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1 Introduction and summary

Resolving the black hole microstates which underlie the black hole entropy is a major chal-

lenge of theoretical physics and of string theory in particular. So far, only supersymmetric

black holes have been microscopically counted [1, 2]. Such counting takes place outside

of the gravitational regime. No counting is available directly in the gravitational regime,

which would otherwise allow to resolve the black hole singularity and help detail the prop-

erties of the horizon. We are therefore far from understanding black holes microscopically,

especially out of the supersymmetric regime.

It has been argued that the four-dimensional ungauged N = 8 supergravity is the

simplest theory of quantum gravity [3] due notably to enhanced symmetries [4] and loop

cancellations [5]. A natural place to investigate the microscopic physics of non-extremal

black holes is therefore in such a constrained theory where there is much more control than

for the poorly quantum-controlled Schwarzschild or Kerr black hole of Einstein gravity.
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More generally, black holes in N = 2 supergravity already enjoy some enhanced symmetries

and loop cancellations and also deserve close study. Much work has been concentrated so

far on extremal BPS or non-BPS black holes. In this paper we take one small step in

the characterization of black holes away from extremality by writing down the entropy

formula for the most general black hole of the STU model, a N = 2 supergravity with

cubic prepotential, its extension to N = 8 supergravity and other N = 2 supergravities

with cubic prepotential.

It has been suggested some time ago that non-extremal black holes are in correspon-

dence with a typical state of strings and D-branes with the same charges of the black hole,

with left and right moving excitations [6, 7]. In its most coarsed grained description, the

black hole can be modelled by a single effective string. Its entropy then takes the form

S = 2π
(√

NL +
√
NR

)
(1.1)

where NL,R are the left and right moving excitation levels. While it is hard to make this

correspondence precise, it is puzzling that the entropy of the most general black hole of

the STU model precisely takes the form (1.1) with [8]

NL = F (M,QI , P
I , z∞i ) + ∆(QI , P

I) , (1.2)

NR = F (M,QI , P
I , z∞i )− J2. (1.3)

Here, most ingredients are well understood: QI , P
I are the electromagnetic charges, J is

the angular momentum, M the mass and z∞i are the moduli at infinity. The quantity

∆(QI , P
I) is the Cartan quartic invariant which only depends upon the electromagnetic

charges. The quantity F is another invariant under U-dualities which was left unidentified

in [8, 9]. Its value is however well-understood at extremality for both branches of regular

extremal black holes. The fast rotating extremal black holes admit F = J2 and the slow

rotating extremal black holes admit F = −∆. The entropy then reduces to the two familiar

expressions which are only functions of the quartic invariant and the angular momentum.

Away from extremality, the attractor mechanism does not apply and the entropy becomes

a function of the moduli which is captured by the F-invariant.

In a recent paper [10], Sárosi was able to conveniently write the F-invariant as a

polynomial expression in terms of triality invariants of the STU model. In general, the

F-invariant is not a polynomial in terms of the charges at infinity, as illustrated by explicit

subcases [9]. The strategy used by Sárosi was instead to write the invariant in terms of

scalar charges, which appear as the first subleading term in the asymptotic expansion of

the scalar fields at radial infinity (the leading order being the moduli). The complexity of

the invariant is therefore reduced thanks to these auxiliary variables which absorb most

of the algebraic complexity. We checked independently that the manifest triality invariant

formula proposed in [10] for the STU model matches with the entropy formula written in

parametric form originally derived in [8]. In [10], the F-invariant was however written in

terms of tensors covariant with respect to the SL(6,R) embedding of the triality group.

Here, we will rewrite this invariant in terms of tensors covariant under triality without any

additional embedding. We will then use this invariant to derive the entropy of the generic

black hole of N = 8 supergravity.
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The STU model is a consistent truncation of N = 8 supergravity [11, 12], as reviewed

in [9]. In fact, the generic non-extremal black hole of the STU model can be used as a

seed for the generic non-extremal black hole of N = 8 supergravity upon acting with U-

dualities [13, 14]. Therefore, once the black hole entropy is derived in a triality invariant

form for the STU model, one only needs to understand how to generalize these invariants

to E7(7) invariants. A proposal for such a map was provided in [10]. This proposal rests

on the existence of a matrix R transforming under the adjoint of E7(7) such that when

restricted to the STU duality frame, it obeys Tr(R2) = Tr(R̃2) and Tr(R4) = Tr(R̃4)

where R̃ is the corresponding matrix of the STU model. In the STU model, one readily

obtains that Tr(R̃2) and Tr(R̃4) are independent invariants. Now, this is not the case for

E7(7): mathematicians have shown [15–17] that Tr(R2) and Tr(R4) are not independent

invariants, as we will also cross-check in (3.32). Therefore, the generalization proposed

in [10] lacks one independent invariant and the proposed E7(7) invariant formula cannot

reduce to the invariant formula for the STU model. In this paper we derive the E7(7)

F-invariant formula from first principles using the explicit embedding of the STU model in

N = 8 supergravity, and in accordance with the representation theory for E7(7) [15–17].

Finally, it is interesting to generalize the non-extremal entropy formula to more generic

N = 2 supergravities. In this paper, we will rewrite the invariants in terms of the prepo-

tential formalism in the case of the STU model. This will allow us to propose a conjecture

for the non-extremal black hole entropy of any ungauged N = 2 supergravity without

hypermultiplets with cubic prepotential. We will finally comment on the simpler invariant

formula for quadratic prepotentials.

Our paper is organized as follows. We start by deriving the F-invariant in the STU

model in section 2. After a review of the E7(7) algebra and the embedding of the STU

model in N = 8 supergravity we derive the generalization of the F-invariant to N = 8

supergravity in section 3. Finally, we rewrite the invariant of the STU model in the

prepotential formalism in section 4 and conjecture that the formula holds for more generic

cubic prepotentials. Appendix A describes the most general rotating dyonic black hole

solution to the STU model with all scalar moduli turned on. Appendix B contains some

conventions.

