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ativity coexists with the Hawking temperature in the description of a gravitating system.

No assumptions about an underlying theory are made and no restrictions are placed on

the origins of the new physics near the horizon. We only employ classical general relativity
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1 Introduction

The attribution of thermodynamic properties to black holes is incompatible with classical

general relativity (GR) [1, 2]. The derivation of Hawking radiation requires a quantum

treatment of matter degrees of freedom. For this reason, the origin of black hole thermo-

dynamics is commonly sought at the quantum gravity level.

In this article, we focus on the thermodynamic level of description for black holes. Ther-

modynamics is a theory for macroscopic coarse-grained variables and it can be consistently

formulated without any reference to the underlying physics. In particular, thermodynamics

applies even if the underlying physics is fully quantum. For this reason, we believe that it

is possible to formulate a thermodynamic description of black holes that incorporates the

quantum effects of matter within a classical theory of gravity. In ref. [3], we showed that the

thermodynamics of gravitating systems in equilibrium is holographic at the classical level,

in the sense that all thermodynamic properties are fully specified by variables defined on

the system’s boundary. In ref. [4], we constructed a consistent thermodynamic description

of solutions to Einstein’s equations that correspond to radiation in a box.

In this work, we employ these solutions in order to describe a black hole of mass M

inside a box, in thermal equilibrium with its Hawking radiation. We find that the break-

down of classical GR takes place in a thin shell around the horizon. Since the principles
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of thermodynamics are insensitive to the microscopic underlying dynamics, we identify the

shell’s physical characteristics by employing the maximum entropy principle. We find that

the shell is characterized by high temperature (of order 1/
√
M) and its invariant thickness

is of order
√
M . Hence, the width of the shell around the horizon is much larger than the

Planck scale. This is unlike most existing models that postulate a shell or membrane of

Planck-length around the horizon — for example [5, 6]. The invariant width of the shell de-

rived here is also larger than the invariant distance of M1/3 from the horizon characterized

by strong gravitational interactions due to the “atmosphere” of high angular-momentum

particles, derived in ref. [7].

The electromagnetic (EM) field is an excellent example by which to demonstrate our

perspective. The quantum EM field has a consistent statistical mechanical description,

while the classical EM field has none. Nonetheless, the thermodynamics of the classical

EM field is well defined: the equation of state follows from the classical action, and the

entropy functional is inferred from the equation of state. The only imprint of quantum

theory is the Stefan-Boltzmann constant that appears as a phenomenological parameter in

the entropy functional. In analogy, when seeking an integrated description of black hole

thermodynamics and GR at the macroscopic level, we expect that quantum effects are

incorporated into phenomenological parameters of the thermodynamic potentials.

The structure of this article is the following. In section 2, we describe the background

for studying a black hole inside a box. In section 3, we present the properties of the solutions

to the Oppenheimer-Volkoff equation inside the box. In section 4, we derive the condition

for the breakdown of the Oppenheimer-Volkoff equation showing that it is restricted into a

thin shell around the horizon. In section 5, we implement the maximum-entropy principle,

using minimal modeling assumptions, in order to identify the properties of the shell.

2 The equilibrium black hole

A black hole in an asymptotically flat spacetime is not an equilibrium system because

it radiates. However, a black hole enclosed within a perfectly reflecting spherical box is

an equilibrium system because it involves two competing processes: emission of Hawking

quanta, and their re-absorption after reflection from the boundary. One expects that the

equilibrium state corresponds to the black hole coexisting with its Hawking radiation. This

system has been studied before [8, 9], albeit with simplifying assumptions.

Since the Hawking emission of massive particles is exponentially suppressed [2], radi-

ation is well described by the thermodynamic equations for ultra-relativistic particles:

ρ = bT 4, P =
1

3
ρ, s =

4

3
b1/4ρ3/4, (2.1)

where ρ is the energy density, P is the pressure, T is the temperature and s is the entropy

density; b is the Stefan-Boltzmann constant that takes the value π2

15 for pure EM radiation.

(We use Planck units, ~ = c = G = 1.) Particle numbers are not preserved in the processes

of black hole formation and evaporation; thus, they do not define thermodynamic variables

and the associated chemical potentials vanish.
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Assuming spherical symmetry, the metric outside the box is a Schwarzschild solution

with Arnowitt-Deser-Misner (ADM) mass M . An observer outside the box has access to

several macroscopic variables that are constant in absence of external intervention. Such

variables are the mass M , the area 4πR2 of the box, the boundary temperature TR and the

boundary pressure PR. The internal energy of a spherically symmetric system coincides

with the ADM mass M [3]. A change δR of the boundary radius corresponds to work

−PR(4πR2)δR/
√

1− 2M/R as measured by a local static observer, or −PR(4πR2) to an

observer at infinity. The first law of thermodynamics then becomes

δM = T∞δS − PR(4πR2)δR (2.2)

where T∞ = TR/
√

1− 2M/R is the temperature at infinity. The first law above implies

that the thermodynamic state space of the system consists of the variables M and R.

This physical system is characterized by two phases, the radiation phase and the

black-hole phase. For fixed R, and for sufficiently small values of M , the box contains only

radiation; for higher values of M the box contains a black hole coexisting with its Hawking

radiation. A heuristic description of the two phases is the following. For 2M/R � 1,

gravity is negligible in the radiation phase, the system is homogeneous with constant density

ρ = m/(43πR
3) and the entropy is

Srad =
4

3
πR3s =

4

3

(
4

3
πb

)1/4

M3/4R3/4. (2.3)

For 2M/R approaching unity, almost all the mass is contained in the black hole of radius

2M , hence, the Bekenstein-Hawking formula for the black hole entropy applies, SBH =

4πM2. The black hole phase is entropically favored if SBH > Srad, i.e., for

M5R−3 >
4b

35π3
. (2.4)

The radiation phase was studied in ref. [4]. In what follows, we construct the thermo-

dynamics of the black-hole phase through the following steps: (i) we derive the geometry

inside the box using classical GR; (ii) since radiation cannot coexist in equilibrium with a

horizon in GR, we identify the spacetime region where Einstein’ s equations break down;

(iii) we find an effective macroscopic description for the physics of this region by using the

maximum-entropy principle.

