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1 Introduction

Quantum gravity aims to combine the principles of quantum mechanics with the theory

of gravity proposed by Einstein nearly a century ago. This classical theory, general rela-

tivity, is based on the equivalence principle for all observers. The theory is described by

the Einstein field equations for the metric tensor gµν , which are generally covariant under
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arbitrary coordinate transformations. In the absence of matter these equations imply that

the scalar curvature is given by R = 4Λ, where Λ is the cosmological constant, and that the

theory describes a spin-two fluctuation corresponding to the graviton. However, quantum

gravity runs into severe difficulties when standard perturbative methods are applied. In

particular the theory is perturbatively non-renormalisable already at one loop, in the pres-

ence of matter [1], and at two loops for pure gravity [2]. This leaves the possibility that

gravity can be quantised non-perturbativley. Alternatively one must go beyond general

relativity alone by adopting new degrees of freedom and/or symmetry principles.

Another conundrum of quantum gravity relates to the cosmological constant Λ. The

standard folklore is that the cosmological constant is predicted to be of order the Planck

scale M2
Pl = G−1

N where GN is Newton’s constant (here and throughout we use units

~ = 1 = c). Such a prediction comes from naturalness arguments assuming that its value

is set by Planck scale physics. On the other hand this reasoning is in contradiction with

observation [3]. Indeed, assuming that Λ is responsible for the late time acceleration of

the universe, the measured value of GN · Λ is some 122 orders of magnitude less than this

prediction. Thus the standard ΛCDM-model of cosmology is called into question since it

suffers from an apparent fine tuning problem for Λ.

One possibility is that Λ is exactly zero and that the acceleration of the universe

comes from another source of dark energy or modified gravity. This would imply that flat

Minkowski spacetime is the true vacuum of quantum gravity. That this is the case has

been conjectured in [4] where a careful handling of conformal fluctuations gµν → e2σgµν
has been stressed. Furthermore in [5] it has been argued that Λ should not receive quantum

corrections at all since it can always be set to unity by a conformal field redefinition of the

metric tensor.

Conformal modes also cause a problem for the quantisation of gravity since they make

the näıvely Wick rotated Euclidean action unbounded from below. On the other hand the

conformal fluctuations are non-dynamical in general relativity. Therefore such apparently

pathological fluctuations of σ are only influential off-shell or in the presence of matter.

In [4] the correct treatment of the conformal mode has been derived at the semi-classical

level. There it was observed that the proper Wick rotation of σ ensures that the action is

bounded from below, while the dynamics of σ are cancelled by a Jacobian arising in the

functional measure.

Ultimately to understand the stability of gravity with or without a cosmological con-

stant we must appeal to the full quantum theory. After quantisation the classical action

S[ϕ] of a theory is replaced by the effective action Γ[φ], which results from a Legendre trans-

form of the functional integral. This implies that the effective action is a convex functional

of the mean field φ = 〈ϕ〉 such that its second functional derivative is positive definite

Γ(2)[φ] > 0 . (1.1)

This condition reflects the stability of the theory and allows for the determination of the

vacuum state. If we wish to quantise gravity as a fundamental theory this necessitates that

we compute Γ[φ] via non-perturbative methods. Making sure (1.1) continues to be satisfied

when approximations are applied is therefore crucial for their consistency. At a technical
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level these considerations relate directly to the regulated functional measure of the path in-

tegral and therefore to how the gauge fixing and renormalisation schemes are implemented.

In this paper we shall investigate the non-perturbative quantisation of gravity at an

ultra-violet (UV) fixed point of the renormalisation group (RG) [6], corresponding to a

second order phase transition for quantum gravity. A theory defined at such a fixed point

is said to be asymptotically safe provided the phase transition has finitely many relevant

directions. In light of the above considerations we shall pay particular attention to the

treatment of the cosmological constant, conformal fluctuations and ultimately the convex-

ity condition (1.1). While we study a simple phase diagram, parameterised by only the

Newtons coupling and the cosmological constant, we shall close the approximation scheme

by a non-perturbative expansion ensuring that the effective action remains convex. In this

way we aim to minimise unphysical contributions while capturing the physics of quan-

tum general relativity namely the spin-two fluctuations of the graviton and the topological

conformal modes.

Aside from asymptotic safety it has been suggested [7] that gravity could be quantised

by first integrating out the conformal fluctuations and then obtaining a conformally in-

variant effective theory for the remaining degrees of freedom. Then, due to its conformal

nature, one would expect the resulting theory to remain finite after further quantisation.

These ideas came from observing that ‘complementary’ descriptions of evaporating black

holes are related by conformal transformations [8]. The problem with this approach is

that the conformal modes remain power counting non-renormalisable [7]. Therefore, the

existence of an asymptotically safe UV fixed point for the conformal fluctuations would be

desirable. Indeed an asymptotically safe fixed point implies that the theory becomes scale

invariant at short distances and that small black hole horizons admit conformal scaling

laws [9]. In addition to full quantum gravity, we shall therefore investigate the conformally

reduced theory where only the conformal modes are quantised.

