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1 Introduction and summary

It’s hard to be free when you’re an anyon. Statistical obligations mean that you constantly

have to be aware of your standing relative to your neighbours. This has consequences.

Even the simplest quantum mechanics problem involving multiple anyons is challenging.

For example, the spectrum of anyons in a harmonic trap remains unsolved. The purpose

of this paper is to study this simple system, and its supersymmetric extension, from the

perspective of non-relativistic conformal field theory.

It was realised long ago that the dynamics of anyons has a hidden SO(2, 1) conformal

symmetry. This is true whether the problem is expressed in the “first-quantised” formalism

of quantum mechanics [1], or in the “second-quantised” formalism of field theory [2]. In the

latter, field theoretic framework, anyons are described in terms of non-relativistic matter

fields interacting with a Chern-Simons gauge field.

More recently, Nishida and Son revisited the quantum dynamics of non-relativistic

field theories which exhibit conformal invariance [3]. They showed, among other things,

that there is a non-relativistic version of the state-operator map, with the spectrum of

the dilatation operator mapped to the spectrum of the Hamiltonian in the presence of a

harmonic trap. In this manner, solving the quantum mechanics problem of anyons in a trap

is equivalent to finding the scaling dimensions of operators in a non-relativistic conformal

field theory.
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In this paper we will exploit the fact that one may introduce superconformal symmetry

into the problem. Indeed, a non-relativistic superconformal field theory of anyons was

constructed in [4]. It consists of two species of anyons whose spin differs by 1/2. If we

focus on the sector of the Hilbert space where only a single species of anyon is populated,

this reduces to the problem above.1

Embedding the problem in a larger theory with superconformal symmetry will turn out

to be useful in exhibiting some of the properties of the anyonic spectrum. The representa-

tion theory of the non-relativistic superconformal group was discussed in [5, 6]. There are

both long multiplets and short multiplets. The short multiplets are built on (anti)-chiral

primary operators whose dimension ∆ is dictated by the algebra

∆ = ±
(

J − 3

2
R

)

(1.1)

where J is the angular momentum of the operator, while R is an R-symmetry, counting

(roughly) the difference between the population of the two species of anyons. The spectrum

of chiral primary operators has been discussed in both [5] and [6]. However, there are a

number of subtleties that arise in this spectrum that were previously overlooked.

The first subtlety is associated to the angular momentum of multiple anyons. Suppose

that a single anyonic particle has spin j. If n identical anyons are placed in a trap,

their combined spin has the unusual property of scaling quadratically with the number of

particles [7–9]: J = n2j. This well known result follows directly from the spin-statistics

theorem: exchanging two groups of n anyons requires each anyon from the first group to be

exchanged with each from the second, giving the n2 behaviour to the statistical phase. The

spin-statistics theorem, which is valid as our theory is the low-energy limit of a relativistic

theory, then says that this scaling should also be manifest in the spin.

Here, our interest lies in the implications of this result for (1.1) since it means that the

dimension of n-particle operators should also scale as n2. Indeed, we will show that the

spectrum of n-particle chiral primary operators is given by

∆ = n− n(n− 1)j (1.2)

The first term is the classical dimension of the operator. We will see, following [3], that

the second term arises as an anomalous dimension for chiral primary operators. This

anomalous dimension is one-loop exact.

The exact result (1.2) gives rise to a new puzzle because for j > 0 the dimension of

the operator would appear to become arbitrarily negative for a sufficiently large number of

particles. This is in conflict with unitarity which requires ∆ ≥ 1. We resolve this puzzle.

We will see that the j > 0 spectrum corresponds to anyons interacting through an attractive

delta-function potential. This potential means that the quantum mechanical wavefunction

diverges as two anyons approach. For a small number of anyons this is not an issue.

1This is a property of non-relativistic theories which is not shared by the more familiar relativistic

supersymmetric theories. The bosonic sector of a relativistic theory knows about the presence of fermions

through loop effects. But in a non-relativistic theory there are no anti-particles and, correspondingly, no

virtual loops involving anti-particles.

– 2 –



J
H
E
P
0
1
(
2
0
1
6
)
1
3
8

However, if enough anyons are present this divergence means that the wavefunction ceases

to be normalisable. The violation of the unitarity bound is due to this non-normalisability

of the wavefunction.

The upshot of this analysis is that if too many anyons are placed in the same trap then

the näıve ground state, in which each pair of anyons sits in the s-wave, is not normalisable.

Good wavefunctions can only be constructed by giving pairs of anyons further relative

orbital angular momentum.

The story above is told in sections 2 and 3, and the appendix. Section 2 reviews the

general structure of non-relativistic superconformal theories, including the state-operator

map and the properties of chiral-primary operators. Section 3 derives the spectrum (1.2) of

chiral anyons and discusses the unitarity bound and its relationship to quantum-mechanical

wavefunctions. The appendix contains a number of relevant one-loop computations.

In section 4, we change tack slightly. We describe non-perturbative configurations

in the theory known as Jackiw-Pi vortices [10]. We show that, rather remarkably, these

solitons first appear at exactly the point in the spectrum where bound states of anyons first

hit the unitarity bound. It is natural to conjecture that these solitons can be viewed as a

bound state of multiple anyons which now move as a single particle although, as we discuss,

this proposal is not without its difficulties. Finally, we construct a novel supersymmetric

quantum mechanics, in the form of a gauged linear sigma-model, to describe the low-energy

dynamics of these vortices.

2 Superconformal field theory

Starting from Chern-Simons theories coupled to gapped, relativistic matter, one may take

a non-relativistic limit in which anti-particles decouple but particles remain. Surprisingly,

supersymmetry not only survives this limit but is enhanced to a non-relativistic supercon-

formal (or super-Schrödinger) symmetry. The first construction of this type was presented

in [4] for an N = 2 Abelian Chern-Simons theory coupled to a single chiral multiplet. Sub-

sequent generalisations to other gauge groups, and different amounts of supersymmetry,

were described in [6, 11–14].

In this paper we discuss the resulting non-relativistic physics. We will work with a

U(Nc) Chern-Simons theory, coupled toNf complex scalars φi andNf complex Grassmann-

valued fields ψi, each of which transforms in the fundamental representation of the gauge

group. The action is2

S =

∫

dtd2x

{

iφ†
iD0φi + iψ†

iD0ψi −
k

4π
Tr ǫµνρ

(

Aµ∂νAρ −
2i

3
AµAνAρ

)

− 1

2m

(

Daφ
†
i Daφi +Daψ

†
i Daψi − ψ†

iBψi

)

(2.1)

− π

mk

(

(φ†
jφi)(φ

†
iφj)− (φ†

jψi)(ψ
†
iφj) + 2(φ†

iφj)(ψ
†
jψi)

)

}

2Conventions: the subscripts µ, ν, ρ = 0, 1, 2 run over both space and time indices, while a = 1, 2 runs over

spatial indices only and i = 1, . . . , Nf labels the flavour. The covariant derivatives read Dµφ = ∂µφ− iAµφ

and similarly for ψ. The magnetic field is B = ∂1A2 − ∂2A1 − i[A1, A2]. We will later work with complex

coordinates on the plane, z = x1 + ix2 and z̄ = x1 − ix2 and the corresponding derivatives ∂z = 1

2
(∂1 − i∂2)

and ∂z̄ = 1

2
(∂1 + i∂2).

– 3 –
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Both φ and ψ fields give rise to excitations with mass m. The first order kinetic terms

mean that there are particles, but no anti-particles. The φ excitations have spin −1/2k,

while the ψ excitations have spin 1/2−1/2k. In what follows we will sometimes refer to the

φ excitations as “bosons” and the ψ excitations as “fermions”, despite the fact that both

are in general anyonic. The action (2.1) also admits a relevant deformation consistent with

supersymmetry which, as discussed in [19], drives the system to a quantum Hall state. We

will not turn on this deformation here.

The quartic potential terms describe a delta-function contact interaction between

anyons. The potential between bosons depends on the sign3 of k: it is repulsive for k > 0

and attractive for k < 0. This distinction will play an important role in this paper and the

physics of anyons is rather different in the two cases.

The Chern-Simons coupling in (2.1) ensures that any particle excitation is accompanied

by magnetic flux. This is imposed through Gauss’ law which, classically, reads

B =
2π

k

(

φiφ
†
i − ψiψ

†
i

)

(2.2)

At the quantum level, this means that operators φi and ψi must be dressed with flux

to make them gauge invariant. This is easily achieved in the Nc = 1 Abelian theory

as explained, for example, in [6]. We introduce the dual photon σ, normalised to have

periodicity 2π. The Chern-Simons term ensures that eiσ has charge −k under the U(1)

gauge symmetry and composite, gauge invariant operators can be defined as

Φi = e−iσ/kφi , Ψi = e−iσ/kψi (2.3)

For the non-Abelian U(Nc) theories, it is more difficult to write explicit expressions for the

local gauge invariant operators. (One can easily construct non-local operators through the

addition of a Wilson line.) Nonetheless, one expects that such objects exist, transforming

in theNc representation of the global part of the gauge group (and in theNf representation

of the flavour group).

At this point, we pause to note that the operators (2.3) involve fractional monopole op-

erators. These are acceptable in our non-relativistic theory, and also in gapped relativistic

theories. They would not, however, be allowed in a relativistic Chern-Simons matter theory

at the conformal point.4 (See, for example, [15–18].) One way to see this is to note that, in

relativistic theories, the state-operator map takes monopole operators inserted in the plane

to magnetic flux over the two-sphere, where standard Dirac quantisation ensures that it

is integer valued. In contrast, in non-relativistic theories the operators are transformed to

flux in a harmonic trap, where there is no such quantisation requirement. The upshot is

that in conformal relativistic theories, one must work with operators of the schematic form

e−iσφk. For us, however, Φ and Ψ defined in (2.3) are sensible operators.

3There is a second class of theories, related to (2.1) by a parity transformation. This flips the sign of

the Chern-Simons term and the Pauli term, leaving the quartic potential invariant.
4We thank Kimyeong Lee for a discussion on this point.
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2.1 Symmetries

The action (2.1) is invariant under a superconformal symmetry, both at the classical level [4]

and at the quantum level [20, 21]. Here we review the generators of this symmetry. We

work in the Schrödinger picture so that, in contrast to [2, 4], the operators below do not

have any explicit time dependence.

Bosonic symmetries. The number of bosons and fermions in the theory are individually

conserved, with Noether charges

NB =

∫

d2x ρB and NF =

∫

d2x ρF (2.4)

with ρB = φ†
iφi and ρF = ψ†

iψi. We denote the total particle number as N = NB +NF .