3 Classical geometry inside the box

The region inside the box where the black hole coexists with its Hawking radiation corre-

sponds to a static solution to Einstein’s equations with radiation,

ds2 = −
(

1− 2M

R

)√
ρ(R)

ρ(r)
dt2 +

dr2

1− 2m(r)
r

+ r2dΩ2, (3.1)
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where dΩ2 = (dθ2 + sin2 θdφ2) and (t, r, θ, φ) are the standard coordinates. The mass

function m(r) satisfies dm
dr = 4πr2ρ, and the energy density ρ(r) satisfies the Oppenheimer-

Volkoff (OV) equation

dρ

dr
= −4ρ

r2

(
m+ 4

3πr
3ρ
)

1− 2m
r

. (3.2)

We change the variables to

ξ := ln
r

R
, (3.3)

u :=
2m(r)

r
, (3.4)

v := 4πr2ρ, (3.5)

to obtain

du

dξ
= 2v − u dv

dξ
=

2v
(
1− 2u− 2

3v
)

1− u
. (3.6)

Eq. (3.6) is to be integrated from the boundary (ξ = 0, or r = R) inwards, because the

thermodynamic variables M and R are defined at the boundary. We denote the values of u

and v at the boundary as uR and vR, respectively. Thus, uR = 2M/R and vR = 4πbR2T 4
R.

There are two classes of solutions to eq. (3.6) that are distinguished by their behavior

as r → 0 [4, 10–12]. The first class contains solutions with a conical singularity at the

center. They satisfy ρ(0) = 0 and m(0) = −M0, for some constant M0 > 0. The solutions

in the second class are regular (everywhere locally Minkowskian). They satisfy m(0) = 0

and ρ(0) = ρc, for some constant ρc > 0.

The integration of eq. (3.6) from the boundary inwards does not encounter a horizon

(u = 1), except for the trivial case of vR = 0 that corresponds to a Schwarzschild horizon

and no radiation inside the box [4]. However, there is a sub-class of singular solutions with

u ' 1 near a surface r = r∗. These solutions arise for vR � uR, i.e., for low density at the

boundary. We call these geometries Approximate-Horizon (AH) solutions.

Next, we study the properties of the AH solutions. Plots of u and v as a function of r

are given in figure 1. A typical AH solution is characterized by three regions

(i) In region I, u increases and v decreases with decreasing r. P is the local minimum

of v.

(ii) In region II, u keeps increasing with decreasing r until it reaches a maximum very

close to unity at O∗ (r = r∗ ' 2M); v also increases with decreasing r in region II

and equals 1
2 at O∗. By eq. (3.5), the density

ρ∗ '
1

32πM2
, (3.7)

and the local temperature

T∗ =
1

(32πb)1/4
√
M

(3.8)

at O∗ depend only on M , within an excellent approximation.
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Figure 1. u and v as functions of r for an AH solution with uR = 0.15 and vR = 0.01. Note that

we have to use a logarithmic scale for v due to its rapid increase near O∗.

(iii) Region III corresponds to decreasing u; v increases dramatically shortly after O∗,

but then drops to zero at r = 0.

An approximate evaluation of the AH solutions is described in appendix A. Every AH

solution is characterized by the parameter

ε∗ = 1− u(r∗)� 1 (3.9)

that defines the maximal blue-shift at O∗. In appendix A, we express ε∗ as a function of

the boundary variables,

ε∗ =
16

9
uR(1− uR)

√
2vR. (3.10)

Solving eq. (3.10) for vR and using eq. (3.5), we relate the boundary temperature TR to ε∗,

TR =
3
√
ε∗

4
√

2M(8πb)1/4
√

1− uR
. (3.11)

In the appendix A, we also prove a relation between radial coordinate at O∗ and ε∗,

r∗ = 2M

(
1 +

3ε∗
8

)
, (3.12)

and a relation between the value of the mass function at O∗, m∗ := m(r∗) and ε∗,

m∗ = M

(
1− 5ε∗

8

)
. (3.13)
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In the vicinity of O∗, the metric eq. (3.1) becomes

ds2 = −N2
∗dt

2 +
dx2

ε∗ + x2

3M2ε∗

+ r2∗dΩ2 (3.14)

where x = r−r∗, andN∗ = 3
4

√
ε∗ is the lapse function. Interestingly, the proper acceleration

at O∗ equals (4M)−1, i.e., it coincides with the surface gravity of a Schwarzschild black

hole of mass M .

4 Breakdown of the OV equation

The regions I and II of an AH solution describe the geometry of the black hole phase at

some distance from the horizon. Since the OV equation cannot account for the presence

of a horizon, it must break down somewhere in region II, and close to O∗. It must be

substituted by a different equation that is compatible with the formation of an horizon.

However, any such modification must be very drastic: the OV equation is compatible with

a horizon only for matter configurations with negative pressure [13].

