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1 Introduction

Particle production in high-energy collisions involving nuclei constitutes a hot topic of

research in Quantum Chromodynamics (QCD) due to both its theoretical and practical

importance. Depending on the size of the relevant scale associated to the production

process, extensions of collinear factorization (see [2] and references therein) for a truly

hard scale, or of k⊥-factorization [3, 4] for a semi-hard scale, are demanded.

The existing calculations for single inclusive particle production in pA collisions —

a situation usually referred to as dilute-dense scattering — result in a k⊥-factorized ex-

pression [5–10] at the lowest order in the coupling constant if the particle is produced

at central rapidity. By contrast, the hybrid factorization [11] is relevant if the particle

is produced at forward rapidity.1 All these calculations rely on: (a) the replacement of

1There exists a large activity on computing and understanding the corresponding next-to-leading cor-

rections in the coupling constant [12–18].
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the target by a large background field; and (b) the use of the eikonal approximation, in

which the constituents of the projectile just experience color rotation upon scattering with

the target through picking a Wilson line at a given transverse point but integrated along

the light-cone direction of propagation of the projectile, for which the target appears as

infinitely Lorentz contracted. The Color Glass Condensate (CGC, see [19] and references

therein) employs both assumptions for resumming high-energy logarithms, but neglects

corrections suppressed by the energy of the collision, a situation parallel to neglecting the

inverse powers of the hard scale in collinear factorization.

In the previous work [1] we developed a systematic method to compute higher order

corrections to the eikonal approximation in the CGC (see related work in the context of

soft gluon resummation for hard scattering amplitudes in [20, 21]). Such next-to-eikonal

contributions, due to the non-zero length of the target or the finiteness of the energy

of the projectile, can be understood as the subleading effects with respect to either the

infinite Lorentz contraction of the target or the infinite Lorentz dilation of the projectile.

The method involves new operators that contain transverse gradients of the background

field in the target, which are thus sensitive to its transverse structure. We applied such

formalism to single-inclusive particle production at central rapidities, recovering the usual

k⊥-factorized formula in pA collisions and obtaining the first next-to-eikonal correction.

For collisions in which no privileged direction exist, the next-to-eikonal correction was

found to vanish identically, thus extending the validity of the usual k⊥-factorized formula.

On the contrary, for collisions in which there is some privileged direction like in the study

of spin asymmetries for a polarized target, it was the next-to-eikonal correction the first

non-vanishing contribution. This resembles the situation in collinear factorisation where

the first power-suppressed contributions become dominant for semi-inclusive production or

polarized collisions, see e.g. [22–28] and references therein.

In the present paper we extend the formalism of [1] to next-to-next-to-eikonal accu-

racy. In section 2 we compute the corresponding retarded gluon propagator that will be

used subsequently to compute particle spectra. In section 3 we calculate both single in-

clusive gluon production cross section and the single transverse spin asymmetry with a

transversely polarized target in pA collisions. Finally we present our conclusions, that we

anticipate here: the computed next-to-next-to-eikonal corrections for the single transverse

spin asymmetry vanish identically, while those for single inclusive gluon cross section are

non-zero and provide the first corrections to the k⊥-factorized expression [5–10]. These

results extend the conclusions extracted in the previous work [1] to higher orders. New

operators appear, whose meaning is discussed and whose rapidity evolution is left for future

studies.2

2 Retarded gluon propagator in background field at next-to-next-to-

eikonal accuracy

In the calculation of high-energy dilute-dense scattering processes, for example within the

CGC formalism, the most important building blocks are the gluon and quark propagators

2Note that the rapidity evolution of these decorated dipole operators may be related to the resummations

recently discussed in the context of jet quenching in refs. [29–32].
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in a strong classical background gluon field representing the dense target. In this paper

we restrict ourselves to the gluon propagator. We choose a frame in which the target is a

highly boosted left-mover, and pick the light-cone gauge, A+
a = 0.

In the limit of large Lorentz boost, one can in principle perform the following approx-

imations to the classical background field Aµa(x):

Aµa(x) ' δµ− A−a (x), (2.1)

Aµa(x) ' Aµa(x+,x), (2.2)

Aµa(x) ∝ δ(x+) . (2.3)

These approximations are together equivalent, at the level of the background field, to the

eikonal approximation [33, 34] usually formulated at the level of the scattering amplitude.

The second and third approximations correspond respectively to infinite time dilation and

infinite length contraction. Corrections to each of the three approximations (2.1)–(2.3)

are suppressed by inverse powers of the Lorentz boost of the target, which correspond to

inverse powers of the total energy at the level of a high-energy scattering amplitude for a

dilute projectile off that background field.

In the present paper, as in ref. [1], we investigate corrections to the eikonal approxima-

tion related only to the violation of the approximation (2.3), i.e. associated with the finite

length of the target. Although the three approximations (2.1)–(2.3) have a priori the same

validity range, it can be justified to relax only the approximation (2.3) in the following

way: (2.3) relates to the length of the target so it clearly gets an A1/3 enhancement for a

large nucleus. On the other hand, relaxing the approximation (2.2) can be identified with

taking into account the width of the projectile which, in the proton-nucleus situation that

we are considering, does not get any nuclear enhancement. Thus, the relaxation of this

approximation can be considered subdominant with respect to that of (2.3). Finally, (2.1)

is linked to (2.2) (but not to (2.3)) through the classical Yang-Mills equations, therefore

it can be argued to behave analogously with respect to the nuclear enhancement. Hence,

we find it justified to focus on the relaxation of (2.3) for the asymmetric projectile-target

situation.

We will not make use of any specific model for the target averages, see also the dis-

cussion for the single spin asymmetries below eq. (3.43). Nevertheless, models that can be

employed for our purposes exist, the most popular one in jet quenching studies probably

being that in [35]. But we would like to stress that our results are by no means restricted

to their use.

Hence, in the rest of the present section, we will study the retarded gluon propagator

GµνR (x, y)ab in the presence of a classical gluon background field

Aµa(x) ≡ δµ− A−a (x+,x) , (2.4)

with an arbitrary x+ and x dependence.

2.1 From gluon to scalar propagator in the background field

In the light-cone gauge, the gluon propagator obeys the constraints

G+ν
R (x, y)ab = Gµ+R (x, y)ab = 0 . (2.5)
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Due to the x− independence of the background field (2.4), it is useful to take the Fourier

transform from x− to k+, and define

GµνR (x, y)ab =

∫
dp+

2π
e−ik

+(x−−y−) 1

2(k++iε)
Gµν
k+

(x; y)ab , (2.6)

using the notation x = (x+,x).

Linearizing the classical Yang-Mills equations around the background field A−a (x+,x),

one can find the Green’s equations obeyed by the background propagator GµνR (x, y)ab.

Using the Fourier representation (2.6), the solution of these Green’s equations can be given

in terms of a retarded scalar propagator in background field, as

Gij
k+

(x; y)ab = δij Gabk+(x; y), (2.7)

G−i
k+

(x; y)ab =
−i

k++iε
∂xi Gabk+(x; y), (2.8)

Gi−
k+

(x; y)ab =
i

k++iε
∂yi Gabk+(x; y), (2.9)

G−−
k+

(x; y)ab =
1

(k++iε)2
∂xi ∂yi Gabk+(x; y)+

2i

k++iε
δab δ(3)(x−y) , (2.10)

where the scalar propagator Gabk+(x; y) is the retarded solution of the Green’s equation[
δab

(
i∂x+ +

∂2x
2(k++iε)

)
+ g
(
A−(x) · T

)ab]
Gbck+(x; y) = i δac δ(3)(x−y) . (2.11)

We refer the reader to ref. [1] for more details on the procedure just described.

The interpretation of the solution (2.7)–(2.10) for the gluon propagator in background

field is the following. Due to the approximations (2.1) and (2.2), interactions with the

background field A−a (x+,x) cannot change the polarization state of a gluon. Hence, the

two physical polarizations of the gluon propagate independently through the medium, each

of them according to the scalar equation (2.11). Then, the additional term with δ(3)(x−y) in

eq. (2.10) accounts for the non-propagating polarization associated with purely Coulombian

interaction.

The scalar Green’s equation (2.11) has a form of a Schrödinger equation in 2+1 dimen-

sions with a matrix potential. Its solution can thus be written as a path integral [36–40].

For our purposes, we need the discretized form of the path integral, which reads

Gabk+(x, y) = lim
N→∞

∫ (N−1∏
n=1

d2zn

)[
N−1∏
n=0

G0,k+(z+n+1, zn+1; z
+
n , zn)

]
Uab

(
x+, y+; {zn}

)
,

(2.12)

with the boundary conditions z0 ≡ y and zN ≡ x, and

z+n = y+ +
n

N
(x+ − y+) . (2.13)

The free scalar propagator appearing in the path integral expression, given in eq. (2.12),

reads

G0,k+(x, y) = θ(x+−y+)

(
−ik+

2π(x+−y+)

)
exp

(
ik+

2(x+−y+)
(x− y)2

)
. (2.14)
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The discretized Wilson line is defined as

Uab(x+, y+, {zn}) = P+

{
N−1∏
n=0

exp

[
ig

(x+−y+)

N

(
A−(z+n , zn) · T

)]}ab
, (2.15)

with P+ denoting path ordering along the x+ direction.

In the expression of observables related to dilute-dense scattering at high energy,

the background propagator appears typically through its transverse Fourier transform∫
d2x e−ik·x Gabk+(x, y). In order to study corrections with respect to the eikonal ap-

proximation (or more precisely, with respect to the shockwave approximation (2.3)) for

the background gluon propagator, we start from that Fourier representation of the back-

ground scalar propagator, and define the corresponding medium modification factor

R̃abk (x+, y+; y) as∫
d2x e−ik·x Gabk+(x, y) = R̃abk (x+, y+; y)

∫
d2x e−ik·x G0,k+(x, y)

= R̃abk (x+, y+; y) θ(x+−y+) e−ik·y e
−i(x+−y+)k2

2k+ . (2.16)

In order to calculate the expansion of R̃abk (x+, y+; y) beyond the eikonal approximation,

it is more convenient in practice to consider the large k+ limit than the limit of large boost

of the target. The two limits are of course equivalent, thanks to the invariance of the whole

scattering process under longitudinal boosts.

