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Abstract: The predicted Standard Model (SM) electric dipole moments (EDMs) of elec-

trons and quarks are tiny, providing an important window to observe new physics. Theories

beyond the SM typically allow relatively large EDMs. The EDMs depend on the relative

phases of terms in the effective Lagrangian of the extended theory, which are generally

unknown. Underlying theories, such as string/M-theories compactified to four dimensions,

could predict the phases and thus EDMs in the resulting supersymmetric (SUSY) theory.

Earlier one of us, with collaborators, made such a prediction and found, unexpectedly, that

the phases were predicted to be zero at tree level in the theory at the unification or string

scale ∼ O(1016GeV). Electroweak (EW) scale EDMs still arise via running from the high

scale, and depend only on the SM Yukawa couplings that also give the CKM phase. Here

we extend the earlier work by studying the dependence of the low scale EDMs on the con-

strained but not fully known fundamental Yukawa couplings. The dominant contribution is

from two loop diagrams and is not sensitive to the choice of Yukawa texture. The electron

EDM should not be found to be larger than about 5 × 10−30e cm, and the neutron EDM

should not be larger than about 5× 10−29e cm. These values are quite a bit smaller than

the reported predictions from Split SUSY and typical effective theories, but much larger

than the Standard Model prediction. Also, since models with random phases typically give

much larger EDMs, it is a significant testable prediction of compactified M-theory that the

EDMs should not be above these upper limits. The actual EDMs can be below the limits,

so once they are measured they could provide new insight into the fundamental Yukawa

couplings of leptons and quarks. We comment also on the role of strong CP violation.

EDMs probe fundamental physics near the Planck scale.
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1 Introduction

Strong constraints on CP violation originating from physics beyond the Standard Model

(BSM) have been imposed by measurements of electric dipole moments (EDMs) of the

electron, neutron and heavy atoms. Thus the implication is that new physics should have

generic mechanisms for the suppression of EDMs [1].

In supersymmetric (SUSY) theories, additional sources of CP violation may arise from

complex phases in the soft SUSY breaking parameters [2, 3]. If SUSY is only an effective

theory for physics at the TeV scale, the phases must be treated as arbitrary, leading to large

predictions for EDMs unless the phases are tuned to be small, or there are cancellations.

CP violation in SUSY models and the implications for EDM predictions has been studied
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extensively [4]–[18]. If however, we consider SUSY to be the low energy effective theory

of an overarching theory such as a compactified string/M-theory, then there must be some

underlying mechanism to predict and relate the various phases.

It is well known that the Electroweak scale CP-violating phase of the Standard Model

(SM) cannot provide the source of the CP-violation needed for baryogenesis. The compact-

ified M-theory predicts the required phase also does not arise in the softly broken super-

symmetric Lagrangian [19]. Baryogenesis can arise via the Affleck-Dine mechanism [20] at

high scales, generated with phases generically present in the super partner’s composite flat

directions and moduli. The magnitudes of both the baryon number and the dark matter

then may arise from moduli decay before nucleosynthesis [21]. The associated phases are

high scale ones that have no effects on EDMs.

Following on from the results presented in [19] and the body of work behind it [22]–[26],

we now concentrate on analysing the CP violating phases in the effective four-dimensional

theory resulting from N = 1 compactifications of M-theory with chiral matter.

There are two-loop contributions to the EDMs that may be the dominant ones. Even

in this case, the phases ultimately arise from the superpotential Yukawas that also give the

CKM phase, so we discuss the Yukawa phases first, and turn to the results in section 4.

Readers who want to focus on the upper limits can skip section 3 on a first reading.

Since the phases in the theory only arise in the Yukawa sector at the high scale, mea-

surements of EDMs also become a useful testing ground for various textures at said scale.

We present here an analysis of a variety of different textures and how future measurements

may be used to constrain the set of possible choices.

In section 2 we present a review of the results found in [19] that argue that the dominant

CP violating phases are in the superpotential Yukawas. In section 3 we discuss the sources

of CP violation in the theory, as well as present the various textures we investigate and their

running. We also show how the phases from the Yukawas enter into the computation of

EDMs, summarise the current experimental limits, and discuss the Strong CP contribution.

In section 4 we present our results, both for two-loop and one-loop contributions to the

EDMs. In section 5 we discuss the upper limits and their interpretation.

2 Review of compactified M-theory prediction of supersymmetry phases

Here we summarize the arguments from reference [19] that the high-scale soft-breaking

supersymmetry Lagangian from the compactified M-theory leads to the prediction that

the dominant CP-violation generating EDMs arises from the phases in the superpotential

Yukawas, and thus has the same source as the CKM phase.

In reference [19] it is shown that terms in the superpotential align with the same phase,

leaving just one overall phase, which can be rotated away by a global phase transformation.

The Kähler potential only depends on the real moduli fields, and the meson condensation

φφ̄, so it introduces no explicit phases. This is shown in detail in section IIB of reference [19].

Basically by removing overall phases one can see that ∂JK and ∂JW̄ and therefore F−
terms are real. It is also argued in [19] that although higher order corrections to the

Kähler potential exist, they do not give rise to new CP-violating phases. This is because
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in the zero flux sector the superpotential only receives non-perturbative corrections from

strong gauge dynamics or membrane instantons. The dynamical alignment of phases still

works if these additional terms are subdominant, which is required for the consistency

of the moduli stabilization. The hidden sector Kähler potential may receive perturbative

corrections since there is no non-renormalization theorem for the Kähler potential. But

the meson field φ is composed of elementary chiral quark fields Q that are charged under

the hidden gauge groups, so higher order corrections must be functions of Q†Q by gauge

invariance, so such corrections are always functions of φ†φ which does not introduce any

new phases. The perturbative corrections to the Kähler potential are always functions of

moduli zi + z̄i which does not introduce any CP violating phases in the soft terms. The

dependence on zi + z̄i follows from the shift PQ symmetry of the axion, which is only

broken by exponentially suppressed contributions. Thus the result that the CP violating

phases in soft parameters are highly suppressed should be quite robust since it only relied

on symmetries.

Also, the Kähler potential has an approximately flavor diagonal structure because of

the presence of U(1) symmetries under which the chiral matter fields are charged. The

conical singularities associated with different flavors do not carry the same charges under

the U(1)’s in a given basis, which forbids the existence of off-diagonal terms. Such terms

can arise when the symmetries are spontaneously broken, but that should be suppressed.

Thus the Kähler metric is expected to be approximately flavor diagonal at the high scale.

As we discuss later, renormalization group running will generate small flavor off-diagonal

effects at the EW scale.

Finally, when the superpotential contribution to the overall high scale µ parameter

vanishes, as it does by the Witten mechanism [27, 28], the µ andB parameters are generated

by the Giudice-Masiero mechanism [29]. Then µ and B have a common phase, but this

phase is not physical since it can be eliminated by a U(1)PQ rotation.

Since µ vanishes if supersymmetry is unbroken and if the moduli are not stabilised

µ is generically of order 〈φ〉m3/2/MP l, typically an order of magnitude suppressed from

m3/2 [28]. Including supergravity constraints gives consistency conditions B = 2m3/2 and

2µ tanβ ≈ m3/2.

3 CP violation in the compactified theory

Given the results of [19], all of the phases in the full Lagrangian originate from the phases of

the Yukawa couplings in the underlying superpotential, up to presumably small corrections

from the Kähler potential. The Yukawa matrices enter the theory through the matter

superpotential

W = ūYuQHu − d̄YdQHd − ēYeLHd + µHuHd (3.1)

where the Yi are 3 × 3 complex matrices in family space. The objects ū, Q, ē, L,Hu and

Hd are chiral superfields containing the quark, squark, lepton, slepton and Higgs matter

fields. Then, the contributions to CP violation in the compactified M-theory come entirely

from the Yukawa sector of the theory.
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The Yukawa matrices give rise to the quark and lepton masses by the following inter-

action Lagrangian

LYukawa = Y u
ij Q̄LiHuuRj + Y d

ijQ̄LiHddRj + Y e
ijL̄LiHdeRj + h.c. (3.2)

where Y α
ij , α = u, d, e, i, j = 1, 2, 3 are the Yukawa matrices, and i, j are family indices.

The matter fields here are SM quarks and leptons. When the Higgs boson gains a vacuum

expectation value, the sizes of the eigenvalues of the Yukawa matrices dictate the masses

of the quarks or leptons. Diagonalisation of the Yukawa matrices is performed by unitary

left-(right-)handed V
L(R)
α matrices in flavour space in the Standard Model:

V L
α

†
Y αV R

α = Y diag
α ∝







mα1
0 0

0 mα2
0

0 0 mα3






(3.3)

The CKM matrix is defined as VCKM = V L
u

†
V L
d , where these are the up and down-type

left-handed unitary diagonalisation matrices, so there must be O(1) phases in the Yukawa

matrices in order to explain the experimentally observed phase of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. When the Yukawa matrices are diagonalised, the phases that

were in the original 3 × 3 complex matrices are rotated away by the unitary matrices, so

that the eigenvalues are real. Therefore, the left-handed unitary matrices which form the

CKM matrix carry the phases that were originally in the Yukawas.

The trilinears that arise in the supersymmetric soft-breaking Lagrangian are defined

as Âα
ij = Aα

ijY
α
ij , where Aα

ij is a general 3 × 3 matrix. Explicitly, the trilinear terms from

the soft Lagrangian can then be written as:

Lsoft ∼ Au
ijY

u
ij
˜̄QLiHuũRj +Ad

ijY
d
ij
˜̄QLiHdd̃Rj +Ae

ijY
e
ij
˜̄LLiHdẽRj (3.4)

where Au,d,e are the trilinear matrices in the gauge eigenstate basis of matter fields, and we

are interested in the structure of Y α
ij . The matter fields here are the squarks and sleptons.

Rotating to the super-CKM basis is achieved by using the same rotation matrices that

diagonalised the Yukawa matrices above, but applying them now to the SUSY squark fields.

ÂSCKM ≡ V L
α

†
AαY αV R

α (3.5)

where the family indices have been dropped. If the trilinears are not proportional to the

Yukawas in the flavour-eigenstate basis, i.e. Aα
ij 6∝ 13×3, the rotation to the super-CKM

basis can in itself induce CP-violating phases in the diagonal components of the Âs, giving

rise to possible contributions to EDMs.

We consider the case where the trilinears Â are not aligned with the Yukawas as a

maximally general treatment of CP violation in the theory.

Additionally, the running of the Yukawas from the high scale to the low scale will mix

potential phases in the off-diagonal components into the diagonal elements, thus giving rise

to CP-violating phases at the low scale.
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3.1 Yukawa textures

The crux of the analysis lies in the determination of viable Yukawa textures. They need

to satisfy the requirement that they accurately describe the mass hierarchy exhibited in

quarks and leptons, and also that they give the correct CKM angles and phases.