It is conceivable that the equation of state for radiation needs is modified near O∗
in order to incorporate quantum effects of non-gravitational origin, such as QED vacuum

polarization. However, such modifications are unlikely to lead to the negative pressures that

are necessary for the formation of a horizon. For a solar mass black hole, ρ∗ ∼ 1016ρH2O,

where ρH2O is the density of water. Hence, ρ∗ is of the same order of magnitude with

the density at the center of a neutron star. The corresponding local temperature T∗ is of

the order of 1012oK, which is a typical temperature for quark-gluon plasma. No existing

model of strong/nuclear interactions suggests the possibility of negative pressure in these

regimes. For super-massive black holes, ρ∗ ∼ 102ρH2O; negative pressures are even more

implausible in this regime. For this reason, we expect that quantum effects at high densities

may cause quantitative changes in the thermodynamics of self-gravitating radiation, but

they are not strong enough to generate a black hole phase. In further support of this

assertion, we note that any contribution from quantum effects would have strong and

complex dependence on the mass M , involving masses and thresholds from high energy

physics. The resulting thermodynamics would not manifest the simplicity and universality

of the Bekenstein-Hawking entropy.

Since high densities or temperature cannot lead to the formation of a horizon, the main

cause for the breakdown of the OV equation in region II is the extreme blue-shift ε
−1/2
∗ .

At extreme blue-shifts, the description of matter in terms of hydrodynamic variables (e.g,

energy density) fails because the hydrodynamic description is not fundamentally continuous

but presupposes a degree of coarse-graining.

In Minkowski spacetime, the energy density ρ is defined as ρ = U/L3, where U is the

energy in a cube of size L. L defines the degree of spatial coarse-graining and it cannot

be arbitrarily small.1 The energy density can be treated as a continuous field only when

1For thermal radiation at temperature T , the requirement that the energy fluctuations are much smaller

than the mean energy in a volume L3 implies that LT � 1. At higher temperatures, the Compton wave-

length of the electron defines an absolute lower limit to L.
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measured at scales much larger than L. The hydrodynamic description fails when the fluid

dynamics generate length-scales of order L. Then, either the consideration of fluctuations

or a microscopic treatment is necessary.

In curved spacetimes, the coarse-graining scale L is defined with respect to the local

rest frame, so it represents a proper length. By eq. (3.14), the coarse-graining scale L

corresponds to a radial distance ∆r ∼ L
√
ε∗ near O∗. Hence, if |r∗ − 2m∗| ∼ L

√
ε∗, or,

equivalently, if

M
√
ε∗ ∼ L (4.1)

the hydrodynamic fluctuations obscure any distinction of O∗ from a genuine horizon. We

note that eq. (4.1) does not require L to be a constant. A temperature dependence of L is

equivalent to a dependence on the mass M , because the local temperature at O∗ depends

only on M . Then, eq. (4.1) still provides an estimate of ε∗ as a function of M .

An alternative justification of eq. (4.1) is the following. In a hydrodynamic system,

local densities and temperature are meaningfully defined only if they vary at scales signif-

icantly larger than the coarse-graining scale L; the variation within a shell of volume L3

must be a small fraction of the averaged value. Tolman’s law implies that the product of

the local temperature T and the lapse function N is constant. Using eq. (A.24) for the

lapse at O∗, ∣∣∣∣∇rTT
∣∣∣∣ =

2

3Mε∗
. (4.2)

The coordinate distance ∆r corresponding to proper length L near O∗ is ∆r = L
√
ε∗.

When the variation of temperature in a cell of proper length L is of the same order of

magnitude as the temperature, the hydrodynamic description breaks down. The relevant

condition is |∇rT/T |∆r ∼ 1, which implies eq. (4.1).

In section 6, we will show that in the regime that corresponds to the thermodynamically

stable black hole, contributions to the stress-energy tensor from QFT in curved spacetime

(the trace anomaly) become important. The present analysis is compatible with this result,

because in this regime quantum fluctuations of the stress-energy tensor are very strong,

and thus, no classical hydrodynamic variables can be defined — see, section 6.3.

5 Maximum-entropy principle

The fundamental thermodynamic variables of the system are the ADM mass M and the

box radius R. However, the solutions to Einstein equations depend on three independent

parameters, which can be chosen as the mass M , the box radius R, and the blue-shift

parameter ε∗. By eq. (3.11), the dependence on ε∗ is equivalent to a dependence on the

boundary temperature TR. The equilibrium configuration is determined by the maximum-

entropy principle: the value assumed by any unconstrained parameter in a thermodynamic

system is the one that maximizes the entropy subject to the system’s constraints [14].

The thermodynamic constraints for an isolated box is the constancy of M and R; the

blue-shift parameter ε∗ is unconstrained. Hence, the equilibrium configuration for fixed M

– 7 –
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and R corresponds to the value of ε∗ that maximizes the entropy functional. We expect

that the entropy functional has one local maximum for each phase.

The radiation phase maximum has the larger value of ε∗. For
√
ε∗ � L/M , the OV

equation holds everywhere and we recover the thermodynamics of self-gravitating radia-

tion [4]. Smaller values of ε∗ correspond to the black hole phase. For
√
ε∗ ∼ L/M , the OV

equation breaks down near the surface O∗. This breakdown is accompanied by a formation

of a horizon H near O∗, at r = rH < r∗. The violation of the OH equations is restricted to

a thin shell around O∗ with a radial width δr := r∗−rH of order ε∗M . All properties of the

shell depend on ε∗, and they are fully specified once ε∗ is fixed by the maximum-entropy

principle.

We model the spacetime geometry of the black-hole phase as follows. In the region

between the bounding box and the surface O∗, the metric is described by an AH solution.