There are two ways to define the large k+ limit: either it can be taken at fixed k, or at

fixed k/k+. The former case is relevant for high-energy scattering processes in the Regge

limit, whereas the latter is relevant for hard scattering processes in the Bjorken limit. The

variable k/k+ is related to the deflection angle for the gluon. One considers small angle

scattering in the first case and finite angle scattering in the second, in the large k+ limit.

Both for convenience, and in order to obtain results applicable in each case, we perform

the large k+ expansion of R̃abk (x+, y+; y) in two steps. First, we calculate the k+ expansion

at fixed k/k+ in the section 2.2, and then we re-expand the result for small k/k+ in the

section 2.3.

2.2 Semi-classical expansion for the background propagator

In the large k+ limit at fixed k/k+, the path integral for the gluon propagator becomes

increasingly dominated by the classical trajectory

ẑ(z+) = y + (z+ − y+)
k

k+
. (2.17)

Our method to calculate the expansion of R̃abk (x+, y+; y) in this limit is the following.

First, we take the Fourier transform x 7→ k of the discretized expression (2.12) for the

propagator and change variables in order to write the path integral as an integral over

deviations with respect to the classical path (2.17), making evident the factorization of

the free propagator contribution as in eq. (2.16). Second, we take the continuum limit.

Third, we Taylor-expand insertions of the background field around the classical path, and

perform explicitly the path integration order by order, in order to get the eikonal expansion

at finite angle.

– 5 –
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2.2.1 Discretized form of the scalar medium modification factor

Taking the Fourier transform x 7→ k of eq. (2.12) and relabeling x→ zN , one gets

∫
d2x e−ik·x Gabk+(x, y) = lim

N→∞

∫ ( N∏
n=1

d2zn

)(
−ik+N

2π(x+ − y+)

)N
(2.18)

× e−ik·zN
[
N−1∏
n=0

exp

(
ik+N

2(x+−y+)
(zn+1−zn)2

)]
Uab
(
x+, y+; {zn}

)
,

where z0 ≡ y. The next step is to perform the change of variables zn 7→ un = zn − ẑn,

where ẑn is the discretized version of the classical trajectory, i.e.

ẑn = y + (z+n − y+)
k

k+
. (2.19)

Noting that

(zn+1 − zn)2 =

[
(z+n+1 − z

+
n )

k

k+
+ un+1 − un

]2
=

[
1

N
(x+ − y+)

k

k+
+ un+1 − un

]2
(2.20)

= (un+1 − un)2 +
2

N
(x+ − y+)

k

k+
· (un+1 − un) +

(x+ − y+)2

N2

(
k

k+

)2

,

one finds that

e−ik·zN

[
N−1∏
n=0

exp

(
ik+N

2(x+ − y+)
(zn+1 − zn)2

)]
= e−ik·y−i

(x+−y+)k2

k+
−ik·uN

×

[
N−1∏
n=0

exp

(
ik+N

2(x+ − y+)
(un+1 − un)2

)]
eik·(uN−u0)+i

(x+−y+)k2

2k+

= e−ik·y e−i
(x+−y+)k2

2k+

[
N−1∏
n=0

exp

(
ik+N

2(x+ − y+)
(un+1 − un)2

)]
, (2.21)

because u0 ≡ 0. From the equations (2.16), (2.18) and (2.21), one obtains the discretized

path-integral expression for the medium-modification factor R̃abk (x+, y+; y) as

R̃abk (x+, y+; y) = lim
N→∞

∫ ( N∏
n=1

d2un

){
N−1∏
n=0

G0,k+(z+n+1,un+1; z
+
n ,un)

}

× Uab
(
x+, y+; {ẑn + un}

)
. (2.22)

2.2.2 Continuum limit

Let us remind the Lie product formula which is valid for any square matrices A and B:

eA+B = lim
l→+∞

(
e
A
l · e

B
l

)l
. (2.23)

– 6 –
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For small B, e
B
l = 1+O(B). Thus, for small B, the Lie product formula can be written as

eA+B = lim
l→+∞

{
eA +

l∑
j=1

e
jA
l

(
e
B
l − 1

)
e

(l−j)A
l (2.24)

+
l−1∑
j=1

l−j∑
i=1

e
jA
l

(
e
B
l − 1

)
e
iA
l

(
e
B
l − 1

)
e

(l−j−i)A
l +O(B3)

}
.

In the large l limit, each sum can be written as an integral and one obtains

eA+B = eA +

∫ 1

0
ds esA B e(1−s)A +

∫ 1

0
ds

∫ 1−s

0
du esA B euA B e(1−s−u)A + O(B3).

(2.25)

Introducing the notations

an ≡ (x+−y+) igT · A−(z+n ; ẑn) (2.26)

bn(un) ≡ (x+−y+) igT ·
[
A−(z+n ; ẑn + un)−A−(z+n ; ẑn)

]
, (2.27)

and using eq. (2.25), one can express each elementary gauge link (see eq. (2.15)) of the

discretized Wilson line appearing in eq. (2.22) as

exp

[
(x+−y+)

N
ig T · A−(z+n ; ẑn + un)

]
= e

an+bn(un)
N

= e
an
N +

∫ 1

0
ds es

an
N
bn(un)

N
e(1−s)

an
N (2.28)

+

∫ 1

0
ds

∫ 1−s

0
du es

an
N
bn(un)

N
eu

an
N
bn(un)

N
e(1−s−u)

an
N + O

((
bn(un)

N

)3
)
.

This expansion can be inserted at each discrete step in eq. (2.22).

In order to understand what happens in the continuum limit N → +∞, let us first

consider the case in which only the leading term e
an
N is kept at each step in eq. (2.22),

which we call the contribution 0 to R̃k(x+, y+; y). One has

R̃k(x+, y+; y)

∣∣∣∣
0

= lim
N→∞

∫ ( N∏
n=1

d2un

)
P+

N−1∏
n=0

{
G0,k+(z+n+1,un+1; z

+
n ,un) e

an
N

}

= lim
N→∞

U(x+, y+, {zn})

= U
(
x+, y+; [ẑ(z+)]

)
, (2.29)

using the identity ∫
d2u G0,k+(z+,u; v+,v) = θ(z+−v+) , (2.30)

and defining the Wilson line following the continuous trajectory ẑ(z+) from y+ to x+ as

U(x+, y+, [ẑ(z+)]) ≡ P+ exp

[
ig

∫ x+

y+
dz+ T · A−(z+, ẑ(z+))

]
. (2.31)

– 7 –
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Next, let us consider the contribution 1 to R̃k(x+, y+; y), in which in one discrete step

only the terms subleading with respect to e
an
N in eq. (2.28) are kept, whereas in all the

other steps, only e
an
N is kept. This contribution reads

R̃k(x+, y+; y)

∣∣∣∣
1

= lim
N→∞

∫ ( N∏
n=1

d2un

){
N−1∏
n=0

G0,k+(z+n+1,un+1; z+n ,un)

}

×
N−1∑
p=1

P+

{
N−1∏

n=p+1

e
an
N

} {∫ 1

0

ds es
ap
N
bp(up)

N
e(1−s)

ap
N

+

∫ 1

0

ds

∫ 1−s

0

du es
ap
N
bp(up)

N
eu

ap
N
bp(up)

N
e(1−s−u)

ap
N

+ O

((
bp(up)

N

)3
)}{

p−1∏
n=0

e
an
N

}

= lim
N→∞

N−1∑
p=1

∫
d2up G0,k+(z+p ,up; y+,u0) P+

{
N−1∏
n=0

e
an
N

}{∫ 1

0

ds es
ap
N
bp(up)

N
e−s

ap
N

+

∫ 1

0

ds

∫ 1−s

0

du es
ap
N
bp(up)

N
eu

ap
N
bp(up)

N
e−(s+u)

ap
N + O

((
bp(up)

N

)3
)}

,

(2.32)

using the identity given in eq. (2.30) as well as the relation∫
d2z G0,k+(x; z) G0,k+(z; y) = θ(x+−z+) θ(z+−y+) G0,k+(x; y) . (2.33)

In the continuum limit N → +∞, the sum over p becomes an integration over z+, with

the correspondence

1

N

N−1∑
p=1

7→ 1

x+−y+

∫ x+

y+
dz+ . (2.34)

Hence, the term linear in bp(up)/N in eq. (2.32) gives a finite contribution in the continuum

limit, whereas all the other ones converge to zero. Moreover, one has es
ap
N → 1, and thus

the integration over s becomes trivial. All in all, one gets

R̃k(x+, y+; y)

∣∣∣∣
1

= lim
N→∞

1

N

N−1∑
p=1

∫
d2up G0,k+(z+p ,up; y

+,u0) P+

{
bp(up)

N−1∏
n=0

e
an
N

}

=

∫ x+

y+
dz+1

∫
d2u1 G0,k+(z+1 ,u1; y

+,u0)P+

{
U(x+, y+, [ẑ(z+)]) igT · δA−1 (u1)

}
,

(2.35)

with the notation

δA−n (un) ≡ A−(z+n ; ẑn + un)−A−(z+n ; ẑn) . (2.36)

Here, the P+ means that the decoration igT · δA−1 (u1) has to be inserted into the Wilson

line U (x+, y+; [ẑ(z+)]) at the appropriate place in order to fulfill the x+ ordering. That

notation will be used frequently in the rest of the paper.
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These results generalise easily to the leftover contributions to the medium modification
factor R̃k(x+, y+; y), with only the terms subleading with respect to e

an
N in eq. (2.28) kept

in more than one discrete step, and only e
an
N in the others. Adding all the contributions

together, one obtains in the continuum limit

R̃ab
k (x+, y+; y) = Uab

(
x+, y+; [ẑ(z+)]

)
+

+∞∑
l=1

∫ x+

y+

dz+1

∫ x+

z+
1

dz+2 · · ·
∫ x+

z+
l−1

dz+l

∫  l∏
j=1

d2uj


×

 l∏
j=1

G0,k+(z+j ,uj ; z
+
j−1,uj−1)

P+

{
U
(
x+, y+; [ẑ(z+)]

) l∏
j=1

igT · δA−j (uj)

}
.

