Thanks to the SU(2) symmetry which demands each coupling in (2.1) to be analytic

functions of ΦaΦa, after a simple analysis one can find that f1
µ, f

2
µ, ϕ1, ϕ2 do not enter

into other equations of motion at linear order. Hence, as long as one knows the profile

of background condensate φ, the equations of (f1
µ, f

2
µ, ϕ1, ϕ2) can be solved. Actually,

equations (C.2) and (C.4) can be rewritten as a much more compact form. We define two

new functions Π1 and Π2 by

ϕ2 = Π1φ , ϕ1 = −Π2φ . (C.6)
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Then (C.2) and (C.4) in terms of Π1 and Π2 become

∇νf1
νµ + φ2(∇µΠ1 − f1

µ) = 0 , (C.7)

∇ν [φ2(∇µΠ1 − f1
µ)] = 0 , (C.8)

and

∇ν [φ2(∇µΠ2 − f2
µ)] = 0 , (C.9)

∇νf2
νµ + φ2(∇µΠ2 − f2

µ) = 0 . (C.10)

To obtain above equations we have used the background equation (C.5).

It is obviously that two sets of perturbations decouple with each other and have the

same form. Hence we can only focus on one of them and drop the upper index for simplicity.

They are the full set of equations for this system. Actually, the perturbation equations are

the same as the one discussed in [19], in which Π1 and Π2 are known as bulk Goldstone

fields. In the next subsection, following [19], we will briefly show that the system displays

spin waves and their velocity has the form as expected from the standard theory for a

quantum antiferromagnet.25 We choose the symmetry breaking background as (2.16),

where the AF order parameter dual to φ acquires a nonzero VEV spontaneously.26 We

restrict ourselves to the finite temperature case in which gtt = −D (grr = E) has a simple

zero (pole) at the horizon r = rh.

C.2 Hydrodynamic limit and spin wave velocity

To do hydrodynamics analysis, for definiteness and without loss of generality, we demands

that all fluctuations have a small frequency ω and momentum k in the x direction. More

precisely, we consider the fluctuations as follows,

Π = π(r)e−iωt+ikx, ft = ft(r)e
−iωt+ikx, fx = fx(r)e−iωt+ikx. (C.11)

As ω = k = 0, there is a simple solution to the equations (C.7) and (C.8): a constant Gold-

stone field Π(r) = π0 with vanishing gauge profile fµ = 0. Note that it is a normalisable

solution existing in the limit ω → 0, thus a gapless Goldstone mode. Actually, this solution

is the consequence of the global SU(2) gauge rotation of the background order parameter

Φ = (0, 0, φ). To find general Goldstone mode which is a normalisable solution to (C.7)

and (C.8) with ingoing or regular condition at the horizon, one makes an expansion in

powers of ω and k and then finds that

Π(r) = π0 + ω2π0 Ct(r) + k2π0 Cx(r) , (C.12)

ft = −iωπ0

(
1− ζt(r)

)
, fx = −ikπ0

(
1− ζx(r)

)
. (C.13)

25One can refer to [19] for more details.
26We only consider the standard quantisation for φ, which means that for large r the normalisable solution

behaves as φ ∼ r−∆
φ
+ with ∆φ

+ =
3+
√

9+4M2

2
.
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Here ζt and ζx are solutions of

∂r(
√
−ggrrgtt∂rζt)−

√
−ggttφ2ζt = 0 , (C.14)

∂r(
√
−ggrrgxx∂rζx)−

√
−ggxxφ2ζx = 0 , (C.15)

with ingoing conditions at the horizon and Dirichlet conditions ζt|r→∞ = ζx|r→∞ = 1 in

the UV to make ft and fx be normalisable. The equations of Ct and Cx come from (C.7),

reading

∂rα
t = 0 , αt = −

√
−gφ2grr∂rCt −

√
−ggrrgtt∂rζr , (C.16)

∂rα
x = 0 , αx = −

√
−gφ2grr∂rCx +

√
−ggrrgxx∂rζx . (C.17)

The last constraint is the r component of the gauge equations (C.7) from which one finds

the relation

ω2 = v2
s k

2, v2
s = αx/αt . (C.18)

Thus the dynamical bulk equations of motion admit Goldstone mode, i.e., normalisable

ingoing solution, only when ω and k obey a linear dispersion relation with the spin wave

velocity vs. It has been shown that the constants αt and αx are directly related to the

tt and xx components of the retarded function GRµν of spin current jµs along a symmetry

breaking direction, i.e.,

αt = −GRtt(ω = 0, k = 0) , αx = GRxx(ω = 0, k = 0) . (C.19)

By further recognising

ρs = GRxx(ω = 0, k = 0) , χ⊥ = −GRtt(ω = 0, k = 0) , (C.20)

with ρs the spin stiffness and χ⊥ the transverse magnetic susceptibility, one finds that

vs =

√
GRxx(ω = 0, k = 0)

−GRtt(ω = 0, k = 0)
=

√
ρs
χ⊥

, (C.21)

which is the expected expression for the spin velocity for a quantum antiferromagnet.