A horizon is formed at r = rH < r∗ and a thin shell where the OV equation does not apply

extends from rH to r∗. We write

rH = 2M(1− λε∗), (5.1)

where λ > 5
8 is an unspecified constant of order unity. The simplification involved in this

model is that we assume the breakdown of the OV equation to occur sharply at O∗, rather

than considering a gradual degradation. This approximation should not affect the order-

of-magnitude estimate of the shell’s properties. Note that we need not assume that the

shell extends up to the horizon r = rH. This would be problematic because points of the

horizon are causally disconnected from the interior. For the subsequent analysis, it suffices

that the shell extends up to a distance from the horizon that is much smaller than r∗− rH.

The total entropy within the box is a sum of three terms,

Stot = SH + Ssh + Srad, (5.2)

where

(i) SH is the Bekenstein-Hawking entropy of the horizon:

SH = πr2H ' 4πM2 − 8πλε∗M
2. (5.3)

(ii) The entropy Ssh of the thin shell is expected to depend only on the local temperature

at O∗ (hence, on M) and on the shell width δr. For δr = 0, there is no shell, so

Ssh = 0. It follows that

Ssh(M, δr) =
∂Ssh
∂δr

(M, 0)δr +O[(δr)2], (5.4)

so we write

Ssh ' ε∗MB, (5.5)

where B is a function of M to be determined later.
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(iii) The entropy of radiation Srad is the volume integral of the entropy density s in the

regions I and II,

Srad =
4

3
(4πb)1/4

∫ R

r∗

r1/2v3/4√
1− u

dr. (5.6)

In the appendix B, we show that

Srad =
1

12
(8πb)1/4(2M)3/2

√
ε∗[1 +O(ε∗)]. (5.7)

Hence, in the regime of small ε∗, the total entropy is

Stot = 4πM2 +
1

12
(8πb)1/4(2M)3/2

√
ε∗ − (8πλM2 −B)ε∗ +O(ε

3/2
∗ ), (5.8)

i.e., it is approximated by a polynomial of second order with respect to
√
ε∗.

In an isolated box, the values of M and R are constrained, while ε∗ may fluctuate.

Hence, the equilibrium configuration is defined as the maximum of the total entropy Stot
with respect to ε∗. The maximum occurs for

√
ε∗ = (8πb)1/4

√
2M

12(8πλM −B)
. (5.9)

By eq. (3.11), the corresponding boundary temperature is

TR =
1

16(8πλM −B)
√

1− uR
. (5.10)

The boundary temperature should coincide with the Hawking temperature T∞ = 1
8πM ,

blue-shifted by a factor
√

1− uR. It is a non-trivial check of our model that the R depen-

dence of eq. (5.10) is compatible with such an identification for B = (8λ − 1
2)πM . Then,

the entropy functional, eq. (5.8) is expressed solely in terms of known parameters,

Stot(M,R, ε∗) = 4πM2 +
(2πb)

1
4M

3
2

3

√
ε∗ −

πM2

2
ε∗, (5.11)

and the equilibrium configuration corresponds to

√
ε∗ =

(2πb)1/4

3π
√
M

. (5.12)

Eq. (5.12) implies that N∗T∗ = T∞, i.e., Tolman’s law is satisfied for the Hawking

temperature at infinity. This agrees with the results of refs. [3, 15], where Tolman’s law

is derived solely from the maximum-entropy principle and it is independent of the dynam-

ics of GR.

The equilibrium configuration eq. (5.12) must also satisfy the condition L &
√
ε∗M for

the existence of a black hole phase. By eq. (5.12), L &
√
M , i.e., the coarse-graining scale

L defines an upper bound to the mass of a black hole that can be nucleated in a box. This

– 9 –
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bound is not particularly restrictive: it is satisfied even by super-massive black holes for L

in the atomic scale.

The width δr of the shell in the equilibrium configuration is

δr =

(
3

8
+ λ

)
2
√

2πb

9π2
, (5.13)

i.e., it is of the order of the Planck length. However, the proper width l of the shell is by

no means Planckian. Eq. (3.14) implies that l ∼ δr/√ε∗ ∼
√
M .

The entropy of the shell in the equilibrium configuration is

Ssh =

(
8λ− 1

2

) √
2πb

9π
M. (5.14)

We estimate the internal energy E of the shell by treating the shell as a single thermo-

dynamic object of temperature Tsh = (∂Ssh/∂E)−1. In thermal equilibrium, Tsh should

coincide with the local temperature T∗ of radiation, eq. (3.8). Hence, we obtain

E =

(
8λ− 1

2

)
(2πb)1/4

9π

√
M, (5.15)

i.e., the internal energy of the shell is proportional to
√
M modulo a constant of order unity.

6 Physical origins of the shell

The results of the previous section follow solely from thermodynamic arguments. Here, we

examine the physical origins of the breakdown of Einstein’s equations near O∗. First, we

examine the classical geometry of the shell by interpolating between the approximate and

the true horizon H. Then, we examine the possibility that the breakdown of the geometry

is due to quantum vacuum fluctuations. We show that the conformal anomaly becomes

comparable to the classical stress energy tensor near O∗, for ε∗ ∼ M−1, a result that is

non-trivially compatible with the condition (5.12) that follows from the maximum entropy

principle. We also argue that the thermodynamic approach presented here can, in principle,

resolve existing problems in the consistent formulation of the quantum back-reaction to the

black hole geometry.

6.1 The classical geometry of the shell

The thermodynamic analysis of section 5 estimates the proper length of the shell to be

of order
√
M , and hence, much larger than the Planck length. This implies that, in spite

of the breakdown of Einstein’s equations near O∗, a description of the shell in terms of a

classical geometry is still possible.

For this reason, we consider a spherically symmetric metric, with a mass function that

interpolates between the horizon H at r = rH and the approximate horizon O∗ at r = r∗.