(2.37)

2.2.3 Expanding around the classical trajectory

With the expression (2.37), we are now in the position to perform the semi-classical expan-

sion of R̃abk (x+, y+; y) around the straight trajectory ẑ(z+) with a fixed angle associated

with k/k+. The method is the following. First, one rewrites the finite difference δA−j (uj),

defined in eq. (2.36), as a Taylor series in uj every time it appears in eq. (2.37). Second,

one can perform the integration over each of the transverse displacements uj . Upon inte-

gration, each power of uj converts into a power of 1/
√
k+. This method can be pushed to

arbitrary orders in principle, but becomes more and more cumbersome at higher orders.

In the present paper, we limit ourselves to the order 1/k+
2
, corresponding to next-to-next-

to-eikonal accuracy. The details of the calculations are given in appendix A.

For simplicity, let us introduce the following notations:

Bi(z) ≡ igT · ∂yiA−(z+, ẑ(z+)), (2.38)

Bij(z) ≡ igT · ∂yi∂yjA−(z+, ẑ(z+)), (2.39)

Bijl(z) ≡ igT · ∂yi∂yj∂ylA−(z+, ẑ(z+)), (2.40)

Bijlm(z) ≡ igT · ∂yi∂yj∂yl∂ymA−(z+, ẑ(z+)) , (2.41)

where z ≡ (z+, ẑ(z+)).

Collecting the results from eqs. (A.8), (A.11), (A.14) and (A.17) in appendix A, one

finds that the semiclassical expansion of the medium modification factor R̃abk (x+, y+; y)

reads

R̃k(x+, y+; y) = U(x+, y+; [ẑ(z+)]) + i
(x+−y+)

2k+
U{1}(x+, y+; [ẑ(z+)])

−(x+−y+)2

4(k+)2
U{2}(x+, y+; [ẑ(z+)]) +O

((
(x+−y+)

k+
∂2⊥

)3
)
, (2.42)

with the next-to-eikonal term

U{1}(x+, y+; [ẑ(z+)]) = P+ U
(
x+, y+; [ẑ(z+)]

){∫ x+

y+
dz+1

(z+1 −y+)

(x+−y+)
δij Bij(z1)

+2

∫ x+

y+
dz+1

∫ x+

z+1

dz+2
(z+1 −y+)

(x+−y+)
Bi(z2)Bi(z1)

}
, (2.43)
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and the next-to-next-to-eikonal term

U{2}(x+, y+; [ẑ(z+)]) = P+ U
(
x+, y+; [ẑ(z+)]

){1

2

∫ x+

y+
dz+1

(z+1 −y+)2

(x+−y+)2
δijδlm Bijlm(z1)

+ 2

∫ x+

y+
dz+1

∫ x+

z+1

dz+2

[
(z+2 −y+)(z+1 −y+)

(x+−y+)2

(
δjl Bijl(z2)Bi(z1) +

1

2
δijδlm Bij(z2)Blm(z1)

)
+

(z+1 −y+)2

(x+−y+)2

(
Bi(z2) δjl Bijl(z1) + Bij(z2) Bij(z1)

)]
+ 2

∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

[
(z+3 −y+)(z+1 −y+)

(x+−y+)2
δijBij(z3) Bl(z2) Bl(z1)

+ 2
(z+1 −y+)2

(x+−y+)2
Bi(z3) Bj(z2) Bij(z1) +

(z+2 −y+)(z+1 −y+)

(x+−y+)2

(
Bi(z3) δjlBjl(z2) Bi(z1)

+ Bi(z3) Bi(z2) δjlBjl(z1) + 2 Bij(z3) Bi(z2) Bj(z1) + 2 Bi(z3) Bij(z2) Bj(z1)
)]

+ 4

∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

∫ x+

z+3

dz+4

[
(z+3 −y+)(z+1 −y+)

(x+−y+)2
Bi(z4) Bi(z3) Bj(z2) Bj(z1)

+
(z+2 −y+)(z+1 −y+)

(x+−y+)2
Bi(z4) Bj(z3)

(
Bi(z2) Bj(z1) + Bj(z2) Bi(z1)

)]}
. (2.44)

Thanks to longitudinal boost invariance, the expansion (2.42) can be understood either as

a large k+ expansion or as a small x+−y+ expansion. The small parameter (x+−y+)/k+ is

dimensionful, but this is compensated by the appearance of two more transverse derivatives

of the background field at each order in the expansion.

2.3 Small angle expansion for the background propagator

So far, we have performed the large k+ expansion of R̃abk (x+, y+; y) at fixed k/k+, with

the result given in eq. (2.42). This is enough if one is interested in hard processes i.e. in

the Bjorken limit. However, we are mostly interested in processes in the high-energy (or

Regge) limit. Then, we have to re-expand the expression (2.42) in the small deflection

angle limit k/k+ → 0. In eq. (2.42), the quantity k/k+ appears through the trajectory

ẑ(z+) of the (decorated) Wilson lines, defined in eq. (2.17).

The term of zeroth order in eq. (2.42) is just the Wilson line U(x+, y+; [ẑ(z+)]) along

the trajectory ẑ(z+). Its Taylor expansion with respect to k/k+ at second order is straight-

forward to perform, and gives

U
(
x+, y+; [ẑ(z+)]

)
= U(x+, y+; y) + (x+−y+)

ki

k+
U i[0,1](x

+, y+; y)

+
1

2
(x+−y+)2

kikj

(k+)2
U ij[0,2](x

+, y+; y) +O

((
(x+−y+)|k|

k+
∂⊥

)3
)
,

(2.45)

where

U i[0,1](x
+, y+; y) = P+ U(x+, y+; y)

∫ x+

y+
dz+1

(z+1 −y+)

(x+−y+)
Bi(z+1 ,y) , (2.46)
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and3

U ij[0,2](x
+, y+; y) = P+ U(x+, y+; y)

{∫ x+

y+
dz+1

(
z+1 −y+

x+−y+

)2

Bij(z+1 ,y)

+ 2

∫ x+

y+
dz+1

∫ x+

z+1

dz+2
(z+2 −y+)(z+1 −y+)

(x+−y+)2
Bi(z+2 ,y) Bj(z+1 ,y)

}
. (2.47)

In contrast, we need to Taylor-expand U{1}(x+, y+; [ẑ(z+)]) only to first order in

k/k+ since it appears in the first order term in eq. (2.42). According to eq. (2.43),

U{1}(x+, y+; [ẑ(z+)]) also depends on k/k+ only through the trajectory ẑ(z+), which ap-

pears both in the Wilson line itself and in the decorations. Hence, one gets

U{1}(x+, y+; [ẑ(z+)])=P+
{
U(x+, y+; y) + (x+−y+)

kl

k+
U l[0,1](x

+, y+; y)

}
×
{∫ x+

y+
dz+

(z+−y+)

(x+−y+)

[
δij Bij(z+,y) + (z+−y+)

ki

k+
δjl Bijl(z+,y)

]
+ 2

∫ x+

y+
dz+1

∫ z+1

y+
dz+2

(z+2 −y+)

(x+−y+)

[
Bi(z+1 ,y)Bi(z+2 ,y)

+(z+1−y
+)

kj

k+
Bij(z+1 ,y)Bi(z+2 ,y)+(z+2−y

+)
kj

k+
Bi(z+1 ,y)Bij(z+2 ,y)

]}
+O

((
(x+−y+)|k|

k+
∂⊥

)2
)
. (2.48)

Eq. (2.48) can be organised and rewritten as

U{1}(x+, y+; [ẑ(z+)]) = U[1,0](x+, y+; y) +
(x+ − y+) kj

(k+)
U j[1,1](x

+, y+; y)

+O

((
(x+−y+)|k|

k+
∂⊥

)2
)
, (2.49)

where

U[1,0](x+, y+; y) = P+ U(x+, y+; y)

{∫ x+

y+
dz+1

(z+1 −y+)

(x+−y+)
δij Bij(z+1 ,y)

+2

∫ x+

y+
dz+1

∫ z+1

y+
dz+2

(z+2 −y+)

(x+−y+)
Bi(z+1 ,y) Bi(z+2 ,y)

}
(2.50)

3It is important, at this point, to make a clarification on the notation of the decorated Wilson lines.

Here after, each decorated Wilson line appears with a subscript [α, β] where both α and β can take values

from 0 to 2. In this subscript α stands for the order of expansion around the classical trajectory and β

stands for the order of small angle expansion. For example, U i[0,1] is the decorated Wilson line originating

from the zeroth order expansion around the classical trajectory and the first order small angle expansion.

We also would like to emphasise that U i[0,1] and U[1,0] were called U i(1) and U(2) respectively in ref. [1].
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and

U i[1,1](x
+, y+; y) = P+ U(x+, y+; y)

{∫ x+

y+
dz+1

(
z+1 −y+

x+−y+

)2

δjl Bijl(z+1 ,y)

+ 2

∫ x+

y+
dz+1

∫ x+

z+1

dz+2

[(
z+1 −y+

x+−y+

)2

Bj(z+2 ,y) Bij(z+1 ,y)

+
(z+1 −y+)(z+2 −y+)

(x+−y+)2

(
Bij(z+2 ,y) Bj(z+1 ,y)

+
1

2
Bi(z+2 ,y) δjl Bjl(z+1 ,y) +

1

2
δjl Bjl(z+2 ,y) Bi(z+1 ,y)

)]

+ 2

∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

[
(z+3 −y+)(z+1 −y+)

(x+−y+)2
Bi(z+3 ,y) Bj(z+2 ,y) Bj(z+1 ,y)

+
(z+2 −y+)(z+1 −y+)

(x+−y+)2
Bj(z+3 ,y)

(
Bi(z+2 ,y) Bj(z+1 ,y) + Bj(z+2 ,y) Bi(z+1 ,y)

)]}
.

