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1 Introduction

The Yang-Baxter sigma-model description is known as a systematic way to study integrable

deformations of 2D integrable non-linear sigma models [1–3]. It was originally proposed

for principal chiral models on the basis of the modified classical Yang-Baxter equation

(mCYBE) . It was generalized to symmetric cosets by Delduc, Magro and Vicedo [4] and

then to the homogeneous classical Yang-Baxter equation (CYBE) [5].

Yang-Baxter deformations can be applied to integrable deformations of the AdS5×S5

superstring. The first example is a q-deformation of the AdS5×S5 superstring [6, 7] based

on the mCYBE. This deformations is often called the η-deformation. The metric and

NS-NS two-form are obtained in [8]. The remaining fields are determined recently by

performing a super coset construction at the level of quadratic fermions [9]. As a result,

the obtained fields do not satisfy the on-shell condition of type IIB supergravity. (For

another approach to an exact solution including T-duals of the metric, see [10]). However,
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in the very recent paper [11], it is shown that the scale invariance of the world-sheet theory

is still preserved and it has been conjectured the background satisfies rather the modified

type IIB supergravity equations of motion in which the RR-field strengths are of the second

order in derivatives.

Another class of Yang-Baxter deformations of the AdS5×S5 superstring is based on the

homogeneous CYBE [12]. The deformations include TsT transformations of AdS5×S5 [13–

15] such as γ-deformations of S5 [16, 17], gravity duals of noncommutative gauge theo-

ries [18, 19], and Schrödinger geometries [20–22]. These backgrounds can also be real-

ized as the undeformed AdS5×S5 with twisted boundary conditions [17, 23–30]. Other

deformations are associated with classical r-matrices composed of non-commuting gener-

ators and lead to deformed backgrounds obtained through a chain of dualities including

S-dualities [31, 32]. Further remarkably, these deformations may work for non-integrable

backgrounds, such as a Sasaki-Einstein manifold T 1,1 [33, 34]. TsT transformations of

T 1,1 [16, 35] are reproduced as Yang-Baxter deformations [36, 37]. Thus the connection be-

tween gravity solutions and classical r-matrices may deserve to be called the gravity/CYBE

correspondence (For a short summary see [38]).

Furthermore, we have considered Yang-Baxter deformations of 4D Minkowski space-

time as a generalization, in order to examine applicability of the correspondence [39, 40].1

Firstly, the work [39] showed that the Yang-Baxter deformations can reproduce twisted

backgrounds such as Melvin backgrounds [42–45], pp-wave backgrounds [46] and time-

dependent exactly-solvable backgrounds including the Hashimoto-Sethi background [47]

and the Spradlin-Takayanagi-Volovich background [48], like in the case of AdS5×S5 .

Then the analysis has been generalized by adopting classical r-matrices which describe

κ-deformations of Poincaré algebra [49, 50]. The associated deformed backgrounds in-

clude T-duals of (A)dS4 and a time dependent pp-wave background. Interestingly, these

backgrounds can also be reproduced from different classical r-matrices including the dilata-

tion [39]. In addition, the Lax pair has been constructed for the general κ-deformations [40].

The construction of the Lax pair in [40] utilized the expression of Lax pair for arbitrary

classical r-matrices which are composed of Poincaré generators and satisfy the CYBE, while

the derivation of this part has not been explained. Our main purpose here is to provide the

derivation as a follow-up of the previous work [40]. We first revisit a Melvin background

and argue the associated Lax pair by following a simple replacement law invented in [30].

This argument enables us to deduce a general expression of Lax pair. Then we show that

the anticipated Lax pair works for arbitrary classical r-matrices with Poincaré generators.

As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi

background, the Spradlin-Takayanagi-Volovich background.

This parer is organized as follows. In section 2, we give a brief review of Yang-Baxter

deformations of 4D Minkowski spacetime. In section 3, a Melvin background is revisited

and the associated Lax pair is constructed by following a simple replacement rule invented

in [30]. A twisted boundary condition is also discussed. In section 4, we show that the

anticipated Lax pair works for arbitrary classical r-matrices which are composed of Poincaré

1For an approach based on a scaling limit of q-deformed AdS5×S5 , see [41].
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generators. In section 5, we present Lax pairs and argue twisted boundary conditions for

the following examples: 1) pp-wave backgrounds, 2) the Hashimoto-Sethi background,

3) the Spradlin-Takayanagi-Volovich background. Section 6 is devoted to conclusion and

discussion. In appendix A, our notation and convention are summarized. Appendix B

gives a short explanation of a conformal embedding of 4D Minkowski spacetime.

2 Yang-Baxter deformations of Minkowski spacetime

We shall present a short review of Yang-Baxter deformations of 4D Minkowski spacetime

by following the previous works [39, 40]. For our notation and convention, see appendix A.

A significant point is that the problem of the degenerate Killing form can be avoided

by adopting a conformal embedding as briefly described in appendix B. In the following,

the string tension T = 1
2πα′ is set to 1, and the conformal gauge is taken so as to drop the

dilaton coupling to the world-sheet scalar curvature.

The Yang-Baxter deformed action is given by [39]

S = −1

2

∫ ∞
−∞
dτ

∫ 2π

0
dσ (γαβ − εαβ) Tr

[
AαP ◦

1

1− 2ηRg ◦ P
Aβ

]
. (2.1)

The left-invariant one-form Aα ≡ g−1∂αg is defined with a group element g given in (B.1) .

The projection P is defined as

P (x) ≡ 1

4

[
−γ0 Tr(γ0 x) +

3∑
i=1

γi Tr(γi x)
]

(2.2)

and is closely related to the coset structure of AdS5 . The deformation is measured by η .

The undeformed action is reproduced when η = 0 . The world-sheet metric is given by

γαβ = diag(−1, 1) . The anti-symmetric tensor εαβ is normalized as ετσ = 1 .