We assume a power-law interpolation,

m(r) =
1

2
rH + k(r − rH)a+1, for rH < r < r∗, (6.1)

where k and a are positive constants.

– 10 –
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We require that m(r), eq. (6.1) is joined with an AH solution at O∗, such that the

metric and its first derivatives are continuous. This implies that m(r∗) = m∗, eq. (A.17)

and that m′(r∗) = 1
2 . The horizon is defined by the condition 2m(rH) = rH. We further

require that m′(rH) = 0. This means that the effective ‘density’ on the horizon vanishes,

because otherwise any matter on the horizon would be causally disconnected from other

matter. The last condition implies that a > 0.

Then, we obtain

k =
1

2(a+ 1)(2M(1 + a−1)ε∗)a
(6.2)

rH = 2M

(
1− 5

8
ε∗ −

1

a
ε∗

)
. (6.3)

Hence, the width of the shell is δr = r∗ − rH = 2Mε∗a
−1.

The proper length l of the shell is

l =

∫ r∗

rH

dr√
1− 2m(r)

r

=

∫ δr

0
dx

√
rH + x

√
x
√

1− kxa

'
√
rH

∫ δr

0

dx
√
x
√

1− kxa
= C(a)

√
2Mδr, (6.4)

where

C(a) =

∫ 1

0

dy

√
y

√
1− 1

2(a+1)

(
y
a+1

)a (6.5)

is a constant of order unity: for example, C(12) = 2.16, C(1) ' 2.04, C(2) ' 2.

For ε∗ given by eq. (5.12), the proper length l is indeed of the order of
√
M .

Comparing eq. (6.1) with the OV equation, we can estimate an effective ”equation of

state” that parameterizes the properties of the shell. The OV equation in the shell is well

approximated by

dP

dz
' −(ρ+ P )

2z
(1 + 32πM2P ), (6.6)

where z = r − rH. Numerical solution of eq. (6.6) leads to an effective equation of state,

i.e., a relation between ρ and P , as shown in figure 2. We note that for a ≥ 1, the effective

equation of state is reasonably well approximated by a linear relation of the form P = −wρ,

where w > 0.

Near the horizon (z = 0), a linear equation of state with negative pressure is a good

approximation for all a

P = − 1

2a+ 1
ρ, (6.7)

Substituting eq. (6.7) into the continuity equation

dN

N
= − dP

ρ+ P
, (6.8)
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Figure 2. The effective equation of state inside the shell, the absolute value of the pressure −P
as a function of the density ρ, for different values of the interpolation exponent a.

we derive the lapse function near the horizon N ∼ ρ1/a ∼
√
r − rH. N can be expressed as

N = κx, (6.9)

where x =
√

r−rH
8M and κ is the surface gravity of the horizon. Then, the geometry near

the horizon

ds2 = −κ2x2dt2 + dx2 + (2M)2dΩ2, (6.10)

is of the Rindler type with acceleration κ.

We have no analytic expression for κ, but we expect it to be of order 1/M . Indeed, if

eq. (6.7) were a good approximation to the effective equation of state throughout the shell,

we would obtain κ = 3
√
a

16M .

6.2 Relation to the trace anomaly

In section 4, we gave a general argument that the usual hydrodynamic notion of the stress-

energy tensor fails near the O∗, and, thus, the classical Einstein equations are not reliable

near O∗. We did not discuss the physical mechanisms underlying this breakdown. The

leading candidate is, of course, quantum phenomena that are expected to be amplified

near a high-blue-shift surface.

Since radiation is scale invariant at the classical level, the stress energy tensor satisfies

Tµµ = 0. Thus, the size of the quantum effects in curved spacetime is quantified by the

trace anomaly [16–18],

Θ = 〈T̂µµ 〉R, (6.11)

i.e., the renormalized expectation value of the trace of a composite operator T̂µν that

represents the quantum stress-energy tensor.

For a conformally invariant quantum field,

Θ = αH+ βG + γ�R, (6.12)
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where

H = RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2. (6.13)

G = RµνρσR
µνρσ − 4RµνR

µν +R2 (6.14)

are expressed in terms of the Riemann tensor Rµνρσ, the Ricci tensor Rµν and the Ricci

scalar R; � = ∇µ∇µ.

The coefficients α, β and γ depend upon the spin of the field. Different methods give

the same values to all coefficients except γ. In what follows, we will choose the value of γ

given by dimensional regularization, γ = 2
3α. For the EM field, the coefficients α and β are

α =
1

160π2
β = − 31

2880π2
. (6.15)

For a macroscopic black hole, we expect the quantum effects to be significant near the

high blue-shift surface O∗. We write the metric as ds2 = −f(r)dt2 + h(r)dr2 + r2dΩ2, and

we express the functions f and h as Taylor series in (r − r∗), using eqs. (A.19)–(A.23).

The dominant contribution to the curvature tensors near O∗ are

Rtrtr = −1

2
fhR, Rtt = −1

2
fR, Rrr =

1

2
hR, (6.16)

R =
f ′′

fh
− (f ′)2

2f2h
− f ′h′

2fh2
. (6.17)

All other components of the Riemann tensor are smaller by a factor of ε∗.

Substituting into eqs. (6.13)–(6.14), we obtain

H =
1

3
R2 (6.18)

G = 0 (6.19)

�R =
1

h
R′′ +

(
f ′

2fh
− h′

2h2

)
R′. (6.20)

We calculate the Ricci scalar and its derivatives at O∗,

R∗ = 0 R′∗ =
16

27
(2M)−3ε−2∗ R′′∗ = −64

27
(2M)−4ε−3∗ . (6.21)

It follows that in the vicinity of O∗, the trace anomaly Θ is of the order of (M4ε2∗)
−1.