The difference between NB and NF , suitably weighted, will become the R-symmetry of the

theory. We postpone a discussion of the appropriate weighting to later.

The spacetime symmetries of the theory give rise to a number of conserved charges.

The Hamiltonian H can be most simply written as

H =
2

m

∫

d2x Dz̄φ
†
iDzφi +Dzψ

†
iDz̄ψi +

π

k
(φ†

iφj)(ψ
†
jψi) (2.5)

which coincides with the Legendre transform of the Lagrangian (2.1) only after imposing

Gauss’ law (2.2).

Translational invariance gives rise to momentum conservation. The conserved charge

is naturally complexified as P = 1
2(P1 − iP2), defined by

P =

∫

d2x P with P = − i

2

(

φ†
iDzφi − (Dzφ

†
i )φi + ψ†

iDzψi − (Dzψ
†
i )ψi

)

(2.6)

The Lagrangian enjoys an invariance under Galilean boosts. These too are naturally com-

plexified as G = 1
2(G1 − iG2) defined by

G =
m

2

∫

d2x z̄(ρB + ρF ) (2.7)

The theory is also invariant under conformal transformations, generated by the dilatation

operator

D =

∫

d2x (zP + z̄P̄) (2.8)

and special conformal transformations

C =
m

2

∫

d2x |z|2(ρB + ρF ) (2.9)

Note that the values of G, D and C are not conserved under time evolution. However, they

evolve in a simple manner so that it is straightforward to construct conserved quantities

G̃ = tP −G, D̃ = Ht−D and K̃ = −t2H + 2tD +K.

– 5 –
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We quantize the fields with canonical equal time (anti)-commutation relations. A well-

known subtlety arises because of Gauss’ law, which means that the gauge field does not

commute with the matter fields [2]. In the appendix, we describe the Feynman rules for

this theory and exhibit a number of one-loop computations, including a review of the result

of [20, 21] showing that conformal invariance persists at the quantum level.

It is straightforward to check that the bosonic symmetry generators above obey the

algebra [2, 4]

i[D,P ] = −P , i[D,G] = +G , i[D,H] = −2H , i[D,C] = +2C

i[C,P ] = −G , [H,G] = −iP , [H,C] = −iD , [P,G†] = − im

2
N (2.10)

with all remaining commutators vanishing. This is the Schrödinger algebra. The triplet of

operators H, D and C form an SO(2, 1) subgroup.

Angular momentum. We didn’t include the angular momentum in the generators above

because it deserves special attention. As usual for particles with internal spin, there are

two contributions. The first comes from the orbital angular momentum and is given by

J0 =

∫

d2x
(

izP − iz̄P̄
)

(2.11)

This should be supplemented with the angular momentum due to the spin of the fields.

Here there is some arbitrariness in the choice. We pick

J = J0 −
1

2k
NB +

(

1

2
− 1

2k

)

NF (2.12)

Note that this differs from the choice of [4–6] by the presence of the terms proportional to

1/2k, but as these are proportional to the total particle number N they do not change the

structure of the algebra. Nor do they change the dimension of chiral primary operators

defined through (1.1) because, as we shall see shortly, the R-symmetry picks up a compen-

sating shift. However, the choice above will prove more convenient as it treats the spin of

the boson and fermion on equal footing, so that

[J, φ†
i ] = − 1

2k
φ†
i and [J, ψ†

i ] =
k − 1

2k
ψ†
i (2.13)

The same commutation relations also hold for the gauge invariant excitations Φi and Ψi

defined in (2.3). The angular momentum operator has only two non-vanishing commutators

with other bosonic symmetry generators: [J, P ] = −P and [J,G] = −G.

As we mentioned in the introduction, the angular momentum of n anyons has the

unusual property, first discovered in [7, 8], that it is proportional to n2 rather than n. This

fact will play an important role in our analysis, so we pause here to review the underlying

physics. More details can be found, for example, in the book [22].

To demonstrate the addition of angular momentum, it will suffice to work classically.

(For a derivation in the quantum theory see, for example, [9].) We can illustrate this in the

Abelian theory with Nc = Nf = 1, focussing on the derivation for the bosonic field. The

– 6 –
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important term is the gauge field buried in the covariant derivatives in the expression for

the orbital angular momentum (2.11). Picking a configuration with no traditional orbital

angular momentum, we’re still left with

J0 = −
∫

d2x ǫabxaAb ρB

The gauge field is determined by Gauss’ law (2.2). Choosing the gauge ∂aA
a = 0, we can

solve (2.2) for the vector field, giving

Aa(x) = −2π

k
ǫab∂b

∫

d2x′G(x− x′)ρB(x
′) (2.14)

with G(x− x′) = 1
2π log |x− x′| being the usual Green’s function for the Laplacian in the

plane. This gives the following contribution to the angular momentum:

J0 = −2π

k

∫

d2x d2x′ ρ(x)ρ(x′)xa∂aG(x− x′)

We take the charge distribution to be a sum of delta-functions at n distinct points ri,

ρB =
n
∑

i=1

δ2(xi − ri(t))

and the orbital angular momentum becomes

J0 = −2π

k

∑

i,j

ri ·
∂

∂ri
G(ri − rj)

At this point we need a procedure to deal with the fact that this expression is ill-defined

when ri = rj . Any regularisation which preserves anti-symmetry under reflection gives

limx→x′ ∂aG(x − x′) = 0. With this choice, the sum is over pairs of particles only and

we have

J0 = −2π

k

n
∑

i=1

∑

j 6=i

ri ·
∂

∂ri
G(ri − rj) = −n(n− 1)

2k

This is the orbital angular momentum of n anyons. To this, we must add the total spin

which is −n/2k. The final result is

J = −n2

2k
(2.15)

as promised. Note that, in general, this is not the lowest angular momentum of n anyons:

in certain cases, one can decrease the spin by giving the individual particles additional

relative orbital angular momentum. The result (2.15) is, however, the angular momentum

that one gets when adiabatically increasing the statistical parameter of n bosons.

– 7 –
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Fermionic symmetries. The action (2.1) enjoys a number of fermionic symmetries [4].

There are two complex supersymmetries, generated by

q = i

√

m

2

∫

d2x φ†
iψi and Q =

√

2

m

∫

d2x φ†
iDz̄ψi (2.16)

together with a superconformal symmetry, generated by

S = i

√

m

2

∫

d2x zφ†
iψi (2.17)

These operators all have spin ±1/2, as seen from the commutation relations

[J, q] =
1

2
q , [J,Q] = −1

2
Q , [J, S] = −1

2
S (2.18)

The anti-commutators in the fermionic symmetry generators give the algebra

{q, q†} =
m

2
N , {Q,Q†} = H , {q,Q†} = P (2.19)

{S, S†} = C , {q, S†} = −G , {Q,S†} =
i

2
(iD − J0 +NB −NF )

The last of these is important. We rewrite it in terms of the angular momentum opera-

tor (2.12), including the spin contribution, as

{Q,S†} =
i

2

(

iD − J +
3

2
R

)

(2.20)

This defines the R-symmetry, which is given by

R =
2k − 1

3k
NB − k + 1

3k
NF (2.21)

The R-symmetry of each of the fermionic symmetry generators is

[R, q] = −q , [R,Q] = −Q , [R,S] = −S (2.22)

The remaining non-vanishing commutators between bosonic and fermionic generators are

i[D,Q] = −Q , i[D,S] = S

i[C,Q] = S , i[H,S] = −Q i[P, S] = i[G,Q] = −q (2.23)

The various (anti-)commutators collected in (2.10), (2.18), (2.19), (2.22) and (2.23) make

up the non-relativistic N = 2 superconformal algebra, also known as the super-Schrödinger

algebra. These algebras have a long history; some early papers include [4, 26, 27].

2.2 Operators, states and chiral primaries

In the remainder of this section we describe the structure of theories that are invariant

under the super-Schrödinger algebra, following [3, 5, 6]. We will mostly discuss generalities,

postponing a more detailed discussion of the theory (2.1) to section 3.

– 8 –
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Our interest lies in the spectrum of the dilatation operator D. Consider the local

operators of the theory O(x = 0), evaluated at the origin. An operator is said to have

scaling dimension ∆O if it obeys

i[D,O] = −∆OO

Since D commutes with J , N and R we can simultaneously assign angular momentum jO,

particle number NO, and R-charge rO to operators O with fixed dimension,

[J,O] = jOO , [N ,O] = NOO , [R,O] = rOO

Given an operator O of dimension ∆O, one can construct further operators of fixed dimen-

sion using the algebra (2.10).

i[D, [H,O]] = −(∆O + 2)[H,O]

i[D, [Pa,O]] = −(∆O + 1)[Pa,O]

i[D, [Ga,O]] = −(∆O − 1)[Ga,O]

i[D, [C,O]] = −(∆O − 2)[C,O]

We see that both the boosts Ga and the special conformal transformation C lower the

dimension of the operator. Assuming that the spectrum of D is bounded below, this must

end somewhere. The places where it ends are called primary operators [3]. (See also [23].)

These are operators of fixed scaling dimension that also obey

[Ga,O] = [C,O] = 0

We can then construct an infinite tower of operators, starting from the primary and acting

with Pa and H. These are descendants. The tower forms an irreducible representation of

the Schrödinger algebra.

From the commutators of D with the fermionic generators (2.23), we see that S lowers

the dimension of an operator, and Q raises the dimension, while q leaves the dimension

unchanged. We define a superconformal primary by the further requirement that

[S,O] = [S†,O] = 0 (2.24)

where the commutators are replaced with anti-commutators if O itself is fermionic. Finally,

there are two further special classes of operators that will be of particular importance [5, 6].

These are chiral primary operators which, in addition to (2.24), obey

[Q,O] = 0

and anti-chiral primary operators which, in addition to (2.24), obey

[Q†,O] = 0

We’ll see the importance of these below.

– 9 –
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Introducing a harmonic trap: the state-operator map. In relativistic theories, the

state-operator map equates the spectrum of the dilatation operator on the plane to the

spectrum of the Hamiltonian of the theory defined on a sphere. In the non-relativistic con-

text, there is also a state-operator map. Its interpretation is arguably even more physical:

the spectrum of the dilatation operator is equal to the spectrum of the Hamiltonian when

the theory is placed in a harmonic trap [3].

The map can be thought of as a field-theoretic generalisation of the usual approach to

conformal quantum mechanics [24]. We introduce the new Hamiltonian

L0 = H + C (2.25)

From the definition of the special conformal generator (2.9), we see that this is indeed

equivalent to placing the theory in a harmonic trap.