A key ingredient is a linear R-operator contained in Rg defined as

Rg ≡ g−1R(gXg−1)g . (2.3)

The linear operator R : so(2, 4)→ so(2, 4) is a solution of the mCYBE [51, 52] ,[
R(x), R(y)

]
−R ([R(x), y] + [x,R(y)]) = ω [x, y] , x, y ∈ so(2, 4) , (2.4)

where ω is a constant parameter. The R-operator corresponds to a skew-symmetric classical

r-matrix in the tensorial notation through the following formula:

R(X) = Tr2[r(1⊗X)] =
∑
i

(aiTr(biX)− biTr(aiX)) . (2.5)

Here the classical r-matrix is represented by

r =
∑
i

ai ∧ bi ≡
∑
i

(ai ⊗ bi − bi ⊗ ai) . (2.6)

– 3 –
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The generators ai, bi are elements of so(2, 4) . This means that Yang-Baxter deformations

are investigated based on the extended algebra so(2, 4) , rather than the Poincaré algebra.

In particular, when ω = 0 , the equation (2.4) is called the homogenous CYBE. When

(skew-symmetric) classical r-matrices satisfy the standard CYBE,

[r12, r13] + [r12, r23] + [r13, r23] = 0 , (2.7)

they lead to R-operators which satisfy the homogenous CYBE. In the following, we are

mainly concerned with the homogeneous CYBE case.

To construct Lax pairs, it is useful to work with the following deformed current,

J± =
1

1∓ 2ηRg ◦ P
(A±) . (2.8)

It is also helpful to introduce the world-sheet light-cone components as

A± ≡ Aτ ±Aσ .

Then the Lagrangian in (2.1) can be rewritten into a simpler form:

L =
1

2
Tr[A−P (J+)] . (2.9)

One can read off the deformed metric and NS-NS two-form from the symmetric and skew

symmetric parts with respect to the world-sheet coordinates in the deformed Lagrangian,

respectively.

It should be remarked that, although it is sufficient to compute an explicit form of the

projected deformed current P (J) to study the deformed metric, the explicit form of the

deformed current J itself is necessary to construct Lax pairs.

A schematic classification of classical r-matrices. It would be helpful to list up

possible classical r-matrices concerned with our analysis. Schematically, those are classified

into the following three classes:

(a) r = Poincaré ⊗ Poincaré

1. abelian e.g., r ∼ p1 ∧ p2 , 2. non-abelian e.g., r ∼
∑3

i=1 pi ∧ n0i ,

(b) r = Poincaré ⊗ non-Poincaré

1. abelian e.g., r ∼ n12 ∧ d̂ , 2. non-abelian e.g., r ∼ p0 ∧ d̂ ,

(c) r = non-Poincaré ⊗ non-Poincaré

1. abelian e.g., r ∼ k1 ∧ k2 , 2. non-abelian e.g., r ∼ k0 ∧ d̂ .

Note that, given a classical r-matrix r = a ⊗ b , the word “abelian” means that a and b

commute each other.2 The generators of 4D conformal algebra pµ , nµν , kµ and d̂ are associ-

ated with translations, Lorentz rotations, special conformal transformations and dilatation,

respectively (For our notation and convention, see appendix A).

2In the case that summations are included, one needs to be careful for the definition in detail. But we

will not try to dwell on it here.
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The complete classification of classical r-matrices has not been done and the associated

Yang-Baxter deformations have also not been investigated completely. It is nice to look

for the relation between classical r-matrices and deformed geometries furthermore. For

classical r-matrices in the class (a) , it would be helpful to consult an intensive classification

in [53–55].

So far, classical r-matrices in the classes (a)-1 and (b)-2 have been studied in [39, 40].

The class (a)-1 is intimately related to (generalized) Melvin twists [39]. Some examples of

the class (b)-2 have been studied as well. In particular, T-duals of dS4 and AdS4 are realized

with r ∼ p0 ∧ d̂ and r ∼ p1 ∧ d̂ , respectively. Interestingly, special classical r-matrices in

the class (a)-2, which are also used in the context of κ-deformations of Poincaré algebra,

lead to the identical T-duals of dS4 and AdS4 [40].

Although we have succeeded in constructing a Lax pair for the general κ-deformations,

the construction was based on the expression of Lax pair for the class (a) with the homo-

geneous CYBE and we have not derived it explicitly.

In the following, we will present a method to construct Lax pairs for the classical r-

matrices in the class (a) that satisfy the homogeneous CYBE. A simple replacement law

based on TsT transformations is utilized to deduce a general form of Lax pair for arbitrary

classical r-matrices in the class (a)-1. Finally, the anticipated Lax pair is shown to work for

all classical r-matrices in the class (a) with the homogeneous CYBE. It is straightforward

to generalize the general form to the mCYBE case, by following the previous work [40].

3 A Melvin background revisited

Let us revisit a Melvin background here. We derive a Lax pair by applying a simple

replacement rule to the one for 4D Minkowski spacetime. Then the result enables us to

deduce a general form of Lax pair for an arbitrary classical r-matrix of the class (a)-1.

We also argue a general form of twisted boundary condition with which the undeformed

background is equivalent to the deformed background.