(2.51)

For the last term in eq. (2.42), which is already of next-to-next-to-eikonal order, we can

drop completely the k/k+ dependence, or equivalently make the replacement ẑ(z+) 7→ y.

We thus write

U{2}(x+, y+; [ẑ(z+)]) = U[2,0](x+, y+; y) +O

(
(x+−y+)|k|

k+
∂⊥

)
, (2.52)

where

U[2,0](x+, y+; y) ≡ U{2}(x+, y+; [y]) , (2.53)

which can be read from eq. (2.44).

All in all, after both the semi-classical and the small angle expansions, the medium

modification factor R̃abk (x+, y+; y) for the propagator reads, at next-to-next-to-eikonal ac-

curacy,

R̃k(x+, y+; y) = U(x+, y+; y) +
(x+−y+)ki

k+
U i[0,1](x

+, y+; y)

+ i
(x+−y+)

2k+
U[1,0](x+, y+; y) +

(x+−y+)2kikj

(k+)2
U ij[0,2](x

+, y+; y)

+ i
(x+−y+)2ki

2(k+)2
U i[1,1](x

+, y+; y)− (x+−y+)2

4(k+)2
U[2,0](x+, y+; y)

+O

((
(x+−y+)|k|

k+
∂⊥

)3
)

+O

((
(x+−y+)

k+
∂2⊥

)3
)
, (2.54)

where the various decorated Wilson lines are defined in eqs. (2.46), (2.47), (2.50), (2.51),

and (2.53).
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3 Single inclusive gluon production in pA collisions

The eikonal expansion performed in the previous section at the level of the gluon back-

ground propagator can be applied to single inclusive gluon production in pA collisions at

high energy. This process can be treated in the CGC effective theory assuming that the

gluon is produced at mid-rapidity.

Within the CGC framework, following the same idea developed in section 2, we describe

the highly boosted left-moving nucleus by the background field given in eq. (2.4) with a

finite longitudinal support from x+ = 0 to x+ = L+. The right-moving proton, on the

other hand, is considered to be dilute and described by a classical color current

jµ(x) = δµ−j+a (x) (3.1)

which is localized at x− = 0.

Let us consider a proton-nucleus collision with some impact parameter B, taking the

centre of the nucleus as the reference point for the transverse plane. Then an arbitrary

point x in the transverse plane is at a distance |x−B| from the center of the proton and

at a distance |x| from the center of the nucleus. In this setup, the classical color current

j+(x) is written as

j+a (x) = δ(x−) Uab(x+,−∞; x) ρb(x−B), (3.2)

where ρb is the transverse color charge density inside the proton before the interaction with

the nucleus, and Uab(x+,−∞; x) is the Wilson line implementing the color precession of

these color charges in the background field A−a (x+,x) of the nucleus.

The single inclusive gluon production cross-section for a pA collision is given by

(2π)3 (2k+)
dσ

dk+ d2k
=

∫
d2B

∑
λ phys.

〈〈
|Ma

λ(k,B)|2
〉
p

〉
A

, (3.3)

where λ, a and k = (k+,k) are the polarization, color and momentum of the produced

gluon. At leading order in the coupling g, the gluon production amplitude, Ma
λ, is given

by the LSZ-type reduction formula

Ma
λ(k,B) = εµ∗λ

∫
d4x eik·x �xA

a
µ(x) , (3.4)

where Aaµ(x) is the retarded classical field [41]. Since we are interested in dilute-dense

scattering, the background field A−a (x+,x) that is describing the dense nucleus is O(1/g)

and the color charge current j+a (x) that is describing the dilute proton is O(g). The retarded

classical field Aaµ(x) appearing in the reduction formula contains both the background field

A−a (x+,x) and small perturbations on top of it, generated by the color current j+a (x).

However, since in the light cone gauge A+ = 0 the physical polarization vectors satisfy

ε+∗λ = 0, only the transverse components of the field perturbation due to j+a (x) contributes

to eq. (3.4), which can be written at leading order in g as

Ma
λ(k,B) = εi∗λ lim

x+→+∞
eik
−x+

∫
d2x e−ik·x

∫
d4y Gi−

k+
(x; y)ab j

+
b (y) . (3.5)
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The gluon production amplitude Ma
λ(k,B) can equivalently be written in momentum

space as

Ma
λ(k,B) =

∫
d2q

(2π)2
e−iq·B Mab

λ (k,q) ρ̃b(q) (3.6)

by defining a gluon-nucleus reduced amplitude Mab
λ (k,q), and ρ̃(q) through the Fourier

transform

ρa(y −B) =

∫
d2q

(2π)2
eiq·(y−B) ρ̃a(q) . (3.7)

It is clear from eq. (3.3) and eq. (3.6) that one needs to average over the color charge

densities at equal momenta,
〈
ρ̃a(q)ρ̃b(q)

〉
p
, in the calculation of the single inclusive gluon

production cross-section, due to the integration over the impact parameter B. It has

been shown and discussed in detail in ref. [1] that this correlator is indeed related to the

unintegrated gluon distribution ϕp(q)4 in the projectile via〈
ρ̃a(q)∗ ρ̃b(q)

〉
p

=
δab

N2
c −1

(2π)3

2
q2 ϕp(q) . (3.8)

3.1 Corrections to the eikonal limit at the amplitude level

The gluon-nucleus reduced amplitude Mab
λ (k,q) can be decomposed into three contribu-

tions as

Mab
λ (k,q) =Mab

bef,λ(k,q) +Mab
in,λ(k,q) +Mab

aft,λ(k,q), (3.9)

in which the gluon is radiated by the color current respectively before, during or after

the interaction with the background field A−a (x+,x) . Each contribution can be written

explicitly as

Mab
bef,λ(k,q) = εi∗λ e

ik−L+
i

∫
d2y eiq·y (−2)

qi

q2

∫
d2ze−ik·zGabk+(L+, z; 0,y), (3.10)

Mab
in,λ(k,q) = εi∗λ e

ik−L+
i

∫
d2y eiq·y

1

k+

∫ L+

0
dy+

{
∂yi

[ ∫
d2z e−ik·z Gack+(L+, z; y)

]}

× U cb(y+, 0; y) , (3.11)

Mab
aft,λ(k,q) = εi∗λ e

ik−L+
i

∫
d2y ei(q−k)·y 2

ki

k2
Uab(L+, 0,y) . (3.12)

4Here, we indicate only the dependence of ϕp on the transverse momentum of the gluon, both for

simplicity and by consistency with the fact that our calculation is only a leading order one in the coupling.

On the one hand, due to the boost-invariance of the classical Weizsäcker-Williams gluon field sourced by

the current jµ(x), ϕp(q) does not depend on the k+ of the gluon at this order. On the other hand, when

including radiative corrections, ϕp(q) would acquire dependence on a factorization scale regulating the soft

divergence. In order to resum optimally the small-x leading logs for the projectile, one should then take

for the factorization scale a value related to the k+ of the gluon. This situation is analog to the case of

collinear factorization, where the parton densities acquire a dependence on the hard scale through the choice

of renormalization scale, which is absent in a leading order calculation in the parton model.
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The “aft” contribution to the total gluon-nucleus reduced amplitude does not involve

the background propagator Gabk+(x, y), thus it can be kept as it is written in eq. (3.12). On

the other hand, the “bef” and “in” contributions to the total reduced amplitude involves

the background propagator whose eikonal expansion has been performed in section 2. Thus,

one can use the expanded expression of the background propagator Gabk+(x, y) in eqs.(3.10)

and (3.11) in order to calculate the corrections to the eikonal limit of the “bef” and “in”

contributions to the total gluon-nucleus reduced amplitude.

Let us first consider the “bef” contribution. By using eq. (2.16), Mab
bef,λ(k,q) can be

written in terms of the medium modification factor R̃k(x+, y+; y) can be written as

Mab
bef,λ(k,q) = εi∗λ

∫
d2y ei(q−k)·y (−2)

qi

q2
R̃abk (L+, 0; y) . (3.13)

One can now use the expression of the expanded R̃abk (L+, 0; y) that is given in eq. (2.54)

in eq. (3.13) to write the “bef” contribution to the total gluon-nucleus reduced amplitude

at next-to-next-to-eikonal accuracy as

M
ab
bef,λ(k,q)= i

∫
d2y ei(q−k)·y (−2)

(ε∗λ · q)

q2

{
U(L+, 0; y) +

L+

k+
kj U j[0,1](L

+, 0; y)

+i
L+

2k+
U[1,0](L+, 0; y)+

(
L+

k+

)2

kikj U ij[0,2](L
+, 0; y)+

i

2

(
L+

k+

)2

kj U j[1,1](L
+, 0; y)

− 1

4

(
L+

k+

)2

U[2,0](L+, 0; y)

}ab
. (3.14)

The remaining contribution that involves the background propagator Gabk+(x, y) is the

“in” term M
ab
in,λ(k,q), given in eq. (3.11). Inserting eq. (2.16), into eq. (3.11), one gets

M
ab
in,λ(k,q) = εi∗λ i

∫
d2y e−i(k−q)·y

1

k+

∫ L+

0
dy+ eiy

+k−
[ (
∂yi − iki

)
R̃ack (L+, y+; y)

]
× U cb(y+, 0; y) . (3.15)

The presence of an explicit factor of 1/k+ in eq. (3.15) suggests that it is enough to

keep the terms of O (1) and of O (L+/k+) in the expansion of the medium modification

factor R̃abk (L+, 0; y) in order to get the expression of the M
ab
in,λ(k,q) at next-to-next-to-

eikonal accuracy. Keeping this in mind and using the expanded expression of the medium

modification factor R̃abk (L+, 0; y) given in eq. (2.54), M
ab
in,λ(k,q) can be written as

M
ab
in,λ(k,q)= εi∗λ i

∫
d2y ei(q−k)·y

1

k+

∫ L+

0
dy+ eiy

+k−
(
∂yi − iki

) [
U(L+, y+; y)

+(L+−y+)
kj

k+
U j [0,1](L+, y+; y)+

i

2k+
(L+−y+)U[1,0](L+, y+; y)

]ac
Ucb(y+, 0; y) .