D Normalisable static modes by shooting method

In this appendix we will introduce the method we use to determine numerically the existence

of normalisable static modes.

As mentioned in section 6, a nontrivial bulk solution with desirable boundary condi-

tions at particular value of k 6= 0 means that a static spatially modulated mode exists,

leading to a spatially modulated phase. The quantitative value of k can be determined

by the shooting method numerically. A typical shooting strategy is to impose boundary

conditions on the one side and to check the boundary values on the other side. However,

since the system in AdS spacetime typically has singularity at the horizon r = rh as well as

the asymptotical boundary r →∞, it would generally develop divergent mode in this single
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side shooting process. To bypass such undesirable singular modes, one can use a double

side shooting approach, in which one prepares a pair of solutions with desirable boundary

conditions independently at each side and then connects them smoothly at a particular

point in the interior. Similar method was adopted to look for the spatially modulated

mode in a holographic d-wave superconductor [65].

Specific to the system we are considering, i.e., the linear ODEs for four functions

ηJ = (h, ay, w, by), the desirable solution can be obtained by a linear superposition of

four independent solutions ξjJ , (j = 1, 2, 3, 4) of the ODEs. The solution satisfying the IR

boundary condition can be expressed as

ηirJ =
4∑
j=1

sjξ
j
irJ , (D.1)

while the solution satisfying the UV boundary condition can be expressed as

ηuvJ =

4∑
j=1

tjξ
j
uvJ , (D.2)

where we have used subscript “ir” and “uv” to highlight the boundary conditions satisfied

by the solution, sj and tj are all constants. To make it more clear, the four sets of solutions

ξjirJ are independent solutions that only satisfy the regular condition on the horizon, while

ξjuvJ are four sets of independent solutions that only satisfy the source free condition in

the UV.

A smooth connection demands that the values of the functions and their first derivates

should coincide at a particular interior point, say r0. Thus we obtain eight constraints,

4∑
j=1

sjξ
j
irJ(r0) =

4∑
j=1

tjξ
j
uvJ(r0) , (D.3)

4∑
j=1

sj∂rξ
j
irJ(r0) =

4∑
j=1

tj∂rξ
j
uvJ(r0) . (D.4)

To have nontrivial value for eight coefficients (sj , tj), the Wronskian

W (r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ1
ir1(r) . . . ξ4

ir1(r) ξ1
uv1(r) . . . ξ4

uv1(r)
...

. . .
...

...
. . .

...

ξ1
ir4(r) . . . ξ4

ir4(r) ξ1
uv4(r) . . . ξ4

uv4(r)

∂rξ
1
ir1(r) . . . ∂rξ

4
ir1(r) ∂rξ

1
uv1(r) . . . ∂rξ

4
uv1(r)

...
. . .

...
...

. . .
...

∂rξ
1
ir4(r) . . . ∂rξ

4
ir4(r) ∂rξ

1
uv4(r) . . . ∂rξ

4
uv4(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(D.5)

should be zero at r = r0. Note that the vanishing of Wronskian does not depend on the

choose of r0 and independent solutions ξjirJ and ξjuvJ , as long as the normalisable solution

we are looking for does exist at a given wave number.
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E Analysis on checkerboard instabilities

In this appendix we will show how one can obtain the perturbation equations for the

checkerboard structure.

To simplify our analysis, we focus on the AdS2×R2 background (6.1) as an illustrative

example. Substituting the general perturbations (6.22) into the equations of motion and

working at linear order of λ, we obtain six ODEs from two gauge field equations, three

from gravity equations and one from the pseudo-scalar equation,

6∂r(r
2∂rw)−

(
m̃2

(2) +
k2
x + k2

y

r2
h

)
w − 4

√
3(2n1 + n2x)√

1 + x2

(
kx
rh
ay −

ky
rh
ax

)
(E.1)

− 4
√

3n2√
1 + x2

(
kx
rh
by −

ky
rh
bx

)
= 0 ,

6∂r(r
2∂rax) +

2
√

3√
1 + x2

h′tx +
4
√

3(2n1 + n2x)√
1 + x2

ky
rh
w −

k2
y

r2
h

ax +
kxky
r2
h

ay = 0 , (E.2)