3.1 Lax pair for 4D Minkowski spacetime

We first construct the Lax pairs for sigma models on 4D Minkowski spacetime. The starting

classical action can be expressed as

S =
1

2

∫ ∞
−∞
dτ

∫ 2π

0
dσTr

[
A−P (A+)

]
. (3.1)

Then the associated Lax pair is given by

LMin
± = P0(A±) + λ±1P2(A±) (3.2)

with a spectral parameter λ ∈ C . Here P0 and P2 ≡ P + P ′ are the projection operators,

where P is already introduced in (2.2), and P0 and P ′ are defined as, respectively,

P0(x) ≡ 1

2

3∑
µ,ν=0

nµν
Tr(nµνx)

Tr(nµνnµν)
, P ′(x) ≡

3∑
µ=0

nµ5
Tr(nµ5x)

Tr(nµ5nµ5)
. (3.3)
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For the standard coset representative (B.1), it is easy to check that the equations of motion

are equivalent to the flatness condition of the Lax pair (3.2). Note that P0 and P2 are

regarded as the projections to the Z2-graded components of 4D Poincaré algebra iso(1, 3) ,

P0 : iso(1, 3) −→ iso(0)(1, 3) = so(1, 3) ,

P2 : iso(1, 3) −→ iso(2)(1, 3) = iso(1, 3)/so(1, 3) . (3.4)

3.2 Lax pair for a Melvin background

Next, we will derive a Lax pair for a Melvin background [42–45] associated with an abelian

classical r-matrix

r =
1

2
p3 ∧ n12 . (3.5)

This r-matrix leads to the metric,

ds2 = −(dx0)2 + dr2 +GM

[
r2dθ2 + (dx3)2

]
,

B = η r2GM dθ ∧ dx3 , G−1M ≡ 1 + η2r2 , (3.6)

with the standard coset representative (B.1) and the polar coordinates

x1 = r cos θ , x2 = r sin θ . (3.7)

This background describes an example of Melvin backgrounds.

Now that the left-invariant one-form A can be expanded as

A± = ∂±x
0 p0 +

[
cos θ ∂±r − r sin θ ∂±θ

]
p1 +

[
sin θ ∂±r + r cos θ ∂±θ

]
p2 + ∂±x

3 p3 , (3.8)

the deformed current J is evaluated as

J± = ∂±x
0 p0 +GM (∂±x

3 ∓ η r2 ∂±θ) (p3 − η n12)
+
[
cos θ ∂±r −GM r sin θ (∂±θ ± η ∂±x3)

]
p1

+
[
sin θ ∂±r +GM r cos θ (∂±θ ± η ∂±x3)

]
p2 . (3.9)

Comparing J with A , one can find the following replacement rule:

∂±θ −→ GM

(
∂±θ ± η ∂±x3

)
,

∂±x
3 −→ GM

(
∂±x

3 ∓ η r2 ∂±θ
)
. (3.10)

Note that this rule makes sense at the off-shell level.

One can derive a Lax pair for the Melvin background (3.6) by applying the replacement

rule (3.10) to the undeformed one. First of all, it is necessary to prepare the undeformed

Lax pair that has a manifest U(1) isometry along the θ-direction. It is easy to remove the

θ-dependence of the undeformed Lax by performing a gauge transformation,

LMin
± → LMin,h

± = h−1LMin
± h+ h−1∂±h

= −∂±θ n12 + λ±1(∂±r p1 + r∂±θ p2 + ∂±x
3 p3 + ∂±x

0 p0) (3.11)

– 6 –
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with h = exp(−θ n12) . The resulting Lax pair depends only on the derivative of θ and

hence has a U(1) symmetry along the θ-direction. Thus, by applying the replacement

rule (3.10) to (3.11) , the Lax pair for the Melvin background is given by

LMelvin
± = −GM(∂±θ ± η∂±x3)n12 (3.12)

+ λ±1
[
∂±x

0 p0 + ∂±r p1 +GM r(∂±θ ± η∂±x3) p2 +GM(∂±x
3 ∓ ηr2∂±θ) p3

]
.

One can readily check that the zero-curvature condition of this Lax pair is equivalent to

the equations of motion for the Melvin background.

Now we can deduce a general form of Lax pair for arbitrary classical r-matrices in

the class (a)-1 . First, with the deformed current J in (3.9) , the Lax pair (3.12) can be

rewritten into the following form:

LMelvin
± = h−1∂±h+ h−1P0(J±)h+ λ±1h−1P2(J±)h . (3.13)

The flatness condition of the Lax pair should be preserved under arbitrary gauge transfor-

mations. Thus the resulting Lax pair is given by

LMelvin
± = P0(J±) + λ±1P2(J±) . (3.14)

This abstract expression is really significant because one can anticipate that the

form (3.14) would hold for arbitrary classical r-matrices in the class (a)-1 satisfying the

homogeneous CYBE. In fact, this anticipation is true as proven in the next section. More

interestingly, the Lax pair (3.14) works for the class (a)-2 as well. Thus, in total, the Lax

pair (3.14) holds for arbitrary classical r-matrices in the class (a) satisfying the homoge-

neous CYBE.

3.3 Twisted boundary condition

The Melvin background (3.6) can be realized as a Melvin twist of 4D Minkowski space-

time [42]. We will reconsider here the Melvin background (3.6) from the point of view of

a twisted boundary condition for 4D Minkowski spacetime.

For this purpose, it is useful to take the following coset representative:

g(τ, σ) = exp
[
x3 p3 − θ n12

]
exp

[
x0 p0 + r p1

]
= exp[x0 p0 + r cos θ p1 + r sin θ p2 + x3 p3] exp[−θ n12] . (3.15)

This representative (3.15) is equivalent to the standard one (B.1) under the gauge trans-

formation (3.11) .