(3.16)

Note that eq. (3.16) contains terms with the transverse derivative acting on both the

usual Wilson line Uab(L+, y+; y) and also on the decorated Wilson lines U j ab[0,1](L
+, y+; y)
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and Uab[1,0](L
+, y+; y). In order to have an explicit and complete expression for the “in”

contribution to the gluon-nucleus reduced amplitude at next-to-next-to-eikonal accuracy,

one should calculate these terms explicitly. Transverse derivative of the usual Wilson

Uab(L+, y+; y) line has been calculated in ref. [1] and the result reads

∂yiUab(L+, y+; y) =

∫ L+

y+
dz+

[
U(L+, z+; y)

(
igT · ∂yiA−(z+,y)

)
U(z+, 0; y)

]ab
. (3.17)

On the other hand, the transverse derivative of the decorated Wilson lines have not ap-

peared at next-to-eikonal accuracy, thus they have not been calculated in [1]. Given the fact

that the decorated Wilson lines are composed of the usual Wilson lines and field insertions

between these usual Wilson lines, it is straightforward to calculate the transverse derivative

of the decorated Wilson lines. When the derivative is acting on the field insertion, it simply

increases the number of derivatives acting on the background field A−(z+,y). When it is

acting on the usual Wilson line, it introduces an extra field insertion as shown in eq. (3.17).

Then, one obtains

∂yiU
j
[0,1](L

+, y+; y) = P+ U(L+, y+; y)

∫ L+

y+
dz+

z+−y+

L+−y+
Bij(z+,y)

+ P+ U(L+, y+; y)

∫ L+

y+
dw+ Bi(w+,y)

∫ L+

y+
dz+

z+−y+

L+−y+
Bj(z+,y) .

(3.18)

Here we only present the transverse derivative of one of the decorated Wilson lines but

the same arguments hold for the other one and it can also be calculated straightforwardly.

All in all, the “in” contribution to the gluon-nucleus reduced amplitude M
ab
in,λ(k,q) at

next-to-next-to-eikonal accuracy can be written as

M
ab
in,λ(k,q) = εi∗λ i

∫
d2y ei(q−k)·y

{
2

ki

k2

(
1− eiL+k−

)
Uab(L+, 0; y)

+
L+

k+
U i ab[0,1](L

+, 0; y) +

(
L+

k+

)2 [
i

4

(
k2δij−2kikj

)
U j(A)(L

+, 0; y)

+
kj

4
U ij(B)(L

+, 0; y) +
i

4
U i(C)(L

+, 0; y)

]ab}
. (3.19)

Here, U j(A)(L
+, 0; y), U ij(B)(L

+, 0; y) and U i(C)(L
+, 0; y) are the new decorated Wilson line

structures that are defined as follows:

U i ab(A) (L+, 0; y) = P+ Uab(L+, 0; y)

∫ L+

0
dz+

(
z+

L+

)2

Bi(z+,y), (3.20)

U ij ab(B) (L+, 0; y) = P+ Uab(L+, 0; y)

{[
δijδlm + δilδjm + δimδjl

] ∫ L+

0
dz+

(
z+

L+

)2

Blm(z+,y)

+ 2
[
δijδlm+δilδjm+δimδjl

] ∫ L+

0
dz+1

∫ L+

z+1

dz+2

(
z+1
L+

)2

Bl(z+2 ,y)Bm(z+1 ,y)

+ 4

∫ L+

0
dz+1

∫ L+

z+1

dz+2
z+1 (z+2 −z

+
1 )

(L+)2
Bj(z+2 ,y) Bi(z+1 ,y)

}
, (3.21)

– 16 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
4

U i ab(C) (L+, 0; y) = P+ Uab(L+, 0; y)

{∫ L+

0
dz+

(
z+

L+

)2

δjl Bijl(z+,y)

+

∫ L+

0
dv+

∫ L+

0
dz+

[
θ(v+−z+)

(
z+

L+

)2

+ θ(z+−v+)
v+

(L+)2
(
2 z+−v+

) ]
× δjl Bjl(z+,y) Bi(v+,y)

+ 2

∫ L+

0
dz+2

∫ z+2

0
dz+1

(
z+1
L+

)2 [
Bij(z+2 ,y)Bj(z+1 ,y) + Bj(z+2 ,y)Bij(z+1 ,y)

]
+ 2

∫ L+

0
dv+
∫ L+

0
dz+2

∫ z+2

0
dz+1

[
θ(v+−z+1 )

(
z+1
L+

)2

+θ(z+1 −v
+)

v+

(L+)2
(
2z+1−v

+
)]

× Bi(v+,y) Bj(z+2 ,y) Bj(z+1 ,y)

}
. (3.22)

Finally, by using eqs. (3.12), (3.14) and (3.19) the total gluon-nucleus reduced ampli-

tude Mab
λ (k; q) at next-next-to-eikonal accuracy can be written as

Mab
λ (k; q) = i εi∗λ

∫
d2y eiy·(q−k)

{
2

(
ki

k2
− qi

q2

)
U(L+, 0; y)

+

(
L+

k+

)[(
δij − 2

qikj

q2

)
U j[0,1](L

+, 0; y)− iq
i

q2
U[1,0](L+, 0; y)

]
+

(
L+

k+

)2[
−2

qi

q2
kjkl U jl[0,2](L

+, 0; y)−iq
ikj

q2
U j[1,1](L

+, 0; y)+
1

2

qi

q2
U[2,0](L+, 0; y)

+
i

4

(
k2δij−2kikj

)
U j(A)(L

+, 0; y)+
kj

4
U ij(B)(L

+, 0; y)+
i

4
U i(C)(L

+, 0; y)

]}ab
.

(3.23)

3.2 Gluon production cross section beyond eikonal accuracy

The single inclusive gluon production cross section is one of the observables that has been

discussed in detailed in ref. [1] at next-to-eikonal accuracy. It has been shown that the

next-to-eikonal corrections vanish for this particular observable and the well known result

— the strict eikonal limit of the k⊥-factorized formula — has been obtained.

We have calculated the gluon-nucleus reduced amplitude Mab
λ (k; q) at next-to-next-

to-eikonal accuracy in the previous section. Here, our aim is to use this result to calculate

the single inclusive gluon production cross section at next-to-next-to-eikonal accuracy.

The single inclusive gluon cross-section, eq. (3.3), can be written in terms of the gluon-

nucleus reduced amplitude Mab
λ (k; q) as

(2π)3 (2k+)
dσ

dk+ d2k
=

∫
d2q

(2π)2

〈
ρ̃c(q)∗ρ̃b(q)

〉
p

∑
λ

〈(
Mac

λ (k,q)
)†Mab

λ (k,q)
〉
A
. (3.24)

By using the relation, given in eq. (3.8), between the correlator of two charge densities

in the projectile
〈
ρ̃c(q)∗ρ̃b(q)

〉
p

and the unintegrated gluon distribution of the projectile
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ϕp(q), the single inclusive gluon cross-section can be written as5

k+
dσ

dk+ d2k
=

∫
d2q

(2π)2
ϕp(q)

q2

4

1

N2
c − 1

∑
λ

〈
Mab

λ (k,q)†Mab
λ (k,q)

〉
A
, (3.25)

where the square of the amplitude can be expanded as

Mab
λ (k,q)†Mab

λ (k,q) = Mab
λ (k,q)†Mab

λ (k,q)
∣∣∣
E

+ Mab
λ (k,q)†Mab

λ (k,q)
∣∣∣
NE

+Mab
λ (k,q)†Mab

λ (k,q)
∣∣∣
NNE

+ · · · , (3.26)

with the terms on the right hand side of eq. (3.26) are being the eikonal terms, next-to-

eikonal terms and next-to-next-to-eikonal terms respectively, and the dots stands for higher

order terms.

By using the expression for the gluon-nucleus reduced amplitude Mab
λ (k,q) given in

eq. (3.23) each contribution to the squared amplitude can be written explicitly. The eikonal

contribution reads

Mab
λ (k,q)†Mab

λ (k,q)
∣∣∣
E

= εi∗λ ε
j
λ

∫
d2y

∫
d2y′ ei(y−y

′)·(q−k)

×4 Ci(k,q) Cj(k,q) tr
[
U†(y′)U(y)

]
. (3.27)

Note that we have dropped the longitudinal coordinate dependence of the Wilson lines for

convenience but one should keep in mind that these Wilson lines run from 0 to L+ in the

x+ direction i.e. U(y) ≡ U(L+, 0; y). We will use this notation for the rest of the paper.