6∂r(r
2∂ray) +

2
√

3√
1 + x2

h′ty −
4
√

3(2n1 + n2x)√
1 + x2

kx
rh
w +

kxky
r2
h

ax −
k2
x

r2
h

ay = 0 , (E.3)

6∂r(r
2∂rbx) +

2
√

3x√
1 + x2

h′tx +
4
√

3n2√
1 + x2

ky
rh
w −

k2
y

r2
h

bx +
kxky
r2
h

by = 0 , (E.4)

6∂r(r
2∂rby) +

2
√

3x√
1 + x2

h′ty −
4
√

3n2√
1 + x2

kx
rh
w +

kxky
r2
h

bx −
k2
x

r2
h

by = 0 , (E.5)

−3r2h′′tx −
6
√

3r2

√
1 + x2

a′x −
6
√

3xr2

√
1 + x2

b′x +
1

2

k2
y

r2
h

htx −
1

2

kxky
r2
h

hty = 0 , (E.6)

−3r2h′′ty −
6
√

3r2

√
1 + x2

a′y −
6
√

3xr2

√
1 + x2

b′y −
1

2

kxky
r2
h

htx +
1

2

k2
x

r2
h

hty = 0 , (E.7)

kxa
′
x + kya

′
y +

kx√
3
√

1 + x2r2
htx +

ky√
3
√

1 + x2r2
hty = 0 , (E.8)

kxb
′
x + kyb

′
y +

kxx√
3
√

1 + x2r2
htx +

kyx√
3
√

1 + x2r2
hty = 0 , (E.9)

−kx
2
h′tx −

ky
2
h′ty +

kx
r
htx +

ky
r
hty = 0 , (E.10)

where m̃2
(2) is defined in (3.27), and two Chern-Simons coupling constants n1, n2 are given

in (2.3).

The last three equations are first order and therefore can be thought of as constraint

equations, from which we obtain three constraints,

kxhtx + kyhty = c r2, (E.11)

kxax + kyay = a+
c√

3
√

1 + x2
, (E.12)

kxbx + kyby = b+
cx√

3
√

1 + x2
, (E.13)

with a, b, c three integration constants. By using those three constraints, one can easily

check that the second order equations for (ax, bx, htx) and (ay, by, hty) are not independent
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and can be derived from each other. This feature is a consequence of the background

rotational symmetry in the (x, y) plane. If we consider AdS-RN background, three con-

stants a, b, c should vanish because we are looking for marginally-unstable perturbations

without turning on any source. Although what we are considering here is the AdS2 back-

ground which is the near horizon geometry of the extremal AdS-RN solution, we still set

a = b = c = 0 so as to be self consistent with finite temperature analysis. By using this

condition, the checkerboard perturbations in subsection 6.4 can be deduced straightfor-

wardly.

F Striped instabilities around the antiferromagnetic phase

In this appendix we analyse in more detail the striped instabilities in the vicinity of the

AF phase.

Since there is an overlap between AF phase and striped phase in figure 23, those

two phases could compete or coexist with each other. It is interesting to investigate the

interplay between the inhomogeneous instabilities and the antiferromagnetic instabilities.

A complete study needs one to solve the full coupled equations of motion numerically. In

particular, one needs to check whether the solution with coexisting AF order and striped

order can exist or not and whether such solution is thermodynamically favoured. One

should solve a set of coupled PDEs which is much more numerical challenge. Nevertheless,

one can obtain some useful hints from perturbative analysis. More precisely, one can search

for the possible spatially modulated zero mode in the spectrum of fluctuations around the

AF phase (5.3).

The background solution of AF phase is sensitive to the details of the action. As a

concrete example, we will consider the theory (5.2) with ansatz given by (5.3) in section 5.

For the pseudo-scalar α, we consider the same setup as the case in figure 16, i.e., n1 = 0.8

and m̃2 = a3 = b3 = c3 = n2 = 0. A set of consistent perturbations with momentum k in

the x direction are given by

δgty = λ r(r − rh)hty(r) sin(kx) +O(λ2) , δα = λw(r) cos(kx) +O(λ2) ,

δBy = λ by(r) sin(kx) +O(λ2) , δAy = λ ay(r) sin(kx) +O(λ2) ,

δφ = 0 +O(λ2) ,

(F.1)

while other perturbations can be consistently set to zero at linear order of λ.