Then, with the replacement rule (3.10) , we will show that the deformed sigma model

can be mapped to the undeformed one with a twisted boundary condition. In the first

place, one needs to obtain U(1) currents in the undeformed and deformed backgrounds,

respectively,

J̃ αθ = −γαβ r2 ∂β θ̃ ,
P̃α3 = −γαβ ∂βx̃3 ,
J αθ = −γαβ GM r2

[
∂βθ − η γβγ εγρ∂ρx3

]
,

Pα3 = −γαβ GM
[
∂βx

3 + η γβγ ε
γρr2∂ρθ

]
. (3.16)

– 7 –
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Here x̃3 and θ̃ represent coordinates on the undeformed background. With the rule (3.10),

one can show that the U(1) currents in 4D Minkowski spacetime are equal to those in the

Melvin background, i.e.,

J̃ αθ = J αθ , P̃α3 = Pα3 . (3.17)

The temporal components of the relations in (3.17) imply that P τ3 and J τθ are equivalent

to J̃ τθ and P̃ τ3 . Then, by integrating the spacial components of the relations in (3.17),

twisted boundary conditions for the undeformed coordinates θ̃ and x̃3 are obtained as

θ̃(τ, 2π) = θ̃(τ, 0) + η P3 + 2πw ,

x̃3(τ, 2π) = x̃3(τ, 0)− ηJθ . (3.18)

Here w ∈ Z is a winding number for the angular coordinate θ . The conserved charges P3

and Jθ are defined as

P3 ≡
∫ 2π

0
dσ P τ3 , Jθ ≡

∫ 2π

0
dσ J τθ . (3.19)

Note here that there is a relation between a gauge transformed current J

Jgα = gJαg
−1 + g∂αg

−1

and the U(1) currents

Jgσ = −ηr2GM(θ̇ + ηx′3)p3 − ηGM(ẋ3 − ηr2θ′)n12
= −ηJ τθ p3 − η P τ3 n12 . (3.20)

Thus the twisted boundary conditions (3.18) can be recast into the following form:

g̃(τ, 2π) = P exp

[∫ 2π

0
Jgσ dσ

]
exp
(
−2π w n12

)
g̃(τ, 0) . (3.21)

Here g̃(τ, σ) is parametrized as in (3.15) with the undeformed coordinates (x̃0, r̃, θ̃, x̃3) .

4 General arguments

In this section, let us show that the anticipated form of Lax pair in section 3.2 works

for arbitrary classical r-matrices of the class (a) satisfying the CYBE. Then we consider

a general twisted boundary condition for the class (a)-1. Finally, we argue a general

expression of Lax pair for the mCYBE case.

4.1 Proof of the anticipated Lax pair

We show that the flatness condition of the anticipated Lax pair (3.2) is equivalent to

the equations of motion and confirm that the Lax pair (3.2) works well for all classical

r-matrices that are solutions of the homogeneous CYBE.

It is convenient to rewrite the Lax pair (3.2) as

L± = Jn± + λ±1Jp± , Jp± ≡ J
µ
±pµ , Jn± ≡ J

µν
± nµν . (4.1)

– 8 –
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The zero-curvature condition of the Lax pair (3.2) can also be rewritten as

0 = ∂+L− − ∂−L+ + [L+,L−]

= λ
(
−∂−Jp+ + [Jp+, J

n
−]
)

+
1

λ

(
∂+J

p
− + [Jn+, J

p
−]
)

+ ∂+J
n
− − ∂−Jn+ + [Jn+, J

n
−] . (4.2)

The coefficients of λ± and λ0 should vanish respectively. Hence the zero-curvature condition

is equivalent to the following set of three equations:

∂−J
p
+ − [Jp+, J

n
−] = 0 , ∂+J

p
− + [Jn+, J

p
−] = 0 ,

∂+J
n
− − ∂−Jn+ + [Jn+, J

n
−] = 0 . (4.3)

Then the remaining task is to confirm that the three equations in (4.3) are equivalent to

the equations of motion of the deformed system with classical r-matrices of the class (a)

and the zero-curvature condition for Aµ .

Equations of motion. Taking a variation of the classical action (2.1) , one can derive

the equations of motion3

Tr
[
E pµ

]
= 0 , E ≡ ∂+P (J−) + ∂−P (J+) + [J+, P (J−)] + [J−, P (J+)] . (4.4)

Then the equations in (4.4) can be rewritten as4

Tr

[(
∂+J

ρ
−γρ + ∂−J

ρ
+γρ +

[
Jρ+pρ + Jρσ+ nρσ, J

λ
−γλ

]
+
[
Jρ−pρ + Jρσ− nρσ, J

ρ
+γρ

])
pµ

]
= 0 .

In the third and fourth terms, the commutator [γµ, pν ] (= 2nµν + ηµνγ5) can be dropped

off because the generators given by this commutator (nµν and γ5) vanish after taking trace

with pµ . For the remaining terms, γµ can be replaced by pµ because the commutation

relations [γµ, nνρ] and [pµ, nνρ] take the same form. As a result, the equations of motion

in (4.4) are equivalent to the following equations:

Ẽ ≡ ∂+Jp− + ∂−J
p
+ + [Jn+, J

p
−] + [Jn−, J

p
+] = 0 . (4.5)

Zero-curvature condition. One can rewrite the zero-curvature condition for A± in

terms of J± like

0 = Z = ∂+A− − ∂−A+ + [A+, A−]

= ∂+J− − ∂−J+ + [J+, J−] + 2ηRg(E) + 4η2YBERg(P (J+), P (J−)) , (4.6)

through the relation A± = (1∓ 2ηRg ◦ P )J± . Here the symbol YBERg in the fifth term is

defined as

YBERg(X,Y ) ≡ [Rg(X), Rg(Y )]−Rg([Rg(X), Y ] + [X,Rg(Y )]) . (4.7)

We are now considering the homogeneous CYBE case, hence the fifth term vanishes.

3The derivation of (4.4) is given in appendix A of [5].
4Note that J can be expanded with pµ and nµν within the class (a).
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Then, with the help of the relation

Rg(E) = Rg(Ẽ) , (4.8)

the fourth term in the last line of (4.6) can be rewritten as 2ηRg(Ẽ) . Thus the last line

of (4.6) is recast into

0 = Z = ∂+J− − ∂−J+ + [J+, J−] + 2ηRg(Ẽ) . (4.9)

This equality can be decomposed into the iso(1, 3)/so(1, 3) and so(1, 3) components like

0 = Zp ≡ ∂+Jp− − ∂−J
p
+ +

[
Jp+, J

n
−
]

+
[
Jn+, J

p
−
]

+ 2ηP (Rg(Ẽ)) ,

0 = Zn ≡ ∂+Jn− − ∂−Jn+ +
[
Jn+, J

n
−
]

+ 2ηP0(Rg(Ẽ)) . (4.10)

Note that P0(Rg(Ẽ)) and P (Rg(Ẽ)) vanish because Ẽ = 0 , and this decomposition is based

on the assumption that classical r-matrices are limited to the class (a).