In order to better understand the structure of a Yukawa texture, we assume that we

may decompose it into O(1) complex parameters multiplying real parameters giving the

relative sizes of the elements of the matrix.

Y α
ij = O(1) · Λij (3.6)

where Λij is the matrix of powers in some small parameter ǫ ∼ α
1/2
GUT ∼ 0.2, set at the

high scale, which will give us the correct hierarchy. While this choice of ǫ is not the only

possible one, it implies a connection between flavour structure and grand unification, and

is therefore attractive. The multiplying O(1) is a 3 × 3 matrix of magnitude one entries

containing the various phases.

We consider three types of textures in this analysis, symmetric textures with no zeroes,

symmetric textures with zeroes, and asymmetric textures with no zeroes, the reason behind

these choices being that this allows us to consider a wide variety of possible texture-

dependencies. Although this does not cover all possibilities, we find a maximal prediction,

so no further EDMs will arise from additional Yukawas.

Initially we will consider the two possible cases where either the up-type Yukawa

matrix, Yu is diagonal, or the down-type Yukawa matrix, Yd is diagonal, with the other

constrained only by the CKM matrix. We parameterise the CKM matrix in the following

manner without loss of generality

VCKM = O(1)







1 ǫ ǫ3

ǫ 1 ǫ2

ǫ3 ǫ2 1






= O(1)







1 0.2 0.008

0.2 1 0.04

0.008 0.04 1






(3.7)

where the O(1) indicates the presence of a matrix of complex parameters of order 1. This

is comparable to the experimentally determined values of the CKM matrix

|VCKM| ∼







0.97 0.23 0.004

0.23 0.97 0.04

0.008 0.04 0.99






(3.8)

We assume the following hierarchy for the quark masses, as seen in [30].

mu : mc : mt ≡ (ǫ8 : ǫ4 : 1)× vu (3.9)

md : ms : mb ≡ (ǫ5 : ǫ3 : 1)× vd (3.10)

me : mµ : mτ ≡ (ǫ8 : ǫ4 : 1)× vd (3.11)

where vu = 〈H0
u〉 and vd = 〈H0

d〉 are the vacuum expectation values (VEVs) of the Higgs

fields in equation (3.2), with the SM VEV defined as v2 = v2u+ v2d. It should be noted here

that we use the up-quark hierarchy for the leptons. While this is non-standard, it is done

in order to have a better fit to the experimentally measured masses.
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Below are ratios between the predicted masses and the observed masses for the choice

of ǫ = 0.26 for the up-type quarks, ǫ = 0.27 for the down-type quarks and ǫ = 0.36 for the

leptons. Fixing the masses of the top, bottom and τ to their known values, we find that

these choices give

mth
u

mexp
u

:
mth

c

mexp
c

:
mth

t

mexp
t

≡ 1.21 : 0.61 : 1 (3.12)

mth
d

mexp
d

:
mth

s

mexp
s

:
mth

b

mexp
b

≡ 1.15 : 0.79 : 1 (3.13)

mth
e

mexp
e

:
mth

µ

mexp
µ

:
mth

τ

mexp
τ

≡ 1.01 : 0.30 : 1 (3.14)

All of these are within order one factors of α
1/2
GUT, so this is compatible with the exper-

imentally measured values for entries in the CKM matrix, given our parameterisation of

VCKM in terms of ǫ. The deviation from one can be due to the unknown O(1) factors in

our decomposition of the Yukawa matrices described above.

All EDMs will be proportional to some power of ǫ, as will be seen in a later sec-

tion. Since we are interested in the size of the detectable EDMs, we look for the largest

contributions from the Yukawa couplings, which will have the smallest powers of ǫ.

The first set of textures we consider is derived as shown in appendix A, and is of

the form

Y u =







ǫ8 ǫ5 ǫ3

ǫ9 ǫ4 ǫ2

ǫ11 ǫ6 1






, Y d =







ǫ5 0 0

0 ǫ3 0

0 0 1






(3.15)

where we have taken advantage of being able to perform rotations such that the down-type

Yukawa matrix is diagonal.

The same can be repeated where the up-type Yukawa matrix is diagonal, yielding the

following textures

Y u =







ǫ8 0 0

0 ǫ4 0

0 0 1






, Y d =







ǫ5 ǫ4 ǫ3

ǫ6 ǫ3 ǫ2

ǫ8 ǫ5 1






(3.16)

The largest predictions for EDMs, arising from the smallest powers in ǫ, will typically

arise from terms such as Y
(u,d)
33 Y

(u,d)
32

†
Y

(u,d)
23 in the running of the diagonal terms from the

high scale, as they involve the (3, 3) term which is 1. This will be seen in section 3.2.1.

The second class of textures we consider are those with zeroes. We study in particular

the only five textures with five zeroes found in [31] at the high scale, given below

Y u =







0
√
2ǫ6 0√

2ǫ6 ǫ4 0

0 0 1






, Y d =







0 2ǫ4 0

2ǫ4 2ǫ3 4ǫ3

0 4ǫ3 1






(3.17)

Y u =







0 ǫ6 0

ǫ6 0 ǫ2

0 ǫ2 1






, Y d =







0 2ǫ4 0

2ǫ4 2ǫ3 2ǫ3

0 2ǫ3 1






(3.18)

– 6 –



J
H
E
P
0
1
(
2
0
1
6
)
0
7
7

Y u =







0 0
√
2ǫ4

0 ǫ4 0√
2ǫ4 0 1






, Y d =







0 2ǫ4 0

2ǫ4 2ǫ3 4ǫ3

0 4ǫ3 1






(3.19)

Y u =







0
√
2ǫ6 0√

2ǫ6
√
3ǫ4 ǫ2

0 ǫ2 1






, Y d =







0 2ǫ4 0

2ǫ4 2ǫ3 0

0 0 1






(3.20)

Y u =







0 0 ǫ4

0
√
2ǫ4 ǫ2/

√
2

ǫ4 ǫ2/
√
2 1






, Y d =







0 2ǫ4 0

2ǫ4 2ǫ3 0

0 0 1






(3.21)

These have a different hierarchy from that of textures 1 and 2, but all of these textures

are consistent with the low-energy fermion masses and the CKM matrix elements. Note

that since the matrices are symmetric, pairs of zeroes in the off-diagonal components only

count as one zero. Since they are all defined at the high scale, we must turn our attention

to their running.

3.2 Running of Yukawa textures

In this section we consider the running of the Yukawa textures described in the previ-

ous section, and look at how the phases from the off-diagonal terms are rotated into the

diagonals by said running. Since we start at the high scale with no phases in the diag-

onal components, the running of the diagonal elements is crucial to understanding the

appearance of phases at the low scale.

The evolution of the up and down Yukawa matrices and the trilinear matrices in the

MSSM is well known [32], and given by,

dY u

dt
=

1

16π2
Y u

{

3Tr(Y uY u†) + 3Y u†Y u + Y d†Y d
}

+ . . . (3.22)

dY d

dt
=

1

16π2
Y d

{

Tr(3Y uY u† + Y eY e†) + 3Y d†Y d + Y u†Y u
}

+ . . . (3.23)

dÂu

dt
=

1

16π2
Âu

{

3Tr(Y uY u†) + 5Y u†Y u + Y d†Y d
}

(3.24)

+ Y u
{

6Tr(ÂuY u†) + 4Y u†Âu + 2Y d†Âd
}

+ . . . (3.25)

dÂd

dt
=

1

16π2
Âd

{

Tr(3Y dY d† + Y eY e†) + 5Y d†Y d + Y u†Y u
}

(3.26)

+ Y d
{

Tr(6ÂdY d† + 2ÂeY e†) + 4Y d†Âd + 2Y u†Âu
}

+ . . . (3.27)

where only terms involving the Yukawa matrices are explicitly shown as they are by far

the dominant contribution. The trace terms are merely numbers, while the Y †Y and Y †Â
terms are matrices that have ǫ dependencies.

When looking at the evolution of the various terms, we consider the leading terms

in ǫ that come from the off-diagonal terms, as these will be the ones that multiply the

phases that are being rotated into the diagonal components. It should be noted that ǫ is

a parameter fixed at the GUT scale that does not run.
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3.2.1 Texture specific running

In this section, we look at the leading order contributions in ǫ to the running of the

diagonal components of the Yukawa textures from section 3.1 in order to estimate the size

of potential phases appearing at the low scale. We consider the running of both the up

and down type textures, as each contributes differently.

For the first texture shown in equation (3.15), the dominant terms in the running of

the Âu
ii components are:

dÂu
11

dt
∼ 1

16π2

[

Âu
13

{

5Y u†
33Y

u
31

}

+ Y u
13

{

4Y u†
33Â

u
31

}

+ . . .
]

∼ 27A0ǫ
14

16π2
(3.28)

dÂd
11

dt
∼ 1

16π2

[

Âd
11

{

Y u†
12Y

u
21

}

+ Y d
11

{

2Y u†
12Â

u
21

}]

∼ 3A0ǫ
23

16π2
(3.29)

dÂu
22

dt
∼ 1

16π2

[

Âu
23

{

5Y u†
33Y

u
32

}

+ Y u
23

{

4Y u†
33Â

u
32

}

+ . . .
]

∼ 18A0ǫ
8

16π2
(3.30)

dÂd
22

dt
∼ 1

16π2

[

Âd
22

{

Y u†
21Y

u
12

}

+ Y d
22

{

2Y u†
21Â

u
12

}]

∼ 3A0ǫ
13

16π2
(3.31)

dÂu
33

dt
∼ 1

16π2

[

Âu
33

{

5Y u†
32Y

u
23

}

+ Y u
33

{

4Y u†
32Â

u
23

}]

∼ 9A0ǫ
4

16π2
(3.32)

dÂd
33

dt
∼ 1

16π2

[

Âd
33

{

Y u†
32Y

u
23

}

+ Y d
33

{

2Y u†
32Â

u
23

}]

∼ 3A0ǫ
4

16π2
(3.33)

For the texture given in equation (3.16), the leading order terms are:

dÂu
11

dt
∼ 1

16π2

[

Âu
11

{

Y d†
12Y

d
21

}

+ Y u
11

{

2Y d†
12Â

d
21

}]

∼ 3A0ǫ
20

16π2
(3.34)

dÂd
11

dt
∼ 1

16π2

[

Âd
13

{

5Y d†
33Y

d
31

}

+ Y d
13

{

4Y d†
33Â

d
31

}

+ . . .
]

∼ 27A0ǫ
11

16π2
(3.35)

dÂu
22

dt
∼ 1

16π2

[

Âu
22

{

Y d†
23Y

d
32

}

+ Y u
11

{

2Y d†
23Â

d
32

}]

∼ 3A0ǫ
14

16π2
(3.36)

dÂd
22

dt
∼ 1

16π2

[

Âd
23

{

5Y d†
33Y

d
32

}

+ Y d
23

{

4Y d†
33Â

d
32

}

+ . . .
]

∼ 18A0ǫ
7

16π2
(3.37)

dÂu
33

dt
∼ 1

16π2

[

Âu
33

{

Y d†
32Y

d
23

}

+ Y u
33

{

2Y d†
32Â

d
23

}]

∼ 3A0ǫ
4

16π2
(3.38)

dÂd
33

dt
∼ 1

16π2

[

Âd
33

{

5Y d†
32Y

d
23

}

+ Y d
33

{

4Y d†
32Â

d
23

}

+
]

∼ 9A0ǫ
4

16π2
(3.39)

As mentioned earlier, the leading order terms, here of O(ǫ4) for both the textures in

equations (3.15) and (3.16), arise from the terms of the form Y
(u,d)
33 Y

(u,d)
32

†
Y

(u,d)
23 . Note that

only the leading results for the remaining textures are presented here, and the explicit

matrix elements that enter in the running of the other textures are not shown.