The resulted linearised equations around the background (5.3) have a similar form as

the case in AdS-RN background.

w′′ +

(
2

r
+
g′

g
− ξ

2

)
w′ − k2

r2g
w − 4kn1e

ξ/2A′t
r2g

ay = 0 , (F.2)

a′′y +

(
g′

g
− ξ′

2

)
a′y +

r(r − rh)eξA′t
g

h′ty −
8kn1e

ξ/2A′t
g(2 + a1φ2)

w − k2

r2g
ay

+
rhe

ξA′t
g

hty = 0 , (F.3)
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b′′y +

(
g′

g
− ξ′

2

)
b′y +

r(r − rh)eξB′t
g

h′ty −
k2

r2g
by +

rhe
ξB′t
g

hty = 0 , (F.4)

h′′ty +

(
4r − 2rh
r(r − rh)

+
ξ′

2

)
h′ty +

(2 + a1φ
2)A′t

2r(r − rh)
a′y +

(2 + b1φ
2)B′t

2r(r − rh)
b′y

−
(
k2

r2g
− rh(4 + rξ′)

2r2(r − rh)

)
hty = 0 . (F.5)

Therefore, for a given background profiles (g, ξ, φ,At, Bt) in (5.3), one can check whether

the system admits normalisable zero modes with non-vanishing wave number k. Note

that the above coupled equations are unchanged under the transformation k → −k and

(w, ay, by, hty)→ (w,−ay,−by,−hty). So we can only focus on the positive value of k.

The fluctuations should be regular on the horizon at r = rh. Therefore, the four

functions hty, ay, by, w behave as

hty(r) = hh +O(r − rh) , w(r) = wh +O(r − rh) ,

ay(r) = ah +O(r − rh) , by(r) = bh +O(r − rh) ,
(F.6)

near the horizon. On the other hand, to break translational invariance spontaneously we

should not turn on any source. So the asymptotical behaviour in the UV as r → ∞ is

given by

hty(r) =
hv
r3

+ · · · , w(r) =
wv
r3

+ · · · ,

ay(r) =
av
r

+ · · · , by(r) =
bv
r

+ · · · ,
(F.7)

in which the parameters (hv, wv, av, bv) correspond to the response of the dual operators

on the field theory side.

To solve this problem we take advantage of the double side shooting method from both

the IR and UV (see appendix D). We first prepare four independent sets of (hh, wh, ah, bh)

as initial boundary conditions in the IR as well as four independent sets of (hv, wv, av, bv) as

initial boundary conditions in the UV. After obtaining eight solutions we can generate the

Wronskian (D.5). The value of the Wronskian depends one the location of the connection

point, say r = r0. However, if the zero mode indeed exists, say, at k = k0, the Wronskian

W (r0) at k = k0 should be zero for any choice of connection point r0.

We plot W (r0) as a function of k for several values of the connecting point r0 in

figure 26. In the left plot which is for the background profiles at T ≈ 0.887TN with

TN the critical temperature for the AF phase transition, W dose not vanish, so there is

no zero mode. In this case the AF order can not coexist with the striped order. They

compete with each other and only the one which has a lower free energy can win. In

contrast, for the background profiles at T ≈ 0.484TN in the right plot, all curves intersect

at W = 0, which points out the value of k at which the zero mode exists. It suggests

that the homogeneous phase of antiferromagnetism might be unstable. There might be

a mixed phase with spatially modulated condensate of antiferromagnetism and CDWs in

temperatures much lower than TN .

Similarly, we can also look for the possible spatially modulated static mode in the

spectrum of fluctuations around the superconducting background (4.2). A set of consistent

– 59 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
7

0.5 1.0 1.5
k

0.1

0.2

0.3

0.4

0.5

W

0.2 0.4 0.6 0.8 1.0
k

-0.15

-0.10

-0.05

W

Figure 26. The behaviour of Wronskian W as a function of wave number k for different choices of

the connecting point r0. The left plot is for the background profiles at T ≈ 0.887TN and the right

one is for the profiles at T ≈ 0.484TN . We consider the same theory as in figure 9 with x = 0.5

and TN ≈ 0.15863.

perturbations with momentum k in the x direction up to linear order of λ read

δgty = λhty(r) sin(kx) +O(λ2) , δα = λw(r) cos(kx) +O(λ2) ,

δBy = λby(r) sin(kx) +O(λ2) , δAy = λay(r) sin(kx) +O(λ2) ,

δχ = 0 +O(λ2) ,

(F.8)

with all other perturbations set to zero at the linear order. Inspired by the above results

around AF background, it seems most likely that spatially modulated static modes around

the superconducting background could exist. As a consequence, there might be a striped

superconductor in some doping range.
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[30] C. Charmousis, B. Goutéraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic

theories for low-temperature condensed matter systems, JHEP 11 (2010) 151

[arXiv:1005.4690] [INSPIRE].
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