The rest of this paper is as follows. First we review the functional renormalisation

group for gravity and the asymptotic safety scenario in section 2. In section 3 we consider

the physical and propagating degrees of freedom in quantum general relativity. We adopt a

gauge fixing procedure which makes the nature of these degrees of freedom manifest while

exactly cancelling the gauge variant fields with the Fadeev-Popov ghosts. In particular

we are able to observe the topological stasis of the conformal mode. In section 4 we

consider the form of the IR regulator and revisit the convexity condition (1.1) for the

regulated theory. Here we show how poles in the propagator can be avoided leading to a

well behaved low energy limit provided the curvature satisfies R > 4Λ. In light of this we

employ an approximation scheme in section 5 whereby the early time heat kernel expansion

is truncated rather than expanding in powers of the curvature. This allows us to close the

Einstein-Hilbert approximation while not expanding around vanishing R. In the next three

sections we present our results coming from these considerations while the explicit form of

the flow equation is given in appendix A. The beta functions for GN and Λ are studied

in section 6 and the existence of a UV attractive fixed point is shown. In section 7 we

compare our results to those obtain by various curvature expansions. Then in section 8 we

show how the renormalisation group flow possesses asymptotically safe trajectories with
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a classical limit for positive, negative and vanishing cosmological constant. We then turn

to the conformally reduced theory in section 9 where only the conformal fluctuations are

quantised and their topological nature is preserved. There we find a UV fixed point which

predicts the vanishing of the cosmological constant Λ = 0 on all scales. Motivated by this

in section 10 we consider the beta function for quantum gravity at vanishing cosmological

constant. We end in section 11 with with a summary of our results and our conclusions.

2 RG for gravity and asymptotic safety

Since perturbative methods fail to give a renormalisable theory of quantum gravity, or shed

light on the cosmological constant problem, one can resort to non-perturbative methods.

An indispensable tool for understanding non-perturbative physics is offered by the exact (or

functional) renormalisation group [10, 11] (for reviews see [12–16]). Within this framework

a perturbatively non-renormalisable field theory may still be renormalised at an asymp-

totically safe fixed point under RG transformations. At its root is the observation that

couplings of the theory, such as GN and Λ, are not constants in the quantum theory but

generally depend on the momentum scale at which they are evaluated. If at high energies

they tend towards an asymptotically safe fixed point their low energy values can be deter-

mined by following their RG flow into the infra-red (IR). Given such a fixed point in gravity

we can then follow the flow of GN ·Λ to determine its observable value. To be a consistent

theory of quantum gravity the low energy couplings must reproduce classical general rel-

ativity (plus corrections at high curvatures). Trajectories of the RG that fulfil asymptotic

safety and give rise to a meaningful low energy limit can be said to be ‘globally safe’.

There now exists are large amount of evidence for asymptotic safety in four dimen-

sional gravity coming from functional RG calculations [17–24] (for reviews see [25–32])

and complimented by lattice [33–37] and perturbative calculations [38, 39]. Within the

functional RG approach early work concentrated on simple approximations whereby only

an action of the Einstein-Hilbert form was considered [17–20]. Later studies have gone

beyond this by including higher curvature terms [21–24, 39], general actions of the f(R)

type [24, 40, 41] and the effects of matter [42–46].

More recently more sophisticated calculations have been performed by including ad-

ditional terms in the action which have a non-trivial background field dependence [47–50].

The nature of these non-covariant terms are in principle constrained by (modified) BRST

invariance [51]. At leading order these take the form of the bare gauge fixing and ghost

terms arising from the Faddeev-Popov method. Beyond this approximation new terms

should arise which depend on the explicit form of gauge fixing as well as the RG scheme.

In [52] the background field dependence of such terms has been evaluated via the Nielsen

identities for the geometric effective action. Although in other works the modified BRST

invariance of such approximations has not been determined, the flow of covariance breaking

couplings such as mass parameters [49], wave function renormalisation [48, 49] and purely

background field couplings [47, 50] has been assessed, while in [49] the flow of the full mo-

mentum dependent graviton propagator was evaluated. Additionally, the scale dependence
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of the ghost sector has been studied in [53–55]. In each case a UV fixed point compatible

with asymptotic safety has been found.

In addition to an asymptotically safe fixed point there is evidence of a non-trivial IR

fixed point in quantum gravity [49, 52, 56–59]. While earlier work suggested that this fixed

point led to a non-classical running of cosmological constant, in [49] it was found that this

fixed point is for the unphysical mass parameter and that gravity behaves classically at

this fixed point. Thus the existence of trajectories connecting the UV and IR fixed points

imply that gravity is well defined on all length scales.

Here we will be studying the flow of the effective average action Γk where k denotes

the RG scale down to which quantum fluctuations have been integrated out in the path

integral unsuppressed. This ‘flowing’ action obeys the exact functional renormalisation

group equation [60, 61]

∂tΓk[φ; φ̄] =
1

2
STr

∂tRk[φ̄]

Γ
(2)
k [φ; φ̄] +Rk[φ̄]

, (2.1)

obtained by taking a derivative of the action with respect to the RG time t = log k/k0. In

the context of quantum gravity [51] this equation has been the main tool of investigations

into asymptotically safe gravity mentioned above. In general Γk depends on both the

dynamical fields φ = 〈ϕ〉k, which are k dependent averages of the fundamental fields ϕ (in

the presence of a source), and the non-dynamical background fields φ̄. The right hand side

is a super-trace involving the second functional derivative Γ
(2)
k [φ, φ̄] of the action at fixed φ̄.