2 STU model and triality

We will follow the conventions of [9]. The STU model is the four-dimensional ungauged

N = 2 supergravity coupled to 3 vector multiplets with cubic prepotential F = −X1X2X3/

X0. This model occurs as a consistent truncation of various supergravity theories. The

bosonic content of the action is the metric, four gauge fields AIµ, I = 1, 2, 3, 4, and three

complex scalar fields zi = xi + iyi = χi + ie−ϕi , i = 1, 2, 3. The U-duality group of this

supergravity is SL(2,R)3 together with the finite group of permutations of three elements.

This group is usually called the triality U-duality group or triality group in short.

In order to define U-duality invariants that are relevant for describing the F-invariant

the first step is to write down covariant tensors in terms of the electromagnetic charges,

scalar moduli and scalar charges which transform naturally under the U-duality group. We
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will do so in section 2.1. We then describe the construction of invariants in section 2.2,

compare them with those of [10] in section 2.3 and conclude with the result for the F-

invariant in section 2.4.

2.1 Covariant tensors

The electromagnetic charges are conveniently organized as the charge tensor γaa′a′′ , with

components1

(γ000, γ111) = (P 4,−Q4) , (γ100, γ011) = (Q1,−P 1) ,

(γ010, γ101) = (Q2,−P 2) , (γ001, γ110) = (Q3,−P 3) , (2.1)

where QI , P I are the electromagnetic charges. If the reader is more familiar with the

symplectic formalism, note that Q0 = −P 4, P 0 = Q4. The charge tensor transforms as

γaa′a′′ 7→ (S1)
b
a (S2)

b′

a′ (S3)
b′′

a′′ γbb′b′′ (2.2)

under SL(2,R)3, where the group elements Si ∈ SL(2,R)i are

Si =

(
ai bi
ci di

)
(with aidi − bici = 1) . (2.3)

The scalar fields parametrize the three coset matrices

Mi =
1

yi

(
1 xi
xi x

2
i + y2i

)
=

(
eϕi χie

ϕi

χie
ϕi e−ϕi + χ2

i e
ϕi

)
. (2.4)

Each such matrix is invariant under the SL(2,R)j group with j 6= i while they transform

under SL(2,R)i as

Mi 7→ ωTi Miωi , (2.5)

where ωi ∈ SL(2,R)i is given by

ωi =

(
di bi
ci ai

)
(with aidi − bici = 1) . (2.6)

Notice that ωi 6= Si. In fact, defining σ =
(
1 0
0 −1

)
, we have

ωi = σ(Si)
−1σ . (2.7)

Since we aim at finding covariant tensors, it is therefore convenient to first define new coset

matrices as

M̃i = σMiσ =
1

yi

(
1 −xi

−xi x
2
i + y2i

)
(2.8)

that transform as

M̃i 7→ (S−1
i )TM̃iS

−1
i . (2.9)

1The charge tensor defined in (6.14) in [9] was incorrect since it does not transform covariantly under

SL(2,R)3 transformations. With the present correction, no other formula of [9] is affected.

– 4 –
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Such a coset matrix is known to admit the asymptotic expansion

M̃i = M̃(0)
i +

M̃(1)
i

r
+O

(
1

r2

)
. (2.10)

Here M̃(0)
i encodes the scalar moduli at infinity z∞i while M̃(1)

i encodes the scalar charges

Σi, Ξi defined as

ϕi = ϕ∞

i +
Σi
r

+O(r−2) , χi = χ∞

i +
Ξi
r

+O(r−2) . (2.11)

We define the dressed scalar charge tensor as

Ri = (M̃(0)
i )−1M̃(1)

i . (2.12)

This tensor is invariant under SL(2,R)j with j 6= i and transforms under SL(2,R)i as

Ri 7→ SiRiS
−1
i . (2.13)

For trivial scalar moduli (asymptotically flat boundary conditions), we have

M̃(0)
i =

(
1 0

0 1

)
, Ri =

(
Σi −Ξi
−Ξi −Σi

)
. (2.14)

Since the SL(2,R)3 transformations have a non-trivial action on the scalar fields, U-dualities

do not preserve trivial scalar moduli and will therefore not preserve the simple form (2.14).

Finally, we also have the invariant tensor for each copy of SL(2,R)i

ε =

(
0 1

−1 0

)
, (2.15)

that satisfies

ΛT εΛ = ΛεΛT = ε (2.16)

for any Λ in SL(2,R).

Let us now summarize our ingredients and their transformation laws under S1 ⊗ S2 ⊗
S3 ∈ SL(2,R)3, in index notation. To avoid notational clutter, we write M̃(0)

i = Mi from

now on. We have the following objects:

• charge tensor γaa′a′′ 7→ (S1)
b
a (S2)

b′

a′ (S3)
b′′

a′′ γbb′b′′ ;

• asymptotic coset tensors (Mi)
ab 7→ (Mi)

cd(S−1
i ) ac (S−1

i ) b
d ;

• dressed scalar charge tensors (Ri)
b
a 7→ (Si)

c
a (Ri)

d
c (S−1

i ) b
d .

We can also use the invariant epsilon tensor εab.

– 5 –
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2.2 Construction of invariants

To build triality invariants, we proceed in two steps.

1. First, we make SL(2,R)3 invariants by contracting all indices, with the constraint

that only indices corresponding to the same SL(2,R) can be contracted together.

2. Second, we implement invariance under permutations of the three SL(2,R) factors by

summing the expression with all others obtained by permuting its different SL(2,R)

internal indices. The result is then automatically invariant under triality. In general

there are 6 terms but symmetries might reduce them to 3 or only 1 term. For example,

from the SL(2,R)3-invariant expression

εabεa
′b′Ma′′b′′

3 γaa′a′′γbb′b′′ (2.17)

we make
(
Mab

1 εa
′b′εa

′′b′′ + εabMa′b′

2 εa
′′b′′ + εabεa

′b′Ma′′b′′

3

)
γaa′a′′γbb′b′′ . (2.18)

There are only three terms because the permutations of two εab tensors give identical terms.