For each primary operator O, we define the state

|ΨO〉 = e−HO(0)|0〉 (2.26)

where |0〉 is the vacuum of the original Hamiltonian H, the state with no particles present.

It is simple to check, using the algebra (2.10), that

L0|ΨO〉 = ∆O|ΨO〉 (2.27)

This is the promised result: the spectrum of L0 acting on states coincides with the spectrum

of D acting on operators. The quantum numbers j, N and r which label the operator

also carry over to label the state, so we have J |ΨO〉 = jO|ΨO〉, N|ΨO〉 = NO|ΨO〉 and

R|ΨO〉 = rO|ΨO〉.
In the presence of the trap, it is useful to redefine the remaining operators. We intro-

duce

L± = H − C ± iD , Pa = Pa + iGa , Ga = Pa − iGa

(We previously used complex notation to denote momentum (2.6) and boosts (2.7); this

complex structure is different from the one introduced above so we revert to spatial coor-

dinates here.) These new operators obey

[L0, L±] = ±2L± , [L+, L−] = −4L0 , [L0,Pa] = Pa , [L0,Ga] = −Ga

together with a number of other non-trivial commutation relations which follow from (2.10).

We see that L+ and Pa increase the energy of the state by 2 and 1 respectively. Meanwhile,

L− and Ga decrease the energy, shifting it by 2 and 1 respectively. It is simple to show that

primary states of the form (2.27), built from primary operators, obey L−|ΨO〉 = Ga|ΨO〉 =
0. These lie at the bottom of the tower. One can then construct higher energy states by

acting with either L+ or with Pa. These are descendant states. Some of these descendant

states are null [5].
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Figure 1. A generic supersymmetric multiplet, following [6].

Chiral primary states. The super-Schrödinger algebra places further structure on the

theory. Both operators and states sit in supersymmetric multiplets. Here we retain the

harmonic trap and describe the states of the Hamiltonian L0. It is simple to adapt the

supercharges to this set-up [6]. We define

Q = Q− iS and S = Q+ iS (2.28)

These obey the algebra

{Q,Q†} = L0 +

(

J − 3

2
R

)

, {Q,S†} = L+ (2.29)

{S,S†} = L0 −
(

J − 3

2
R

)

, {Q†,S} = L−

Their commutators with the generators L0 and L± are given by

[L0,Q] = Q , [L0,Q†] = −Q† , [L0,S] = −S , [L0,S†] = S†

[L+,Q] = [L−,S] = 0 , [L−,Q] = 2S , [L+,S] = −2Q (2.30)

We see that, acting on an eigenstate of L0, the operators Q and S† raise the energy, while

Q† and S lower the energy. The upshot is that a superconformal primary operator gives

rise to a superconformal primary state, sitting at the bottom of a tower and obeying

L−|ΨO〉 = Q†|ΨO〉 = S|ΨO〉 = 0 (2.31)

Representations of the super-Schrödinger algebra sit in supersymmetric multiplets, built

on these superconformal primary states [5, 6]. There is a unique trivial multiplet: the

vacuum state, which is annihilated by all supercharges and, in our theory, has quantum

numbers ∆ = N = j = r = 0.

A generic excited state sits in a long multiplet. This contains 8 primary states. The

action of the supercharges q, Q and S on these states is, following [6], shown in the figure.

There are also short multiplets in which the dimension of the superconformal primary

is fixed by the superconformal algebra. These are the states that interest us here. A chiral

primary operator gives rise to a chiral primary state obeying, in addition to (2.31),

[Q,O] = 0 ⇔ Q|ΨO〉 = 0

The associated multiplet contains four primary states, as shown in the figure. Of these, one

is special, denoted by the red dot; its quantum numbers are dictated by the algebra (2.29)
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Figure 2. A chiral multiplet.

Figure 3. An anti-chiral multiplet.

and satisfy

∆O = −
(

jO − 3

2
rO

)

(2.32)

In our theory, the operators φ†
i and ψi are chiral primary. Or, if we insist on gauge

invariance, the dressed operators Φ†
i and Ψi defined in (2.3) are chiral primary. However,

only creation operators give rise to physical states, which means that the only chiral primary

states are those involving excitations of Φ†. We will describe these states in more detail in

the next section.

An anti-chiral primary operator gives rise to an anti-chiral primary state which obeys,

in addition to (2.31),

[Q†,O] = 0 ⇔ S†|ΨO〉 = 0

(Note that the shift from Q† on operators to S† acting on states arises due to the factor

of e−H in the state-operator map (2.26) and the commutation relations (2.23).) There are

again four primary states in the multiplet, as shown in the figure. One of these, denoted

by the red dot, obeys

∆O = +

(

jO − 3

2
rO

)

(2.33)

The operators Φi and Ψ†
i are anti-chiral primary. The anti-chiral primary states contain

Ψ†
i excitations only.

Unitarity bounds. There are a number of constraints on the quantum numbers that

follow from the algebra alone. The first of these holds for any non-relativistic conformal

theory and is particularly simple

|| Pa|ΨO〉 ||2 ≥ 0 ⇒ NO ≥ 0

This is the statement that there are no anti-particles in the theory. The second constraint

also holds for any non-relativistic conformal theory. Assuming that we are not in the

vacuum state, so NO 6= 0, we have [25]

|| 2mNL+ − PaPa|ΨO〉 ||2 ≥ 0 ⇒ ∆O ≥ 1 (2.34)
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Further, states that saturate this bound obey the equation

L+ |ΨO〉 =
1

2mNO
PaPa |ΨO〉 (2.35)

This looks, formally, like the Schrödinger equation for a free particle. (Recall that in

relativistic theories, saturation of a unitarity bound indicates that the operator is free.)

The final bound follows from the superconformal invariance of the theory. We look at

the combination

〈ΨO|{Q,Q†}|ΨO〉 ≥ 0

〈ΨO|{S,S†}|ΨO〉 ≥ 0

}

⇒ ∆O ≥
∣

∣

∣

∣

jO − 3

2
rO

∣

∣

∣

∣

Clearly this bound is saturated by the (anti)-chiral primary states.

3 The spectrum

In this section we describe the spectrum of (anti)-chiral primary states in the field theory

defined by (2.1). The physics is rather different depending on whether the interactions are

repulsive (k > 0) or attractive (k < 0) and we treat the two cases separately. Moreover,

the key ideas already arise for the simplest theory with Nc = Nf = 1 and we concentrate

on this case, mentioning the generalisation to non-Abelian theories with more flavours only

in passing.

3.1 Repulsive interactions

We start by describing the situation with k > 0. In this case, the quartic terms in (2.1)

describe repulsive delta-function contact interactions between the anyons. This ensures

that the wavefunction vanishes as anyons coincide [3, 20], a point of view that we will

explain in some detail in section 3.2.

The chiral primary states in our theory arise from excitations of the gauge-invariant

composite bosonic operator Φ† and the momentum P . The n-particle chiral primary state

of lowest dimension is

O = (Φ†)n

The charge of this operator under the R-symmetry (2.21) scales linearly with n. However,

as explained in the previous section, the angular momentum of this operator does not: it

is instead given by (2.15),

jO = −n2

2k
, rO =

(

2k − 1

3k

)

n (3.1)

The chiral primary constraint (2.32) then fixes the dimension of this operator to be

∆O = n+
n(n− 1)

2k
(3.2)
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It is unusual for the dimension of an operator to scale as n2. The classical dimension of

(Φ†)n is simply n. This means that the second term above, proportional to 1/2k, must

arise as an anomalous dimension. This is indeed the case. This was shown already for the

Abelian theory in [3]. In appendix A, we extend this result to the non-Abelian theory. The

chiral primary bound ensures that the dimension is one-loop exact.

The states with energy (3.2) and their descendants correspond to a class of known,

exact solutions to the quantum mechanics of n anyons [28, 29]. (Reviews of the anyon

spectrum can be found, for example, in [30, 31].) These are sometimes called “linear” so-

lutions in the literature because their energy scales linearly with the statistical parameter

1/2k. The structure of the superconformal theory could, somewhat generously, be said to

explain the existence of this class of solutions. Unfortunately, the superconformal formu-

lation does not seem to help with the so-called “non-linear solutions”; these correspond to

long multiplets which are unprotected by the chiral primary bound and receive corrections

at two loops and, presumably, higher.

Primary operators with higher dimension can be constructed via the insertion of the

momentum operators P and P † or, equivalently, the derivatives ∂z and ∂z̄. Those that con-

sist of ∂z only are chiral primary since each insertion of ∂z decreases the angular momentum

by 1, while increasing the dimension by 1. As an example, consider the n = 2 particle sec-

tor. The operators with one derivative are all descendants. There are six operators with

two derivatives: Φ†∂2
zΦ

†, Φ†∂2
z̄Φ

†, Φ†∂z∂z̄Φ
†, ∂z̄Φ

†∂z̄Φ
†, ∂zΦ

†∂zΦ
† and ∂z̄Φ

†∂zΦ
†. Of these,

three linear combinations are total derivatives and hence descendants; the remaining three

are primary. One of these primary states is chiral primary.

We note that, for k ≫ 1, the chiral primary (Φ†)n is the n particle ground state.

However, it is known from the study of anyons that, when n ≥ 3, it is not the true ground

state for all k. Instead, there is a level crossing (as k is varied) and, for small k, a long

multiplet becomes the ground state. For the Abelian theory, it is found numerically that

this cross-over happens around k ≈ 1.4 for n = 3 and k ≈ 1.8 for n = 4 [32, 33].

The anti-chiral primary states arise from the composite fermionic operator Ψ† and the

momentum P †. However, when Nf = Nc = 1 the Grassmann nature of Ψ forbids us from

constructing operators of the form (Ψ†)n. In the n-particle sector, the anti-chiral primary

operator of the lowest dimension is instead

Õ = Ψ†∂z̄Ψ
† . . . ∂n−1

z̄ Ψ† (3.3)

A single fermionic excitation Ψ† has angular momentum 1/2− 1/2k. The operator Õ has

angular momentum

jÕ =

(

1

2
− 1

2k

)

n2 =
n

2
+

n(n− 1)

2
− n2

2k

The first way of writing jÕ mimics the expression for the bosonic angular momentum (3.1);

the terms in the second expression can be thought of respectively as the angular momen-

tum of n fermions, the angular momentum induced by the derivatives and the angular

momentum due to the flux attachment. The R-charge of Õ is rÕ = −(k + 1)n/3k. The
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superconformal algebra (2.33) then ensures that the dimension of these anti-chiral primary

operators is given by

∆Õ =
n(n+ 1)

2
− n(n− 1)

2k
(3.4)

Again, the first term is the classical dimension of the operator Õ; the second term arises

as a one-loop anomalous dimension as we show in appendix A.