Moreover, we have introduced the shorthand notation Ci(k,q) for the coefficient of the

Wilson lines which is defined as

Ci(k,q) =

(
ki

k2
− qi

q2

)
. (3.28)

Similarly, the next-to-eikonal contribution reads

Mab
λ (k,q)†Mab

λ (k,q)
∣∣∣
NE

= εi∗λ ε
j
λ

∫
d2y

∫
d2y′ ei(y−y

′)·(q−k) 2

(
L+

k+

)
×

[
Cj(k,q) C̃li(k,q) tr

[
U†(y′)U l[0,1](y)

]
+ Ci(k,q) C̃lj(k,q) tr

[
U(y)U l †[0,1](y

′)
]

− i Cj(k,q)
qi

q2
tr
[
U†(y′)U[1,0](y)

]
+ i Ci(k,q)

qj

q2
tr
[
U(y)U†[1,0](y

′)
] ]

, (3.29)

where Ci(k,q) is defined in eq. (3.28) and C̃ij(k,q) is defined as

C̃ij(k,q) =

(
δij − 2 ki

qj

q2

)
. (3.30)

5We keep the λ dependence expilicit.
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Finally, the next-to-next-to-eikonal contribution can be written as

Mab
λ (k,q)†Mab

λ (k,q)
∣∣∣
NNE

= εi∗λ ε
j
λ

∫
d2y

∫
d2y′ ei(y−y

′)·(q−k) 2

(
L+

k+

)2

×

{
Cj(k,q)

[
− 2

qi

q2
klkm tr

[
U†(y′)U lm[0,2](y)

]
− i qi

q2
kl tr

[
U†(y′)U l[1,1](y)

]
+

1

2

qi

q2
tr
[
U†(y′)U[2,0](y)

]
+
i

4
(k2δij − 2kikl) tr

[
U†(y′)U l(A)(y)

]
+

kl

4
tr
[
U†(y′)U il(B)(y)

]
+
i

4
tr
[
U†(y′)U i(C)(y)

] ]

+ Ci(k,q)

[
− 2

qj

q2
klkm tr

[
U(y)U lm †[0,2] (y

′)
]

+ i
qj

q2
kl tr

[
U(y)U l †[1,1](y

′)
]

+
1

2

qj

q2
tr
[
U(y)U†[2,0](y

′)
]
− i

4
(k2δjl − 2kjkl) tr

[
U(y)U l †(A)(y

′)
]

+
kl

4
tr
[
U(y)U jl †(B) (y′)

]
− i

4
tr
[
U(y)U j †(C)(y

′)
] ]

(3.31)

+
1

2

[
C̃li(k,q) C̃mj(k,q) tr

[
U l[0,1](y)Um †[0,1](y

′)
]

+
qi

q2

qj

q2
tr
[
U[1,0](y)U†[1,0](y

′)
]

− iq
i

q2
C̃lj(k,q) tr

[
U[1,0](y)U l †[0,1](y

′)
]
+i

qj

q2
C̃li(k,q) tr

[
U l[0,1](y)U†[1,0](y

′)
]]}

.

The next step is to perform the averaging 〈· · · 〉A over the target fields. Let us introduce

the variables r = y − y′ and b = 1
2(y + y′) and define the usual adjoint dipole

O(r) =

∫
d2b

1

N2
c − 1

〈
tr
[
U
(
b +

r

2

)
U†
(
b− r

2

)]〉
A

=

∫
d2b

1

N2
c − 1

〈
tr
[
U†
(
b +

r

2

)
U
(
b− r

2

)]〉
A

= O(−r) , (3.32)

the adjoint dipoles with one decorated Wilson line U i···j[α,β]

Oi···j[α,β](r) =

∫
d2b

1

N2
c − 1

〈
tr
[
U i···j[α,β]

(
b +

r

2

)
U†
(
b− r

2

)]〉
A

=

∫
d2b

1

N2
c − 1

〈
tr
[
U i···j †[α,β]

(
b +

r

2

)
U
(
b− r

2

)]〉
A
, (3.33)

and analog operators for the case of the decorated Wilson lines U i(A), U
ij
(B) and U i(C). Finally,

let us also define the decorated adjoint dipoles formed from two decorated Wilson lines, as

Oi···j;l···m[α,β];[γ,δ](r) =

∫
d2b

1

N2
c − 1

〈
tr
[
U i···j[α,β]

(
b +

r

2

)
U l···m †[γ,δ]

(
b− r

2

)]〉
A

=

∫
d2b

1

N2
c − 1

〈
tr
[
U i···j †[α,β]

(
b +

r

2

)
U l···m[γ,δ]

(
b− r

2

)]〉
A
. (3.34)
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Here, 〈· · · 〉A stands for the averaging over the target fields. From the cyclicity of the trace

in eq. (3.34), one obtains the identity

Oi···j;l···m[α,β];[γ,δ](r) = Ol···m;i···j
[γ,δ];[α,β](−r) . (3.35)

Now, by using the definitions of the usual and the decorated dipole operators eqs. (3.32),

(3.33) and (3.34), we can write the square of the gluon-nucleus reduced amplitude already

averaged over the target fields separately as eikonal and beyond eikonal contributions. The

eikonal contribution simply reads

1

N2
c − 1

〈
Mab

λ (k,q)†Mab
λ (k,q)

〉∣∣∣∣
E

= εi∗λ ε
j
λ

∫
d2r eir·(q−k) 4 Ci(k,q) Cj(k,q) O(r) . (3.36)

Similarly, the next-to-eikonal contribution can be written as

1

N2
c − 1

〈
Mab

λ (k,q)†Mab
λ (k,q)

〉∣∣∣∣
NE

= εi∗λ ε
j
λ

∫
d2r eir·(q−k) 2

L+

k+

{
Cj(k,q) (3.37)

×
[
C̃li(k,q)Ol[0,1](r)− iq

i

q2
O[1,0](r)

]
+Ci(k,q)

[
C̃lj(k,q)Ol[0,1](−r) + i

qj

q2
O[1,0](−r)

]}
.

Finally, the next-to-next-to-eikonal contribution reads

1

N2
c − 1

〈
Mab

λ (k,q)†Mab
λ (k,q)

〉∣∣∣∣
NNE

= εi∗λ ε
j
λ

∫
d2r eir·(q−k) 2

(
L+

k+

)2

×
{
Cj(k,q)

[
− 2

qi

q2
klkmOlm[0,2](r)− i qi

q2
klOl[1,1](r) +

qi

2q2
O[2,0](r)

+
i

4

(
k2δil − 2kikl

)
Ol(A)(r) +

kl

4
Oil(B)(r) +

i

4
Oi(C)(r)

]
+ Ci(k,q)

[
− 2

qj

q2
klkmOlm[0,2](−r) + i

qj

q2
klOl[1,1](−r) +

qj

2q2
O[2,0](−r)

− i

4

(
k2δjl − 2kjkl

)
Ol(A)(−r) +

kl

4
Ojl(B)(−r)− i

4
Oj(C)(−r)

]
+

1

2

[
C̃li(k,q) C̃mj(k,q) Ol;m[0,1];[0,1](r) +

qi

q2

qj

q2
O[1,0];[1,0](r)

− i qi

q2
C̃lj(k,q) Ol[0,1];[1,0](−r) + i

qj

q2
C̃li(k,q) Ol[0,1];[1,0](r)

]}
. (3.38)

It is possible to further simplify eqs. (3.37) and (3.38) by considering symmetry prop-

erties of the decorated dipole operators. The presence of the gluon background field A−a
and of the projectile current j+a explicitly breaks Lorentz invariance. But for the decorated

dipole operators, which are independent of the projectile current, the averaging 〈· · · 〉A
over the background field partially restores Lorentz symmetry. In particular, it restores

the symmetry under rotations in the transverse plane, around the center of the target.

Hence, the decorated dipole operators should be covariant under such rotations. More

precisely, operators like O[1,0](r) or O[1,0];[1,0](r), which have no transverse indices, should

behave as scalars, whereas operators with one transverse index like Oi[0,1](r) should behave
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as vectors, and the ones with more indices should behave as higher rank tensors. Moreover,

since the b integration has already been taken in eqs. (3.32), (3.33) and (3.34), the decorated

dipole operators depend only on one transverse vector, r. Thus, under the transformation

r → −r (which is a particular rotation in the transverse plane), the decorated dipole

operators with an even number of transverse indices are invariant, whereas the ones with

an odd number of indices flip sign.

By using these symmetry properties the next-to-eikonal, eq. (3.37), and next-to-next-

to-eikonal, eq. (3.38), contributions can be arranged as

1

N2
c − 1

〈
Mab

λ (k,q)†Mab
λ (k,q)

〉∣∣∣∣
NE

= εi∗λ ε
j
λ

∫
d2r eir·(q−k) 2

L+

k+
(3.39)

×
{[
Cj(k,q) C̃li(k,q)− Ci(k,q) C̃lj(k,q)

]
Ol[0,1](r)

− i
[
Cj(k,q)

qi

q2
− Ci(k,q)

qj

q2

]
O[1,0](r)

}
and

1

N2
c − 1

〈
Mab

λ (k,q)†Mab
λ (k,q)

〉∣∣∣∣
NNE

= εi∗λ ε
j
λ

∫
d2r eir·(q−k)

(
L+

k+

)2

×

{[
Cj(k,q)

qi

q2
+ Ci(k,q)

qj

q2

][
− 4 klkmOl,m[0,2](r)− 2iklOl[1,1](r) +O[2,0](r)

]
+
i

2

[
Cj(k,q) (k2δil − 2kikl) + Ci(k,q) (k2δjl − 2kjkl)

]
Ol(A)(r)

+
1

2

[
Cj(k,q) δil + Ci(k,q) δjl

] [
kmOlm(B)(r) + iOl(C)(r)

]
+

[
C̃li(k,q) C̃mj(k,q) Ol;m[0,1];[0,1](r) +

qi

q2

qj

q2
O[1,0];[1,0](r)

]
+i

[
qi

q2
C̃lj(k,q) +

qj

q2
C̃li(k,q)

]
Ol[0,1];[1,0](r)

}
. (3.40)

The final expressions for the next-to-eikonal, eq. (3.39), and next-to-next-to-eikonal,

eq. (3.40) contributions at the squared amplitude level are ready to be substituted to the

aforementioned observables. Before we proceed further, we would like to point out an

important realisation about the transverse momentum structures of the eikonal, next-to-

eikonal and next-to-next-to eikonal terms.

The transverse momentum structure of the strict eikonal and next-to-next-to-eikonal

terms are symmetric under the exchange of i ↔ j unlike the next-to-eikonal terms whose

transverse momentum structure is anti-symmetric under the same exchange. This affects

directly the observables we are interested in.

In the calculation of the single inclusive gluon cross section one should sum over the

gluon polarizations, which leads to ∑
λ

εi∗λ ε
j
λ = δij . (3.41)
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Since the transverse momentum structure of the next-to-eikonal terms are antisymmetric

under the exchange of i ↔ j, this contribution to the single inclusive gluon cross-section

vanishes leading to the following result at next-to-next-to-eikonal accuracy:

k+
dσ

dk+ d2k
=

∫
d2q

(2π)2
ϕp(q)

q2

4

∫
d2r eir·(q−k)

{
4 Ci(k,q) Ci(k,q)O(r)

+

(
L+

k+

)2
[

2
qi

q2
Ci(k,q)

[
− 4 klkmOl,m[0,2](r)− 2iklOl[1,1](r) +O[2,0](r)

]
+ Ci(k,q)

[
i(k2δil − 2kikl)Ol(A)(r) + kmOim(B)(r) + iOi(C)(r)

]
+ C̃li(k,q)

[
C̃mi(k,q) Ol;m[0,1];[0,1](r) + 2i

qi

q2
Ol[0,1];[1,0](r)

]
+

1

q2
O[1,0];[1,0](r)

]}
.