The important ingredient entering (2.1) is regulator function or cutoff Rk[φ̄] which vanishes

for high momentum modes p2/k2 → ∞ while behaving as a momentum dependent mass

term for low modes. Its presence in the denominator of the trace regulates the IR modes.

Furthermore the appearance of ∂tRk[φ̄] in the numerator means the trace is also regulated

in the UV due to the vanishing of the regulator for high momentum. By construction the

flowing action Γk interpolates between the bare action S in the limit k → ∞ and the full

effective action Γ when the regulator is removed at k = 0. While the action Γk need not be

convex, the sum of the action and the regulator term is obtained from a Legendre transform

of the regulated functional integral. This implies that the regulated inverse propagator be

positive definite

Γ
(2)
k [φ; φ̄] +Rk[φ̄] > 0 , (2.2)

for all physical momentum modes included in the super-trace. Thus (2.2) generalises (1.1)

in the presence of an IR regulator. In [62] it was shown how convexity of the effective

action follows from the flow equation (2.1) for scalar fields. Furthermore, in [63] it was

shown that convexity arises as an IR fixed point in phases with spontaneous symmetry

breaking.

In this paper we work in the Einstein-Hilbert approximation studying the flowing

Euclidean action

Γk[gµν , . . . ; ḡµν ] =

∫
d4x
√

det gµν
1

16πGk
(2Λk −R(gµν) + . . . , (2.3)

corresponding to general relativity with k dependent couplings Gk and Λk. The ellipses

denote the extra fields and action terms coming from the gauge fixing prescription which we
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specify in the next section. Here we assume the conformal mode σ has been Wick rotated

from the Lorentzian action as derived from the functional measure [4] which ensures that

the action is bounded from below. This action depends on two metrics, the dynamical

metric gµν , and the non-dynamical background metric ḡµν . The background metric is

needed both to regulate the theory and to implement the gauge fixing. Once we have

inserted this action into the flow equation we shall identify ḡµν = gµν in order to determine

the beta functions for the flowing couplings Gk and Λk. For a discussion of background

field flows in the functional RG see [64]. For later convenience we also identify the wave

function renormalisation of the metric gµν and the corresponding anomalous dimension

Zk ≡
GN
Gk

, η ≡ ∂t lnZk , (2.4)

where GN is a constant which can be identified with the the low energy Newton’s constant

GN = G0 for trajectories with a classical limit. From the beta functions we will look for

RG trajectories which emanate from a UV fixed point Gk → k−2g∗ and Λk → k2λ∗ at high

energies k →∞, while recovering classical k-independent couplings G0 = GN and Λ0 = Λ

when the regulator is removed in the limit k → 0. Such globally safe trajectories suggest

gravity is a well defined quantum field theory on all length scales.

At a non-gaussian fixed point where g∗ and λ∗ are finite the scaling is determined from

the critical exponents θn. These exponents appear in the linear expansion

λi − λi∗ =
∑
n

CnV i
ne
−tθn , (2.5)

where λi is a basis of dimensionless couplings e.g λi = {g, λ} = {k2Gk, k
−2Λk} and the

range of n is equal to the range of i. Here V i
n are the eigen-directions and Cn are constants.

The exponents −θn (note the minus sign) and the vectors V i
n correspond to the eigenvalues

and eigenvectors of the stability matrix

M i
j =

∂βi

∂λj

∣∣∣∣
λi=λi∗

, (2.6)

where βi = ∂tλ
i are the beta functions which vanish for λi = λi∗. If θn is positive it cor-

responds to a relevant (UV attractive) direction and supports renormalisable trajectories.

For negative θn the direction is irrelevant and Cn must be set to zero in order to renormalise

the theory at the fixed point. Including more couplings in the approximation would intro-

duce more directions in theory space. The criteria of asymptotic safety is that the number

of relevant directions should be finite at such a UV fixed point [6]. The fewer number of

relevant directions the more predictive the theory defined at the fixed point will be. High

order polynomial expansions in R suggest there are just three relevant directions [24, 40, 41]

while a general argument for f(R) theories imply that there is a finite number of relevant

directions [65].

3 Physical degrees of freedom

General relativity has just two massless propagating degrees corresponding to the two

polarisations of the graviton. On the other hand conformal fluctuations, which are non-
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dynamical in the classical theory, are expected to play an important rôle once the theory

is quantised. Our general philosophy in this paper will be to make the nature of these

degrees of freedom as manifest as possible at the level of the flow equation (2.1). In this

way we intended to optimise the Einstein-Hilbert approximation (2.3) to the physics which

it contains.