For concreteness, we compute the value of Θ at O∗,

Θ∗ = −160

81

γ

(2M)4ε2∗
= −320

243

α

(2M)4ε2∗
. (6.22)

By eq. (3.7), we find the ratio

Θ∗
ρ∗

= − 640πα

243M2ε2∗
. (6.23)

When Θ∗/ρ∗ becomes of order unity, Einstein’s equations fail near O∗ due to the quantum

effects associated to the trace anomaly. By eq. (6.23), the violation of Einstein’s equations
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occurs for ε∗ ∼ M−1. Remarkably, this estimation is in agreement with the value of ε∗
determined from the maximum entropy principle, eq. (5.12). Hence, the configuration that

maximizes entropy is also characterized by the onset of violations to Einstein’s equations

due to the trace anomaly. We conclude that two very different types of argument suggest

the same order of magnitude for ε∗, and, implicitly, the same order of magnitude for the

width of the shell.

Substituting the value eq. (5.12) into eqs. (6.23) and (6.15), we find for pure EM

radiation

Θ∗
ρ∗

= −5

2
, (6.24)

which suggests that the approximation of a sharply defined shell is only good for order

of magnitude estimations. A realistic treatment ought to take into account the gradual

deterioration of Einstein’s equations as ε becomes smaller.

6.3 Problems in formulating back-reaction

In the previous section, we showed that the trace anomaly is of the correct magnitude to

account for the breakdown of the classical Einstein equations near the horizon. The ques-

tion then arises how to formulate the constitutive equations for the system that incorporate

the contribution of the trace anomaly. This is the well-known back-reaction problem for

QFT in curved spacetime.

A common proposal for the treatment of back-reaction involves the use of the semi-

classical Einstein equations

Gµν = 8π
(
Tµν + 〈T̂µν〉R

)
. (6.25)

In eq. (6.25), one includes the expectation value of the renormalized quantum stress-energy

tensor as source of the gravitational field in addition to a classical distribution of matter.

This is clearly an approximation and not a fundamental theory [19], since eq. (6.25) equates

a classical observable with a quantum expectation value.

We believe that this approach does not work for the problem at hand, for the following

reasons.

1. The approximation involved in eq. (6.25) requires that the higher moments of the

stress-energy tensor are negligible in comparison to the mean value 〈T̂µν〉R. This

is not true, in general. The ratio of energy-density variance to the mean value of

the energy density may become of order unity and larger [20]; in particular, this is

the case for the stress-energy fluctuations in Schwarzschild spacetime [21, 22]. This

behavior is not particular to curved spacetimes , but rather, it is a general feature of

the quantum definition of the stress-energy tensor. As such, it persists even in the

non-relativistic regime [23]. One proposed resolution to this problem is to include

the quantum fluctuations as a stochastic force in the semiclassical Einstein equations

— see, [24] and references therein.

In fact, the existence of strong quantum fluctuations in the stress-tensor near O∗ is

compatible with our analysis in section 4 of the breakdown of classical hydrodynamics

– 14 –
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on O∗. Classical hydrodynamics presupposes a coarse-grained level of description at

which quantum fluctuations are negligible; thus it is incompatible with a regime

where quantum fluctuations dominate.

In conventional thermodynamics, the fluctuations of hydrodynamic variables are as-

sumed to be negligible — as long as the observables are averaged within a sufficiently

large volume. Typically, the relative size of fluctuations decreases with N−1/2, where

N is the number of particles in the averaging volume. However, this option is not

available when considering vacuum fluctuations encoded in the trace anomaly. In our

opinion, a thermodynamically consistent treatment of such fluctuations requires the

definition of a coarse-grained version of the quantum stress-energy tensor operator

T̂ coarseµν , possibly significantly different from the standard definitions of T̂µν in the con-

text of QFT in curved spacetime. The key conditions in the definition of T̂ coarseµν are

(i) T̂ coarseµν should be a quasi-classical variable, i.e., a coarse-grained variable that sat-

isfies classical evolution equations [25–27], and (ii) the associated fluctuations should

be relatively small so that thermodynamic variables can be properly defined. For

examples of quasi-classical hydrodynamic variables defined in quantum systems, see,

ref. [28–30] and for a discussion of back-reaction in relation to quasi-classical vari-

ables, see ref. [31].

2. The trace anomaly, eq. (6.12) involves terms up to fourth order of the metric, while

Einstein equations involve up to second order derivatives. The space of solutions of

eq. (6.25) contains therefore additional variables that correspond to the values of the

third and fourth derivative of the metric. However, such variables do not have an

obvious physical significance; in particular, they have no interpretation in terms of

known thermodynamic variables. We have no criterion for assigning values to them

at the boundary, and thus the solutions to the back-reaction equations are severely

under-determined.

3. Einstein’s equations for a static spacetime correspond to the maximum of the entropy

for fixed boundary conditions [3]. An ad hoc modification of Einstein’s equations (es-

pecially one that involves higher derivatives of the metric) is not guaranteed to satisfy

this property. This is problematic, because it implies that the geometry obtained from

the solution of eq. (6.25) may not be stable under microscopic fluctuations.

Nonetheless, it is instructive to compute the renormalized expectation value of the

stress-energy tensor 〈T̂µν〉R. Closed expressions for 〈T̂µν〉R for static spacetimes have been

computed in the bibliography [32–34], as well as expressions particular to static spherically

symmetric spacetimes [35]. In what follows, we employ the expression for a thermal stress-

energy tensor by Page [32]. This is obtained from a Gaussian path-integral approximation

to the field propagator [36].