One can easily lower the classical dimension of the operator Õ by including both ∂z
and ∂z̄ in the string, resulting in an operator with classical dimension ∼ n3/2 rather than

n2. This operator is primary but not chiral: it gives rise to a long multiplet of states that,

for k ≫ 1, is the ground state in this sector. However, as k decreases there is a level

crossing and the anti-chiral primary operator Õ becomes the ground state.

The bosonic chiral primary operators (3.2) and the fermionic anti-chiral primary op-

erators (3.4) actually trace out the same spectrum as k is varied continuously: they are

related by 1/k → 1 − 1/k. Indeed, at k = 1, the Φ excitations are fermions and the Ψ

excitations are bosons and we have

Ok=1 = Õk=∞ and Õk=1 = Ok=∞

However, in the non-Abelian theory k is necessarily quantised and the spectra of O and

Õ do not coincide as k is varied. Moreover, when Nc > 1 or Nf > 1, the representations

of the bosonic and fermionic operators under the global symmetries differ as described in

appendix A.

It may be interesting to explore this spectrum further to look for remnants of the

dualities that occur in relativistic Chern-Simons theories, such as [34–37].

3.2 Attractive interactions: the view from quantum mechanics

We now turn to the case of k < 0. This describes an attractive delta-function contact

interaction between anyons and, as we will see, brings a surprise. This is because the

expressions for the angular momentum, R-charge and, ultimately the dimensions of (anti)-

chiral primary operators are the same as before.

For the fermionic anti-chiral primary states, there is nothing to worry about. In

contrast, for k < 0, the bosonic chiral primary states have energy

∆O = n− n(n− 1)

2|k| (3.5)

For a sufficiently large number of particles, this contradicts the unitarity bound ∆ ≥ 1!

We hit the bound when n = 2|k| and violate the bound when n > 2|k|. This requires an

explanation. What’s going on?

Quantum mechanics of anyons. To understand why these states violate the unitarity

bound, we turn to the quantum mechanical description of the problem. Such a formula-

tion exists because there are no anti-particles in the Lagrangian (2.1) and, moreover, the

dynamics of the gauge field is tied to that of the particles. This means that there can be
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no fluctuation of particle number so, if you fix the number of bosons and fermions in the

problem, then the field theory (2.1) reduces to the quantum mechanics of a finite number

of degrees of freedom. A derivation of how to move from the field theory language to the

quantum mechanics can be found, for example, in the book [22].

Here we consider the sector with n “bosons” and no “fermions”. Each particle has

position xai , with a = 1, 2 the spatial index and i = 1, . . . , n labelling the particle. The

quantum mechanics Hamiltonian is

H = − 1

2m

n
∑

i=1



∂ i
a +

i

k
ǫab ∂

j
b

∑

j 6=i

log |xi − xj |





2

+
2π

mk

∑

i<j

δ2(xi − xj) (3.6)

Here the log term arises from the gauge field which is given by (2.14); this is the term

which imposes anyonic statistics on the particles which now pick up a phase π/k when

exchanged. The delta-functions arise from the |φ|4 interactions in the Lagrangian. These

contact interactions are repulsive for k > 0 and attractive for k < 0. We should ultimately

add to the Hamiltonian (3.6) the harmonic potential. We’ll do this below, but it won’t be

important for our immediate discussion.

For us, the role played by the delta-function contact interactions is key. These arise

naturally from the field theory and endow the quantum mechanics with a number of nice

features. Indeed, as we review below, they are necessary for the quantum mechanics to

exhibit scale invariance. For now, their main purpose is to impose boundary conditions on

the wavefunction5 Ψ(xi) as anyons get close to each other. For two particles, their s-wave

state has boundary condition

Ψ(x1,x2) ∼ |x1 − x2|1/k as x1 → x2 (3.7)

with a pairwise generalisation to multiple particles.6

For repulsive contact interactions i.e. k > 0, the wavefunction (3.7) vanishes as the

particles approach; it is equivalent to imposing a hard-core boundary condition.

In contrast, with an attractive contact interaction, corresponding to k < 0, the wave-

function diverges as the two particles approach. For two particles, this is not problematic

because the wavefunction (3.7) is normalisable as long as |k| > 1. But this divergence

becomes more serious when we add too many particles, as we now describe.

The wavefunction for n particles in which each pair sits in the s-wave is

Ψ0 =
∏

i<j

|xi − xj |−1/|k| (3.8)

This corresponds to the operator (Φ†)n. (We will make the connection between operators

and wavefunctions more precise below.) One can check that Ψ0 is a zero-energy eigenstate of

5In this section, we will use Ψ to denote the wavefunction of bosonic anyons. It is not to be confused

with the composite operator introduced in (2.3) to denote fermionic anyons.
6There is an alternative way to view these boundary conditions. One could exclude from the configuration

space the points where particles meet and propose a self-adjoint extension of the quantum mechanics [40].

There are precisely two such extensions which are compatible with scale invariance, corresponding to (3.7)

with k > 0 and k < 0.
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the Hamiltonian (3.6). As discussed in the next section, there is actually a large degeneracy

at zero-energy, so one might reasonably ask what is special about this eigenstate. The

answer is that it is the one adiabatically connected to the ground state (3.12) in the presence

of a trap breaking this degeneracy. (The connection to (Φ†)n makes this no surprise.)

When all n particles coincide, one finds a divergence from each of the n(n − 1)/2

pairs of particles. This means that the wavefunction takes the schematic form Ψ0 ∼
r−n(n−1)/2|k| where r measures the “radial” relative distance from the coincident point.

The normalisation is

∫ n
∏

i=1

d2xi |Ψ0|2 ∼
∫

d2X

∫

dr r2n−3|Ψ0|2 ∼
∫

d2X

∫

dr
r2n−3

rn(n−1)/|k|
(3.9)

where X is the centre of mass. We see that the norm is UV finite if and only if

2n− 3− n(n− 1)

|k| > −1 ⇐⇒ n < 2|k|

The wavefunction is normalisable only when n < 2|k|. This, of course, coincides with the

threshold that we found from the unitarity bound (3.5).

This, then, is the answer to our puzzle: the operators (Φ†)n which violate the unitarity

bound correspond to wavefunctions in the quantum mechanics which are non-normalisable.

Note, in particular, that the wavefunction with n = 2|k| particles is also (logarithmically)

non-normalisable, despite the fact that the operator saturates the unitarity bound. The

relationship between violations of the unitarity bound and the non-normalisability of the

wavefunction was previously noted in a different context in [41].

Mapping between operators and wavefunctions. We have learnt that the operator

(Φ†)n corresponds to a non-normalisable state for n ≥ 2|k|. This leaves open the simple

question: what is the ground state of n ≥ 2|k| anyons in a trap? In general, there is no

reason to believe that the ground state lies in a chiral multiplet. This makes the question

difficult. We can, however, answer the simpler question: what is the lowest energy chiral

state for n ≥ 2|k|?
To answer this question, we will extend the correspondence

O = (Φ†)n ←→ Ψ0 =
∏

i<j

|xi − xj |1/k

to other chiral operators. This will allow us to determine which operators O correspond to

normalisable wavefunctions.

To proceed, we rewrite our Hamiltonian (3.6) in a way which eliminates the delta-

functions. Indeed, there is independently good reason to do this, related to the scale

invariance of the theory. In two dimensions, the delta-function has the same scaling as

the Laplacian ∇2, which means that a Hamiltonian of the form (3.6) would appear to

be scale invariant for any coefficient of the delta-function interaction. This is misleading.

Delta-functions in quantum mechanics require a regularisation and this typically breaks

scale invariance, resulting in a simple example of an anomaly in a quantum mechanical
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setting [42–44]. A similar effect also arises from the log term in (3.6). For the choice of

coefficient in front of the delta-function in (3.6), these two effects cancel. This, of course,

mimics the field theory analysis of [20, 21].

To see the cancellation explicitly, we can rewrite the Hamiltonian by introducing com-

plex coordinates zi = x1i + ix2i for each particle. For the specific coefficient of the delta-

function interaction given in (3.6), we have

H = − 2

m

n
∑

i=1

Ψ0



 ∂z̄i∂zi +
1

k

∑

j 6=i

∂zi
z̄i − z̄j



Ψ−1
0 (3.10)

where Ψ0 is given in (3.8). The ∂ operators in (3.10) are understood to act on everything

to the right including, ultimately, the wavefunction.

This form of the Hamiltonian (3.10) has no delta-functions and, correspondingly, no

need for regularisation: it provides a manifestly scale invariant description of the dynamics.

Further, it is immediately clear that the wavefunction Ψ0 obeys HΨ0 = 0 as previously

claimed. It is also easy to write down a large class of eigenfunctions, given by

Ψ = f̄(z̄1, . . . , z̄n)
∏

i<j

|zi − zj |1/k (3.11)

where f̄(z̄) is an antiholomorphic function, symmetric in its arguments z̄i. We propose

that this class of wavefunctions is equivalent to the set of chiral operators of the conformal

field theory, with the mapping given up to normalisation by

O = ∂p1
z Φ† · · · ∂pn

z Φ† ←→ f = zp11 · · · zpnn + permutations

In particular we see that descendants in the CFT, which are obtained by total derivatives,

correspond to choices of f with factors of
∑

zi:

Õ = ∂zO ←→ f̃ =

(

n
∑

i=1

zi

)

f

Hence, if we exclude the descendants we are left to form f by symmetrising products of

terms like (zi − zj)
2 which respect the bosonic properties of the particles. This provides a

useful way to describe and enumerate all chiral primaries. For example, there are no chiral

primaries with just a single derivative while, at the two derivative level, we find

O =
(

∂2
zΦ

†Φ† − ∂zΦ
†∂zΦ

†
)

Φ† · · ·Φ† ←→ f = (z1 − z2)
2 + other pairs

In this manner, we see that chiral primary operators arise by giving pairs of particles extra

relative angular momentum. Correspondingly, the angular momentum of chiral primaries

is spaced in even-integer steps, since we always need polynomials of even order in z. In

contrast, the angular momentum of descendants is spaced in integer steps.