For the texture given in equation (3.17), the lowest order terms in ǫ are

dÂu
11

dt
∼ 1

16π2
(12

√
2A0ǫ

13) (3.40)

dÂd
11

dt
∼ 1

16π2
(72A0ǫ

11) (3.41)

dÂu
22

dt
∼ 1

16π2
(60A0ǫ

10) (3.42)
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dÂd
22

dt
∼ 1

16π2
(144A0ǫ

6) (3.43)

dÂu
33

dt
∼ 1

16π2
(48A0ǫ

6) (3.44)

dÂd
33

dt
∼ 1

16π2
(288A0ǫ

6) (3.45)

For the texture given in equation (3.18), the lowest order terms are

dÂu
11

dt
∼ 1

16π2
(12A0ǫ

13) (3.46)

dÂd
11

dt
∼ 1

16π2
(72A0ǫ

11) (3.47)

dÂu
22

dt
∼ 1

16π2
(9A0ǫ

4) (3.48)

dÂd
22

dt
∼ 1

16π2
(6A0ǫ

5) (3.49)

dÂu
33

dt
∼ 1

16π2
(18A0ǫ

4) (3.50)

dÂd
33

dt
∼ 1

16π2
(3A0ǫ

4) (3.51)

For the texture in equation (3.19), the lowest order terms are

dÂu
11

dt
∼ 1

16π2
(18A0ǫ

8) (3.52)

dÂd
11

dt
∼ 1

16π2
(72A0ǫ

11) (3.53)

dÂu
22

dt
∼ 1

16π2
(60A0ǫ

10) (3.54)

dÂd
22

dt
∼ 1

16π2
(144A0ǫ

6) (3.55)

dÂu
33

dt
∼ 1

16π2
(48A0ǫ

6) (3.56)

dÂd
33

dt
∼ 1

16π2
(288A0ǫ

6) (3.57)

For the texture in equation (3.20), the lowest order terms are

dÂu
11

dt
∼ 1

16π2
(24/

√
2A0ǫ

13) (3.58)

dÂd
11

dt
∼ 1

16π2
(72A0ǫ

11) (3.59)

dÂu
22

dt
∼ 1

16π2
(9A0ǫ

4) (3.60)

dÂd
22

dt
∼ 1

16π2
(6A0ǫ

7) (3.61)
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dÂu
33

dt
∼ 1

16π2
(18A0ǫ

4) (3.62)

dÂd
33

dt
∼ 1

16π2
(3A0ǫ

4) (3.63)

For the texture in equation (3.21), the lowest order terms are

dÂu
11

dt
∼ 1

16π2
(9A0ǫ

8) (3.64)

dÂd
11

dt
∼ 1

16π2
(3
√
2A0ǫ

10) (3.65)

dÂu
22

dt
∼ 1

16π2
(9/2A0ǫ

4) (3.66)

dÂd
22

dt
∼ 1

16π2
(3A0ǫ

7) (3.67)

dÂu
33

dt
∼ 1

16π2
(9A0ǫ

4) (3.68)

dÂd
33

dt
∼ 1

16π2
(3/2A0ǫ

4) (3.69)

3.3 Translating from Yukawas to EDMs

Having described various Yukawa textures and their running, we now concentrate on

demonstrating how the phases will enter into a computation of the EDMs.

In the MSSM, the important CP-odd terms in the Lagrangian are

LCP−odd ⊃−
∑

q=u,d,s

mqq(1 + iθqγ5)q + θG
αs

8π
GG̃

− i

2

∑

q=u,d,s

(dEq qF
µνσµνγ5q + dCq qgsT

aGaµνσµνγ5q)

− 1

6
dGq fabcGaµρG

ρ
bνGcλσǫ

µνλσ

(3.70)

where θG is the QCD θ angle, the second line contains dimension five operators, generated

by CP violation in the SUSY breaking sector and evolved down to∼ 1GeV. The coefficients

dE,C
q correspond to the quark electric and chromo-electric dipole moments (EDM, CEDM)

respectively. The last line contains the gluonic dimension six Weinberg operator, to which

all other purely gluonic P - or T -odd operators are proportional [33]. The CP violating

4-fermion operators [10, 34] are negligible in this mini-split type SUSY spectrum [17].

The explicit expressions for the SUSY contributions to EDMs are given in appendix B.

The phases appear only in the tri-linear Â parameters in our theory, and after RG evolution

and the rotation to the super-CKM basis, they then appear in the off-diagonal elements of

the squark mass matrices.

δ(m2
q̃)

LR
ii = vq((Â

q
SCKM)ii − µ∗Y q

iiRq) (3.71)

with Rq = cotβ, (tanβ) for I3 = 1/2, (−1/2) as in appendix B, and vu(d) = v sinβ(v cosβ).
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The off-diagonal elements of the squark mass matrices enter the expressions for the

SUSY EDM contributions as shown in detail in appendix B. Thus, we find that the EDM

contribution di ∝ Im(ÂSCKM) depends on the phases in the diagonal terms in the trilinears.

3.4 Electric dipole moments and current experimental limits

We now summarize the experimental results on the electron, neutron and mercury EDMs.

In minimal SUSY models, the electron EDM arises from one-loop diagrams with chargino

and neutralino exchange, as well as two-loop contributions. Hence we can make the de-

composition

dEe = dχ
±

e + dχ
0

e + d2Le (3.72)

The current experimental upper bound on the electron EDM is [35]

|dEe | < 8.7× 10−29e cm (3.73)

Calculating the neutron EDM requires assumptions about the internal structure, such

that there are two possible approaches, the chiral model, and the parton model approach.

We will restrict ourselves to the chiral model approach, although a combination could

be done in a future study. The neutron EDM can be decomposed by use of the SU(6)

coefficients into

dn =
4

3
dd −

1

3
du (3.74)

which then requires estimation of the quark EDMs, which can be achieved via a naive

dimensional analysis, such that

dq = ηEdEq + ηC
e

4π
dCq + ηG

eΛ

4π
dG (3.75)

where Λ ∼ 1.19GeV is the chiral symmetry breaking scale, and the coefficients are the

QCD correction factors, given by ηE = 0.61, ηC ∼ ηG ∼ 3.4, as found in [5, 36]. The

contributions from SUSY come from 1-loop gluino, chargino and neutralino exchange, as

well as 2-loop contributions, leading to the decomposition

dE,C
q = dg̃(E,C)

q + dχ
±(E,C)

q + dχ
0(E,C)

q + d2Lq (3.76)

and two-loop gluino quark squark diagrams which generate dGq . The current experimental

limit on the neutron EDM is [37]

|dn| < 3× 10−26e cm (3.77)

The mercury EDM results mostly from T-odd nuclear forces in the mercury nucleus,

which induce an interaction of the type (I · ∇)δ(r) between the electron and the nucleus

of spin I. The T-odd forces themselves arise due to the effective four-fermion interaction

p̄pn̄iγ5n [8]. The current theoretical estimate is given by

dHg = −7.0× 10−3e(dCd − dCu − 0.012dCs ) + 10−2 × de (3.78)

– 11 –



J
H
E
P
0
1
(
2
0
1
6
)
0
7
7

where the contribution from the strange quark CEDM is included.1 The experimental

bound currently stands at [39]

|dHg| < 3.1× 10−29 e cm (3.79)

3.4.1 Strong CP contribution

A possible source of hadronic EDMs in the Standard Model comes from the θ−term of

QCD. This contribution is shown in equation (3.70). The limits on the EDMs of the

neutron and Mercury can be expressed in terms of this θ parameter as follows

dn ∼ 3× 10−16θ e cm

|dHg| ∼ O(10−18 − 10−19)θ e cm (3.80)

The contribution to the electron EDM, on the other hand, comes from electroweak

interactions. Thus, with measurements of the neutron EDM and electron EDM, the strong

and weak contributions can hopefully be separated, and θ can also be measured. Our upper

limit on the electron EDM is not affected by the strong CP violation, but for the neutron

or Mercury, there could be a strong CP contribution that increases the EW contribution

above the EW upper limit. With sufficient data it may be possible to untangle these.

In the SM, a first analysis of the renormalisation of the θ parameter [40] found that

the first renormalisation occurs only at O(α2), which would give a value of θ ∼ O(10−16).

A subsequent detailed analysis yielded a smaller value of θ ∼ O(10−19) [41]. In this case,

from equation (3.80), we can see that the strong contribution to the neutron EDM from

θ renormalisation would be O(10−32 − 10−35). A more recent analysis yields an estimated

value of θ ∼ O(10−17), giving a contribution to the neutron EDM of O(10−33) [42].

An estimate of electroweak renormalisation contributions to θ in SUSY is presented

in [43], where it is discussed that θ is expected to be small, given that relevant phases are

small, and Mq̃ ≫ O(100GeV). Thus, observation of a neutron or Mercury EDM should

likely be interpreted as the Electroweak one we estimate in this paper, but needs detailed

confirmation.

Solutions of the Strong CP problem in string theory have been studied for example

in [26, 44]. In this case a combination of the imaginary parts of the moduli fields is the QCD

axion and solves the Strong CP problem. However, in the presence of non-perturbative

contributions, the minimum of the axion potential need not be zero, and θ can have both

strong and electroweak contributions [26, 45].