Equivalence. Now we have prepared to check the equivalence between Ẽ = Zp = Zn = 0

and the equations in (4.3) . The manifest correspondence is summarized below:
Ẽ + Zp = 0

Ẽ − Zp = 0

Zn = 0

⇐⇒ three equations in (4.3) .

Thus we have shown that the zero-curvature condition of the Lax pair (3.2) is equivalent

to the equations of motion of the deformed system with classical r-matrices of the class (a)

satisfying the homogeneous CYBE.

4.2 Twisted boundary condition

Let us next consider the general form of twisted boundary condition (3.21) , which was

anticipated in section 3.3, in the case of abelian classical r-matrices [class (a)-1].

Let us parametrize a group element g as

g = gA gX ,

gA = exp(xa a+ xb b) , gX =
∏
i

exp(yiXi)
[
a , b ,Xi ∈ iso(1, 3)

]
, (4.11)

and suppose that a classical r-matrix composed of the generators a and b which appear in

the definition of gA
r = a ∧ b , [a, b] = 0 . (4.12)

Note here that this parameterization (4.11) is assumed to be equivalent to the standard

one (B.1) via a gauge transformation like

g( B.1)→ g( B.1)h , h ∈ so(1, 3) . (4.13)

This parameterization5 enables us to realize manifestly the translational invariance of the

current Aα in the xa and xb directions. It is also easy to figure out a deformed part as a

replacement law. Therefore we will adopt the parameterization (4.11) to argue a general

form of twisted boundary condition.

5This parametrization has already been utilized in (3.15) and will be used also in section 5.
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Replacement law. Then the left-invariant one-form Aα = g−1∂αg is rewritten as

Aα = ∂αx
a g−1X a gX + ∂αx

b g−1X b gX + g−1X ∂αgX , (4.14)

and the deformed current J± is evaluated as

J± = A± ± 2ηRg ◦ P (J±)

= (∂±x
a ± 2ηTr[g−1X b gXP (J±)]) g−1X a gX

+(∂±x
b ∓ 2ηTr[g−1X a gXP (J±)]) g−1X b gX + g−1X ∂±gX . (4.15)

Then, comparing (4.14) with (4.15) , one can read off the replacement law:

∂±x
a → ∂±x

a ± 2ηTr[g−1X b gXP (J±)] ,

∂±x
b → ∂±x

b ∓ 2ηTr[g−1X a gXP (J±)] . (4.16)

Twisted boundary condition. First of all, we show that the deformed action is invari-

ant under the translations along the xa and xb directions. Then the second terms in the

r.h.s. of (4.16) correspond to the Noether currents associated with these translations.

Let us consider a variation of the deformed action associated with an infinitesimal

translation of xa and xb

xa → xa + δxa , xb → xb + δxb . (4.17)

The associated variations of g and A± are given by

δg = ε g , δA± = g−1(∂±ε) g . (4.18)

Here an infinitesimal quantity ε is defined as

ε ≡ δxa a+ δxb b .

Then the variation of the deformed action is evaluated as

δS = −
∫
d2σ γαβ Tr

[
∂αε
(
gP (Jβ)g−1)

]
= −

∫
d2σ γαβ

(
∂αδx

a Tr
[
g−1X a gX P (Jβ)

]
+ ∂αδx

b Tr
[
g−1X b gX P (Jβ)

])
, (4.19)

by using the following formula in taking a variation of Rg ,

δRg(X) = Rg(δX) + [Rg(X), g−1εg]−Rg([X, g−1εg])

= Rg(δX) . (4.20)

Note that the last two terms of the first line vanish in the case of abelian r-matrices.

From (4.19) , the deformed action is invariant under the translation along the xa and xb

directions. Then the associated Noether currents are given by

Pαa = −γαβTr[ g−1X a gX P (Jβ) ] , Pαb = −γαβTr[ g−1X b gX P (Jβ) ] . (4.21)
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One can rewrite the replacement law with these Noether currents. In particular, the

σ-components are given by

∂σx̃
a = ∂σx

a + 2η P τb , ∂σx̃
b = ∂σx

b − 2η P τa . (4.22)

Then, by integrating the equations in (4.22) , twisted boundary conditions are obtained as

x̃a(τ, σ = 2π) = x̃a(τ, σ = 0) + 2η Pb ,

x̃b(τ, σ = 2π) = x̃b(τ, σ = 0)− 2η Pa . (4.23)

Here P a and P b are the Noether charges defined as follows:

Pa ≡
∫ 2π

0
dσ P τa , Pb ≡

∫ 2π

0
dσ P τb . (4.24)

These boundary conditions can be recast into a simple form,

g̃(τ, σ = 2π) = exp

[
2η

∫ 2π

0
dσ (P τb a− P τa b)

]
g̃(τ, σ = 0) , (4.25)

with a coset representative g̃ for the undeformed background. Then the twist factor can

be rewritten as follows:

2η(P τb a− P τa b) = 2η(Tr[g−1X bgX P (Jτ )]a− Tr[g−1X agX P (Jτ )]b)

= 2ηgRg(Jτ )g−1 = g(Jσ −Aσ)g−1

≡ Jgσ . (4.26)

With this relation, the twisted boundary condition can be rewritten into a general form,

g̃(τ, σ = 2π) = exp

[∫ 2π

0
dσ Jgσ

]
g̃(τ, σ = 0) , (4.27)

which is now independent of xa and xb .