Now we can ask which of these wavefunctions lie in the Hilbert space. The divergences

of the chiral wavefunctions (3.11) are softer than those of Ψ0. Heuristically, this is because

the addition of (zi − zj)
2 factors increases the relative angular momentum of a pair of
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particles, so that their wavefunction is damped where they meet. However, we need to

determine what form of f is sufficient to render the wavefunctions normalisable as the

particles converge.

Let us suppose that f is a polynomial of order 2m. The simplest criterion on the

wavefunction arises from the situation where all n particles converge to a point. In this

case, repeating the calculation (3.9), the requirement for normalisability is

2n− 3− n(n− 1)

|k| + 4m > −1 ⇐⇒ 2m > (n− 1)

(

n

2|k| − 1

)

This coincides with the requirement that the dimension of the corresponding operator,

which is schematically of the form O ∼ ∂2m
z (Φ†)n, sits strictly above the unitarity bound

∆ > 1. This agreement is reassuring but it is not the end of the story.

Suppose that we instead bring some subset of q < n particles together. Without

loss of generality, we can pick particles i = 1, . . . , q. The wavefunction (3.11) diverges

as r2mq−q(q−1)/2|k| where mq is the smallest number of relative angular momentum terms

(zi − zj)
2 with i, j = 1, . . . , q that appears in the expansion of f . Clearly when we include

all particles we include all winding terms, so mn = m.

This is perhaps best illustrated with an example. Consider n = 4, with f ∼ (z1 −
z2)

2(z1 − z3)
2 + · · · . We see that m4 = 2 is the total number of angular momentum terms.

However, m3 = 0 because f remains of order 1 if particle 1 is separated while particles 2,

3 and 4 are brought together. Thus the additional angular momentum in f has not helped

convergence at q = 3.

The significance of this is that there are additional constraints at each order q on the

form of f and, correspondingly, on the possible chiral operators O in the theory. These

constraints are equivalent to imposing that ∆ > 1 not only for the operator O itself, but

for every ‘factor’ of O: that is to say, if we can express O = O1O2 then we need ∆Oi
> 1

as well.

Nonetheless, by including enough angular momentum, one may see that it is in fact

always possible to find UV-normalisable chiral states in the theory. The relative angular

momentum forms a barrier, supporting the wavefunction away from the origin so that the

wavefunction survives in the Hilbert space.

Solutions in the trap. Finally, for completeness we observe that we can also find explicit

chiral wavefunctions in a trap. The Hamiltonian is now

L0 = H +
m

2

∑

i

|xi|2

It is again more convenient to express this in complex coordinates in a manner analogous

to (3.10). It is

L0 = Ψ̃0





n
∑

i=1

(

− 2

m
∂z̄i −

2

mk

∑

j 6=i

1

z̄i − z̄j
+ zi

)

∂zi + n+
n(n− 1)

2k
+

n
∑

i=1

z̄i∂z̄i



 Ψ̃−1
0
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where Ψ̃0 is the ground state wavefunction in the trap,

Ψ̃0 =
∏

i<j

|zi − zj |1/k exp
(

−m

2

n
∑

i=1

|zi|2
)

(3.12)

Hence writing Ψ = f̄(z̄)Ψ̃0 with f any symmetric degree d polynomial, we analytically find

a class of wavefunctions with energies

∆ = n+
n(n− 1)

2k
+ d

This coincides with (3.2) when d = 0 and with the general chiral bound (2.32) for d 6= 0.

4 Jackiw-Pi vortices

This section has a somewhat different focus. The Lagrangian (2.1) admits soliton solutions.

These are non-topological vortices, first discovered by Jackiw and Pi [2, 10]. Despite a vast

literature on Jackiw-Pi vortices, their role in the quantum dynamics of anyons has not, to

our knowledge, been explained. We do not present a full picture here. Instead we describe

various aspects of their dynamics and point out a few surprising connections to aspects of

anyons that we described above.

4.1 Vortices in the plane

We start with a review of Jackiw-Pi vortices. (More detailed expositions can be found, for

example, in [45, 46].) They are classical solitons which, in the U(1) theory with Nf = 1,

obey the equations

B =
2π

k
|φ|2 , Dzφ = 0 (4.1)

together with ψ = 0. Solutions exist only in theories with k < 0. They have vanishing

Hamiltonian H = 0, as defined in (2.5).

It is simple to solve (4.1). We decompose the scalar field as

φ =
√
ρeiχ (4.2)

where ρ = φ†φ is the matter density. The gauge field is determined by the second equation

in (4.1) to be

Az = ∂zχ− i

2
∂z log ρ (4.3)

Substituting this into the Gauss law constraint reveals that ρ satisfies the Liouville equation,

∇2 log ρ =
4π

k
ρ

The general solution for k < 0 can be written in terms of a holomorphic function f(z),

ρ =
k

2π
∇2 log

(

1 + |f(z)|2
)

(4.4)
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It is illuminating to look at the axially symmetric solutions, with f(z) = (z0/z)
p. These

take the form

ρ =
2|k|p2r2p0

π

r2(p−1)

(r2p0 + r2p)2
(4.5)

Asymptotically, the matter density scales as ρ ∼ r−2(p+1) and normalisability requires that

p > 0. Meanwhile, at the origin, the matter density scales as ρ ∼ r2(p−1). To ensure that

the gauge field (4.3) is non-singular, the phase of χ must wind accordingly. This requires

p to be integer, with the scalar field profile given by

φ =

√

2|k|p2r2p0
π

r(p−1)

r2p0 + r2p
e−(p−1)θ

This means that, although there is no topology in the vacuum manifold supporting these

solitions, their charge is nonetheless quantised. The integral of the matter density is

n =

∫

d2x ρ = 2|k|p (4.6)

and the corresponding flux is
∫

B = −4πp. Note that the minimal flux carried by the

vortices is twice that required by flux quantisation. This is a well known, if rather peculiar,

feature of classical Jackiw-Pi vortices.

Although we derived (4.6) for axially symmetric solutions, it continues to hold for the

most general solution. For separated vortices, we may take

f(z) =

p
∑

a=1

ca
z − za

(4.7)

This describes p vortices at positions za, with ca providing a scale size and phase for each

vortex. (This solution needs amending as the vortices coincide.) The collective coordinates

za and ca parameterise the moduli space Mp of Jackiw-Pi vortices which has dimension

dimMp = 4p.

There is something striking about the result (4.6): setting p = 1, we see the single

vortex has n = 2|k|, which is exactly the same point where the operator (Φ†)n hits the

unitarity bound ∆ = 1! An operator at the unitarity bound should describe a single, free

excitation. It is therefore natural to conjecture that semi-classically, a suitably regularised

(Φ†)n operator creates a Jackiw-Pi vortex.

Although this conjecture is natural, we have not been able to find corroborating evi-

dence. For example, the orbital angular momentum, defined in (2.11), becomes J0 = n =

2|k|p when evaluated on vortices. Note that this is linear in p, rather than quadratic. The

full angular momentum (2.12), which includes a contribution from the particle number,

is then

J = 2|k|p+ p
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This angular momentum is greater than that of any chiral primary operator. (Recall

that (Φ†)2|k| has J = 2|k|, while including P within an operator decreases the angular

momentum.)

Moreover, it is not clear that we are comparing like for like. As we have discussed,

when the theory is defined on the plane one should talk about the spectrum of D acting on

local operators. But it is difficult to interpret soliton solutions in terms of local operators.

Instead, it is conceptually simpler to think about the solitons as states in the theory, in

which case it is appropriate to consider solitons in the presence of a harmonic trap.

4.2 Vortices in a trap

The Hamiltonian with a harmonic potential is given by

L0 = H + ω2C =
2

m

∫

d2x

(

|Dzφ|2 +
m2ω2

4
|z|2|φ|2

)

(4.8)

where we have introduced ω2, the strength of the trap. (In our previous discussion, we

implicitly set ω = 1.) First order equations for vortices in the trap can be derived by

completing the square, with7

L0 =
2

m

∫

d2x

(

∣

∣

∣Dzφ+
ωm

2
z̄φ

∣

∣

∣

2
− ωm

2

(

zφ†Dzφ+ z̄Dz̄φ
†φ
)

)

(4.9)

The cross-terms are conserved charges, related to the orbital angular momentum given

in (2.11). We can then write

L0 ≥ −ω(J0 −NB)

Looking back at the definitions of the angular momentum and the R-symmetry, we see

that this coincides with the bound from the supersymmetry algebra (2.32). States which

saturate the bound, with L0 = −ω(J0 − NB), are chiral primary states. They obey the

Bogomolnyi equations

Dzφ =
ωm

2
z̄φ (4.10)

Solving this equation gives a static configuration, independent of time. However, since the

time evolution is governed by L0 = −ω(J0 − NB), both of which are conserved charges,

the subsequent dynamics is straightforward: the soliton configuration rotates around the

trap, together with an overall temporal phase. The energy of this solution is given by

L0 = mω2

∫

d2x |z|2|φ|2 (4.11)

7There is a second way to complete the square in the Hamiltonian, resulting in the Bogomolnyi equation

Dz̄φ = ±iωm
2
z̄φ. Static solutions to this equation are directly related to the Jackiw-Pi solutions (4.4) by

the a spatially varying phase. This time the Hamiltonian is given by L0 = ±D, the dilatation operator.

This is not a conserved charge and the resulting time dependent configuration does not remain a solution

to the Bogomolnyi equation. These configurations are related, but not identical, to those discussed in [47].
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Solutions to (4.10) describe semi-classical chiral states in the theory. It should be possible,

in the appropriate regime, to match these onto the exact quantum states that we have

constructed in section 3. Unfortunately, we do not currently understand enough about the

solutions to (4.10) to make any precise statements. Instead, we restrict ourselves to a few

simple comments and leave a more detailed study of these solutions for future work.

To solve the static equation (4.10), we again decompose φ as (4.2) and solve for the

gauge field which now reads

Az = − iωm

2
z̄ + ∂zχ− i

2
∂z log ρ

Substituting this into Gauss’ law, we get

∇2ρ =
4π

k
ρ− 2ωm (4.12)

This equation no longer has analytically known solutions; indeed, the constant term means

that it is similar to the Taubes equation [48] which arises for relativistic BPS vortices, but

with different minus signs. This constant term ensures that the matter density now falls

off exponentially quickly due to the presence of the trap.

An aside: usually when completing the square to derive Bogomolnyi equations, one

has the option to pick ± signs corresponding to BPS or anti-BPS solitons. In contrast,

in (4.9) only one sign is allowed since the opposite sign gives rise to exponentially growing

solutions rather than exponentially decaying. The Jackiw-Pi vortices therefore correspond

to chiral states rather than anti-chiral states.