4 Results

Within the framework we are considering of compactified M-Theory, the general structure

of SUSY breaking parameters is as follows. The gravitino mass is essentially ∼ Fφ/MP l,

which puts it naturally in the range of 25-100TeV [23]. The F -terms of the moduli are

suppressed with respect to Fφ, and since the gauge kinetic function for the visible sector

1There are uncertainties around the use of eqs. (3.74) and (3.78), as discussed in [38]. We use in eq. (3.74)

the constituent quark model (CQM), but could have used the parton quark model (PQM), with only slight

change in the numerical results. As discussed in detail in ref. [38], there are differences in the results

obtained in the literature for eq. (3.78) which have yet to be cleared up.
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γ h

χ+i

γ

Figure 1. An example of a two-loop graph which contributes to fermion EDMs, with charginos

running in the inner loop, γ and higgs in the outer loop.

depend only on the moduli, it is easy to check that the gaugino masses are suppressed

relative to the gravitino mass. Scalar masses, on the other hand, are not suppressed relative

to the gravitino mass unless the visible sector is sequestered from the SUSY breaking sector,

which is not generic in M-Theory [24]. Thus the scalar masses and trilinears turn out to

be of O(M3/2) & O(50)TeV. Due to the Kähler metric being approximately diagonal in

the flavor indices, the scalar mass matrix is roughly diagonal, with suppressed off-diagonal

components. In the following, we consider electroweakinos with masses . 600GeV, scalar

masses ∼ 50TeV, with B and trilinear parameters of the same order. The µ parameter is

expected to be suppressed compared to the gravitino mass by an order of magnitude [28].

We estimate the contribution to the EDMs of the electron, neutron and mercury from

the operators described in section 3.3 in our chosen M-theory framework.

4.1 Dominant two-loop contributions

There exist two-loop diagrams which could give large contributions to EDMs in supersym-

metric models [7, 46]–[52]. For example, the diagrams considered in [53, 54], one of which

is shown in figure 1, could potentially give large EDMs, as they are not suppressed by

the heavy scalar masses, but rather depend on the charginos and neutralinos running in

the loops.

Their contribution to the fermion EDM would be given by

df = dγHf + dZH
f + dWW

f (4.1)

where

dγHf =
eQfα

2

4
√
2π2s2W

Im(DR
ii )

mfM
+
i

MWm2
H

fγH(r+iH)

dZH
f =

e(T3fL − 2s2WQf )α
2

16
√
2π2c2W s4W

Im(DR
ijG

R
ji −DL

ijG
L
ji)

mfM
+
i

MWm2
H

fZH(rZH , r+iH , r+jH)

dWW
f =

eT3fLα
2

8π2s4W
Im(CL

ijC
R∗
ij )

mfM
+
i M0

j

M4
W

fWW (r+iW , r0jW ) (4.2)
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where

GL
ij = ViW+cW+V †

W+j
+ Vih+

u
ch+

u
V †
h+
u j

−GR∗
ij = UiW−cW−U †

W−j
+ Uih−

d
ch−

d
U †
h−

d
j

CL
ij = −ViW+N∗

jW3
+

1√
2
Vih+

u
N∗

jh0
u

CR
ij = −U∗

iW−NjW3
− 1√

2
U∗
ih−

d

Njh0
d

DR
ij = sinβVih+

u
UjW + cosβViW+Ujh−

d
DL = (DR)† (4.3)

A priori, in the framework we are working in, these diagrams would seem not to be

important, as the gaugino masses contain no phases at the high scale so the imaginary part

of the chargino and neutralino diagonalisation matrices would be zero. However, phases

may be introduced by the running of the gaugino masses, given here [32]:

dMa

dt
=

2g2a
16π2

B(1)
a Ma

+
2g2a

(16π2)2





3
∑

b=1

B
(2)
ab g

2
b (Ma +Mb) +

∑

x=u,d,e

Cx
a

(

Tr[Y †
x Âx]−MaTr[Y

†
x Yx]

)



 (4.4)

with B
(1)
a , B

(2)
ab , C

x
a being matrices of group coefficients, which are also found in [32].

To 1st loop order there will still be no phases resulting from the running of the gaugino

masses as there are no terms that would contain phases. However, at two loop order, phases

can be introduced by the trilinear couplings. The term Tr[Y †
x Yx] is manifestly real, and

therefore will not contain phases. However, the term Tr[Y †
x Âx] could well cause a phase

to enter the gaugino masses at the low scale in the event where the Yukawa matrices are

not aligned with the trilinears. This term would disappear in the case of alignment, as the

two matrices would be diagonalised by the same left and right unitary matrices. Then we

would have

Tr[Y †
x Âx] = Tr[VRY

diag
x V †

LVLÂ
diag
x V †

R] (4.5)

which is also manifestly real.

Since generically in the M-theory framework we expect the trilinears to not be aligned

with the Yukawas, we compute how large a phase one could get at the low scale given O(1)

phases in the trilinear via the Yukawa matrix, and therefore how this would enter into the

expressions for the EDMs.

For this purpose we parameterise the trilinear matrix Âx = AxYx where

Ax =







A0e
iφ1 0 0

0 A0e
iφ2 0

0 0 A0e
iφ3






(4.6)

To a good approximation, the dominant contribution to the phase in Tr[Y †
x Âx] will

come from the third generation phase, as the others are suppressed by powers of the small

parameter ǫ in all the textures we consider here. Consequently the result is largely texture

independent in these two-loop diagrams. This is due to the 1 in the {3, 3} position of the
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Yukawa matrix being texture-independent, resulting in the dominance of the third genera-

tion phase. This is different from the 1-loop results, as in those diagrams, the contribution

from the third generation is suppressed relative to the first generation contribution.

Thus we can do a calculation of approximately how big an imaginary part Ma will have

at the low scale by considering the running of the imaginary part only. For the purpose

of the calculation, we work in a situation where we rotate to a basis where the down-type

Yukawa matrix is diagonal, so the phases are contained in the up-type Yukawa matrix.

d Im(Ma)

dt
≃ 2g2aC

u
a

(16π2)2
Im(Tr[Y †

u Âu])

≃ 2g2aC
x
a

(16π2)2
A0 sinφ3

(4.7)

then we find that

Im(Ma) ≃
2g2aC

x
a

(16π2)2
A0 sinφ3 log

[

MQ

MGUT

]

(4.8)

such that

Im(M2) ≃ −200 sinφ3

(

A0

75TeV

)

GeV (4.9)

where we have used

Cu,d,e
a =







26/5 14/5 18/5

6 6 4

4 4 0






(4.10)

as found in [32]. This is closely comparable to the result of doing the full two loop running

of the gaugino masses and the gauge couplings using the package RGERun2.0 available

for Mathematica.

Knowing how large a phase can appear in the gaugino masses, we turn to computing

the diagonalisation matrices for the chargino and neutralino mass matrices, as the phases

on said diagonalisation matrices will appear in the expressions for the EDMs.

The chargino mass matrix is known to be

X =

(

M2

√
2 sinβMW√

2 cosβMW µ

)

(4.11)

where M2 is complex and the other entries are real. This matrix is diagonalised by the

following rotation

Xdiag = U∗XV −1 (4.12)

where U and V are unitary matrices for which analytic expressions can be obtained. Explicit

diagonalisation and the expressions for the matrix elements are given in appendix B.

We can use these matrices to find the imaginary part which enters into the expressions

for dγHf and dZH
f through the matrices D(L,R) and G(L,R) defined as above in equation (4.3).

In order to find the imaginary part of C(L,R) however, we must perform a numerical diag-

onalisation of the neutralino mass matrix.
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We compute the electron EDM first, with

de = dγHe + dZH
e + dWW

e (4.13)

and find that this gives us an upper bound from equation (4.2) of

|de| < 5× 10−30e cm (4.14)

for Mχ+
1

∼ Mχ0
2
∼ 274GeV, Mχ+

2

∼ Mχ0
4
∼ 5000GeV which is well above the estimate

from the leading order contributions. The heavier neutralino’s mass is dominated by the

µ term from the superpotential, which in the M-theory is found to be of order 0.1m3/2 ∼
5000GeV [28]. Since this contribution is from a two loop effect, it does not depend on the

scalars, but rather on the much lighter neutralinos and charginos.

The neutron EDM upper bound from these diagrams comes from using equations (4.2),

(3.74) and is

|dn| < 5× 10−29e cm (4.15)

for the same values of the chargino and neutralino masses as for the electron. Again, this

is well above the estimate from the leading order contributions. The ratio of dn/de ∼ 10 is

approximately in line with the results in [54]. Our values are about two orders of magnitude

lower than their reported results, primarily because we actually compute the phases in the

diagram from the high scale, rather than taking it to be some O(1) factor.

These are upper limits given the predicted values of m3/2, M2 and µ, and therefore

could change given different input values. The misalignment of the trilinears and the

Yukawas is as yet unknown, so we use sinφ3 ∼ O(1) here. A precise value of sinφ3 could

in principle be determined for a given Yukawa texture given the known CKM phase and

known misalignment.

These are the dominant contributions in the generic case where the trilinears are not

aligned with the Yukawas. If this is the case, then they may be accessible in the next

round of experiments to measure EDMs. A measurement would of course imply that the

relative hierarchy of µ ∼ 10×M2 is correct, as for different values of these two parameters,

we would get a different result. This can be seen in [54]. Of note is that these results are

independent of the choice of texture, due to the third generation dominating. Therefore, a

measurement of an EDM would not allow us to learn the high scale structure of the Yukawa

textures. If the experiments were to not detect an EDM, this would suggest that either

the trilinears are aligned with the Yukawa matrices, or the phases in the trilinears are

indeed small. Thus, a non-detection would give us a better understanding of the relation

between the full trilinear matrices and the Yukawa matrices, regardless of what texture we

are considering.

4.2 Sub-dominant one-loop contributions

In the situation where the trilinears are aligned with the Yukawas, the two loop result would

be zero, as no phase would enter the gaugino masses, so the diagrams we consider above

would not give a contribution to the EDMs. However, the one loop contribution would in

principle not be zero, due to the existing CKM and possible PMNS phases. The phases
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Figure 2. One-loop contributions to the fermion EDMs, with scalars running in the loop.

Texture Im(Au

11) Im(Au

22) Im(Au

33) Im(Ad

11) Im(Ad

22) Im(Ad

33)

1 27A0Y
u
11ǫ

6 18A0Y
u
22ǫ

4 9A0Y
u
33ǫ

4 3A0Y
d
11ǫ

15 3A0Y
d
22ǫ

10 3A0Y
d
33ǫ

4

2 3A0Y
u
11ǫ

12 3A0Y
u
22ǫ

10 3A0Y
u
33ǫ

4 27A0Y
u
11ǫ

6 18A0Y
u
22ǫ

4 9A0Y
u
33ǫ

4

3 12
√
2A0Y

u
11ǫ

7 60A0Y
u
22ǫ

6 48A0Y
u
33ǫ

6 72A0Y
d
11ǫ

7 144A0Y
d
22ǫ

3 288A0Y
d
33ǫ

6

4 12A0Y
u
11ǫ

7 9A0Y
u
22ǫ

2 18A0Y
u
33ǫ

4 72A0Y
d
11ǫ

7 6A0Y
d
22ǫ

2 3A0Y
d
33ǫ

4

5 18A0Y
u
11ǫ

4 60A0Y
u
22ǫ

6 48A0Y
u
33ǫ

6 36A0Y
d
11ǫ

7 36A0Y
d
22ǫ

3 288A0Y
d
33ǫ

6

6 24/
√
2A0Y

u
11ǫ

7 9A0Y
u
22ǫ 18A0Y

u
33ǫ

4 36A0Y
d
11ǫ

7 3A0Y
d
22ǫ

4 3A0Y
d
33ǫ

4

7 9A0Y
u
11ǫ

4 9/
√
2A0Y

u
22ǫ

2 9A0Y
u
33ǫ

4 3/
√
2A0Y

d
11ǫ

6 3/2A0Y
d
22ǫ

4 3/2A0Y
d
33ǫ

4

Table 1. The results for the various textures in terms of the diagonal Yukawa matrix elements Y α
ii .