(3.42)

3.3 Single transverse spin asymmetry: polarized target

Another observable that has been discussed in ref. [1] is the single transverse spin asymme-

try (SSA) with a transversely polarized target.6 The SSA for the process p + A↑ → g +X

is defined as

AN =
k+ dσ↑

dk+ d2k
− k+ dσ↓

dk+ d2k

k+ dσ↑

dk+ d2k
+ k+ dσ↓

dk+ d2k

=
k+ dσ↑

dk+ d2k
− k+ dσ↓

dk+ d2k

2k+ dσ
dk+ d2k

, (3.43)

where the denominator corresponds to the unpolarized cross section.

Within the CGC framework, the dependence on the transverse spin vector s should

appear through the probability distribution for the background field that leads to s-

dependent target averaged quantities, i.e. s-dependent standard and decorated adjoint

dipoles. The transverse rotational symmetry around the center of the target still holds for

the s-dependent decorated dipoles. Hence, under the transformation r→ −r and s→ −s,

the decorated dipole operators with even number of transverse indices are invariant and

the ones with odd number of indices flip sign.

Let us stress the following: the contribution that we are considering is not the only

one to SSA that is subleading in energy, others being non-eikonal contributions from the

internal dynamics of the target, or the spin-flip terms of the coupling of the projectile with

the t-channel background gluons - related with approximations (2.1) and (2.2). Our results,

see below, show which of our contributions to SSA do not vanish a priori by symmetry

reasons (rotations in the transverse plane): the next-to-eikonal ones, while the eikonal and

next-to-next-to-eikonal do vanish. But, in order to show explicitly that next-to-eikonal

contributions related with the width of the target are non-vanishing, we should go beyond

the standard target averages used in current CGC calculations to some new kind of averages

that take into account the spin of the target, in order to transfer spin information from the

6In the previous paper [1] we have also studied the helicity asymmetry of the produced gluon which,

due to general invariance arguments, actually vanishes identically for the kind of models (symmetric under

rotations in the transverse plane - around the collision axis) that we consider for making the target averages.
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large x partons to the low x gluons in the target. However, this is still a completely open

problem, see [42, 43].

After summing over the gluon polarization vectors by using eq. (3.41), the strict eikonal

contribution to the numerator of SSA can be written as

k+
(

dσ↑

dk+ d2k
− dσ↓

dk+ d2k

)∣∣∣∣
E

=

∫
d2q

(2π)2
ϕp(q) q2

∫
d2r eir·(q−k)

×Ci(k,q) Ci(k,q) [O(r, s)−O(r,−s)] . (3.44)

Due to transverse rotational symmetry around the center of the target, one gets

O(−r,−s) = O(r, s) . (3.45)

Moreover, eq. (3.32) is valid for each background field before averaging over the target,

thus it can be generalized as

O(−r, s) = O(r, s) . (3.46)

Thus, by using eqs. (3.45) and (3.46), it is clear that the strict eikonal contribution to the

numerator of SSA vanishes.

Similarly, the next-to-eikonal contribution to the numerator of SSA, after summing

over the gluon polarizations, can be written as

k+
(

dσ↑

dk+ d2k
− dσ↓

dk+ d2k

)∣∣∣∣
NE

=
L+

k+

∫
d2q

(2π)2
ϕp(q)

q2

2

∫
d2r eir·(q−k) Ci(k,q)

×
{
C̃ji(k,q)

[
Oj[0,1](r, s)−Oj[0,1](r,−s) +Oj[0,1](−r, s)−Oj[0,1](−r,−s)

]
−i qi

q2

[
O[1,0](r, s)−O[1,0](r,−s)−O[1,0](−r, s) +O[1,0](−r,−s)

]}
. (3.47)

As discussed above, under the transformation r → −r and s → −s, the decorated dipole

operators with even number of transverse indices are invariant and the ones with odd

number of indices flip sign. Thus, we have

Oj[0,1](−r,−s) = −Oj[0,1](r, s), (3.48)

O[1,0](−r,−s) = O[1,0](r, s). (3.49)

Using the definitions of the decorated dipoles and also eqs. (3.48) and (3.49), the next-to-

eikonal contribution to the numerator of SSA reads

k+
(

dσ↑

dk+ d2k
− dσ↓

dk+ d2k

)∣∣∣∣
NE

= 2
L+

k+

∫
d2q

(2π)2
ϕp(q) q2

∫
d2r eir·(q−k)

× Ci(k,q)

{
C̃ji(k,q)Oj[0,1](r, s)− i qi

q2
O[1,0](r, s)

}
. (3.50)
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Finally, the next-to-next-to-eikonal contribution to the numerator of the SSA after sum-

ming over the gluon polarization vectors reads

k+
(

dσ↑

dk+ d2k
− dσ↓

dk+ d2k

)∣∣∣∣
NNE

=

(
L+

k+

)2 ∫
d2q

(2π)2
ϕp(q)

q2

2

∫
d2r eir·(q−k)

×

{
Ci(k,q)

qi

q2

{
− 2klkm

[
Olm[0,2](r, s) +Olm[0,2](−r, s)−Olm[0,2](r,−s)−Olm[0,2](−r,−s)

]
− ikl

[
Ol[1,1](r, s)−Ol[1,1](−r, s)−Ol[1,1](r,−s) +Ol[1,1](−r,−s)

]
+

1

2

[
O[2,0](r, s) +O[2,0](−r, s)−O[2,0](r,−s)−O[2,0](−r,−s)

]}
+ Ci(k,q)

{
i

4

(
k2δil−2kikl

)[
Ol(A)(r, s)−Ol(A)(−r, s)−Ol(A)(r,−s)+Ol(A)(−r,−s)

]
+

kl

4

[
Oil(B)(r, s) +Oil(B)(−r, s)−Oil(B)(r,−s)−Oil(B)(−r,−s)

]
+
i

4

[
Oi(C)(r, s)−Oi(C)(−r, s)−Oi(C)(r,−s) +Oi(C)(−r,−s)

]}
+

1

2
C̃li(k,q)C̃mi(k,q)

[
Ol;m[0,1];[0,1](r, s)−Ol;m[0,1];[0,1](r,−s)

]
+i

qi

q2
C̃li(k,q)

[
Ol[0,1],[1,0](r, s)−Ol[0,1],[1,0](−r, s)−Ol[0,1],[1,0](r,−s)+Ol[0,1],[1,0](−r,−s)

]
+

1

2q2

[
O[1,0];[1,0](r, s)−O[1,0];[1,0](r,−s)

]}
. (3.51)

By using the same symmetry properties for the decorated dipole operators, it is straight-

forward to realize that the next-to-next-to-eikonal contributions to the numerator of SSA

vanish. Thus, the only non-vanishing contribution to this observable is the next-to-

eikonal term.

4 Conclusions

The retarded gluon propagator in a classical background field is one of the most important

building blocks of the high energy dilute-dense scattering processes and also of medium-

induced gluon radiation. Corrections beyond the eikonal approximation for this propagator

were first considered in ref. [1]. The corrections associated with the finite length of the

medium were calculated at next-to-eikonal accuracy, meaning at order O
(
L+

k+
∂2⊥

)
. These

corrections involve new operators referred to as decorated Wilson lines, as they include

insertions of gradients of the background field along the path.

In this paper, we extend our study of finite width effects on the retarded gluon prop-

agator, including next-to-next-to-eikonal corrections that are order
(
L+

k+
∂2⊥

)2
. The new

operators that appear at next-to-next-to-eikonal accuracy are also decorated Wilson lines

but with higher number of insertions of the gradients of the background field or with higher

derivatives.
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The eikonal expansion performed at the level of the gluon background propagator is

then applied to high energy dilute-dense scattering processes within the CGC framework.

Two different observables have been analyzed, in pA collisions at midrapidity, within this

framework: the single inclusive gluon production cross section and the single spin asymme-

try for the transversely polarized target. For the single inclusive gluon cross section, it has

been shown that the next-to-eikonal terms vanish and the first non-vanishing corrections to

the strict eikonal limit that appear at next-to-next-to-eikonal order have been calculated.

On the other hand, for the single spin asymmetry for the transversely polarized target, it

has been shown that both the strict eikonal terms and next-to-next-to-eikonal terms vanish

and the leading contribution to this observable turns out to be the next-to-eikonal terms.

This result shows the analogy between the twist expansion of the hard processes and the

eikonal expansion of the high-energy processes.

The decorated dipole operators appearing in both of the observables at next-to-eikonal

and next-to-next-eikonal accuracy are expected to have rapidity divergences. Therefore,

understanding the low-x evolution of these operators is a complementary extension of the

analysis of the CGC beyond eikonal accuracy. This issue is left for future studies.

The eikonal expansion that is considered in detail in this paper has further applications.

It can be applied to other high energy dilute-dense processes such as DIS and single inclusive

gluon production in the hybrid formalism, or to jet quenching physics. Such applications

are also left for future studies.
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A Details of the semi-classical expansion

In this appendix, we calculate the semi-classical expansion of R̃abk (x+, y+; y) up to order

1/k+
2

starting from the expression (2.37), using the method outlined in section 2.2.3. For

simplicity, we consider separately each term with a given index l from the series represen-

tation (2.37) of R̃abk (x+, y+; y). Note that terms with l > 5 can only give contributions

more suppressed than 1/k+
2

in the k+ → +∞ limit.
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A.1 l = 1 term in eq. (2.37)

The term with l = 1 in eq. (2.37) can be written as∫ x+

y+
dz+

∫
d2u G0,k+(z+,u; y+, 0)

× P+

{
U
(
x+, y+; [z(z+)]

)
ig T ·

[
A−(z+, ẑ(z+) + u)−A−(z+, ẑ(z+))

]}

= P+U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+ ig T ·

∫
d2u G0,k+(z+,u; y+, 0) (A.1)

×
{[

ui∂i +
uiuj

2!
∂i∂j +

uiujul

3!
∂i∂j∂l +

uiujulum

4!
∂i∂j∂l∂m

]
A−(z+, ẑ(z+))

}
.