In the covariant path integral quantisation, via the Faddeev-Popov prescription, the

counting of propagating degrees of freedom comes from the ten components of the metric

gµν minus the eight real degrees of freedom of the ghosts Cµ and C̄µ, each of which counts

once since the action is second order in derivatives (i.e. the propagator will have a single pole

for each independent field variable). For d dimensions this gives d(d+1)/2−2d = d(d−3)/2

propagating degrees of freedom. An alternative prescription [4] is to directly factor out of

the path integral the four degrees of freedom of gµν corresponding to the volume of the

diffeomorphism group

gµν → gµν +∇µεν +∇νεµ , (3.1)

which removes four unphysical degrees of freedom. Following this procedure avoids the

inclusion of ghosts in the semi-classical approximation. Instead the necessary field redefini-

tions leave behind a non-trivial Jacobian in the measure of the path integral corresponding

to a further four negative degrees of freedom. Three of these (negative) degrees of freedom

correspond to a transverse vector which remove the three additional degrees of freedom of

the transverse-traceless fluctuations of the metric h⊥µν while an additional (negative) scalar

degree of freedom cancels the conformal mode σ in the semi-classical approximation with

R = 4Λ [4].

To make these cancelations visible in the flow equation (2.1) we will introduce the

ghosts in such a way that they exactly cancel the gauge fixed degrees of freedom when

evaluating the flow equation for ḡµν = gµν and Cµ = 0 = C̄ν [66]. This then leaves just the

auxiliary degrees of freedom coming from the Jacobian plus the gauge invariant physical

degrees of freedom. For simplicity we will take the metric to be that of a four sphere which

is sufficient to obtain the beta functions in the Einstein-Hilbert approximation.

To this end we employ the transverse-traceless (TT) decomposition of the metric fluc-

tuation hµν ≡ δgµν given by [67]

hµν = h⊥µν + h
1

d
gµν +∇νξµ +∇µξν +∇µ∇νψ −

1

d
gµν∇2ψ , (3.2)

h⊥µ
µ = 0 , ∇µh⊥ν µ = 0 , ∇µξµ = 0 .

Here h⊥µν is the transverse-traceless fluctuation and ξµ is a transverse vector. These differ-

ential constraints have the advantage of simplifying the differential operators entering the

flow equation and facilitate its evaluation. Here the spacetime dimension is taken to be

d = 4, however, there is an obvious generalisation to arbitrary dimension. In addition to the

TT decomposition we re-define the trace h = hµµ in terms of the (linear) conformal mode,

σ = h−∇2ψ , (3.3)

which along with h⊥µν constitute the physical degrees of freedom.
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Of course the parameterisation of the physical degrees of freedom depends on the gauge.

Here we choose the gauge corresponding to Sgf = 1
2α

∫
ddxFµF

µ where Fµ = ∇λhλµ− 1
d∇µh

λ
λ

and take Landau limit α→ 0. In this gauge contributions to the flow equation from ξ and

ψ will just come from the gauge fixing action Sgf where the physical fields σ and h⊥ are

absent. The gauge variant fields {ξ, ψ} are fourth order in derivatives due to the field re-

definitions (ψ is momentarily sixth order but this shall be rectified shortly). In order that

these contributions cancel exactly with the ghosts we also make the ghost sector fourth

order by writing detM = (detM2)
1
2 before exponentiating the determinant of the Faddeev-

Popov operator M [66]. This introduces a third real commuting ghost Bµ as well as the

anti-commuting ghosts Cµ and C̄µ. We then perform the transverse decomposition of the

ghosts and an additional field redefinitions of all the longitudinal modes ψL ≡ {ψ,B,C, C̄}

Cµ = CTµ +∇µC , C̄µ = C̄Tµ +∇µC̄ , Bµ = BT
µ +∇µB , ψL →

1√
−∇2

ψL . (3.4)

This procedure leads to the Jacobians

J0 = (det′′(∆0))
1
2 , J1 = (det′(∆1))

1
2 , (3.5)

arising from the functional measure of ψ and ξ. They are determinants of the differential

operators ∆0 = −∇2 − R
d−1 and ∆1 = −∇2 − R

d acting on scalars and transverse vectors

respectivly. The rescaling of the longitudinal modes (3.4) ensures that there is no Jaco-

bian from the ghost sector and that J0 is only second order in derivatives. The primes

in (3.5) indicate that the lowest modes of ∆i should be removed from the determinant

corresponding to the negative mode and zero mode of ∆0 and the zero mode of ∆1. They

are removed since the corresponding modes of ψ and ξµ do not contribute to the physical

metric fluctuations hµν . Exponentiating the determinants in terms of auxiliary transverse

fields jµ1 = {cµ, c̄µ, φµ} and scalars j0 = {c, c̄, φ} (where {cµ, c̄µ, c, c̄} are anti-commuting)

will give the four negative degrees of freedom in addition to the six degrees of freedom h⊥µν
and σ. The total bare action then reads

16πGN S = SEH + Sgf + Sgh +

∫
d4x
√

det gµν(j0∆0j0 + j1µ∆1j
µ
1 ) . (3.6)

In the semi-classical approximation to the functional integral the integration over ξ and

ψ will be exactly cancelled by the ghosts. In turn the conformal mode integration σ will

be cancelled by the Jacobian J0 on-shell leaving only the negative mode σ− of ∆0. To see

these cancellations at the level of the flow equation (2.1) we define the differential operator

∆ ≡ 16πGk Γ
(2)
k , (3.7)

which takes the form ∆ = 16πGN S
(2) with the replacement Λ → Λk where S(2) is the

second variation of the bare action (3.6) after a Wick rotation of the conformal mode