The first three columns are for up-type, and the second three are for down-type.

in the Yukawa textures which at the low scale give the CKM and PMNS phases would

enter the one-loop contribution to EDMs after running from the GUT scale, calculated in

section 3.2.1. Therefore, we consider here the five-dimensional electric and chromo-electric

couplings at one-loop, as seen in figure 2.

As seen in appendix C.1, we can express the chromo-EDM for the quarks in terms of

the small ratio r ≡ m2
i /m

2
q̃ , with i = χ̃0, χ̃±, g̃. The gluino loop dominates, as also seen in

appendix C.1, so the largest contribution comes from

dCq ∼ gsαs

4π

Im(Aq
SCKM)

m3
g̃

r2
[

C(r) + rC
′

(r)
]

(4.16)

The quark EDM contributions are small compared with the quark CEDM contributions.

The term Im(Aq
SCKM) contains the phases that entered the diagonal entries from the run-

ning and subsequent diagonalsation to the super-CKM basis. The relevant results for this

are given in table 1 for each of the textures considered.

Thus, if we make the definition

Kα
ii ≡

Im(Aα
ii)

A0Y α
ii

∼ Im(Aα
ii)

mq̃
(4.17)

we can present the results numerically for the various values of ǫ considered. As a reminder,

for textures 1 and 2, ǫu ∼ 0.26, ǫd ∼ 0.27, and for textures 3-7, ǫu = ǫd ∼ 0.22.
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Texture Ku

11 Ku

22 Ku

33 Kd

11 Kd

22 Kd

33

1 8× 10−3 0.08 0.04 9× 10−9 6× 10−6 0.02

2 3× 10−7 4× 10−6 0.02 0.01 0.1 0.05

3 4× 10−4 7× 10−3 5× 10−3 2× 10−3 2 0.03

4 3× 10−4 0.4 0.04 2× 10−3 0.3 7× 10−3

5 0.04 7× 10−3 5× 10−3 9× 10−4 0.4 0.03

6 2× 10−3 2 0.04 9× 10−4 7× 10−3 7× 10−3

7 0.02 0.3 0.02 2× 10−4 4× 10−3 4× 10−3

Table 2. Numerical results for the various pre-factors Kα. The first three columns are for up-type,

and the second three are for down-type.

Texture 1 2 3 4 5 6 7

du(×10−31) 4 2× 10−5 0.2 0.2 20 1 10

dd (×10−31) 6× 10−7 6 1 1 0.5 0.5 0.1

ds(×10−31) 4× 10−3 60 900 200 200 4 2

|dn|(×10−31) 1 8 1 1 7 0.3 4

|dHg|(×10−31) 3× 10−2 3× 10−2 7× 10−2 9× 10−3 0.2 4× 10−3 8× 10−2

Table 3. Results for the up, down and strange quark EDMs, and the neutron and mercury EDMs

for the various textures.

We rewrite here the expression for dCq in such a way as to present our results more

clearly for given textures.

dCq ∼ gsαs

4π

Kqm3
g̃

m3
q̃

[

C(r) + rC
′

(r)
]

(4.18)

From observing table 2, we see that the largest Kα are for the 2nd and 3rd generations.

However, the appearance of these in the loop are suppressed, so only the 1st generation

need be considered for calculating the upper bound on the quark contribution to the EDM

of the neutron.

Thus we present in table 3 the upper bounds on the neutron EDM for the various

textures, given our results above, and using the relation in equation (3.74).

We see that the maximal prediction is from texture 2, which gives an upper bound for

the neutron EDM of

|dn| ∼ 8× 10−31 ·
( mg̃

1TeV

)

(

50TeV

mq̃

)3
( ǫ

0.26

)6
e cm (4.19)

We remark here that this is of order ∼ 100× the expected SM result [55].
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Texture 1 2 3 4 5 6 7

de (×10−34) 5 2× 10−3 0.2 0.2 0.2 0.2 5× 10−2

Table 4. Results for the electron EDM for the various textures.

The maximal prediction for the mercury EDM can also be seen in table 3, and is given

by texture 5, with an upper bound of

|dHg| ∼ 2× 10−32 ·
( mg̃

1TeV

)

(

50TeV

mq̃

)3

e cm (4.20)

We do not give an ǫ dependence for the mercury EDM as it depends on a combination of

du, dd and ds, all of which have different ǫ dependences.

We then turn to the results for the electron EDM. From appendix C.1, we know

that the only diagram that contributes is the neutralino exchange, since if the two-loop

contribution is absent, there are no CP violating phases coming from the chargino sector

in the theory due to the alignment of the Trilinears with the Yukawa matrices. Thus we

have that

dEe ∼ eαEM

4π cos θW

Im(Âe
SCKM)me

m3
B̃

r2
[

B(r) + rB′(r)
]

(4.21)

where the variable r is defined as r ≡ m2

B̃

m2
ẽ

. We recall here that Im(Âe
ii) ∼ Ke

iimẽi , and so

this can be rewritten as

dEe ∼ eαEM

4π cos θW
memB̃

Ke

m3
ẽ

[

B(r) + rB′(r)
]

(4.22)

Our results are summarised in table 4.

We see that the maximal prediction is

de ∼ 5× 10−34
( mB̃

200GeV

)

(

50TeV

mq̃

)3
( ǫ

0.36

)6
e cm (4.23)

as a result of using texture 1. We remark here that this is of order 105× the SM pre-

diction [55].

While texture 2 gave the highest neutron EDM, it actually gives the smallest electron

EDM. This comes about primarily as a result of two factors. The first is to do with

the naive dimensional analysis approach to calculating the EDM, in that the EDM of the

down quark contributes 4/3 whereas the up quark contributes −1/3. Thus despite the

larger value of Ku
11 in texture 5, the slightly smaller value of Kd

11 in texture 2 gives a larger

result, albeit marginally. This also explains why texture 7, despite giving the largest du,

ends up giving a slightly smaller dn, as the du contribution loses out to the dd part.

The second reason, which applies to both texture 5 and texture 2, is due to the running.

The largest contributions to the EDM arise when the smallest powers of ǫ from running

coincide with the largest powers of ǫ in the eigenvalues. In this case, in texture 2, Y d
11 ∝ ǫ5,

and the running contributed a factor of 27ǫ6. In texture 5, Y u
11 ∝ ǫ4, and the running
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contributed a factor of 18ǫ4. The pre factors from the running of the full trilinears are

important because they help counteract the large powers of ǫ.

The electron EDM is suppressed relative to the neutron EDM for a few reasons. Chief

among them is that we have factors of αEM rather than αs, due to the electroweak nature

of the diagram. Another suppression arises due to the loop factor in the electron EDM

diagram, B(r) + rB′(r) being substantially smaller than the loop factor in the gluino

exchange diagram for the quark CEDMs.

It is curious that texture 2, while giving the largest neutron EDM results in the smallest

electron EDM. This comes about because in textures 1 and 2, we assume that the Yukawa

texture for the leptons is of the same form as that of the up quarks. Therefore when we

start in a basis where the up Yukawa texture is diagonal, while it does pick up factors from

the running, they are typically large powers of ǫ.

5 Conclusion

In this paper we have discussed how the CP-violating phases in compactified M-theory arise

only in the Yukawa sector at the high scale, but nevertheless give rise to low scale EDMs

via RGE running and the Super-CKM rotation. Therefore there will be a dependence on

the Yukawa textures at the high scale. For various textures the running and subsequent

diagonalisation of the full trilinear couplings Âαβγ to the Super-CKM basis causes them

to pick up phases at the low scale.

We have estimated the electron, neutron and mercury EDMs for textures at the high

scale, all of which satisfy experimental constraints on quark masses and CKM matrix

elements. The dominant source of EDMs in the generic case where the trilinears are not

aligned with the Yukawa matrices are from two-loop diagrams involving charginos and

neutralinos, and are therefore not suppressed by large scalar masses. These contributions

are much larger than the one-loop diagrams as a result. While at the high scale the phase in

the gaugino masses is zero, a misalignment between the trilinears and the Yukawas induces

a non-zero phase at two-loop order in the running of the masses. Thus there is a non-zero

phase at the low scale.

A priori one would think that a phase that arises only at two-loop order, which is then

inserted into a two-loop effect, would be smaller than the one-loop contribution. However,

several factors contribute to making the two-loop effects large. The phase induced by

the running of the gaugino masses depends on the full trilinear, which is large (Â ∼
O(75TeV)) in the M-theory compactification, which results in a relatively large phase,

despite the two-loop suppression. Further, the two-loop contribution is approximately

d ∼ (α2/π2)(mfmχ̃±/M3
EW), as opposed to the d ∼ (α2

s/π)(mfmg̃/m
3
q̃) for the one-loop

contribution. Since m3
q̃ ≫ m3

EW, the two-loop contribution turns out to be quite large

when the phases are not small.

These two-loop contributions do not depend on the choice of texture, as they arise

mainly due to the third generation phase entering the gaugino mass running. Since the third

generation coupling is always 1 in the textures we consider here, the texture-dependence

is negligible.
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M-Theory M-Theory Split SUSY Generic SUSY Current Limit SM value

(2-loop) (1-loop) (µ ∼ 5TeV, M2 ∼ 1

3
TeV)

de (×10−28 e cm) 5× 10−2 5× 10−6 ∼ 1 ∼ 1000 0.87 10−10

dn (×10−28 e cm) 0.5 8× 10−3 ∼ 10 ∼ 1000 300 10−4

dHg (×10−28 e cm) 5× 10−4 2× 10−4 N/A N/A 0.31 N/A

dn/de ∼ 10 ∼ 103 ∼ 9 N/A N/A ∼ 106

Table 5. Results for the possibly dominant two-loop and 1-loop predictions of EDMs from compact-

ified M-Theory, as compared to the predictions from Split SUSY [53, 54], Generic SUSY models [1],

the current limits [35, 37, 39] and the expected SM value [1].

We summarise our results and compare with other models in table 5. As seen there, the

estimated upper bounds we find from the two loop contributions are |dn| . 5× 10−29e cm

and de . 5×10−30e cm. These are values that are likely to be accessible in the near future.