The quantum expectation value of the stress energy tensor consists of two terms.

One term contains a logarithm of the lapse function N , the other one does not. The

presence of the logarithmic term implies that 〈T̂µν〉R is not invariant under a constant

conformal transformation gµν → cgµν for some constant c. For massless fields, this implies
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an ambiguity in the definition of 〈T̂µν〉R, equivalent to the introduction of an undetermined

renormalization mass µ. It turns out that 〈T̂µν〉R contains a term proportional to log(Nµ).

We calculate 〈T̂µν〉R at O∗ as in [32] and obtain

ρ̄∗ = −〈T̂ tt 〉R =
1

(2M)4ε2∗

[
8α[

32

243
− 32

81
log(3µ

√
ε∗/4)] + β

96

81
+ γ

64

81

]
(6.26)

P̄ r∗ = 〈T̂ rr 〉R =
1

(2M)4ε2∗

[
−8α

16

243
log(3µ

√
ε∗/4) + β

32

81
+ γ

32

243

]
(6.27)

P̄ θ∗ = 〈T̂ θθ 〉R =
1

(2M)4ε2∗

[
8α[

16

243
− 40

243
log(3µ

√
ε∗/4)] + β

32

81
− γ 160

243

]
. (6.28)

The renormalization mass µ is expected to be smaller than the Planck scale , while in

the physically relevant regime, ε∗ ∼M−1. Thus, the logarithmic terms in eqs. (6.26)–(6.28)

are of order log(µ/
√
M). For a solar mass black hole and taking µ = 1, log(µ/

√
M) '

−44. Thus, for macroscopic black holes, the assumption that log(µ/
√
M) < −10 is very

conservative. Given values of α and β as in eq. (6.15), this assumption implies that the

logarithmic term dominates and renders all expectation values ρ̄∗, P̄
r and P̄ θ positive.

If we interpret the expectation values of the stress-energy tensor as thermodynamic

densities and pressures, these correspond to an anisotropic fluid with different pressures

in the radial and in the tangential direction. However, these densities and pressures are

positive. Therefore, even if they are included into the TOV equation (generalized for

anisotropic fluid), they cannot lead to the formation of a horizon. Hence, the semi-classical

Einstein eqs. (6.25) for back-reaction cannot describe an equilibrium black hole. A different

method is needed that will provide a resolution to the problems of the semi-classical Einstein

equations that we listed earlier.

We believe that the best method for the treatment of quantum back-reaction for

equilibrium gravitating systems is to incorporate the quantum effects, including the trace

anomaly, into the thermodynamic description of the system. This means that we should

redefine the entropy functional in order to include contributions from the quantum ef-

fects associated to the trace anomaly. Then, we can construct an equation of state that

takes these corrections into account and employ the classical Einstein’s equations for this

new equation of state. It is essential that this description is thermodynamically consis-

tent; the constitutive equations of the system including back-reaction should correspond

to maximum entropy solutions given boundary conditions similar to the ones employed in

this paper.

7 Conclusions

We showed that the horizon of an equilibrium black hole is surrounded by a thin shell

where the Einstein equations break down. The existence of the shell follows from the

requirement that classical GR coexists with the quantum effect of Hawking radiation in a

consistent thermodynamic description. The shell has proper width l ∼
√
M , temperature

Tsh ∼ 1/
√
M , internal energy E ∼

√
M and entropy Ssh ∼ M . The proper width of the

shell is much larger than the Planck length. Hence, the breakdown of the equations of GR
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is fundamentally not due to quantum gravity effects, but due to the quantum properties

of matter (radiation). The shell’s properties are independent of the box radius R. This

strongly suggests that these properties persist even when the box is removed and the system

evolves slowly out of equilibrium, i.e., to Schwarzschild black holes.

We emphasize the robustness of our conclusions. We made no assumptions about the

quantum characteristics of the underlying theory (unitarity, CTP symmetry, holography).

We placed no restrictions on the origin of the new physics near the horizon. In deriving the

properties of the shell, we used only thermodynamic principles and classical GR. Nonethe-

less, the results are consistent with QFT in curved spacetime, in the sense that the regime

in which quantum effects become significant is consistent with the shell properties derived

by the maximum entropy principle.

A Analytic evaluation of the AH solutions

We present an approximate analytic expression for the AH solutions that is valid in the

regions α and β of figure 1.

An AH solution is characterized by vR � uR. In the region I, u increases with

decreasing r and v decreases with decreasing r. Hence, the condition v � u applies to all

points in region I. By continuity, the condition v � u also applies in a part of region II.

In what follows, we denote derivative with respect to ξ by a prime.

For v � u, eq. (3.6) becomes

u′ = −u v′ =
2v(1− 2u)

1− u
(A.1)

Hence,

dv

du
= −2v(1− 2u)

u(1− u)
, (A.2)

The solution of eq. (A.2) with the boundary condition v(uR) = vR,

v =
vRu

2
R(1− uR)2

u2(1− u)2
. (A.3)

Eq. (A.1) implies that u(ξ) = uRe
−ξ. Substituting into eq. (A.3), we derive

v(ξ) =
vR(1− uR)2e2ξ

(1− uRe−ξ)2
(A.4)

Next, we study the AH solution in the regime where 1 − u(ξ) � 1. For sufficiently

small vR, this condition applies to the whole of region II and to a segment of region I.

We set u = 1− ε. For ε� 1, eq. (3.6) is approximated by

ε′ = 1− 2v (A.5)

v′ = −
2v
(
1 + 2

3v
)

ε
. (A.6)
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Eqs. (A.6)–(A.6) imply that

dε

dv
= − ε(1− 2v)

2v
(
1 + 2

3v
) (A.7)

Eq. (A.7) has solutions of the form

v(
v + 3

2

)4 =
a

ε2
, (A.8)

for some constant a.