4.3 The case of mCYBE

So far, we have concentrated on the homogeneous CYBE case. Now it is easy to generalize

the Lax pair to the mCYBE case. All we have to do is a slight modification to add an

appropriate term to the previous Lax pair (4.1) as follows:

L± = Jn± + λ±1
(
Jp± + ω η2J k̃±

)
, J k̃± ≡ J

µ
±kµ . (4.28)

Here ω is a constant that appears on the r.h.s. of the mCYBE in (2.4) .

Note here that the expression (4.28) contains the case of classical r-matrices for the

general κ-deformations of 4D Poincaré algebra [40]. The proof that the Lax pair (4.28)

works well is quite similar to the one in [40]. Hence we will not try to prove it here.
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5 Other examples

In this section, we will present explicit forms of Lax pairs for twisted Minkowski spacetimes

associated with classical r-matrices of the class (a)-1. We also derive twisted boundary con-

ditions on the undeformed coordinates by following a simple replacement rule [17, 23, 30].

It is easy to rewrite the twisted boundary conditions into simple forms by adopting appro-

priate representatives of group element. Hence we will work with a suitable representative

for each of classical r-matrices, rather than the standard one (B.1) .

In the following, we will present explicit forms of Lax pairs and twisted boundary

conditions for three cases, 1) pp-wave backgrounds, 2) the Hashimoto-Sethi background

and 3) the Spradlin-Takayanagi-Volovich background.

5.1 pp-wave backgrounds

We consider an abelian classical r-matrix

r =
1

2
√

2
(p0 − p3) ∧ n12 . (5.1)

This classical r-matrix is associated with pp-wave backgrounds [46] .

The deformed background. A convenient representative of group element is given by

g(τ, σ) = exp

[
x−

(p0 − p3)√
2

− θ n12
]

exp

[
x+

(p0 + p3)√
2

+ r p1

]
= exp

[
x+

(p0 + p3)√
2

+ x−
(p0 − p3)√

2
+ r cos θ p1 + r sin θ p2

]
exp[−θ n12] . (5.2)

Here x+ and x− are the light-cone coordinates defined as

x+ ≡ x0 + x3√
2

, x− ≡ x0 − x3√
2

. (5.3)

The representation (5.2) is equivalent to the standard one (B.1) via a gauge transformation.

Now the undeformed current A = g−1dg is given by

A± = ∂±x
+ p0 + p3√

2
+ ∂±x

− p0 − p3√
2

+ ∂±r p1 + ∂±θ[r p2 − n12] , (5.4)

and it leads to the standard metric of 4D Minkowski spacetime:

ds2 = −2dx+dx− + dr2 + r2dθ2 . (5.5)

Then the deformed current J± is expanded like

J± = ∂±x
+ p0 + p3√

2
+
(
∂±x

− ∓ ηr2∂±θ + η2r2∂±x
+
) p0 − p3√

2

+ ∂±r p1 +
(
∂±θ ∓ η∂±x+

)
[r p2 − n12] . (5.6)

With this deformed current, the resulting metric and NS-NS two-form are given by

ds2 = −2dx+dx− − η2r2(dx+)2 + dr2 + r2dθ2 ,

B = η r2dx+ ∧ dθ . (5.7)
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Lax pair. The associated Lax pair is given by

L± = −(∂±θ ∓ η∂±x+)n12 + λ±1
[
∂±r p1 + r(∂±θ ∓ η∂±x+) p2

+∂±x
+ p0 + p3√

2
+ (∂±x

− ∓ ηr2∂±θ + η2r2∂±x
+)

p0 − p3√
2

]
. (5.8)

By comparing the deformed current with the undeformed one, one can identify the following

replacement rule:

∂±x
− → ∂±x

− ∓ η r2∂±θ + η2r2∂±x
+ ,

∂±θ → ∂±θ ∓ η ∂±x+ . (5.9)

Note that the deformed Lax pair can also be reproduced by applying the replacement

rule (5.8) to the undeformed Lax pair (3.11) in which U(1)-directions are manifest.

Twisted boundary condition. The pp-wave background with usual boundary condi-

tions can be seen as as the undeformed Minkowski space with a twisted boundary condi-

tions, as in the Melvin case. In terms of the undeformed group element g̃(τ, σ) , the twisted

boundary condition is given by

g̃(τ, 2π) = P exp

[∫ 2π

0
dσ Jgσ

]
exp[2πm(−n12)] g̃(τ, 0) , (5.10)

where the integer m is a winding number for θ . Here the gauge-transformed current

Jgα = gJαg
−1 + g∂αg

−1 takes the following form:

Jgσ = −η r2(θ̇ − ηx′+)
p0 − p3√

2
+ η ẋ+n12

= −ηJ τθ
p0 − p3√

2
− η P τ− n12 . (5.11)

More concretely, the twisted boundary condition can be rewritten as

x̃−(τ, 2π) = x̃−(τ, 0)− ηJθ ,
θ̃−(τ, 2π) = θ̃−(τ, 0) + η P− + 2πm . (5.12)

Here Jθ and P− are Noether charges for the invariance under the rotation and translation

along the θ and x− directions, respectively.