The Taubes equation (4.12) is not analytically solvable. It is, however, well studied [48].

It is known that a general solution with
∫

B = −2πp has 2p collective coordinates. When

p is an even integer, this agrees with the number of moduli for the Jackiw-Pi vortices in

the plane. It would be interesting to understand the properties of this moduli space in

more detail and explore to what extent these solutions can be viewed as the semi-classical

version of the quantum chiral states.

Here we make a few simple comments about the simplest class of axially symmetric

solutions, with

φ =
√

ρ(r)e−iqθ q ∈ Z

These axially symmetric solutions evolve in time only by an overall phase. We assume that

the asymptotic form of the matter density is

ρ ∼
{

Ce−ωmr2
(

r2λ +O(r2(λ−1))
)

r → ∞
r2q

(

1 +O(r2)
)

r → 0

We do not know which values of q and λ arise in solutions. There appears to be no integer

restriction on λ through regularity of solutions alone. We can manipulate the expressions

for both particle number n and energy L0 into total derivatives to find that any solution

of this form must have

n =

∫

d2x |φ|2 = |k|(q − λ) and L0 = n(q + 1)− n2

2|k|
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This provides certain restrictions on the allowed values of q and λ since we must have both

n > 0 and L0 > 0.

Numerically we can find solutions with q = 0 for a range of λ < 0. In particular,

the solutions with q = 0 and λ = −1 have n = |k|; this is half the particle number of

the minimal Jackiw-Pi vortex on the plane. It seems that the striking coincidence that

Jackiw-Pi vortices first appear where operators hit the unitarity bound holds only on the

plane and does not extend to the harmonic trap. We do not currently understand the

physics behind this.

4.3 Dynamics of vortices

The low-energy dynamics of solitons can usually be described in terms of dynamics on

the moduli space Mp. Typically, such a description involves natural geometric quantities

defined over Mp including metrics, various forms, vector bundles and potentials. However,

the dynamics of Jackiw-Pi vortices differs from the more familiar relativistic solitons since

the dynamics is first order and, in the absence of some external potential, the vortices do

not go anywhere. On top of this, the action of supersymmetry on these vortices is also

rather novel. For all these reasons, a full supersymmetric low-energy action for Jackiw-Pi

vortices has not, to our knowledge, been previously constructed. (See, for example, [49] for

an early attempt to address some of these issues.)

We end this paper by constructing a supersymmetric quantum mechanics which, we

propose, describes the low-energy dynamics of Jackiw-Pi vortices. The quantum mechanics

is of the form of a gauged linear sigma model and is motivated, in part, by a similar

construction for relativistic vortices [50]. We do not claim that our model captures all

details of the dynamics. However, it does capture all the symmetries of the problem

which, as we shall see, have a non-trivial structure. We hope that it will prove useful in

describing certain BPS properties of these vortices. At the very least, it offers a new class

of supersymmetric gauged linear models.

Let us first explain why the supersymmetry preserved by vortices has a slightly different

form from usual. Vortices on the plane are annihilated by the supersymmetry generator

Q (2.16), while vortices in the trap are annihilated byQ‘(2.28). In the more familiar context

of relativistic theories, supercharges which annihilate solitons descend to supersymmetries

on their worldvolume. However, as discussed in [19], this is not what happens in our non-

relativistic theory. The difference comes from the fact that the moduli space Mp plays the

role of the phase space rather than the configuration space. Any supercharge, like Q or Q,

which acts trivially at all points in the phase space simply plays no role in the low-energy

dynamics.

In contrast, both q and S (or S) act non-trivially on the phase space and these two

supercharges will be realised in the low-energy dynamics. Our goal is to construct a theory

invariant under these two supersymmetries. Such a supersymmetric quantum mechanics

cannot be of the usual type. This can be seen by looking at the form of the superconformal

generator (2.17) which depends on the position in space and so, in the quantum mechanics,

must depend on the position of the soliton. This means that the action of S descends to a

non-linearly realised supersymmetry on the soliton worldline.
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Nonetheless, there is a very straightforward way to construct a class of supersymmet-

ric quantum mechanics with the appropriate supersymmetries: one simply dimensionally

reduces the class of theories (2.1) that we started with. There are two supersymmetric

multiplets.

• Vector Multiplet: this contains a worldline gauge field α, associated to a gauge group

G, and a single complex scalar Z, transforming in the adjoint representation of G.

• Matter Multiplet: this contains a complex scalar ϕ and a complex Grassmann object

χ. Both transform in the same representation R of the gauge group.

In what follows, we discuss the generalisation of the Jackiw-Pi vortices to the non-

Abelian U(Nc) gauge group with fundamental matter. The equations for vortices in a trap

of strength ω now read

B =
2π

k

Nf
∑

i=1

φiφ
†
i , Dzφi =

ωm

2
z̄φi (4.13)

To our knowledge, these non-Abelian solitons have not been previously studied. We con-

sider non-Abelian Jackiw-Pi vortices in the theory with Nf = Nc = N . Obviously the case

N = 1 reduces to the usual Abelian Jackiw-Pi vortices. We propose that the dynamics

of p vortices, with n = 2|k|p, is described by a U(p) gauged quantum mechanics, coupled

to N matter matter multiplets (ϕi, χi) in the fundamental representation and a further N

matter multiplets (ϕ̃i, χ̃i) in the anti-fundamental representation. The action is

S = k

∫

dt

{

iTrZ†DtZ + i
N
∑

i=1

[

ϕ†
iDtϕi + χ†

iDtχi + ϕ̃†
iDtϕ̃i +Tr χ̃†

iDtχ̃i

]

−
∑

i

[

ϕ†
iZ

†Zϕi + χ†
iZZ†χi + ϕ̃iZZ†ϕ̃†

i − χ̃iZ
†Zχ̃†

i

]

−
∑

i,j

Tr (φiχ
†
i − χ̃iϕ̃i)(χjϕ

†
j − ϕ̃†

jχ̃j)− TrZ†Z







(4.14)

Here DtZ = ∂tZ− i[α,Z] and Dtϕ = ∂ϕ− iαϕ and Dtϕ̃ = ∂tϕ̃+ iϕ̃α. The kinetic term for

the anti-fundamental fermion can also be written as iTr χ̃†Dtχ̃ = −i(Dtχ̃)χ̃
†; the unusual

minus sign ensures that we get a positive definite number operator for these excitations.

The equation for the U(p) gauge field α is Gauss’ law. It tells us that

[Z,Z†] +
N
∑

i=1

[

ϕiϕ
†
i − χiχ

†
i − ϕ̃†

i ϕ̃i − χ̃†
i χ̃i

]

= 0 (4.15)

The gauged quantum mechanics (4.14) describes dynamics on the space M defined

by (4.15), quotiented by the U(p) gauge action. Our conjecture is that this space should

be thought of as the moduli space of Jackiw-Pi vortices in the plane. The positions of

the p vortices are encoded in the eigenvalues of Z, at least when the solitons are well-

separated. The scale size, phase and U(N) orientation are contained in the gauge invariant

bilinears ϕ̃iϕj .
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The moduli space M of the gauge theory admits a dilatation symmetry under which

all fields, including Z, are scaled. This property is shared by the moduli space of Jackiw-Pi

vortices in the plane. However, the dilatation symmetry is broken by the potential, written

on the second and third lines of (4.14). This potential plays the role of the Hamiltonian of

the theory; we call it L0

L0 = ϕ†
iZ

†Zϕi + χ†
iZZ†χi + ϕ̃iZZ†ϕ̃†

i − χ̃iZ
†Zχ̃†

i

+Tr (φiχ
†
i − χ̃iϕ̃i)(χjϕ

†
j − ϕ̃†

jχ̃j) + TrZ†Z

We see that the potential includes a harmonic trap for excitations as expected from the

form of C given in (2.9)

The Lagrangian (4.14) has a number of symmetries. Rotations in the spatial plane

act by Z → eiθZ, with other fields left invariant. The corresponding orbital angular

momentum is

J0 = TrZ†Z

There is also a G ∼= S[U(N)×U(N)]×U(1)R symmetry, under which Z is a singlet while

ϕ transforms as (N, N̄)1, χ as (N, N̄)−1, ϕ̃ as (N̄,N)1 and χ̃ as (N̄,N)−1. The S[U(N)×
U(N)] symmetry descends from the S[U(Nc) × SU(Nf )] gauge and flavour symmetry in

d = 2 + 1 with Nc = Nf = N . This includes the action from the global part of the gauge

group, including the overall U(1)N ⊂ U(Nc) whose charge is counted by the operator

N =
∑

i

ϕ†
iϕi + χ†

iχi +Tr (ϕ̃†
i ϕ̃i + χ̃†

i χ̃i)

Finally, there are two fermionic supercharges, Q and S although, as we describe, only one

of them is associated to a symmetry of (4.14). They descend from q and S in d = 2 + 1

dimensions respectively and are given by

Q = ϕ†
iχi + χ̃iϕ̃

†
i and S = ϕ†

iZ
†χi − χ̃iZ

†ϕ̃†
i

It is clear that S gives rise to the non-linear supersymmetry transformation that we were

looking for, in which the action on the fields depends on the coordinate Z of the vortex.

These operators obey

[L0,Q] = 0 , [L0, S] = −S

Note that the second of these tells us that S is not a symmetry of the theory. The offending

term is the J0 in the final line of (4.14); in the absence of this term S is a symmetry. How-

ever, to describe the vortex dynamics the algebra above is required so that it mimics (2.30).

The anti-commutators of the supercharges give

{Q,Q†} = N , {S, S†} = L0 − J0

which should be compared with (2.29). We also have {Q, S†} = 0, a relation which requires

the use of Gauss’ law (4.15).
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The symmetries described above coincide with those expected of the low-energy dy-

namics of vortices. For this reason, we conjecture that it captures some aspects of the

dynamics. It would be interesting to understand this connection better and, indeed, to

understand the restriction of this type of supersymmetry on the more direct non-linear

sigma-model approach to the dynamics of Jackiw-Pi vortices.

4.4 Open questions

This section has discussed a number of properties of Jackiw-Pi vortices. However, their

full role in the quantum dynamics of anyons remains far from clear. In the absence of any

definitive answers, here we at least try to formulate some definitive questions.