A detection would confirm a misalignment between the trilinears in the Soft Lagrangian and

the Yukawa matrices. Non-detection would imply that they are aligned, or that the phase

in the trilinears is indeed small. The results are different from those reported in the Split

SUSY scenario [53, 54], as can be seen in table 5 and would therefore provide a means of dis-

tinguishing between that scenario and the compactified M-theory. Further, the ratio of the

EDM predictions from the two-loop diagrams is a strong test of the M2/µ ratio predicted

in the compactified M-theory. These results assume the strong CP contribution is small.

We also compute the sub-dominant one-loop results. The reason being that these would

provide the dominant contributions in the case where the trilinears are indeed aligned with

the Yukawas. In this case, the estimated upper bounds turn out to depend strongly on

the textures and are all below current experimental limits. We argue that although we

only study some textures, the results for EDM upper limits are generic. We find that the

Electroweak contribution to the neutron and mercury EDMs is larger than the expected

strong contribution in the SM, so any observation of a neutron or mercury EDM may

be interpreted as the Electroweak part, but this would require further study. The upper

bound we estimate for the electron EDM is well below current experimental limits, so we

do not expect experiments in the near future to be able to measure a non-zero EDM.

These results, while done in the context of a compactified M-theory, are likely to be

applicable for supersymmetric models which have scalars similar to the M-theory ones (and

would scale as the scalar mass cubed), and light gauginos, with CP-violating phases arising

only in the Yukawa sector at the high scale.

The upper bounds we find for dn . 8 × 10−31e cm, dHg . 2 × 10−32e cm and de .

5 × 10−34e cm are strong and testable predictions of compactified M-theory. They are

much smaller than the sizes expected in supersymmetric and other generic models, but

still significantly larger than the SM predictions. Unfortunately, in this case, where the

trilinears are aligned with the Yukawas, we expect that non-zero EDMs will not be found

until there are major improvements in experimental sensitivity.

The next round of experimental measurements of EDMs will provide valuable insight

into the fundamental Yukawa couplings of the quarks and leptons. If non-zero EDMs are
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measured, it would suggest that there is indeed a misalignment between the full trilinears

and the Yukawa couplings, with the dominant EDM contribution arising at two-loop or-

der. If non-zero EDMs are not found, it would suggest that there is alignment between

the trilinears and the Yukawas. Further advances in experimental sensitivity might then

provide some insight into the structure of the Yukawas at the high scale, given the strong

texture dependence of the dominant one-loop contributions.
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A Yukawa texture derivations

A.1 Textures where one matrix is diagonal

In the special case where we can rotate to a basis where one of the up or down quark Yukawa

matrices is diagonal, the derivation of the other Yukawa matrix is greatly simplified, since

VCKM = (UL
u )

†UL
d depends on the diagonalisation matrices.

In the case where the down Yukawa matrix is taken to be diagonal, this simplifies to

VCKM = (UL
u )

†
13×3. Then since we know that (UL

u )
†Y u(Y u)†UL

u = M2
u , where M2

u is the

diagonal matrix of the quark masses squared, we can solve for Y u using the expression

Y u(Y u)† = UL
u M

2
u(U

L
u )

†. The expression for this is given below:

Y u(Y u)† =







m2
u + ǫ2m2

c + ǫ6m2
t ǫm2

u + ǫm2
c + ǫ5m2

t ǫ3m2
u + ǫ3m2

c + ǫ3m2
t

ǫm2
u + ǫm2

c + ǫ5m2
t ǫ2m2

u +m2
c + ǫ5m2

t ǫ4m2
u + ǫ2m2

c + ǫ2m2
t

ǫ3m2
u + ǫ3m2

c + ǫ3m2
t ǫ4m2

u + ǫ2m2
c + ǫ2m2

t ǫ6m2
u + ǫ4m2

c +m2
t







≈







ǫ16 + ǫ10 + ǫ6 ǫ17 + ǫ9 + ǫ5 ǫ19 + ǫ11 + ǫ3

ǫ17 + ǫ9 + ǫ5 ǫ18 + ǫ8 + ǫ4 ǫ20 + ǫ10 + ǫ2

ǫ19 + ǫ11 + ǫ3 ǫ20 + ǫ10 + ǫ2 ǫ22 + ǫ12 + 1







(A.1)

where we have used the approximate hierarchy as described in equation (3.9). We then use

the ansatz

Y u =







ǫ8 ǫa ǫb

ǫc ǫ4 ǫd

ǫe ǫf 1






(A.2)

and solve for a, b, c, d, e, f .

The same analysis can be repeated for the case where the up-type Yukawa matrix

is diagonal.

A.2 Minimal matrix derivation

It is of interest to consider what the minimal matrix would be, and whether it is symme-

tric or not. The only assumption we start with in this derivation is that we know the
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hierarchy, which is the same as previously, and that the CKM matrix is parameterised by

equation (3.7). We know the general structure of the unitary diagonalisation matrices to be

UL,R
u =







1 ǫi ǫj

ǫi 1 ǫk

ǫj ǫk 1






, UL,R

d =







1 ǫx ǫy

ǫx 1 ǫz

ǫy ǫz 1






(A.3)

such that

VCKM =







1 (ǫi + ǫx + ǫj+z) (ǫj + ǫy + ǫi+z)

(ǫi + ǫx + ǫj+z) 1 (ǫk + ǫz + ǫi+y)

(ǫj + ǫy + ǫi+z) (ǫk + ǫz + ǫi+y) 1






(A.4)

which leads to the following constraints:

• i, x or j + z = 1

• k, z or i+ y = 2

• j, y or i+ z = 3

In the subsequent analysis, we assume that the down diagonalisation matrix has the

form of the CKM matrix, i.e. x = 1, y = 3, z = 2 in order to have our up type diagonali-

sation matrix unconstrained, so that to leading order the CKM matrix is satisfied.

We define the following form for the general up type Yukawa matrix

Y u =







ǫ8 ǫl ǫm

ǫn ǫ4 ǫo

ǫp ǫq 1






(A.5)

such that

Y uY u† =







(ǫ16 + ǫ2l + ǫ2m) (ǫ4+l + ǫ8+n + ǫm+o) (ǫm + ǫ8+p + ǫl+q)

(ǫ4+l + ǫ8+n + ǫm+o) (ǫ8 + ǫ2n + ǫ2o) (ǫo + ǫ4+q + ǫn+p)

(ǫm + ǫ8+p + ǫl+q) (ǫo + ǫ4+q + ǫn+p) (1 + ǫ2p + ǫ2q)






(A.6)

We derive conditions on the variables by looking at the diagonal components of the

diagonalised matrices i) UL
u
†
Y uY u†UL

u , and ii) UL
u
†
Y uUR

u . These allow us to determine the

minimal up-type Yukawa texture to be:

Y u =







ǫ8 ǫ4 ǫ4

ǫ4 ǫ4 ǫ2

ǫ4 ǫq 1






(A.7)

with q unconstrained by the diagonalisation and the unitary matrix that diagonalises Y u

is given by

UL,R
u =







1 ǫ4 ǫ4

ǫ4 1 ǫ4

ǫ4 ǫ4 1






(A.8)
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B Explicit chargino diagonalisation expressions

We present here the diagonalisation procedure and results for the Chargino mass matrix

with imaginary M2, but all other entries real.

We do so by solving for V and U given that

V X†XV −1 = U∗XX†UT =

(

M2
C1

0

0 M2
C2

)

(B.1)

We parameterise V and U as

U, V =

(

cU,V tU,V cU,V
−t∗U,V cU,V cU,V

)

(B.2)

where ci = cos θi and ti = tan θi, which we solve for.
We give here expressions for X†X and XX† in order to simplify our expressions for ci

and ti.

X†X≡
(

A11 A12

A21 A22

)

=

( |M2|2+2 cosβ2M2
W M∗

2

√
2 sinβMW +

√
2 cosβMWµ

M2

√
2 sinβMW +

√
2 cosβMWµ 2 sinβ2M2

W +µ2

)

XX†≡
(

B11 B12

B21 B22

)

=

( |M2|2+2 sinβ2M2
W M2

√
2 cosβMW +

√
2 sinβMWµ

M∗
2

√
2 cosβMW +

√
2 sinβMWµ 2 cosβ2M2

W +µ2

)
(B.3)

Then we find that

tV =
(A22 −A11)±

√

(A11 −A22)2 + 4A21A12

2A21
, t∗V = tV Aij↔Aji

tU =
(B22 −B11)±

√

(B11 −B22)2 + 4B21B12

2B12
, t∗U = tUBij↔Bji

(B.4)

with ci = 1√
1+|ti|2

. It is noted that A(B)12 and A(B)21 contain the phase from the

trilinears, φ3.

This assignment for the entries of V and U renders X diagonal, with phases in the

diagonal components. Since we want our mass eigenvalues to be real, we rotate away the

phases, such that our rotation matrices are actually

U ′ =

(

eiφC1/2 0

0 eiφC2/2

)

·
(

cU tUcU
−t∗UcU cU

)

V ′ =

(

eiφC1/2 0

0 eiφC2/2

)

·
(

cV tV cV
−t∗V cV cV

) (B.5)

so that U ′∗XV ′−1 = XRD where XRD is real and diagonal.
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C Contributions to EDMs

C.1 One-loop SUSY contributions to EDMs

In this subsection we present the one-loop SUSY contributions due to the Feynman dia-

grams in figure 2. We use the results of Ibrahim and Nath [5].

The electromagnetic contributions to fermion EDMs are as follows

(

dg̃q
e

)(E)

=
−2αs

3π

2
∑

k=1

Im(Γ1k
q )

mg̃

M2
q̃k

Qq̃ B

(

m2
g̃

M2
q̃k

)

(

dχ
±

u

e

)(E)

=
−αEM

4π sin2 θW

2
∑

k=1

2
∑

i=1

Im(Γuik)
mχ±

M2
d̃k

[

Qd̃ B

(

m2
χ±

M2
d̃k

)

+(Qu−Qd̃) A

(

m2
χ±

M2
d̃k

)]

(

dχ
±

d

e

)(E)

=
−αEM

4π sin2 θW

2
∑

k=1

2
∑

i=1

Im(Γdik)
mχ±

M2
ũk

[

Qũ B

(

m2
χ±

M2
ũk

)

+(Qd−Qũ) A

(

m2
χ±

M2
ũk

)]

(

dχ
±

e

e

)(E)

=
αEM

4π sin2 θW

2
∑

i=1

Im(Γei)
mχ±

m2
ν̃

A

(

m2
χ±

m2
ν̃

)





dχ
0

f

e





(E)

=
αEM

4π sin2 θW

2
∑

k=1

4
∑

i=1

Im(ηfik)
mχ0

M2
f̃k

Qf̃ B

(

m2
χ0

M2
f̃k

)

(C.1)

where

Γ1k
q = e−iφ3Dq2kD

∗
q1k (C.2)

with φ3 being the gluino phase, which in our theory can be rotated away, and Dq defined

as D†
qM2

q̃Dq = diag(M2
q̃1
,M2

q̃2
). With the sfermion mass matrix M2

f̃
given by

M2
f̃
=

(

M2
L+m2

f+M2
z (

1
2−Qf sin

2 θW ) cos 2β mf (A
∗
f−µRf )

mf (Af−µ∗Rf ) M2
R+m2

f+M2
zQf sin

2 θW cos 2β

)

(C.3)

where Rf = cotβ (tanβ) for I3 = 1/2 (−1/2). The chargino vertices are given by

Γuik = κuV
∗
i2Dd1k(U

∗
i1D

∗
d1k − κdU

∗
i2D

∗
d2k)

Γdik = κdU
∗
i2Du1k(V

∗
i1D

∗
u1k − κuV

∗
i2D

∗
u2k)

(C.4)

and

Γei = (κeU
∗
i2V

∗
i1) (C.5)

where in each case κf is the Yukawa coupling, defined as κu = mu√
2mW sinβ

and κd,e =
md,e√

2mW cosβ
, and U and V are the unitary matrices diagonalizing the chargino mass matrix.