We define the degree as follows: the mass, NUT charge, electromagnetic charges and

scalar charges have degree 1 while the moduli have degree 0. Therefore, Mab
i and εab have

degree 0 while γaa′a′′ and (Ri)
b
a have degree 1. Inspection reveals that the F-invariant

is a homogeneous function of degree 4. Restricting to degree ≤ 4, we find the following

independent invariants:

• Degree 1:

M, N . (2.19)

• Degree 2:

L1 = Mab
1 Ma′b′

2 Ma′′b′′

3 γaa′a′′γbb′b′′ , (2.20)

L2 =
1

3
(TrR2

1 +TrR2
2 +TrR2

3) . (2.21)

• Degree 3:

C1 =
1

3

∑
εacR b

1c ε
a′b′εa

′′b′′γaa′a′′γbb′b′′ , (2.22)

C2 =
1

3

∑
Mac

1 R b
1c M

a′b′

2 Ma′′b′′

3 γaa′a′′γbb′b′′ . (2.23)

• Degree 4:

∆ =
1

32
εacεa

′b′εa
′′b′′εbdεc

′d′εc
′′d′′γaa′a′′γbb′b′′γcc′c′′γdd′d′′ , (2.24)

∆2 =
1

96

∑
Mac

1 εa
′b′εa

′′b′′M bd
1 εc

′d′εc
′′d′′γaa′a′′γbb′b′′γcc′c′′γdd′d′′ , (2.25)

∆3 =
1

96
(TrR4

1 +TrR4
2 +TrR4

3) . (2.26)

Here, each sum is over the three cyclic permutations of the SL(2,R) indices. The familiar

quartic invariant is ∆. Many more invariants can be formulated but we will not classify

them here. This list will be sufficient to express the F-invariant below.

– 6 –
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2.3 Reformulation in a SL(6,R) embedding

In his recent paper [10], Sárosi constructed U-duality invariants using the embedding of the

U-duality group into SL(6,R). The SL(2,R)3 transformations are expressed as S ∈ SL(6,R)

with

S =



S1

S2

S3


 (2.27)

while the 6 permutations of the triality group are represented by block permutation ma-

trices.

One starts from the pair of tensors

(ψ1)aa′a′′ = −γaa′a′′ , (ψ2)aa′a′′ = γ̃aa′a′′ , (2.28)

where γ̃aa′a′′ is obtained from γaa′a′′ by electromagnetic duality:

Q̃I = P I , P̃I = −QI . (2.29)

We denote them as (ψα)aa′a′′ with α = 1, 2. One can then construct from (ψα)aa′a′′ an

antisymmetric SL(6,R)-covariant tensor (Pψα
)ABC (A,B,C = 1, . . . , 6) according to

(Pψα
)a+1,a′+3,a′′+5 = (ψα)aa′a′′ (a, a′, a′′ = 0, 1) . (2.30)

The other components of Pψα
are either obtained from those by antisymmetry or are zero.

It transforms as

(Pψα
)ABC 7→ S A′

A S B′

B S C′

C (Pψα
)A′B′C′ . (2.31)

Finally, one builds the four SL(6,R)-covariant tensors

(Kαβ)
A
B =

1

2!3!
ǫAC1C2C3C4C5(Pψα

)BC1C2
(Pψβ

)C3C4C5
(2.32)

which transform as

Kαβ 7→ (S−1)TKαβS
T . (2.33)

One can also construct a block-diagonal matrix R which contains the three copies of

RT
i where Ri, i = 1, 2, 3, is defined in (2.12). It transforms as

R 7→ (S−1)TRST . (2.34)

Restricting to degree ≤ 4, Sárosi then found a list of independent invariants, which we

relate to the invariants defined in section 2.2 as

• Degree 1:

M, N . (2.35)

• Degree 2:

Tr(K12) = −3L1 , (2.36)

Tr(R2) = 3L2 . (2.37)

– 7 –
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• Degree 3:

Tr(K11R) = 3C1 , (2.38)

Tr(K12R) = −3C2 . (2.39)

• Degree 4:

Tr(K2
11) = −96∆ , (2.40)

Tr(K11K22) = −96∆2 , (2.41)

Tr(R4) = 96∆3 . (2.42)

2.4 The F-invariant

The area over 4G of the outer and inner horizons of the general non-extremal black hole

of the STU model (with NUT charge included for completeness) takes the form

S± = 2π
(√

F +∆±
√
F − J2

)
(2.43)

where the F invariant is given in terms of the auxiliary parameters m,n, ν1, ν2 defined

in [9] as

F =
(m2 + n2)

G2
(−nν1 +mν2)

2. (2.44)

In [10], this formula was matched after extensive and convincing numerical tests to the

following formula written in terms of triality invariants built from the SL(6,R) embedding

of the triality group,

F = M4 +M2N2 +
M2

12
TrK12 −

M

24
Tr(K12R) +

N2

24
Tr(R2)

− N

24
Tr(K11R) +

1

192

(
Tr(K2

11)− Tr(K11K22)−
1

2
(TrR2)2 +Tr(R4)

)
. (2.45)

We checked independently that formulae (2.44) and (2.45) numerically agree for around a

hundred random values of the parameters.

Using this and the dictionary above we obtain the formula for the F-invariant in terms

of triality invariants which are functions of the mass, the NUT charge, the electromagnetic

charges, the moduli and the scalar charges:

F = M4+M2N2−M2

4
L1+

N2

8
L2+

M

8
C2−

N

8
C1+

−∆+∆2 +∆3

2
− 3

128
(L2)

2. (2.46)

One can obviously set the NUT charge to zero, N = 0, to find physical configurations.