First, a comment. Usually, in relativistic theories, solitons should not be thought of

as objects with fixed particle number. Instead, they are coherent states which involve

sums over different numbers of particles. They are good approximations to the underlying

quantum states when the occupation numbers are large. In the present context of non-

relativistic theories, it is not clear that this interpretation continues to hold. The particle

number is a super-selection sector and the quantum mechanics describing different num-

bers of particles do not talk to each other. For this reason we suggest that, in contrast

to the usual interpretation (one echoed in [2]), the Jackiw-Pi vortices have definite parti-

cle number, as opposed to just an average particle number. They are again trustworthy

approximations to the underlying quantum states when the occupation numbers are large.

Further, Jackiw-Pi vortices do not carry any conserved topological quantum number.

In this sense, there is nothing to distinguish them from the perturbative states. The

following questions are predicated on the assumption that vortices do indeed carry fixed

particle number and provide an alternative way of thinking about the perturbative states

in certain regimes.

• What is the significance of the fact that Jackiw-Pi vortices in the plane first arise at

n = 2|k| when the operator Φ2|k| hits the unitarity bound? In particular, what is the

explicit connection, if any, between these classical field configurations and the local

operator Φ2|k|?

• What are the solutions to the equations (4.10) describing BPS vortices in a harmonic

potential? What is the moduli space? Presumably the vortices are good approxi-

mations to certain states of the quantum mechanics. What are these states? What

properties do they have?

• In section 4.3, we introduced a new class of supersymmetric gauged linear sigma mod-

els, arising from the dimensional reduction of the theory first described in [4]. These

models carry the right symmetries to describe the dynamics of Jackiw-Pi vortices.

What aspects of this dynamics do they reliably capture? What are the constraints

of supersymmetry on non-linear sigma models of this type? Given the vast array of

applications of traditional gauged linear models, are there any further uses of this

new class of supersymmetric quantum mechanics?

We think these are interesting questions.
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A Perturbative analysis

In this appendix, we present a number of one-loop computations in the non-relativistic

Lagrangian (2.1) and related theories. We start by writing down the Feynman rules for

these theories. We subsequently describe the requirements for conformal invariance in

section A.1 and the computation of anomalous dimensions in section A.2.

The Chern-Simons action for the gauge field must be augmented with a gauge fixing

term. Combined, they read8

Lgauge = − k

4π
ǫµνρTr

{

Aµ∂νAρ −
2i

3
AµAνAρ

}

+
1

ξ
Tr

{

(∂aA
a)2

}

In the limit ξ → 0 the gauge fixing term imposes the Coulomb gauge ∂aA
a = 0. We work

in momentum space, with the Fourier transform conventions

Aµ(t, x) =

∫

d3p

(2π)3
Aµ(p) e

−ip0t+ip·x

The momentum space propagator for the gauge field can be expressed as

Dµν(p
0,p) =

iξ

2(p2)2
pµpν −

2π

k
ǫµνap

a

In what follows, we enforce Coulomb gauge by taking the limit ξ → 0. The only non-

vanishing components of the propagator are

D0a(p) =
2π

k

pcǫca
p2

and Da0 = −D0a. They do not depend on the energy p0, but only on the spatial momenta

p. The resulting momentum space Feynman rules are then

0, I a, J = δIJD0a(p)

µ, I ν, J

ρ,K

= − ik

2π
ǫµνρf IJK

8Conventions revisited: the subscripts µ, ν, ρ = 0, 1, 2 run over both space and time indices, while a = 1, 2

runs over spatial indices only. i, j = 1, . . . , Nf labels the flavour and α, β = 1, . . . , Nc colour. The generators

of the gauge group are T I
αβ , with I, J = 1, . . . , N2

c , obeying the Lie algebra [T I , T J ] = ifIJKTK .
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Next we turn to the matter Lagrangian. Here it will prove useful to consider a slightly more

general Lagrangian than (2.1). We retain the general structure of Nf bosons φi and Nf

fermions ψi, each transforming the fundamental representation of U(Nc), now interacting

through the Lagrangian

Lmatter = iφ†
iDtφi + iψ†

iDtψi −
1

2m
|Daφi|2 −

1

2m
|Daψi|2 +

1

2m
ψ†
iBψi −

ν

4
φ†
iφjφ

†
jφi

− ν̃

4
|φi|2 |φj |2 − ν1ψ

†
iφjφ

†
jψi − ν2φ

†
iφjψ

†
jψi − ν̃1ψ

†
iφiφ

†
jψj − ν̃2φ

†
iφiψ

†
jψj

This includes more general interactions and coupling strengths than the supersymmetric

theory (2.1). We can restrict to the supersymmetric theory by choosing ν̃ = ν̃1 = ν̃2 = 0,

together with ν1 = π/mk, ν2 = 2π/mk and ν = 4π/mk.

We can now write down the Feynman rules for the above Lagrangian in momentum

space. A solid line denotes a propagating boson while a dashed line represents a propagating

fermion. Since the dynamics are non-relativistic, there are no anti-particles and no need

to dress the diagrams with arrows. All fields can only propagate forwards in time which,

for us, is left to right. The propagators are

p
i, α j, β = δijδ

α
β G(p)

p
i, α j, β = δijδ

α
β G(p)

with

G(p) =
i

p0 − p2/2m+ iε
(A.1)

The coupling of matter to the photon is described by the following four diagrams

p p′

i, α j, β

I

µ

= δijT
I
αβ Γµ(p+ p′) p p′

i, α j, β

I

µ

= δijT
I
αβ Γµ(p+ p′)

+ δijT
I
αβ Γ̃µ(p− p′)

i, α

I

j, β

J

a, b

= δij

(

T (IT J)
)

αβ
Γab

i, α

I

j, β

J

a, b

= δij

(

T (IT J)
)

αβ
Γab

+ δij

(

T [IT J ]
)

αβ
Γ̃ab

with the interaction strengths given by

Γ0 = Γ̃0 = i , Γab = − i

m
δab , Γ̃ab =

1

m
ǫab

Γa(p+ p′) =
i

2m
(pa + p′a) , Γ̃a(p− p′) =

1

2m
ǫab(p

b + p′ b)
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Finally, the quartic interaction vertices are

j, β

i, α

j′, β′

i′, α′

= Γii′,αα′

jj′,ββ′

j, β

i, α

j′, β′

i′, α′

= Γ̃ii′,αα′

jj′,ββ′

where

iΓii′,αα′

jj′,ββ′ =
ν

2

(

δii
′

δjj
′

δαβ′δβα′ + δij
′

δji
′

δαα′δββ′

)

+
ν̃

2

(

δii
′

δjj
′

δαα′δββ′ + δij
′

δji
′

δαβ′δβα′

)

iΓ̃ii′,αα′

jj′,ββ′ = ν1δ
ii′δjj

′

δαβ′δβα′ + ν2δ
ij′δji

′

δαα′δββ′ + ν̃1δ
ij′δji

′

δαβ′δβα′ + ν̃2δ
ii′δjj

′

δαα′δββ′

In the rest of this appendix, we employ these Feynman rules in a number of one-loop

computations. Before we proceed, note that the only objects depending on the loop energy

p0 are the bosons and fermions running in the loop with propagator (A.1). The integration

over p0 may then be carried out by choosing an appropriate contour. As we shall see, all

relevant diagrams at one loop have either one or two bosons or fermions running in the

loop. The loop energy integral for a single boson or fermion running in the loop is

∫

dp0

2π
G(p) =

1

2
(A.2)

due to a contribution from the pole at p0 = ∞. For diagrams with two fermions or bosons

running in the loop the loop energy integral takes the form

∫

dp0

2π
G(p)G(p1 + p2 − p) =

−im

p2 + p1 · p2 − p · (p1 + p2)− iε
,

where we have used the non-relativistic on-shell relation p2
i = 2mp0i . In the centre of mass

frame p0 = p01 = p02 and we can write p1 = −p2. In this case, we have

∫

dp0

2π
G(p)G(p1 + p2 − p) =

−im

p2 − p2
1 − iε

. (A.3)

In the following section we always choose the centre of mass frame and carry out the loop

energy integral using (A.2) and (A.3).

A.1 Conformal fixed points

Our first goal is to determine the values of the coupling constants for which the theory

is scale invariant at one-loop. This was first done for the Abelian theory in [20] and, for

bosons in the the non-Abelian theory, in [21]. Here we extend these results to include both

bosons and fermions with non-trivial colour and flavour index structures. The upshot of

this analysis is that we will find that the supersymmetric theory (2.1) remains conformal

at one-loop. However, we will also find other fixed points.
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Our strategy is to evaluate the one-loop corrections to the quartic interactions. These

will typically exhibit an ultraviolet divergence which, after renormalisation, induces a scale

into the theory. We require that all such divergences cancel.

〈ψψψ†ψ†〉

We begin the analysis with the 2 → 2 scattering of fermions at one-loop. In the

absence of any bare four-fermi interaction, the one-loop correction must be scale invariant

for the theory to exhibit conformal symmetry. Let the following diagram denote the

one-loop 4-fermion vertex in the centre of mass frame

j, β,−p

i, α,p

j′, β′,−p′

i′, α′,p′

= 〈ψα′

i′ (p
0,p′)ψβ′

j′ (p
0,−p′)ψ†

iα(p
0,p)ψ†

jβ(p
0,−p)〉 .

We will suppress the labels in the diagrams from now on. The contributing diagrams at

one-loop are

= + + + + (A.4)

where we have omitted the diagrams where the outgoing external legs are exchanged.

Accounting for the anti-commuting nature of the fields, such diagrams are related to the

ones above via

j′, β′,−p′

i′, α′,p′

= −

i′, α′,p′

j′, β′,−p′

and similarly for the other diagrams. The box diagram in (A.4) can be expressed as

= δii′δ
j
j′T

I
αγT

I
βκT

J
γα′T J

κβ′

∫

d2q

(2π)2
−im

q2 − p2 − iε
Iboxf (p,q,p′)

where

Iboxf = Γµ
f (p,q)Dµν(p− q)Γν

f (−p,−q) Γρ
f (q,p

′)Dρσ(q− p′)Γσ
f (−q,−p′)

= −(2π)2

m2q2

(

1 + 2i
q× p

(q− p)2

)(

1− 2i
q× p′

(q− p′)2

)

,
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and we have introduced the notation Γµ
f (p,q) = Γµ(p+ q) + Γ̃µ(p− q). The box diagram

is therefore logarithmically divergent. We introduce a UV cut-off Λ, defined as

q2 = 2mΛ

Note that Λ is a cut-off in energy. (This should be borne in mind when comparing to the

results of [3] who use a momentum cut-off.) The leading contribution from this diagram

is then

= δii′δ
j
j′δαα′δββ′

iπ

mk2
log

Λ

µ
+O(1) .