The neutralino vertex is defined as

ηfik =
[

−
√
2{tan θW (Qf − I3f )X1i + I3fX2i}D∗

f1k − κfXbiD
∗
f2k

]

×
[√

2 tan θWQfX1iDf2k − κfXbiDf1k

] (C.6)
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with b = 3 (4) for I3 = −1/2 (1/2), and X being the unitary matrix diagonalizing the

neutralino mass matrix. The CEDM contributions are given by

dg̃ (C)
q =

gsαs

4π

2
∑

k=1

Im(Γ1k
q )

mg̃

M2
q̃k

C

(

m2
g̃

M2
q̃k

)

dχ̃
± (C)

q =
−g2gs
16π2

2
∑

k=1

2
∑

i=1

Im(Γqik)
mχ̃±

i

M2
q̃k

B





m2
χ̃±

i

M2
q̃k





dχ̃
0 (C)

q =
g2gs
16π2

2
∑

k=1

4
∑

i=1

Im(ηqik)
mχ̃0

i

M2
q̃k

B

(

m2
χ̃0
i

M2
q̃k

)

(C.7)

And the dimension-6 Weinberg operator gives a contribution

dG = −3αsmt

( gs
4π

)3
Im(Γ12

t )
z1 − z2
m3

g̃

H(z1, z2, z3) + (t → b) (C.8)

with zi =
(

Mt̃i

mg̃

)2

, and zt =
(

mt

mg̃

)2
, with the two-loop function H(z1, z2, zt) being given by

H(z1, z2, zt) =
1

2

∫ 1

0
dx

∫ 1

0
du

∫ 1

0
dyx(1− x)u

N1N2

D4
(C.9)

where

N1 = u(1− x) + ztx(1− x)(1− u)− 2ux[z1y + z2(1− y)]

N2 = (1− x)2(1− u)2 + u2 − 1

9
x2(1− u)2

D = u(1− x) + ztx(1− x)(1− u) + ux[z1y + z2(1− y)]

(C.10)

However, for the purpose of this analysis in this framework, the contribution from this

two-loop effect is negligible, so it will not be calculated. Thus recording these equations

is merely for book-keeping purposes. We consider other two-loop effects which give larger

contributions in the text. Another two-loop effect is from the Barr-Zee diagram with scalars

in a loop, which is treated in the next subsection.

The functions A(r), B(r) and C(r) used in the equations above are the one-loop

functions, and are given by

A(r) =
1

2(1− r)2

(

3− r +
2 ln r

1− r

)

B(r) =
1

2(r − 1)2

(

1 + r +
2r ln r

1− r

)

C(r) =
1

6(r − 1)2

(

10r − 26 +
2r ln r

1− r
− 18 ln r

1− r

)

(C.11)

The above equations are rather intractable, and in fact a number of approximations

can be utilized to simplify the calculation. For example, for the neutron and mercury, the

quark CEDM contributions are much larger than the quark EDM contributions (as seen
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in [19] ), so let us take the example of the dominant gluino contribution, d
g̃ (C)
q . Expanding

the relevant line in equation (C.7), and defining ri =
m2

g̃

m2
q̃i

, we find that

dg̃ (C)
q =

gsαs

4π

[

Im(Γ11
q )

mg̃

m2
q̃1

C(r1)− Im(Γ12
q )

mg̃

m2
q̃2

C(r2)

]

(C.12)

But since Γ11
q = −Γ12

q , we can then simplify this further. Also m2
q̃i

= m2
q̃ ± ∆m, where

∆m = (m2
q̃)LR, i.e. it is the contribution from the off-diagonal components of the squark

mass matrix. We will utilize the assumption that since we are interested in the first

generation squarks, the mass splitting is small compared to the squark mass.

This allows us to expand the various factors and functions above and simplify (C.12)

to the following form

dg̃ (C)
q ≈ gsαs

4π

Im(m2
q̃)LR

m3
g̃

r2
[

C(r) + rC
′

(r)
]

(C.13)

as was found in [19].

For the electron EDM, there are a few things we notice which simplify the calculation.

The chargino component depends on Im(Γei), which is zero in the framework considered

due to the absence of CP-violating phases in the chargino sector when the trilinears and

Yukawas are aligned. Thus only the neutralino diagrams contribute. If we assume no

mixing, by a similar analysis to the one performed for the gluino contribution to the quark

CEDM, we find that the result for the electron is given by

dEe ≈ eαEM

4π cos2 θW

Im(m2
ẽ)LR

m3
B̃

r2
[

B(r1) + r1B
′

(r1)
]

(C.14)

C.2 Barr-Zee diagram contributions

In general, Barr-Zee type diagrams can involve squarks, charginos or neutralinos in the

inner loop, with gauge bosons and or higgs bosons in the outer loop. The two-loop diagrams

when the Trilinears are not aligned with the Yukawas are considered above. So here we

present the two-loop results when they are aligned. In this case, since the only phases come

from the Yukawa sector, we need only consider the diagrams with squarks running in the

inner loop. We are particularly interested in diagrams with third generation squarks, t̃ and

b̃ running in the inner loop, since they are lighter and are not suppressed by factors of ǫ.

The general EDM and CEDM contributions are given by
(

dEf
e

)

= Qf
3αem

32π3

Rfmf

M2
A

∑

q=t,b

ξqQ
2
q

[

F

(

M2
q̃1

M2
A

)

− F

(

M2
q̃2

M2
A

)]

dCf =
gsαs

64π3

Rfmf

M2
A

∑

q=t,b

ξq

[

F

(

M2
q̃1

M2
A

)

− F

(

M2
q̃2

M2
A

)] (C.15)

where MA is the mass of the pseudoscalar Higgs boson A0, and Rf = cotβ (tanβ) for

I3 = 1/2 (−1/2) and F (r) is the two-loop function defined as

F (r) =

∫ 1

0
dx

x(1− x)

r − x(1− x)
ln

[

x(1− x)

r

]

(C.16)
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The CP-violating couplings are ξt,b, defined as

ξt = −sin 2θt̃mt Im(µeiδt)

2v2 sin2 β

ξb = −sin 2θb̃mb Im(Abe
−iδb)

2v2 sinβ cosβ

(C.17)

where one should be careful to note that v = 246/
√
2GeV, and the minus signs are chosen

by convention, differing from [7] and the associated erratum. The variables θt̃,b̃ are the stop

and sbottom mixing angles, and δq = arg(Aq + Rqµ
∗). The squark sector mixing angle is

defined as

tan(2θq) = −
2mq|µRq +A∗

q |
M2

Q̃
−M2

q̃ + cos 2βM2
Z(T

q
z − 2eqs2w)

≈ −
2mq|µRq +A∗

q |
M2

Q̃
−M2

q̃

(C.18)

such that we can rewrite the CP-violating couplings given in (C.17) as

ξt ≈
y2t |A∗

t + µ cotβ| Im(µeiδt)

M2
Q̃
−M2

t̃

ξb ≈ cotβ
y2b |A∗

b + µ tanβ| Im(Abe
iδb)

M2
Q̃
−M2

b̃

(C.19)

which can then be used to simplify (C.15) such that it reads
(

dEf
e

)

= Qf

3αem

32π3

Rfmf

M4
A

Im

[

4y2t
9

µ(At + µ∗ cotβ)F ′

(

M2
q̃1

M2
A

)

(C.20)

+
y2b
9
Ab(A

∗
b + µ tanβ) cotβF ′

(

M2
q̃2

M2
A

)]

dCf =
gsαs

64π3

Rfmf

M4
A

Im

[

y2t µ(At + µ∗ cotβ)F ′

(

M2
q̃1

M2
A

)

+ y2bAb(A
∗
b + µ tanβ) cotβF ′

(

M2
q̃2

M2
A

)]

where in (C.19) above, mt̃,b̃ are the average masses of the stops and sbottoms respectively.

In the above equations, the mass of the CP-odd Higgs mass is given by

M2
A = m2

Hu
+m2

Hd
+ 2|µ|2 (C.21)

where the first two contributions are considerably larger than that of µ, but we include the

µ term for completeness.

Barr-Zee contributions turn out to be very small, and are therefore not included in our

final computation of de.

– 28 –



J
H
E
P
0
1
(
2
0
1
6
)
0
7
7

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics,

Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

[2] H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1

[INSPIRE].

[3] H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the

Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].

[4] R. Garisto and J.D. Wells, Constraints on supersymmetric soft phases from renormalization

group relations, Phys. Rev. D 55 (1997) 1611 [hep-ph/9609511] [INSPIRE].

[5] T. Ibrahim and P. Nath, The neutron and the electron electric dipole moment in N = 1

supergravity unification, Phys. Rev. D 57 (1998) 478 [Erratum ibid. D 58 (1998) 019901]

[Erratum ibid. D 60 (1999) 079903] [Erratum ibid. D 60 (1999) 119901] [hep-ph/9708456]

[INSPIRE].

[6] T. Falk, K.A. Olive, M. Pospelov and R. Roiban, MSSM predictions for the electric dipole

moment of the Hg-199 atom, Nucl. Phys. B 560 (1999) 3 [hep-ph/9904393] [INSPIRE].

[7] D. Chang, W.-Y. Keung and A. Pilaftsis, New two loop contribution to electric dipole

moment in supersymmetric theories, Phys. Rev. Lett. 82 (1999) 900 [Erratum ibid. 83 (1999)

3972] [hep-ph/9811202] [INSPIRE].

[8] S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories,

Nucl. Phys. B 606 (2001) 151 [hep-ph/0103320] [INSPIRE].