Note that in this equation, each partial derivative is implicitly with respect to y and they

are acting only on the background field A−. Also note that the free scalar propagator G0,k+
is even in u, so that any odd power of u appearing in the expansion vanishes. Moreover,

due to azimuthal symmetry, we can make the replacements

uiuj 7→ δij

2
u2 , (A.2)

uiujulum 7→ (u2)2

8
(δijδlm + δilδjm + δimδjl) . (A.3)

Thus, the l = 1 term in R̃abk (x+, y+; y) can be written as

R̃abk (x+, y+; y)l=1 = P+ U
(
x+, y+; [ẑ(z+)]

)
ig T ·

∫ x+

y+
dz+ (A.4)

×
{

1

4

[
∂2⊥A−(z+, ẑ(z+))

] ∫
d2u (u2) G0,k+(z+,u; y+, 0)

+
1

64

[
(∂2⊥)2A−(z+, ẑ(z+))

] ∫
d2u (u2)2 G0,k+(z+,u; y+, 0)

}
.

Using the expression (2.14) for the retarded free scalar propagator, it is straightforward to

obtain the following relations:∫
d2u G0,k+(z+,u; y+, 0) (u2) = 2i

(z+ − y+)

k+
, (A.5)∫

d2u G0,k+(z+,u; y+, 0) (u2)2 = −8
(z+ − y+)2

(k+)2
. (A.6)

Then, by using eqs. (A.5) and (A.6), the l = 1 contribution to R̃abk (x+, y+; y) reads

R̃abk (x+, y+; y)l=1 = P+ U
(
x+, y+; [ẑ(z+)]

)
ig T ·

∫ x+

y+
dz+

{
i
(z+ − y+)

2k+

[
∂2⊥A−(z+, ẑ(z+))

]
−(z+ − y+)2

8(k+)2

[
(∂2⊥)2A−(z+, ẑ(z+))

]}
(A.7)
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or, using the notations introduced in eqs. (2.39) and (2.41),

R̃abk (x+, y+; y)l=1 = P+ U
(
x+, y+; [ẑ(z+)]

)
(A.8)

×
∫ x+

y+
dz+1

{
i
(z+1 −y+)

2k+
δij Bij(z1)−

(z+1 −y+)2

8(k+)2
δijδlm Bijlm(z1)

}
.

A.2 l = 2 term in eq. (2.37)

The term with l = 2 in eq. (2.37) reads

R̃abk (x+, y+; y)l=2 =

∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫
d2u1

∫
d2u2 G0,k+(z+2 ,u2; z

+
1 ,u1)

× P+ U
(
x+, y+; [ẑ(z+)]

) [
igT · δA−2 (u2)

][
igT · δA−1 (u1)

]
G0,k+(z+1 ,u1; y

+, 0)

=

∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫
d2u1

∫
d2r G0,k+(z+2 , r; z+1 , 0) (A.9)

× P+ U
(
x+, y+; [ẑ(z+)]

) [
igT · δA−2 (u1 + r)

][
igT · δA−1 (u1)

]
G0,k+(z+1 ,u1; y

+, 0) ,

where r ≡ u2 − u1. Taylor expanding the δA−s with respect to u1 and r, and dropping

the terms vanishing due to azimuthal symmetry, eq. (A.9) becomes

R̃abk (x+, y+; y)l=2

= P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫
d2u1

∫
d2r G0,k+(z+2 , r; z+1 , 0)

× G0,k+(z+1 ,u1; y
+, 0)

{
ui1Bi(z2)u

j
1B

j(z1)+

[
1

6
ui1u

j
1u

l
1+

1

2
rirjul1

]
Bijl(z2)um1 Bm(z1)

+
1

2

[
ui1u

j
1 + rirj

]
Bij(z2)

1

2
ul1u

m
1 Blm(z1) + ui1 Bi(z2)

1

6
uj1u

l
1u

m
1 Bjlm(z1)

}
.

(A.10)

Then, using eqs. (A.2) and (A.3) and integrating over u1 and r by eqs. (2.30), (A.5)

and (A.6), we get

R̃abk (x+, y+; y)l=2 = P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

{
i
(z+1 −y+)

k+
Bi(z2)Bi(z1)

−(z+2 −y+)(z+1 −y+)

2(k+)2

[
δjl Bijl(z2) Bi(z1) +

1

2
δij Bij(z2) δlm Blm(z1)

]
−(z+1 −y+)2

2(k+)2

[
Bi(z2) δjl Bijl(z1) + Bij(z2) Bij(z1)

]}
. (A.11)
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A.3 l = 3 term in eq. (2.37)

For l = 3, one has

R̃abk (x+, y+; y)l=3 = P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

×
∫
d2u1

∫
d2u2

∫
d2u3 G0,k+(z+3 ,u3; z

+
2 ,u2) G0,k+(z+2 ,u2; z

+
1 ,u1)

× G0,k+(z+1 ,u1; y
+, 0) igT · δA−3 (u3) igT · δA−2 (u2) igT · δA−1 (u1)

= P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

×
∫
d2s

∫
d2r

∫
d2u G0,k+(z+3 , s; z+2 , 0) G0,k+(z+2 , r; z+1 , 0) G0,k+(z+1 ,u; y+, 0)

× igT · δA−3 (s + r + u) igT · δA−2 (r + u) igT · δA−1 (u) , (A.12)

where s ≡ u3 − u2, r ≡ u2 − u1 and u ≡ u1. Taylor expanding with respect to s, r and u,

and dropping the terms integrating to zero, one gets

R̃abk (x+, y+; y)l=3 = P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

×
∫
d2s

∫
d2r

∫
d2u G0,k+(z+3 , s; z+2 , 0) G0,k+(z+2 , r; z+1 , 0) G0,k+(z+1 ,u; y+, 0)

×
{

1

2
uiujulum

[
Bij(z3)Bl(z2)Bm(z1) + Bi(z3)Bjl(z2)Bm(z1) + Bi(z3)Bj(z2)Blm(z1)

]
+rirjulum

[
Bil(z3)Bj(z2)+

1

2
Bij(z3)Bl(z2)+

1

2
Bl(z3)Bij(z2)+Bi(z3)Bjl(z2)

]
Bm(z1)

+
1

2
sisjulum Bij(z3) Bl(z2) Bm(z1) +

1

2
rirjulum Bi(z3) Bj(z2) Blm(z1)

}
. (A.13)

Using eqs. (A.2) and (A.3) and integrating over u, r and s by eqs. (2.30), (A.5)

and (A.6), one gets

R̃abk (x+, y+; y)l=3 = P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

×
{
− (z+3 −y+)(z+1 −y+)

2(k+)2
δijBij(z3) Bl(z2) Bl(z1)−

(z+1 −y+)2

(k+)2
Bi(z3) Bj(z2) Bij(z1)

− (z+2 −y+)(z+1 −y+)

2(k+)2

[
Bi(z3) δjlBjl(z2) Bi(z1) + Bi(z3) Bi(z2) δjlBjl(z1)

+ 2 Bij(z3) Bi(z2) Bj(z1) + 2 Bi(z3) Bij(z2) Bj(z1)
]}

.

(A.14)

– 28 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
4

A.4 l = 4 term in eq. (2.37)

Finally, for l = 4, one has

R̃abk (x+, y+; y)l=4 = P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

×
∫ x+

z+2

dz+3

∫ x+

z+3

dz+4

∫
d2u1

∫
d2u2

∫
d2u3

∫
d2u4 G0,k+(z+4 ,u4; z

+
3 ,u3)

× G0,k+(z+3 ,u3; z
+
2 ,u2) G0,k+(z+2 ,u2; z

+
1 ,u1) G0,k+(z+1 ,u1; y

+, 0)

× igT · δA−4 (u4) igT · δA−3 (u3) igT · δA−2 (u2) igT · δA−1 (u1)

= P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

∫ x+

z+3

dz+4

×
∫
d2t

∫
d2s

∫
d2r

∫
d2u G0,k+(z+4 , t; z+3 , 0) G0,k+(z+3 , s; z+2 , 0)

× G0,k+(z+2 , r; z+1 , 0) G0,k+(z+1 ,u; y+, 0) igT · δA−4 (t + s + r + u)

× igT · δA−3 (s + r + u) igT · δA−2 (r + u) igT · δA−1 (u) . (A.15)

Following the same steps as in the previous sections (and introducing t ≡ u4 − u3), one

obtains

R̃abk (x+, y+; y)l=4 = P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

∫ x+

z+3

dz+4

×
∫
d2t

∫
d2s

∫
d2r

∫
d2u G0,k+(z+4 , t; z+3 , 0) G0,k+(z+3 , s; z+2 , 0)

× G0,k+(z+2 , r; z+1 , 0) G0,k+(z+1 ,u; y+, 0) Bi(z4) Bj(z3) Bl(z2) Bm(z1)

×
[
sisjulum + uiujulum + rirjulum + riujrlum + uirjrlum

]
,

(A.16)

and, finally,

R̃abk (x+, y+; y)l=4 = P+ U
(
x+, y+; [ẑ(z+)]

) ∫ x+

y+
dz+1

∫ x+

z+1

dz+2

∫ x+

z+2

dz+3

∫ x+

z+3

dz+4

×
{
− (z+3 −y+)(z+1 −y+)

(k+)2
Bi(z4) Bi(z3) Bj(z2) Bj(z1)

− (z+2 −y+)(z+1 −y+)

(k+)2
Bi(z4) Bj(z3) Bi(z2) Bj(z1)

− (z+2 −y+)(z+1 −y+)

(k+)2
Bi(z4) Bj(z3) Bj(z2) Bi(z1)

}
. (A.17)
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