σ. Note that due to our field redefinitions ∆ is a matrix in field space. We will nor-

malise the fields such that all components of ∆ have the form ∆ = −∇2 + . . . ( or

∆ = (−∇2)2 + . . . for the fourth order parts) in order to simplify formulas. Each transverse
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vectors ξT ≡ {ξµ, BT
µ , C

T
µ , C̄

T
µ } and each longitudinal mode ψL have the equal components

of ∆ given by the fourth order differential operators

∆T = ∆2
1 , ∆L = ∆2

0 , (3.8)

however under the super-trace the corresponding terms will exactly cancel in the back-

ground field approximation. This seen by observing that in both ξT and ψL there are an

equal number of commuting and anti-commuting fields. The remaining components of ∆

are given by

∆⊥ = ∆2 + 2

(
R

4
− Λk

)
,

∆σ = ∆0 +
4

3

(
R

4
− Λk

)
, (3.9)

∆0 =−∇2 − R

3
, ∆1 = −∇2 − R

4
,

where ∆2 = −∇2 + R
6 is the Lichnerowicz Laplacian and we have set d = 4. Here the

conformal mode has been Wick rotated σ → iσ for all modes ∆0 ≥ 0 as derived from the

functional measure [4]. On the other hand negative modes σ− of this operator should be

wick rotated trivially [68]. On the sphere there is just one such mode corresponding to the

constant mode which gives an eigenvalue of the operator −∆σ of a− = +R
3 −

4
3

(
R
4 − Λk

)
.

Physically this mode corresponds to a rescaling of the radius of the four sphere [68]. Taking

into account all contributions and the cancellation of the ghost and gauged fixed parts the

flow equation reads

∂tΓk =
∑
i

Si ≡
1

2
Tr

[
∂tR⊥,k

Zk∆⊥ +R⊥,k

]
+

1

2
Tr′′

[
∂tRσ,k

Zk∆σ +Rσ,k

]
+

1

2

[
∂tR−,k

Zka− +R−,k

]
−1

2
Tr′′

[
∂tR0,k

Zk∆0 +R0,k

]
− 1

2
Tr′
[

∂tR1,k

Zk∆1 +R1,k

]
, (3.10)

where Si are the various traces i = {⊥, σ,−, 0, 1} and the prime indicates the excluded

modes. We observe that by going on-shell Λk = R/4 we have ∆σ = ∆0 indicating that the

conformal fluctuations are removed by those of j0 arising from the scalar Jacobian (3.5).

The traverse vector fluctuations should then remove the three non-propagating degrees of

freedom of h⊥µν .

Since the on-shell condition is not generally satisfied along the flow these cancellations

do not occur exactly. However, the above reasoning implies a natural pairing of the contri-

butions Sgrav ≡ S2 +S1 and Sconf ≡ Sσ +S0 which carry two and zero propagating degrees

of freedom respectively. These contributions are then identified with physical graviton and

conformal fluctuations of spacetime. A standard approximation scheme to test asymptotic

safety is to only quantise the conformal mode σ. At the level of (3.10) this could be

achieved in two ways. On one hand we could make this approximation by only including

Sσ. On the other hand this would mean σ is a propagating degree of freedom since the

Jacobian contribution is not there to cancel its on-shell dynamics.1 This suggests that a

1In f(R) gravity the conformal mode becomes fourth order and is a propagating degrees of freedom,

however not including S0 would then mean we have two propagating scalars.
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more consistent approximation is achieved by keeping both contributions to Sconf . We will

come back to this point in section 9 where we consider these approximations.

4 Infra-red cutoff and the cosmological constant

We now turn to the form of the IR regulator Rk which must be specified in order to evaluate

the traces in (3.10). We will take particular care to regulate modes in such a way that

the convexity condition (2.2) is satisfied. This point has been stressed [65] in the context

of the f(R) approximation to asymptotic safety and was discussed in [69] for Yang-Mills

coupled to gravity. We note that Rk depends on the background field which translates to

a dependence on the scalar curvature R. As we shall see this suggests a specific form of the

regulator depending on R and the scale dependent cosmological constant Λk. In general

the form of the regulator will be

Rk =
1

16πGk
Rk(z) , (4.1)

where the cutoff function Rk (not to be confused with the scalar curvature R) should

vanish in the limit k → 0 for all values of z > 0. Here z should be (the eigenvalue of)

some differential operator of the form z = −∇2 + U where U is some potential. In the

classifications of [21] a cutoff for which U = 0 is referred to as type I, whereas a curvature

dependent potential U = U(R) with no k dependence is called a type II cutoff, finally a

general k dependent potential U = Uk(R) is termed type III.

In curvature expansions one expands the trace in powers of the curvature in order

to extract the beta functions for the running couplings Gk and Λk. This may lead to

poles in the propagator which can be seen by looking at the components of ∆ in (3.9)

for the conformal and transverse traceless fluctuations. Setting R = 0 will create poles at

−∇2 = 2Λk and −∇2 = 4
3Λk in the unregulated propagator. These are clearly artefacts of

expanding in the curvature and have no obvious physical meaning. On the other hand the

graviton is a massless degree of freedom and should have a pole in its propagator at zero

momentum. Indeed if we instead set the background metric to a solution of the equation

of motion R = 4Λk we have ∆⊥ = ∆2 and ∆σ = ∆0. For the regulated propagators of σ

and h⊥µν we have potential poles at R = 0 for

Pσ(R = 0)≡−∇2 − 4

3
Λk +Rσ,k

!
= 0 , (4.2)

P⊥(R = 0)≡−∇2 − 2Λk +R⊥,k
!