It is in principle possible to write the scalar charges in terms of the physical charges (the

mass, the electromagnetic charges and the scalar moduli) but this process is algebraically

complicated. For the example of the Kaluza-Klein black hole, an explicit formula in terms

of the physical charges could be obtained but involved trigonometric functions [9]. For the

four-charge Cvetic-Youm black hole [18], it has been stated in [10] that one encounters

a fifth order polynomial in the inversion algorithm, which therefore cannot be solved by

radicals.

– 8 –



J
H
E
P
0
1
(
2
0
1
6
)
0
9
5

3 N = 8 supergravity and E7(7)

The STU model is a consistent truncation of ungauged N = 8 supergravity [11, 12], as

reviewed in [9]. As we already mentioned, the generic non-extremal black hole of the

STU model can be used as a seed for the generic non-extremal black hole of N = 8

supergravity [13, 14]. We derived the black hole entropy for the STU model in terms of

triality invariants in the previous section. We will now reformulate the black hole entropy

in terms of E7(7) invariants by matching individual invariants in N = 8 supergravity with

their corresponding invariants in the STU U-duality frame. This will give the correct

formula for the most general non-extremal black hole of N = 8 supergravity.

3.1 Preliminary: the e7(7) algebra

Let first us summarize some key features of the e7(7) algebra. We will follow the conventions

of [19].

We parametrize an element of e7(7) by a traceless 8×8 matrix Λij and an antisymmetric

tensor Σijkl (indices go from 1 to 8). It acts in the fundamental representation on a pair

of antisymmetric tensors (Xij , Xij) as

δXij = ΛikX
kj + ΛjkX

ik + ⋆ΣijklXkl ,

δXij = −XkjΛ
k
i −XikΛ

k
j +ΣijklX

kl (3.1)

where we defined ⋆Σijkl = 1
4!ε

ijklmnpqΣmnpq. (Remark: the two tensors Xij and Xij are

different, independent objects.) In matrix form, this is

δ

(
Xij

Xij

)
=

(
2Λ

[i
[kδ

j]
l] ⋆Σijkl

Σijkl −2Λ
[i
[kδ

j]
l]

)(
Xkl

Xkl

)
, (3.2)

and this gives an explicit representation of e7(7) by 56 × 56 matrices. The commutator

[(Λ1,Σ1), (Λ2,Σ2)] = (Λ3,Σ3) of two e7(7) elements is given by

Λ i
3 j = Λ i

1 kΛ
k

2 j −
1

3
⋆ Σiklm1 Σ2klmj − (1 ↔ 2) , (3.3)

Σ3ijkl = 4Λ m
1 [iΣ2jkl]m − (1 ↔ 2) . (3.4)

Writing the generators as

G b
a = (Λ b

a , 0) , (Λ b
a )ij = δiaδ

b
j −

1

8
δab δ

i
j , (3.5)

Gabcd = (0,Σabcd) , (Σabcd)ijkl = δ
[a
i δ

b
jδ
c
kδ
d]
l , (3.6)

we get the commutation relations

[G b
a , G d

c ] = δbcG
d
a − δdaG

b
c , (3.7)

[G b
a , Gcdef ] = 4δ[caG

def ]b +
1

2
δabG

cdef , (3.8)

[Gabcd, Gefgh] =
1

72

(
G

[a
k εbcd]efghk −G

[e
k εfgh]abcdk

)
. (3.9)
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Two subalgebras of interest of e7(7) are

• The manifest sl(8,R) which is generated by G b
a alone;

• The maximal compact subalgebra su(8), generated by transformations with Λij =

−Λji and Σijkl = − ⋆ Σijkl.

The maximal compact subalgebra su(8) can be made manifest via the change of basis

XAB =
1

4
√
2
(Xij + iXij)(Γ

ij)AB , (3.10)

where the 8×8 matrices Γij are the so(8) generators described in appendix B. In this basis,

the e7(7) transformations are given by

δXAB = Λ C
A XCB + Λ C

B XAC +ΣABCDX̄
CD, (3.11)

where X̄AB = (XAB)
∗, Λ B

A is an element of su(8), and ΣABCD is a complex antisymmetric

tensor satisfying the self-duality condition

ΣABCD =
1

24
εABCDEFGHΣ̄

EFGH , Σ̄ABCD = (ΣABCD)
∗. (3.12)

The link between these parameters and (Λi j ,Σijkl) is given in [19]. In this basis, the su(8)

subalgebra is obtained by simply setting ΣABCD = 0, whereas the sl(8,R) subalgebra is

more involved.

3.2 Symplectic and quartic invariants

We can directly identify two invariants:

• the symplectic invariant, which is a quadratic form over two distinct fundamental

representations

XTΩY = XijYij −XijY
ij , (3.13)

where Ω =
( 0 I28×28

−I28×28 0

)
;

• the quartic invariant, which is a quartic form over one fundamental representation

I4(X) = XijXjkX
klXli −

1

4
(XijXij)

2

+
1

96
εijklmnpqXijXklXmnXpq +

1

96
εijklmnpqX

ijXklXmnXpq. (3.14)

Remark: the invariance of the symplectic invariant under e7(7) transformations (3.2) proves

the embedding e7(7) ⊂ sp(56,R).

Since the transformation laws in the SL(8,R) and in SU(8) bases are formally identical,

we can construct invariants in the SU(8) basis by replacing i, j, . . . indices by A,B, . . .
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indices in the previous invariants. Therefore, the two quantities

♦(X) = X̄ABXBCX̄
CDXDA − 1

4
(X̄ABXAB)

2

+
1

96
εABCDEFGHXABXCDXEFXGH +

1

96
εABCDEFGHX̄

ABX̄CDX̄EF X̄GH ,

(3.15)

(X,Y )Ω = X̄ABYAB −XABȲ
AB (3.16)

are E7(7)-invariant. In fact, the invariants constructed in the two bases are proportional

to each other: we have the relations ♦(X) = −I4(X) [20] and XTΩY = −i(X,Y )Ω, as we

checked.