The maximum value of u occurs for ξ = ξ∗, such that u′(ξ∗) = 0, or equivalently

v(ξ∗) = 1
2 . The surface ξ = ξ∗ is the approximate horizon O∗. We denote by ε∗ = ε(ξ∗) the

blue-shift parameter on the approximate horizon. Eq. (A.8) implies that a = ε2∗/32. Then,

eq. (A.8) becomes

32v(
v + 3

2

)4 =
(ε∗
ε

)2
. (A.9)

Using eqs. (A.9) and (A.6), we obtain a differential equation for v(ξ)(
v−1/2 +

3

2
v−3/2

)
v′ = −16

√
2

3ε∗
. (A.10)

Integrating from some reference point ξ = ξr with v(ξr) = vr, we find

2(
√
v(ξ)−

√
vr)− 3

(
1√
v(ξ)

− 1
√
vr

)
= −16

√
2

3ε∗
(ξ − ξr) (A.11)

Eqs. (A.3) and (A.9) have different, but not disjoint, domains of validity. For suffi-

ciently small vR, both approximations are valid in a neighborhood of the point P (see,

figure 1).

Comparing eqs. (A.3) and (A.9) near P , we find that

ε∗ =
16

9
uR(1− uR)

√
2vR, (A.12)

which relates the parameter ε∗ defined on the approximate horizon O∗ to the boundary

variables uR and vR.

Eq. (A.12) implies the following relation between the boundary temperature TR and

the parameter ε∗.

TR =
3
√
ε∗

4
√

2M(8πb)1/4
√

1− uR
. (A.13)

Using eq. (A.11) for a choice of the reference point ξ = ξr lying in the domain of

validity of eq. (A.4),

ξ = log uR +
3ε∗

16
√

2

(
3√
v(ξ)

− 2
√
v(ξ)

)
. (A.14)
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Setting ξ = ξ∗ in eq. (A.14), we obtain

ξ∗ = log uR +
3ε∗
8
. (A.15)

Using the radial coordinate r = Reξ, we identify the radial coordinate r∗ at the ap-

proximate horizon to leading order in ε∗

r∗ = 2M

(
1 +

3ε∗
8

)
. (A.16)

The corresponding value of the mass function m∗ = m(r∗) is

m∗ =
1

2
r∗(1− ε∗) = M

(
1− 5ε∗

8

)
. (A.17)

We evaluate the metric in the vicinity of O∗. To this end, we write the metric eq. (3.1) as

ds2 = −f(r)dt2 + h(r)dr2 + r2(dθ2 + sin2 θdφ2), (A.18)

in terms of functions f(r) and h(r). We express these functions as a Taylor series with

respect to (r− r∗) by computing their values and the values of their derivatives at O∗. To

this end, we use eqs. (3.6)–(3.6), for u′ and v′, which we differentiate successively in order

to obtain equations for all derivatives of v and u. Expressing f and h in terms of u and v,

we compute the derivatives of f and h at r = r∗. We list the derivatives that are necessary

for the calculation of the trace anomaly.

f∗ =
9

16
ε∗, h∗ = ε−1∗ , (A.19)

f ′∗ =
3

4
(2M)−1, h′∗ = 0, (A.20)

f ′′∗ =
1

2
(2M)−2ε−1∗ , h′′∗ = −8

3
ε−1∗ (2Mε∗)

−2, (A.21)

f ′′′∗ = −2

3
(2M)−3ε−2∗ , h′′′∗ =

80

9
ε−1∗ (2Mε∗)

−3, (A.22)

f ′′′′∗ =
2

3
(2M)−4ε−3∗ h′′′′∗ =

32

3
ε−1∗ (2Mε∗)

−4. (A.23)

The lapse function N =
√
f near O∗ is

N =
3
√
ε∗

4
+

1

4M
√
ε∗

(r − r∗) + . . . (A.24)

The acceleration ai = ∇i logN is purely radial, with ar = 1
3M
√
ε∗

Hence, the proper

acceleration a =
√
aµaµ at O∗ is

a =
1

4M
, (A.25)

i.e., it equals the surface gravity of a black hole of mass M .
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B Evaluating the radiation entropy

We evaluate the entropy of radiation in the regions I and II of an AH solution, eq. (5.6).

For solutions to the Oppenheimer-Volkoff equation, the integrand in eq. (5.6) is a total

derivative, i.e.,

r1/2v3/4√
1− u

=
d

dr

(
v + 3

2u

6v1/4
√

1− u
r3/2

)
. (B.1)

Hence, Srad = S1 − S∗ where

S1 =
2

9
(4πb)1/4

vR + 3
2uR

v
1/4
R

√
1− uR

R3/2 (B.2)

depends on field values at the boundary r = R, and

S∗ =
4

9
(8πb)1/4

1− 3
4ε∗√
ε∗

r
3/2
∗

' 4

9
(8πb)1/4(2M)3/2

(
ε
−1/2
∗ − 3

16
ε
1/2
∗

)
(B.3)

depends on the field values at r = r∗. Using eq. (A.12) to eliminate vR from S1, we obtain

Srad =
(8πb)1/4

12
(2M)3/2

√
ε∗

(
1 +

9

16u3R(1− uR)2
ε∗

)
. (B.4)

Eq. (5.7) applies in the regime K � 1, where

K =
R3

4π2M4(1− uR)2
, (B.5)

so that the second term inside the parenthesis in the r.h.s. of eq. (B.4) is negligible for the

value of ε∗ that maximizes the total entropy, eq. (5.12).
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