= 0 . (4.3)

However taking R equal or greater to its on-shell value R ≥ 4Λk ensures that ∆ ≥ 0

and that no unphysical pole can be present (note that ∆0 and ∆1 are positive definite

since the negative and zero modes are not excluded). Now along the flow we only require

Γ(2) + Rk > 0 so the flowing Λk need not satisfy Λk ≤ R/4 for all k. Instead we may

regulate this potential pole by an appropriate choice of Rk. On the other hand this must

be done in such a way that the regulator function Rk vanishes in the limit k → 0 such that

all modes are integrated out unsuppressed.
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Now say we choose a curvature independent type III cutoff z = −∇2−2Λk in order that

we remove the poles (4.2) then z can take negative values for eigenvalues p2 of the Laplacian

−∇2 for which p2 < 2Λk. For these eigenvalues the regulator would not vanish in the limit

k → 0. For example if we take the optimised cutoff [70] Rk(z) = (k2−z)θ(k2−z) at k = 0 we

have R0(z) = −zθ(−z) which only vanishes if z is positive and therefore not all modes will

be integrated. If we instead take z = ∆, given by (3.9), we can ensure that z is positive at

k = 0 provided the curvature satisfies R ≥ 4Λ0. On the other hand modes for which z < 0

for finite k can still be regulated. Here we will therefore use a type III regulator of the form

Rk =
1

16πGk
Rk(∆) . (4.4)

This choice has been studied in [21] where it was shown that asymptotically safe trajecto-

ries can reach a classical limit at k = 0 for positive Λ. Such a regulator is called a spectrally

adjusted cutoff since it cuts off modes with respect to the full k dependent inverse propa-

gator ∆. We observe that the vanishing of the regulator (4.4) at k = 0 for different values

of the curvature R coincides with the convexity condition (1.1) provided G0 > 0 . Here

we will assume that R > 4Λ0 such that Rk indeed vanishes when we take the IR limit. In

particular at classical infra-red fixed points for which Gk and Λk approach constants the

condition on R in Planck units then depends on the value of the dimensionless product

G0 · Λ0. We will return to this in section 8 where discuss renormalisable trajectories that

reach a line of such fixed points.

5 Truncated heat kernel expansion

To compute the beta functions of Gk and Λk we must evaluate the traces appearing on

the right side of the flow equation. However in order close our equations an approximation

scheme is needed since the traces will in general lead to curvature terms not present in

our original action. We observe that each of the traces in (3.10) are functions f(∆) of the

differential operator (3.9). As a first step we can express the trace in terms of the heat

kernel via an anti-Laplace transform with respect to ∆ and expand in the early time s

expansion. They then have the form

S = Tr[f(∆)] =

∫
dsTr[e−∆s] f̃(τ) ≈ 1

(4π)
d
2

∞∑
n=0

Q d
2
−n[f ]An(R,Λk) , (5.1)

where we suppress the field index i. Here An(R,Λk) are the Seeley-DeWitt coefficients

coming from the expansion of the heat kernel H∆(s) ≡ e−∆s which obeys the heat equation

∆H∆ +∂sH = 0, subject to the initial condition H(0) = I where I is the identity operator.

These coefficients depend on both the curvature and the scale dependent cosmological

constant Λk. The appearance of the cosmological constant inside the heat kernel coefficients

is a direct consequence of the fact that the covariant momentum (i.e. eigenvalues of ∆)

explicitly depends on Λk. The functionals Qm[f ] ≡
∫∞

0 dττ−nf̃(τ) depend on the argument

f(z) of the traces given it (3.10). For m > 0 they are given by the following integrals over
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the covariant momentum z,

Qm =
1

Γ(m)

∫ ∞
0

dzzm−1f(z) . (5.2)

Note that these integrals are over z ≥ 0 and therefore by adopting the heat kernel evaluation

we automatically regulate modes z < 0 in a sharp way. This can be traced back to the

anti-Laplace transform which only converges for ∆ ≥ 0.

Within the standard approach, where the momentum is independent of Λk, one would

simply expand to order R and neglect the higher order terms. Here we take a different

approach and use the heat kernel expansion itself as the basis of our approximation scheme.

That is we drop all heat kernel coefficients for n > nmax where we take nmax = 1. Addi-

tionally we drop the single negative conformal mode σ− whose contribution is proportion

to d4x
√

det gµνR
2. To better the approximation we can increase nmax systematically and

assess the convergence properties [24]. Note that this differs from a curvature expansion

since all higher order heat kernel coefficients will depend on terms linear in RΛn−1
k and Λnk

(such terms have also been neglected in [71] in order to be able to go on-shell by assuming

Λk is of order R). A truncation of the heat kernel expansion rather than the curvature

expansion is therefore different approximation scheme which should have different conver-

gence properties. Since it is not strictly a curvature expansion (around any point zero

or otherwise) it does not necessitate that the curvature is ‘small’ however the early time

heat kernel expansion should be expected to accurately evaluate the traces in the high

momentum limit R/z ∼ R/k2 → 0.