3.3 Construction of additional invariants

The 56 charges of N = 8 supergravity transform in the fundamental representation of

E7(7). Accordingly, we can pack them into the tensor (Xij , X
ij), transforming as

δX = gX (3.17)

under g ∈ e7(7) (we use the 56× 56 matrix notation here). The 70 scalar fields parametrize

the coset E7(7)/SU(8) in the Borel gauge and are therefore contained in a matrix V that

transforms as

δV = kV − Vg (3.18)

under (k, g) ∈ su(8)local × e7(7). The local transformation k is the compensator required to

keep V in the Borel gauge. Under the action of the group, these transformations are

X 7→ GX , (3.19)

V 7→ KVG−1, (3.20)

where K ∈ SU(8), G ∈ E7(7). In particular, the object VX only transforms under SU(8).

From V , we define the usual matrix

M = VTV , (3.21)

which transforms as

M 7→ (G−1)TMG−1. (3.22)

Again, from the asymptotic expansion

M = M(0) +
M(1)

r
+O

(
1

r2

)
, (3.23)

we define the dressed charge matrix

R = (M(0))−1M(1) (3.24)

that transforms in the adjoint representation of E7(7),

R 7→ GRG−1. (3.25)
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In building invariants, we will also make use of Ω, which has the property

GTΩG = Ω (3.26)

for any G in E7(7) ⊂ Sp(56,R).

We can now construct several additional invariants:

• Since both X and RX transform in the fundamental, we can make the following

invariants of order two and three:

XTM(0)X , XTM(0)RX , XTΩRX . (3.27)

• As noted above, VX transforms only under SU(8). Switching to the SU(8) notation

(with indices A,B, . . . ), we can make invariants simply by contracting indices, e.g.

T2 = (VX)AB(VX)
BA

, (3.28)

T4 = (VX)AB(VX)
BC

(VX)CD(VX)
DA

(3.29)

where as before (VX)
AB

=
(
(VX)AB

)∗
. Higher order invariants can also be con-

structed in the same fashion, but we will not need them here. We have the relation

T2 = −XTM(0)X , (3.30)

so we discard T2 from our list of invariants.

• Since R transforms in the adjoint, all traces

Tr(Rk) (3.31)

of powers of R are invariant. These invariants are not all independent; in fact,

those with odd k vanish identically. We checked that TrR2, TrR6 and TrR8 are

independent, while for TrR4 we have the relation

TrR4 =
1

24
(TrR2)2. (3.32)

In fact, it is known by mathematicians [15–17] that the only independent ones are

those with

k = 2, 6, 8, 10, 12, 14 and 18 . (3.33)

This will introduce a subtlety in identifying the E7(7) generalization of the triality

invariant Tr(R4) = 96∆3 (2.42): it will be a non-polynomial expression in TrR2,

TrR6 and TrR8 as we will describe below.
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3.4 Embedding of the STU model

Using the information given in [9] as well as the explicit formulae for dimensional reduction

given in [21], we can get the explicit embedding of the STU model in N = 8 supergravity.

In the paper [21], another parametrization of the Borel subalgebra of e7(7) is used. The

link with our notation is

E j
i = G j

i , Eijk = −12Gijk8, Di = G 8
i , ~H =

7∑

j=1

(
− ~fj + ~g

)
G j
j , (3.34)

where the 7-component vectors ~fj and ~g are given by

~fj =
(
0, . . . , 0︸ ︷︷ ︸
j−1

, (10− j)sj , sj+1, . . . , s7
)
, (3.35)

~g = 3(s1, s2, . . . , s7) , (3.36)

si =

√
2

(10− i)(9− i)
. (3.37)

It can be checked using (3.7) that these identifications correctly reproduce the commutation

relations of [21].

In this notation, the embedding is the following.

• The electromagnetic charges are given by

(X12, X34, X56, X78) = (Q1, Q2, Q3,−Q4) ,

(X12, X34, X56, X78) = (P 1, P 2, P 3,−P 4) , (3.38)

the other Xij , Xij being zero.

• The coset matrix V is

V = exp

[
1

2

3∑

i=1

ϕi~vi · ~H
]
exp

[
− χ1E

127 − χ2E
347 − χ3E

567
]
, (3.39)

where

~v1 =

(
1

2
,

3

2
√
7
,− 1

2
√
21

,− 1

2
√
15

,− 1

2
√
10

,− 1

2
√
6
,
1√
3

)
,

~v2 =

(
− 1

4
,− 3

4
√
7
,

2√
21

,
2√
15

,− 1

2
√
10

,− 1

2
√
6
,
1√
3

)
,

~v3 =

(
− 1

4
,− 3

4
√
7
,−

√
3

2
√
7
,−

√
3

2
√
5
,

1√
10

,
1√
6
,
1√
3

)
, (3.40)

and three orthonormal vectors and we used the identification (3.34) to get the explicit

form of V as a 56× 56 matrix.

– 13 –



J
H
E
P
0
1
(
2
0
1
6
)
0
9
5

We can now compare our E7(7) invariants computed in the STU truncation with those

of the previous sections. We find

• Order two:

L1 = XTM(0)X , (3.41)

L2 =
1

36
Tr(R2) . (3.42)

• Order three:

C1 =
1

3
XTΩRX , (3.43)

C2 =
1

3
XTM(0)RX . (3.44)

• Order four:

∆ = − 1

16
I4(X) , (3.45)

∆2 =
1

96

(
8T4 + 6I4 − (XTM(0)X)2

)
, (3.46)

0 = 217375(∆3)
2 − 28335∆3

(
Tr(R2)

)2 − 5
(
Tr(R2)

)4

+ 253211Tr(R2) Tr(R6)− 2635Tr(R8) . (3.47)

As announced, we find a non-polynomial expression for ∆3,

∆3 =
1

210345

[
5Tr(R2)2 +

√
5
√
53Tr(R2)4 − 283311Tr(R2) Tr(R6) + 2936Tr(R8)

]
.