5.2 Hashimoto-Sethi background

Let us next consider a classical r-matrix,

r = − 1

2
√

2
p2 ∧ (n01 + n13) . (5.13)

This r-matrix leads to a time-dependent background obtained via a Melvin Null twist of

Minkowski spacetime [47].
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The deformed background. A useful group parametrization is given by

g(τ, σ) = exp

[
z p2 + y

n01 + n13√
2

]
exp

[
y+

p0 + p3√
2

+ y−
p0 − p3√

2

]
= exp

[
y+y p1 + z p2 + y+

p0 + p3√
2

+

(
y− +

1

2
y+y2

)
p0 − p3√

2

]
× exp

[
y
n01 + n13√

2

]
. (5.14)

Here we have performed the following coordinate transformation:

x1 = y+y , x2 = z , x+ = y+ , x− = y− +
1

2
y+y2 . (5.15)

Note that this coordinate transformation is singular at y+ = 0 . Now the undeformed

current A = g−1dg and the associated singular metric are given by, respectively,

A± = ∂±y
+ p0 + p3√

2
+ ∂±y

− p0 − p3√
2

+ ∂±y

[
y+ p1 +

n13 + n01√
2

]
+ ∂±z p2 , (5.16)

ds2 = −2dy+dy− + (y+)2dy2 + dz2 . (5.17)

Then the deformed current J± is given by

J± = ∂±y
+ p0 + p3√

2
+ ∂±y

− p0 − p3√
2

+GHS (∂±y ± η∂±z)

[
y+ p1 +

n13 + n01√
2

]
+GHS

[
∂±z ∓ η(y+)2∂±y

]
p2 , (5.18)

with a scalar function GHS defined as

G−1HS ≡ 1 + η2(y+)2 . (5.19)

As a result, the deformed metric and NS-NS two-form are obtained as

ds2 = −2dy+dy− +GHS

[
(y+)2dy2 + dz2

]
,

B = η (y+)2GHS dy ∧ dz . (5.20)

This background is also realized by performing a TsT-transformation with the y and z in

the undeformed background (5.17) under the identification [47, 56]

g(τ, σ) ∼ g0 g(τ, σ) , g0 = exp

[
2π

(
p2 +

n01 + n13√
2

)]
. (5.21)

Lax pair. The resulting Lax pair for the Hashimoto-Sethi background is given by

L± = GHS(∂±y ± η∂±z)
n13 + n01√

2

+ λ±1
[
∂±y

+ p0 + p3√
2

+ ∂±y
− p0 − p3√

2

+GHS y
+(∂±y ± η∂±z) p1 +GHS

[
∂±z ∓ η(y+)2∂±y

]
p2

]
. (5.22)

By comparing J with A , one can read off the following rule:

∂±y → GHS [∂±y ± η∂±z] ,

∂±z → GHS

[
∂±z ∓ η(y+)2∂±y

]
. (5.23)
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Twisted boundary condition. In the present case, the deformed background is equiv-

alent to the undeformed background with the following twisted boundary condition:

g̃(τ, 2π) = P exp

[∫ 2π

0
dσ Jgσ

]
exp

[
2π

(
mp2 + w

n01 + n13√
2

)]
g̃(τ, 0) , (5.24)

where g̃(τ, σ) is a group element for the undeformed background. The integers m and w

are winding numbers defined as

y(τ, 2π)− y(τ, 0) ≡ 2πw , z(τ, 2π)− z(τ, 0) ≡ 2πm . (5.25)

The gauge-transformed current Jgα = gJαg
−1 + g∂αg

−1 is given by

Jgσ = −η (y+)2GHS (ẏ + η z′) p2 + ηGHS

[
ż − η (y+)2y′

] n01 + n13√
2

= −η P τy p2 + η P τz
n01 + n13√

2
. (5.26)

More concretely, the twisted boundary condition can also be rewritten as

ỹ(τ, 2π) = ỹ(τ, 0) + η Pz + 2πw ,

z̃(τ, 2π) = z̃(τ, 0)− η Py + 2πm , (5.27)

where Pz and Py are conserved charges for the translation invariance along the z and y

directions, respectively.

5.3 Spradlin-Takayanagi-Volovich background

Finally, we shall consider an abelian classical r-matrix composed of two rotation generators,

r =
1

2
n12 ∧ n03 . (5.28)

The corresponding background is a time-dependent background [48] as explained below.

The deformed background. Let us parametrize a group element like

g(τ, σ) = exp [φn03 − θ n12 ] exp [ t p0 + r p1 ]

= exp [ t coshφ p0 + t sinhφ p3 + r cos θ p1 + r sin θp2 ]× exp[φn03 − θ n12 ] . (5.29)

Here we have introduced new coordinates t and φ by performing a coordinate transforma-

tion x0 = t coshφ and x3 = t sinhφ . Then the undeformed current A is expanded as

A± = ∂±r p1 + ∂±t p0 + ∂±θ [r p2 − n12] + ∂±φ [t p3 + n03] . (5.30)

As a result, the associated undeformed metric takes the form

ds2 = −dt2 + t2dφ2 + dr2 + r2dθ2 . (5.31)

– 16 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
3

Then the deformed current J± with the classical r-matrix (5.28) is evaluated as

J± = ∂±r p1 + ∂±t p0 +GSTV (∂±θ ∓ ηt2∂±φ)
(
r p2 − n12

)
+GSTV (∂±φ± ηr2∂±θ)

(
t p3 + n03

)
, (5.32)

where we have introduced a scalar function GSTV defined as

G−1STV ≡ 1 + η2r2t2 . (5.33)

The resulting deformed background is therefore given by

ds2 = −dt2 + dr2 +GSTV (t2dφ2 + r2dθ2) ,

B = η t2r2GSTV dφ ∧ dθ . (5.34)

Lax pair. The associated Lax pair with a spectral parameter λ is expressed as

L± = −GSTV (∂±θ ∓ η t2∂±φ)n12 +GSTV(∂±φ± η r2∂±θ)n03 (5.35)

+ λ±1
[
∂±r p1 + ∂±t p0 + r GSTV (∂±θ ∓ η t2∂±φ) p2 + tGSTV (∂±φ± η r2∂±θ) p3

]
.