The second and third diagrams in (A.4) yield identical leading contributions

= = δii′δ
j
j′

(

δαα′δββ′ +Nc δαβ′δβα′

) −iπ

4mk2
log

Λ

µ
+O(1) ,

while the last two diagrams evaluate to

= = δii′δ
j
j′

(

δαα′δββ′ −Nc δαβ′δβα′

) −iπ

4mk2
log

Λ

µ
+O(1) .

We learn that the scale-dependent contributions to (A.4) happily cancel each other.

〈φφφ†φ†〉
The analysis of the 2 → 2 scattering of bosons proceeds parallel to the previous case.

There are now extra diagrams contributing to this process at one-loop due to the presence

of the four-point coupling between bosons,

= + + +

+ + + +

(A.5)

Recall that the leading contribution to the fermion box diagram arises from the Γ̃ terms

which are absent here and one can easily check that the first three diagrams are in fact

UV finite. Meanwhile, the last four diagrams yield leading contributions identical to their

fermionic analogue, namely

= = δii′δ
j
j′

(

δαα′δββ′ +Nc δαβ′δβα′

) −iπ

4mk2
log

Λ

µ
+O(1) ,
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= = δii′δ
j
j′

(

δαα′δββ′ −Nc δαβ′δβα′

) −iπ

4mk2
log

Λ

µ
+O(1) .

The only diagram left to compute is the diagram with no internal gauge bosons which can

easily be seen to yield

=

[

(ν2 + ν̃2)
(

δii′δ
j
j′δαα′δββ′ + δij′δ

j
i′δαβ′δβα′

)

+ 2νν̃
(

δii′δ
j
j′δαβ′δβα′ + δij′δ

j
i′δαα′δββ′

)

]

im

16π
log

Λ

µ
+O(1) .

The index structure in the second line cannot be canceled by any other diagram. Scale

invariance then forces either ν or ν̃ to vanish. Setting ν̃ = 0, the leading one-loop contri-

bution (A.5) reads

=
(

δii
′

δjj
′

δαα′δββ′ + δij
′

δji
′

δαβ′δβα′

)

(

imν2

16π
− iπ

mk2

)

log
Λ

µ
+O(1)

where we have included the contribution from the triangle diagrams with the outgoing

external legs exchanged. For the theory to exhibit conformal symmetry at one-loop level

we must set

ν = ± 4π

mk
.

This is in agreement with the result of [20] and [21].

〈φψφ†ψ†〉

We end our study of conformal invariance by looking 2 → 2 scattering between particles

whose spin differs by 1/2. The contributing diagrams at one-loop are

= + + +

+ + + +
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The computation of each of these diagrams is identical to those described above. For this

reason, we present only the final result:

=

{

δii′δ
j
j′δαα′δββ′

(

ν21 + ν22 + ν̃21 + ν̃22 − 2πν1
mk

− 3π2

m2k2

)

+ 2δii′δ
j
j′δαβ′δβα′

(

ν1ν̃2 + ν2ν̃1 −
π

mk
ν̃2

)

+ 2δij′δ
j
i′δαα′δββ′

(

ν1ν̃1 + ν2ν̃2 −
π

mk
ν̃1

)

+ 2δij′δ
j
i′δαβ′δβα′

(

ν1ν2 + ν̃1ν̃2 −
π

mk
ν2

)

}

im

4π
log

Λ

µ
+O(1) ,

For scale invariance, each of these terms must vanish at a fixed point. This results in the

following restrictions on the various coupling constants

ν21 + ν22 + ν̃21 + ν̃22 − 2πν1
mk

=
3π2

m2k2

ν1ν̃2 + ν2ν̃1 −
π

mk
ν̃2 = ν1ν̃1 + ν2ν̃2 −

π

mk
ν̃1 = ν1ν2 + ν̃1ν̃2 −

π

mk
ν2 = 0

These should then be supplemented by the condition from the bosonic sector,

νν̃ = ν2 + ν̃2 − 16π2

m2k2
= 0

We note that the coupling constants of the supersymmetric theory (2.1) solve these equa-

tions.

A.2 Anomalous dimensions

We now turn to the computation of the one-loop anomalous dimension of operators in

the supersymmetric theory (2.1). For the purely bosonic or purely fermionic sector, this

computation was first described by Nishida and Son in [3]. In particular, we show that the

one-loop anomalous dimensions of chiral primary operators O = (Φ†)n and anti-chiral pri-

mary operators Õ = Ψ†∂zΨ
† . . . ∂n−1

z Ψ† saturate the bounds (2.32) and (2.33) respectively.

To compute the anomalous dimension, we follow [3] and introduce a source for the

given operator O. This is depicted by a circle ◦ in the Feynman diagram. In what follows,

we will compute the anomalous dimension of operators involving φ and ψ instead of φ†

and ψ†. Correspondingly, the sources are really sinks, into which the n particles described

by O plunge. These diagrams suffer logarithmic divergences in perturbation theory of the

form α log(Λ/µ) where Λ is the energy cut-off. The anomalous dimension of the operator

O is then given by

γ = +2µ
d

dµ

(

α log
Λ

µ

)

= −2α

For a single-particle operator, such as φ or ψ, there is no renormalisation. Each has

dimension ∆ = 1. An anomalous dimension first arises with n = 2 particles.
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Bosons. We start by considering the two particle bosonic operator φα
i φ

β
j , replete with

its flavour indices i, j = 1, . . . , Nf and colour indices α, β = 1, . . . , Nc. At tree-level, this

has dimension 2. The operator is represented by the following diagram

∼
(

δii′δ
j
j′δαα′δββ′ + δij′δ

j
i′δαβ′δβα′

)

, (A.6)

Here the (i′, α′) and (j′, β′) indices refer to the external legs, while the (i, α) and (j, β)

indices refer to the source itself. The delta-functions are telling us that, quite obviously,

these indices must agree. Including the one-loop corrections, the source becomes

= + +

The first one-loop correction is finite. It does not contribute to the anomalous dimension.

The final diagram suffers a logarithmic divergence. This is what we’re looking for. We

denote the momentum on the external legs as p1 and p2. Using (A.3), this diagram is

given by

=
(

δii′δ
j
j′δαβ′δβα′ + δij′δ

j
i′δαα′δββ′

)

∫

d2q

(2π)2
−2π/k

q2 + p1 · p2 − q · (p1 + p2)− iε

=
(

δii′δ
j
j′δαβ′δβα′ + δij′δ

j
i′δαα′δββ′

)

(

− 1

2k

)

log
Λ

µ
+O(1) .

The index structure of this one-loop diagram contribution differs from the tree level dia-

gram (A.6). This reflects the fact that the operator φα
i φ

β
j sits in a reducible representation

of the U(Nc)× SU(Nf ) gauge and flavour groups. We should instead decompose it as

Osym = φ
(i
(αφ

j)
β) , Oanti−sym = φ

[i
[αφ

j]
β]

with the anomalous dimension γ given by

γsym =
1

k
, γanti−sym = −1

k

The generalisation to multiple bosons is straightforward since the relevant diagrams are

simply pairwise generalisations of the two particle story,

= +
∑

pairs

where we have excluded finite loop diagrams from photon exchange. In particular, for

Nf = 1 flavours of boson in the U(1) theory, we have [3]

γφn =

(

n

2

)

γφ2 =
n(n− 1)

2k
⇒ ∆φn = n+

n(n− 1)

2k

As described in the main text, this coincides with the expected result (3.2) based on the

conformal algebra. This ensures that the result is one-loop exact.
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Fermions. We now turn to fermions. For Nc > 1 or Nf > 1 we can build anti-chiral

operators of the form ψI
i ψ

J
j without resorting to derivatives. This is renormalised at one-

loop by

= +

The loop diagram can be readily computed to be

=
(

δii
′

δjj
′

δαβ′δβα′ − δij
′

δji
′

δαα′δββ′

) 1

2k
log

Λ

µ
+O(1)

This again carries a different index structure from the tree-level diagram. Breaking the

operator into irreducible representations of U(Nc)× SU(Nf ), we have

Õflavour−sym = ψ
(i
[αψ

j)
β] , Õcolour−sym = ψ

[i
(αψ

j]
β)

which have anomalous dimensions

γflavour−sym = +
1

k
, γcolour−sym = −1

k

For multiple fermions, the relevant diagrams again involve a pairwise photon exchange.

In the main text, our primary focus was on the case of Nc = Nf = 1. Here, operators

involving more than one fermion necessarily involve derivatives. We denote a derivative

insertion by a cross × in the diagram. The simplest two-particle operator constructed from

fermions involves a single derivative: ψ∂aψ. Up to one-loop, the relevant diagrams are

= +

To compute the loop contribution, it is useful to define P± = p1 ± p2. The tree level

diagram may then be expressed as

= −iP−
a

The loop diagram is given by

=
2iπ

k

∫

d2q

(2π)2
P+

a − 2qa

q2 − (P
−

2 )2

(

1 +
iq×P−

(q− P−

2 )2

)

The leading contribution from this diagram takes the form

=
1

2k
ǫab(P

−)b log
Λ

µ
+O(1)
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The conformal operators, with well-defined anomalous dimensions, have either holomor-

phic or anti-holomorphic derivative insertions,

γψ∂ψ =
1

k
, γψ∂̄ψ = −1

k

The operator ψ∂̄ψ is a chiral primary operator whose conjugate, the anti-chiral primary

operator ψ†∂ψ†, appeared in the main text. The anomalous dimension computed above

coincides with that expected from the conformal algebra (3.4).

More generally we can consider the operator ∂̄nψ∂̄mψ with n 6= m. For n+m ≥ 3 these

operators suffer polynomial divergence at one-loop which need to be suitably regularized.

Nonetheless, their anomalous dimension may be read off from the logarithmically divergent

term and can be shown to be

γ∂̄nψ∂̄mψ = −1

k

This enables us to compute the anomalous dimension of Õ†
n = ψ∂̄ψ . . . ∂̄n−1ψ, which is

the conjugate of the anti-chiral primary operator discussed in the main text (3.3). At one

loop, the dimension of the operator receives a contribution from each pair ∂̄nψ∂̄mψ. But

since every pair generates the same contribution −1/k the computation of the anomalous

dimension simply reduces to the combinatorial problem of counting all the pairs. The

result is

γÕn
= −n(n− 1)

2k
⇒ ∆Õn

=
n(n+ 1)

2
− n(n− 1)

2k

in agreement with the result from the conformal algebra (3.4). Once again, the dimension

is one-loop exact.
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