(3.48)

We checked that only this root of (3.47) correctly reproduces Tr(R4).

3.5 The F-invariant

Using formula (2.46) and the dictionary above, we find the following formula for the F-

invariant in terms of E7(7) invariants:

F = M4 +M2N2 − M2

4
XTM(0)X +

N2

288
Tr(R2) +

M

24
XTM(0)RX − N

24
XTΩRX

+
1

16
I4(X) +

1

24
T4 −

1

192
(XTM(0)X)2 − 1

21034
Tr(R2)2

+
5

21134

√
Tr(R2)4 − (28335−311)Tr(R2) Tr(R6) + (29365−3) Tr(R8) . (3.49)

As was emphasized before, the entropy of the STU black hole will not change under E7(7)

dualities (since the four-dimensional metric is invariant) and the STU black hole is a seed

for the generic N = 8 black hole. Therefore, although (3.49) was derived in the STU

truncation, it is the correct formula for the most general non-extremal black hole of N = 8

supergravity. The entropy of such a black hole takes the form (1.1), where the quartic

invariant ∆ is given by (3.45) and (3.14) and the F-invariant is given by (3.49).2

2Our final formula differs from [10] as discussed in the summary.
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4 N = 2 supergravities and dualities

Let us now turn to the formalism of ungauged four-dimensionalN = 2 supergravity coupled

to nv gauge multiplets without hypermultiplets. The theory admits nv complex scalars zi,

i = 1, . . . , nv, which define a special Kälher manifold. The special geometry of the scalar

manifold is naturally encoded in U(1)× Sp(2nv + 2,R) symplectic sections

V = (XΛ, FΛ) , Λ = 0, . . . , nv , (4.1)

where F (X) is the prepotential (a homogeneous meromorphic function of degree 2) and

FΛ ≡ ∂
∂XΛF . We are mainly interested in cubic prepotentials which have the form

F = −1

6
Cijk

XiXjXk

X0
≡ −N3[X]

X0
(4.2)

where we introduced the cubic norm N3[X]. Here Cijk is completely symmetric. The

nV + 1 complex fields are constrained by ImFΛMXΛX̄M = −1 where FΛM = ∂XΛ∂XMF .

The resolution of the constraints determines the scalar fields zi in a fixed U(1) gauge.

The Kähler potential is then defined up to an arbitrary holomorphic function as K =

− log(−iN [z − z̄]). The STU model admits nv = 3 gauge multiplets and the prepotential

F (X) = −X1X2X3/X0. The scalar fields are then defined as zi = Xi/X0. In the following,

we will keep the cubic prepotential arbitary. We will also comment at the end of the section

on the F-invariant expression for quadratic prepotentials.

4.1 Covariant tensors

In N = 2 formalism, the charges belong to a symplectic vector

Γ =

(
P̃Λ

Q̃Λ

)
, (4.3)

with Λ = 0, . . . nv. The charge vector transforms under an element g ∈ Sp(2nv + 2,R) as

Γ 7→ gΓ (4.4)

where

gTΩg = Ω , Ω =

(
0 I(nv+1)×(nv+1)

−I(nv+1)×(nv+1) 0

)
. (4.5)

For the case of the STU model and in the notations of the previous section, the tilded

charges are related to the untilded charges by the relations [9]

P̃0 = P 4, P̃i = −Qi , Q̃0 = Q4 , Q̃i = P i (i = 1, 2, 3) . (4.6)

These relations are also consistent with (2.29). The transformation (2.2) of the charges

defines a matrix g ∈ Sp(8,R), which realizes the group embedding SL(2,R)3 ⊂ Sp(8,R).

The standard definitions of central charge and Kähler metric are

Z[z, z̄, P̃ , Q̃] = e
K

2 V ΩΓ , gij̄ [z, z̄] = ∂i∂j̄K(z, z̄) . (4.7)
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We also define the Kälher derivative of the central charge as Zi = DiZ ≡
(
∂zi +

1
2∂ziK

)
Z.

We can already define the following invariants [22]:

i1 = ZZ̄ , i2 = gij̄ZiZ̄j̄ , (4.8)

i3 = Re
(
ZN3[Z̄]

)
, i4 = − Im

(
ZN3[Z̄]

)
, (4.9)

i5 = gīiCijkCīj̄k̄Z
jZkZ̄ j̄Z̄ k̄. (4.10)

The last three invariants are only defined for cubic prepotentials while the first two are

defined for arbitrary prepotentials. The quartic invariant is given by

16∆ = (i1 − i2)
2 + 4i4 − i5 . (4.11)

It is independent of the scalar fields. At leading order in the radial asymptotic expansion,

the scalar fields take their moduli values and therefore i1, i2 and i3, i4 at radial infinity,

which we denote as i∞1 , i∞2 and i∞3 , i∞4 provide independent invariants.

Let us now define other invariants. In general, the period matrix is defined from the

scalars as

NΛM = F̄ΛM + 2i
FΛNX

NFMΞX
Ξ

XOFOΠXΠ
(4.12)

where FΛM = ∂XΛ∂XMF . Then, the 2(nv + 1)× 2(nv + 1) matrix

N̂ =

(
ImN +ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN (ImN )−1

)
(4.13)

transforms as

N̂ 7→ (g−1)T N̂ g−1. (4.14)

In the example of the STU model, we find the following 4× 4 complex matrix after fixing

the U(1) gauge to X0 = 1,

N =




−2x1x2x3 − iy1y2y3

(
1 +

∑3
i=1

x2i
y2i

)
x2x3 + ix1y2y3y1

x1x3 + ix2y1y3y2
x1x2 + ix3y1y2y3

x2x3 + ix1y2y3y1
−iy2y3y1

−x3 −x2

x1x3 + ix2y1y3y2
−x3 −iy1y3y2

−x1

x1x2 + ix3y1y2y3
−x2 −x1 −iy1y2y3




.