Twisted boundary condition. Similarly, by comparing the deformed current with the

undeformed one, one can read off the following replacement rule:

∂±θ → GSTV (∂±θ ∓ η t2∂±φ) ,

∂±φ → GSTV (∂±φ± η r2∂±θ) . (5.36)

This rule implies a twisted boundary condition for the undeformed coordinates,

g̃(τ, 2π) = P exp

[∫ 2π

0
dσ Jgσ

]
exp [2π (mn03 − wn12)] g̃(τ, 0) . (5.37)

Here the integer numbers w and m are winding numbers for the angles θ and φ . The

gauge-transformed current Jgα = gJαg
−1 + g∂αg

−1 is given by

Jgσ = η r2GSTV(θ̇ − η t2φ′)n03 + η t2GSTV(φ̇+ η r2θ′)n12

= ηJ τθ n03 + η J τφ n12 . (5.38)

This expression can also be recast in

θ̃(τ, 2π) = θ̃(τ, 0)− ηJφ + 2π w ,

φ̃(τ, 2π) = φ̃(τ, 0) + ηJθ + 2πm , (5.39)

where Jφ and Jθ are Noether charges for the rotational invariance for the φ and θ directions.
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6 Conclusion and discussion

In this paper, we have proceeded to study Yang-Baxter deformations of 4D Minkowski

spacetime based on a conformal embedding. In the first place, we have revisited a Melvin

background and argued a Lax pair by adopting a simple replacement law invented in [30].

Due to this argument, one can readily deduce a general expression of Lax pair. Then the

anticipated Lax pair has been shown to work for arbitrary classical r-matrices with Poincaré

generators. As other examples, we have presented Lax pairs for pp-wave backgrounds, the

Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.

There are a lot of open problems. We have considered only the bosonic sector so far. It

would be very interesting to investigate the RR-sector and dilaton by including spacetime

fermions (c.f., see [57]). In fact, it is much easier to perform a supercoset construction for

Yang-Baxter deformed Minkowski spacetimes, in comparison to the deformed AdS5×S5 . It

is also nice to study non-local charges obtained from the monodromy matrices constructed

from the Lax pair derived here. The resulting algebras may be related to the preceding

results obtained in [58].

As another direction, it would be of interest to consider Yang-Baxter deformations

of other backgrounds such as pp-wave backgrounds and Lifshitz spacetimes [59]. Along

this direction, it has been shown that the Nappi-Witten background [46] is Yang-Baxter

invariant at the quantum level [60]. Due to the argument in [61], Lifshitz spacetimes would

be invariant as well. It is very nice to check whether this anticipation is valid or not.
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A Notation and convention

We will summarize here our notation and convention of the so(2, 4) generators.

In this paper, we use the following basis of su(2, 2) ' so(2, 4):

su(2, 2) = spanR

{
γµ , γ5 , nµν =

1

4
[γµ , γν ] , nµ5 =

1

4
[γµ , γ5] | µ, ν = 0, 1, 2, 3

}
. (A.1)

Here γµ’s are gamma matrices satisfying the Dirac algebra:

{γµ , γν} = 2ηµν . (A.2)
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Here ηµν is the standard Minkowski metric with mostly plus. It is convenient to adopt the

following matrix realization of γµ’s,

γ1 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , γ2 =


0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 ,

γ3 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , γ0 = iγ4 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 ,

γ5 = iγ1γ2γ3γ0 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (A.3)

It is also helpful to use the conformal basis for so(2, 4):

so(2, 4) = spanR{ pµ , nµν , d̂ , kµ | µ, ν = 0, 1, 2, 3 } . (A.4)

Here the translation generators pµ , the Lorentz rotation generators nµν , the dilatation d̂

and the special conformal generators kµ are represented by, respectively,

pµ ≡
1

2
(γµ − 2nµ5) , d̂ ≡ 1

2
γ5 , kµ ≡

1

2
(γµ + 2nµ5) . (A.5)

The non-vanishing commutation relations are given by

[pµ, kν ] = 2(nµν + ηµν d̂ ) , [d̂, pµ] = pµ , [d̂, kµ] = −kµ ,
[pµ, nνρ] = ηµν pρ − ηµρ pν , [kµ, nνρ] = ηµν kρ − ηµρ kν ,

[nµν , nρσ] = ηµσ nνρ + ηνρ nµσ − ηµρ nνσ − ηνσ nµρ . (A.6)

B A conformal embedding of 4D Minkowski spacetime

To introduce Yang-Baxter deformations of 4D Minkowski spacetime, it is necessary to

perform a coset construction of flat space. However there is an obstacle that the Killing

form on the standard coset ISO(1, 3)/SO(1, 3) is degenerate. Hence, in order to avoid this

issue, we will embed this coset into a conformal group SO(2, 4) , as explained below.

A representative of group element g is given by

g = exp
[
p0 x

0 + p1 x
1 + p2 x

2 + p3 x
3
]
. (B.1)

Note that this parametrization may be interpreted as a slice of Poincaré AdS5 , in which

the representative is given by g = exp[xµpµ] exp[d̂ log z] with the AdS radial direcrion z .

The left-invariant one-form A = g−1dg can be expanded as

A ≡ eµpµ , eµ = dxµ . (B.2)

– 19 –
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Then, in terms of the vierbeins eµ , the metric of Minkowski spacetime is given by

ds2 = ηµνe
µeν = ηµνdx

µdxν . (B.3)

By using the relations

eµ =
1

2
Tr(γµA) , (B.4)

the metric (B.3) can be recast into the following form:

ds2 = ηµνe
µeν = Tr(AP (A)) . (B.5)

Here we have introduced a projection operator defined as

P (x) ≡ 1

4

[
−γ0 Tr(γ0 x) +

3∑
i=1

γi Tr(γi x)
]
. (B.6)

Note that γµ’s contained in (B.6) are elements of 4D conformal algebra so(2, 4) rather than

4D Poincaré algebra iso(1, 3) . Thus the projection (B.6) implies that our coset construction

of 4D Minkowski spacetime is realized as a slice of Poincaré AdS5 .

As a side note, it is straightforward to generalize the projection operator to the general

symmetric two-form [46, 61]. Due to this observation, Yang-Baxter deformations can be

applied to the Schrödinger and Lifshitz cosets argued in [61]. For a recent progress along

this line, see the work [60] in which Yang-Baxter deformations of the Nappi-Witten model

have been studied.
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