Our justification for this approximation is twofold. First this keeps the cosmological

constant appearing to the combination R− 4Λk so as not to upset the on-shell limit. An-

other approach to this, put forward in [66], is to expand the trace around R = 4Λk which

involves evaluating the the trace via an approximation of the spectral sum. However, our

second motivation is to get the approximation well suited to the power like divergence that

renormalise Λk and Gk. These come from the large momentum limit of the trace. Since the

early time heat kernel expansion correctly evaluates these terms in the asymptotic limit,

embodied in the first two heat kernel coefficients, it is ideally suited to the Einstein-Hilbert

approximation. What we neglect are the logarithmic divergences which renormalise the cur-

vature squared terms at order n = 2 (and the IR divergent terms n > 2). Since these are

also absent in the left hand side of the flow equation this approximation is self-consistent.

These corrections are then naturally included in the nmax = 2 approximation where curva-

ture squared terms are included. This approach is then in line with the bootstrap approach

to asymptotic safety [24] without having to specify R = 0 as an expansion point.

6 Beta functions and UV fixed point

We are now in the position to derive the beta functions βg = ∂tg and βλ = ∂tλ within

the set-up outlined in the preceding sections. The vanishing of the beta functions for

non-vanishing {g∗, λ∗} indicate a non-gaussian fixed point where the theory may be renor-

malised.
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6.1 Flow equation and threshold constants

The explicit form of the flow equation is given in the appendix A where we also give the

heat kernel coefficients An. Each component of ∆ in (3.9) has the form ∆i = −∇2 + Ui
where the potentials Ui = Ui(R,Λk) (given in (A.1)) are linear in the scalar curva-

ture R and the cosmological constant Λk. The corresponding heat kernel coefficients

Ai,n =
∫
ddx
√

det gµν ai,n which depend on these potentials are then given by (A.2) in

the appendix. We also need to evaluate the Qn functions (5.2) which depend on the regu-

lator functions Rk and the beta functions themselves since Rk depends on both Λk and Gk.

Here we will only need to evaluate Qm for m = 1, 2 where, in the sum (5.1), Q2 appears

at n = 0 and Q1 appears at n = 1. For all m > 0 they have the form

Qm,i = (−1)[i]k
2m

2

1

Γ(m)

(
Φm[Rk] + Φ̃m[Rk]η + Φ̂m[Rk]U̇i

)
. (6.1)

Here the dot denotes a derivative with respect to the RG time t = ln(k/k0). The anomalous

dimension is given by η ≡ Żk/Zk = −ηN ≡ −Ġk/Gk (see (2.4)) which we take to be the

same for each field and takes the value η∗ = 2 at a non-trivial fixed point. The [i] in

the exponent of −1 takes values [2] = 0 = [σ] for the physical degrees of freedom and

[0] = 1 = [1] for the ‘anti’-degrees of freedom as dictated by the super-trace. The ‘threshold

constants’ Φm, Φ̃m and Φ̂m are given by the following regulator Rk dependent integrals

evaluated for k = 1,

Φm =

∫ ∞
0

dzzm−1
Ṙ1(z)

z +R1(z)
, Φ̃m =

∫ ∞
0

dzzm−1
R1(z)

z +R1(z)
, Φ̂m =

∫ ∞
0

dzzm−1
R

′

1(z)

z +R1(z)
,

(6.2)

where the prime denotes derivative with respect to the covariant momentum z. Since the

threshold constants only depend on the shape function Rk and are independent of the

curvature and couplings they will just be numbers once the regulator is specified. We note

that for any regulator function the threshold constants have a definite sign

Φm > 0 , Φ̃m > 0 , and Φ̂m < 0 . (6.3)

This information allows us to determine physical fixed points and their properties without

specifying the form of Rk. The final form of the flow equation in terms of the dimensionless

coupling g = k2Gk, λ = k−2Λk and the constants (6.2) is given in (A.3) with (A.4), (A.5)

and (A.6). We note that the ‘one-loop’ approximation where by Γ
(2)
k is replaced by S(2) in

the right hand side of the flow equation translates to putting η = 0 = U̇i. This can also be

achieved by setting Φ̃n = 0 = Φ̂n. We will consider this approximation in section 6.4.

6.2 Regulator functions

Here we consider the class of exponential functions of the form

Rexp
k (z) = k2 1

2 exp
[
c z

b

k2b

]
− 1

, (6.4)
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where b is a free parameter which we study in the range 2 ≤ b ≤ 30 and we set c =

ln 3/2. Increasing b sharpens the division between low and high modes. In addition to the

exponential regulators we also consider the optimised regulator function [70]

Ropt
k (z) = (k2 − z)θ(k2 − z) , (6.5)

where θ(x) is the Heaviside theta function. We use the notation
opt
= for quantitates evaluated

with (6.5). Plugging these functions into the integrals (6.2) we obtain the numerical values

for the threshold constants. For example with the optimised cutoff function we have Φ1
opt
=

2, Φ2
opt
= 1, Φ̃1

opt
= 1

2 , Φ̃2
opt
= 1

6 , Φ̂1
opt
= −1 and Φ̂2

opt
= −1

2 . The curvature dependence of the

traces comes solely from heat kernel coefficients (A.2).