(4.15)

We assume the radial asymptotic expansion

N̂ = N̂ (0) +
N̂ (1)

r
+O

(
1

r2

)
, (4.16)

which is clearly correct for the STU model. It is then natural to define the matrix

R̂ = (N̂ (0))−1N̂ (1), (4.17)

that transforms as

R̂ 7→ gR̂g−1. (4.18)
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One usually defines the 2(nv + 1)× 2(nv + 1) matrix

F̂ =

(
ImF +ReF(ImF)−1ReF −ReF(ImF)−1

−(ImF)−1ReF (ImF)−1

)
, (4.19)

where F = (FΛM ). It also transforms as

F̂ 7→ (g−1)T F̂g−1. (4.20)

We will use this quantity in the case of quadratic prepotentials.

4.2 Construction of invariants

The list of relevant invariants for generic cubic N = 2 supergravities is given by

• Degree 1:

M, N . (4.21)

• Degree 2:

ΓT N̂ (0)Γ = 2(i∞1 + i∞2 ) , Tr(R̂2) . (4.22)

• Degree 3:

ΓTΩR̂Γ , ΓT N̂ (0)R̂Γ . (4.23)

• Degree 4:

∆ , i∞4 , Tr(R̂4) . (4.24)

In the case of the STU model, it is straightforward to check that these invariants relate to

the ones defined in section 2.2 as

• Degree 2:

L1 = −ΓT N̂ (0)Γ = −2(i∞1 + i∞2 ) , (4.25)

L2 =
1

12
Tr(R̂2) . (4.26)

• Degree 3:

C1 =
1

3
ΓTΩR̂Γ , (4.27)

C2 =
1

3
ΓT N̂ (0)R̂Γ . (4.28)

• Degree 4:

∆2 =
1

3
(∆− i∞4 ) +

1

96
(ΓT N̂ (0)Γ)2, (4.29)

32∆3 = − 1

24
Tr(R̂4) +

1

64
Tr(R̂2)2. (4.30)
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4.3 The F-invariant

Given the dictionary above, one can reexpress the formula for the F-invariant given in (2.46)

in terms of invariants specific to N = 2 supergravities with cubic prepotential as follows

F = M4 +M2N2 +
1

4
M2ΓT N̂ (0)Γ +

1

96
N2Tr(R̂2) +

1

24
MΓT N̂ (0)R̂Γ− 1

24
NΓTΩR̂Γ

− 1

192

(
64∆ + 32i∞4 +

1

8
Tr(R̂4)− (ΓT N̂ (0)Γ)2 − 1

64
Tr(R̂2)2

)
. (4.31)

Since this formula makes sense for arbitrary cubic prepotential, it is a natural ansatz for

the F-invariant in the generic case. However, this would need to be checked with explicit

non-extremal black hole solutions different than STU black holes, see e.g. [23].

Let us finally comment on quadratic prepotentials. We will only discuss the case of

the CP
n
model with prepotential

F = − i

4
ηΛΣX

ΛXΣ, ηΛΣ = diag(+− · · · −) . (4.32)

A general class of non-extremal dyonic rotating black holes with moduli without NUT

charge for this model was found in [24]. It was noted there that the black hole entropy S+

and the fake “inner horizon entropy” S−, defined as the area of the inner horizon divided

by 4G, can be written as

S± = π
(√

N̂R ±
√
N̂L

)2
, N̂R,L = M2 − 1

2

(
|Z∞|2 + |DiZ∞|2

)
±
√
∆̂ + J2 (4.33)

where ∆̂ = 1
4(|Z∞|2 − |DiZ∞|2)2 is a square of quadratic invariants and J the angular

momentum. Here, one might substitute |Z∞|2 + |DiZ∞|2 = i∞1 + i∞2 = 1
2Γ

T N̂ (0)Γ and

∆̂ = 1
4(i

∞
1 − i∞2 )2 using (4.8) and (4.25). We also observe that ∆̂ = 1

16(Γ
T F̂ (0)Γ)2 where

F̂ (0) is defined as the leading term in the radial expansion of F̂ defined in (4.19). Now we

simply note that these formulas can also be written in the Cardy form

S± = 2π
(√

NL ±
√
NR

)
, NL = F + ∆̂ , NR = F − J2, (4.34)

where the F-invariant takes the manifestly duality invariant form

F =

(
M2 − 1

4
ΓT N̂ (0)Γ

)2

− ∆̂ . (4.35)

It is natural to expect that other quadratic models will admit the same entropy formula.

A General non-extremal black hole with moduli

Non-trivial scalar moduli at infinity are generated by the SL(2,R)3 transformations

Si =

(
e−ϕ

∞
i /2 χ∞

i eϕ
∞
i /2

0 eϕ
∞
i /2

)
, (A.1)
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which act on the scalars as

ϕi 7→ ϕi + ϕ∞

i , χi 7→ χie
−ϕ∞

i + χ∞

i . (A.2)

The action on the charges is given by

(
P I

−QI

)
7→ S

(
P I

−QI

)
, (A.3)

where S is the moduli-dependent 8× 8 symplectic matrix S = e−(ϕ∞
1
+ϕ∞

2
+ϕ∞

3
)/2

T,

T =




eϕ
∞
1 0 0 −λ2λ3e

ϕ∞
1 0 −λ3e

ϕ∞
1 −λ2e

ϕ∞
1 0

0 eϕ
∞
2 0 −λ1λ3e

ϕ∞
2 −λ3e

ϕ∞
2 0 −λ1e

ϕ∞
2 0

0 0 eϕ
∞
3 −λ1λ2e

ϕ∞
3 −λ2e

ϕ∞
3 −λ3e

ϕ∞
3 0 0

0 0 0 eϕ
∞
1
+ϕ∞

2
+ϕ∞

3 0 0 0 0

0 0 0 λ1e
ϕ∞
2
+ϕ∞

3 eϕ
∞
2
+ϕ∞

3 0 0 0

0 0 0 λ2e
ϕ∞
1
+ϕ∞

3 0 eϕ
∞
1
+ϕ∞

3 0 0

0 0 0 λ3e
ϕ∞
1
+ϕ∞

2 0 0 eϕ
∞
1
+ϕ∞

2 0

λ1 λ2 λ3 −λ1λ2λ3 −λ2λ3 −λ1λ3 −λ1λ2 1




(A.4)

and λi = χ∞
i eϕ

∞
i .