[9] J.S. Lee et al., CPsuperH: A computational tool for Higgs phenomenology in the minimal

supersymmetric standard model with explicit CP-violation,

Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [INSPIRE].

[10] D.A. Demir, O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Electric dipole moments in

the MSSM at large tan beta, Nucl. Phys. B 680 (2004) 339 [hep-ph/0311314] [INSPIRE].

[11] K.A. Olive, M. Pospelov, A. Ritz and Y. Santoso, CP-odd phase correlations and electric

dipole moments, Phys. Rev. D 72 (2005) 075001 [hep-ph/0506106] [INSPIRE].

[12] J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric Dipole Moments in the MSSM Reloaded,

JHEP 10 (2008) 049 [arXiv:0808.1819] [INSPIRE].

[13] J. Ellis, J.S. Lee and A. Pilaftsis, A Geometric Approach to CP-violation: Applications to the

MCPMFV SUSY Model, JHEP 10 (2010) 049 [arXiv:1006.3087] [INSPIRE].

[14] T. Fukuyama, Searching for New Physics beyond the Standard Model in Electric Dipole

Moment, Int. J. Mod. Phys. A 27 (2012) 1230015 [arXiv:1201.4252] [INSPIRE].

[15] T. Moroi and M. Nagai, Probing Supersymmetric Model with Heavy Sfermions Using

Leptonic Flavor and CP-violations, Phys. Lett. B 723 (2013) 107 [arXiv:1303.0668]

[INSPIRE].

[16] D. McKeen, M. Pospelov and A. Ritz, Electric dipole moment signatures of PeV-scale

superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].

– 29 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.aop.2005.04.002
http://arxiv.org/abs/hep-ph/0504231
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504231
http://dx.doi.org/10.1016/0370-1573(84)90008-5
http://inspirehep.net/search?p=find+J+"Phys.Rept.,110,1"
http://dx.doi.org/10.1016/0370-1573(85)90051-1
http://inspirehep.net/search?p=find+J+"Phys.Rept.,117,75"
http://dx.doi.org/10.1103/PhysRevD.55.1611
http://arxiv.org/abs/hep-ph/9609511
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9609511
http://dx.doi.org/10.1103/PhysRevD.57.478
http://arxiv.org/abs/hep-ph/9708456
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9708456
http://dx.doi.org/10.1016/S0550-3213(99)00471-X
http://arxiv.org/abs/hep-ph/9904393
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9904393
http://dx.doi.org/10.1103/PhysRevLett.82.900
http://arxiv.org/abs/hep-ph/9811202
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9811202
http://dx.doi.org/10.1016/S0550-3213(01)00233-4
http://arxiv.org/abs/hep-ph/0103320
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0103320
http://dx.doi.org/10.1016/S0010-4655(03)00463-6
http://arxiv.org/abs/hep-ph/0307377
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0307377
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.026
http://arxiv.org/abs/hep-ph/0311314
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0311314
http://dx.doi.org/10.1103/PhysRevD.72.075001
http://arxiv.org/abs/hep-ph/0506106
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506106
http://dx.doi.org/10.1088/1126-6708/2008/10/049
http://arxiv.org/abs/0808.1819
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1819
http://dx.doi.org/10.1007/JHEP10(2010)049
http://arxiv.org/abs/1006.3087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.3087
http://dx.doi.org/10.1142/S0217751X12300153
http://arxiv.org/abs/1201.4252
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4252
http://dx.doi.org/10.1016/j.physletb.2013.04.049
http://arxiv.org/abs/1303.0668
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.0668
http://dx.doi.org/10.1103/PhysRevD.87.113002
http://arxiv.org/abs/1303.1172
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1172


J
H
E
P
0
1
(
2
0
1
6
)
0
7
7

[17] W. Altmannshofer, R. Harnik and J. Zupan, Low Energy Probes of PeV Scale Sfermions,

JHEP 11 (2013) 202 [arXiv:1308.3653] [INSPIRE].

[18] T. Ibrahim, A. Itani and P. Nath, Electron electric dipole moment as a sensitive probe of

PeV scale physics, Phys. Rev. D 90 (2014) 055006 [arXiv:1406.0083] [INSPIRE].

[19] G. Kane, P. Kumar and J. Shao, CP-violating Phases in M-theory and Implications for

EDMs, Phys. Rev. D 82 (2010) 055005 [arXiv:0905.2986] [INSPIRE].

[20] I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361

[INSPIRE].

[21] G. Kane, J. Shao, S. Watson and H.-B. Yu, The Baryon-Dark Matter Ratio Via Moduli

Decay After Affleck-Dine Baryogenesis, JCAP 11 (2011) 012 [arXiv:1108.5178] [INSPIRE].

[22] B.S. Acharya, K. Bobkov, G. Kane, P. Kumar and D. Vaman, An M-theory Solution to the

Hierarchy Problem, Phys. Rev. Lett. 97 (2006) 191601 [hep-th/0606262] [INSPIRE].

[23] B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the Electroweak

Scale and Stabilizing Moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034]

[INSPIRE].

[24] B.S. Acharya and K. Bobkov, Kähler Independence of the G2-MSSM, JHEP 09 (2010) 001

[arXiv:0810.3285] [INSPIRE].

[25] B.S. Acharya and S. Gukov, M theory and singularities of exceptional holonomy manifolds,

Phys. Rept. 392 (2004) 121 [hep-th/0409191] [INSPIRE].

[26] B.S. Acharya, K. Bobkov and P. Kumar, An M-theory Solution to the Strong CP Problem

and Constraints on the Axiverse, JHEP 11 (2010) 105 [arXiv:1004.5138] [INSPIRE].

[27] E. Witten, Deconstruction, G2 holonomy and doublet triplet splitting, hep-ph/0201018

[INSPIRE].

[28] B.S. Acharya, G. Kane, E. Kuflik and R. Lu, Theory and Phenomenology of µ in M-theory,

JHEP 05 (2011) 033 [arXiv:1102.0556] [INSPIRE].

[29] G.F. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity

Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

[30] J.J. Heckman and C. Vafa, Flavor Hierarchy From F-theory, Nucl. Phys. B 837 (2010) 137

[arXiv:0811.2417] [INSPIRE].

[31] P. Ramond, R.G. Roberts and G.G. Ross, Stitching the Yukawa quilt,

Nucl. Phys. B 406 (1993) 19 [hep-ph/9303320] [INSPIRE].

[32] S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft

supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008)

039903] [hep-ph/9311340] [INSPIRE].

[33] S. Weinberg, Larger Higgs Exchange Terms in the Neutron Electric Dipole Moment,

Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].

[34] S.M. Barr, Measurable T and P odd electron-nucleon interactions from Higgs boson exchange,

Phys. Rev. Lett. 68 (1992) 1822 [INSPIRE].

[35] ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric

Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].

[36] G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole

moment of the neutron in the MSSM, JHEP 11 (2005) 044 [hep-ph/0510137] [INSPIRE].

– 30 –

http://dx.doi.org/10.1007/JHEP11(2013)202
http://arxiv.org/abs/1308.3653
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3653
http://dx.doi.org/10.1103/PhysRevD.90.055006
http://arxiv.org/abs/1406.0083
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0083
http://dx.doi.org/10.1103/PhysRevD.82.055005
http://arxiv.org/abs/0905.2986
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2986
http://dx.doi.org/10.1016/0550-3213(85)90021-5
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B249,361"
http://dx.doi.org/10.1088/1475-7516/2011/11/012
http://arxiv.org/abs/1108.5178
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5178
http://dx.doi.org/10.1103/PhysRevLett.97.191601
http://arxiv.org/abs/hep-th/0606262
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606262
http://dx.doi.org/10.1103/PhysRevD.76.126010
http://arxiv.org/abs/hep-th/0701034
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701034
http://dx.doi.org/10.1007/JHEP09(2010)001
http://arxiv.org/abs/0810.3285
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.3285
http://dx.doi.org/10.1016/j.physrep.2003.10.017
http://arxiv.org/abs/hep-th/0409191
http://inspirehep.net/search?p=find+EPRINT+hep-th/0409191
http://dx.doi.org/10.1007/JHEP11(2010)105
http://arxiv.org/abs/1004.5138
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.5138
http://arxiv.org/abs/hep-ph/0201018
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0201018
http://dx.doi.org/10.1007/JHEP05(2011)033
http://arxiv.org/abs/1102.0556
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0556
http://dx.doi.org/10.1016/0370-2693(88)91613-9
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B206,480"
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.009
http://arxiv.org/abs/0811.2417
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.2417
http://dx.doi.org/10.1016/0550-3213(93)90159-M
http://arxiv.org/abs/hep-ph/9303320
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9303320
http://dx.doi.org/10.1103/PhysRevD.50.2282
http://arxiv.org/abs/hep-ph/9311340
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9311340
http://dx.doi.org/10.1103/PhysRevLett.63.2333
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,63,2333"
http://dx.doi.org/10.1103/PhysRevLett.68.1822
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,68,1822"
http://dx.doi.org/10.1126/science.1248213
http://arxiv.org/abs/1310.7534
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.7534
http://dx.doi.org/10.1088/1126-6708/2005/11/044
http://arxiv.org/abs/hep-ph/0510137
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510137


J
H
E
P
0
1
(
2
0
1
6
)
0
7
7

[37] C.A. Baker et al., An improved experimental limit on the electric dipole moment of the

neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

[38] J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric Dipole Moments of Nucleons,

Nuclei and Atoms: The Standard Model and Beyond, Prog. Part. Nucl. Phys. 71 (2013) 21

[arXiv:1303.2371] [INSPIRE].

[39] W.C. Griffith, M.D. Swallows, T.H. Loftus, M.V. Romalis, B.R. Heckel and E.N. Fortson,

Improved Limit on the Permanent Electric Dipole Moment of Hg-199,

Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].

[40] J.R. Ellis and M.K. Gaillard, Strong and Weak CP-violation, Nucl. Phys. B 150 (1979) 141

[INSPIRE].

[41] I.B. Khriplovich, Quark Electric Dipole Moment and Induced θ Term in the

Kobayashi-Maskawa Model, Phys. Lett. B 173 (1986) 193 [Sov. J. Nucl. Phys. 44 (1986)

659] [Yad. Fiz. 44 (1986) 1019] [INSPIRE].

[42] J.-M. Gérard and P. Mertens, Weakly-induced strong CP-violation,

Phys. Lett. B 716 (2012) 316 [arXiv:1206.0914] [INSPIRE].

[43] J.R. Ellis, S. Ferrara and D.V. Nanopoulos, CP Violation and Supersymmetry,

Phys. Lett. B 114 (1982) 231 [INSPIRE].

[44] K. Bobkov, V. Braun, P. Kumar and S. Raby, Stabilizing All Kähler Moduli in Type IIB

Orientifolds, JHEP 12 (2010) 056 [arXiv:1003.1982] [INSPIRE].
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