This can be used to generalize the non-extremal black hole solution of [9] to non-trivial

scalar moduli at infinity. Defining the barred quantities to be those of [9], the generalized

solution is3

ds2 = ds2 , (A.5)

ϕi = ϕi + ϕ∞

i , (A.6)

χi = e−ϕ
∞
i χi + χ∞

i , (A.7)
(
AI

ÃI

)
= S

(
A
I

Ã I

)
. (A.8)

It depends upon 17 parameters: the mass parameter m, the NUT parameter n, the rotation

parameter a, the 8 charging parameters δI and γI , and the 6 moduli parameters ϕ∞
i and χ∞

i .

These parameters can in principle be traded for the physical charges, but it is algebraically

very complicated in general.

3In the so(4, 4) formalism of [9], this corresponds to acting on the 3d coset matrix of the solution with

trivial moduli with

gmod = exp

(

1

2
ϕ

∞

1 H1 +
1

2
ϕ

∞

2 H2 +
1

2
ϕ

∞

3 H3

)

exp(−χ
∞

1 E1 − χ
∞

2 E2 − χ
∞

3 E3) ,

where Hi, Ei are the so(4, 4) generators defined in [9].
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B so(8) generators Γij

The matrices Γij (i, j = 1, . . . , 8) that we used to change basis from sl(8) to su(8) in the

e7(7) algebra are given by

Γij = γ[iγj],

Γi8 = −γi (Γ8i = γi) , (B.1)

(i, j = 1, . . . , 7), and the γi are so(7) gamma matrices satisfying

{γi, γj} = −2δijI8×8 . (B.2)

It follows from this definition and the Clifford algebra of the γi that the Σij = −1
2Γ

ij satisfy

the so(8) commutation relations

[
Σij ,Σkl

]
= δilΣjk + δjkΣil − δikΣjl − δjlΣik. (B.3)

For explicit computations, we used the real antisymmetric representation

γ1 = −iσ3 ⊗ σ2 ⊗ σ1 ,

γ2 = iσ3 ⊗ σ2 ⊗ σ3 ,

γ3 = −iσ3 ⊗ I2×2 ⊗ σ2 ,

γ4 = −iσ1 ⊗ σ1 ⊗ σ2 ,

γ5 = −iσ1 ⊗ σ2 ⊗ I2×2 ,

γ6 = iσ1 ⊗ σ3 ⊗ σ2 ,

γ7 = iσ2 ⊗ I2×2 ⊗ I2×2 (B.4)

where the σi are the standard Pauli matrices.
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[18] M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory,

Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].

[19] E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].

[20] M. Günaydin, K. Koepsell and H. Nicolai, Conformal and quasiconformal realizations of

exceptional Lie groups, Commun. Math. Phys. 221 (2001) 57 [hep-th/0008063] [INSPIRE].

– 21 –

http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://inspirehep.net/search?p=find+EPRINT+hep-th/9601029
http://dx.doi.org/10.1088/1126-6708/1997/12/002
http://arxiv.org/abs/hep-th/9711053
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711053
http://dx.doi.org/10.1007/JHEP09(2010)016
http://arxiv.org/abs/0808.1446
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1446
http://dx.doi.org/10.1016/0370-2693(78)90303-9
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B80,48"
http://dx.doi.org/10.1103/PhysRevLett.103.081301
http://arxiv.org/abs/0905.2326
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2326
http://arxiv.org/abs/hep-th/9309145
http://inspirehep.net/search?p=find+EPRINT+hep-th/9309145
http://dx.doi.org/10.1103/PhysRevD.55.6189
http://arxiv.org/abs/hep-th/9612146
http://inspirehep.net/search?p=find+EPRINT+hep-th/9612146
http://dx.doi.org/10.1088/0264-9381/31/2/022001
http://arxiv.org/abs/1310.1925
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1925
http://dx.doi.org/10.1103/PhysRevD.90.025029
http://arxiv.org/abs/1404.2602
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2602
http://arxiv.org/abs/1508.06667
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06667
http://dx.doi.org/10.1016/0550-3213(85)90488-2
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B250,385"
http://dx.doi.org/10.1016/0550-3213(95)00555-2
http://arxiv.org/abs/hep-th/9508094
http://inspirehep.net/search?p=find+EPRINT+hep-th/9508094
http://dx.doi.org/10.1016/0550-3213(95)00063-X
http://arxiv.org/abs/hep-th/9411187
http://inspirehep.net/search?p=find+EPRINT+hep-th/9411187
http://dx.doi.org/10.1016/S0550-3213(96)00449-X
http://arxiv.org/abs/hep-th/9606193
http://inspirehep.net/search?p=find+EPRINT+hep-th/9606193
http://dx.doi.org/10.4153/CJM-1974-055-x
http://dx.doi.org/10.1063/1.525156
http://dx.doi.org/10.1063/1.525157
http://dx.doi.org/10.1103/PhysRevD.54.2612
http://arxiv.org/abs/hep-th/9603147
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603147
http://dx.doi.org/10.1016/0550-3213(79)90331-6
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B159,141"
http://dx.doi.org/10.1007/PL00005574
http://arxiv.org/abs/hep-th/0008063
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008063


J
H
E
P
0
1
(
2
0
1
6
)
0
9
5
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