6.3 Beta functions and fixed points

Before specifying the regulator Rk the beta functions βg = ∂tg and βλ = ∂tλ may be

expressed explicitly in terms of the threshold constants (6.2) with (6.3),

βg = g

2 +
g
(
−438gΦ2Φ̂1 + Φ1

(
752gλΦ̂1 + 99

(
6π + 17gΦ̂2

)))
9
(

6π + 17gΦ̂2

)(
−4π + 11gΦ̃1

)
+ 2gΦ̂1

(
376gλΦ̃1 − 3

(
50πλ+ 73gΦ̃2

))
 , (6.6)

βλ =−2λ−
9g
(

2π (λΦ1 + 6Φ2) + 33g
(
−Φ2Φ̃1 + Φ1Φ̃2

))
−216π2 + 6gπ

(
−50λΦ̂1 − 102Φ̂2 + 99Φ̃1

)
+ g2

(
752λΦ̂1Φ̃1 + 1683Φ̂2Φ̃1 − 438Φ̂1Φ̃2

) . (6.7)

These beta-functions are evidently non-perturbative. Solving for fixed points βg = 0 = βλ
we find a gaussian fixed point {g = 0, λ = 0} and a pair of non-gaussian fixed points one

of which is at positive g and λ for all cutoff functions. Due to the structure of the flow

equation (A.3) we always find exactly two non-gaussian fixed points in the complex plane

for all regulators, one is at positive g∗ and the other at negative g∗. To ensure the convexity

condition (2.2) only the fixed point for positive g∗ is physical. In terms of the threshold

constants the physical fixed point couplings are given by

g∗ =
576π

208Φ1 + 416Φ̃1 + 73

(
−17Φ̂2 +

√(
8Φ1 + 17Φ̂2 + 16Φ̃1

)
2 − 96Φ̂1

(
Φ2 + 2Φ̃2

)) ,

λ∗ =

8Φ1 + 17Φ̂2 + 16Φ̃1 −
√(

8Φ1 + 17Φ̂2 + 16Φ̃1

)
2 − 96Φ̂1

(
Φ2 + 2Φ̃2

)
32Φ̂1

. (6.8)

which, due to (6.3), can be seen to be both manifestly real and positive. For the optimised

cutoff we have

g∗
opt
=

36
(
73
√

1473− 2489
)
π

51703
≈ 0.68405, λ∗

opt
=

1

64

(√
1473− 31

)
≈ 0.115308 . (6.9)

These quantities are not universal and may have a strong regulator dependence. On the

other hand the dimensionless product G∗k ·Λ∗k = g∗ ·λ∗ is expected to be universal. For the

optimised regulator function (6.5) the product is given by

g∗ · λ∗ ≈ 0.0788761 . (6.10)
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Figure 1. We plot the regulator dependence of g∗ · λ∗ at the non-perturbative fixed point (6.8)

as function of the parameter b appearing in the exponential cutoff (6.4). Increasing b sharpens the

cutoff of IR modes and we observe a convergence of g∗ · λ∗.

In figure 1 we plot the dependence of g∗ · λ∗ on the regulator parameter b for the regulator

function (6.4). As b is increased we see a convergence.

Expressions for the critical exponents can also be obtained in terms of the threshold

constants but they lengthy so we do not include them here. For all regulators considered

they are each both real and relevant. Using the optimised cutoff (6.5) the critical exponents

are given by

θ0
opt
≈ 3.35126 , θ1

opt
≈ 1.87582 . (6.11)

In figure 2 we plots the dependence of the critical exponents on b for the exponential cutoff

functions (6.4). We note that they are close to the values (6.11) and converge as b is in-

creased. Here we use the convention that the more relevant critical exponent is denoted θ0.

Numerically the critical exponents calculated with the optimised cutoff function (6.5)

are within ≈ 16% and ≈ 6% of the gaussian critical exponents θG,0 = 4 and θG1 = 2

consistent with the bootstrap approach put forward in [24]. However it is also instructive

to look at the corresponding eigenvectors. These, unlike the critical exponents, depend on

the parameterisation of the fixed point coordinates. Since the (non-perturbative) power

counting comes from the canonical dimension of the operators in the action (2.3) it therefore

makes sense to consider the running vacuum energy ρk = Λk/Gk and the running Planck

mass (squared) M2
k = G−1

k which appear as the coefficients of these operators. In this basis

the eigenvectors are given by

V0 ≡ {V ρ
0 , V

M2

0 } ≈ {0.37688, 0.926262} , V1 ≡ {V ρ
1 , V

M2

1 } ≈ {0.987898, 0.155106} .
(6.12)

for the optimised cutoff. Interestingly we observe that the more relevant eigenvector V0

points more strongly in the direction of M2
k rather than the vacuum energy ρk direction

and vice versa for V1. This indicates that M2
k becomes more relevant in the UV and ρk
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Figure 2. We plot the UV attractive critical exponents at the non-perturbative fixed point (6.8)

evaluated using the exponential cutoff (6.4). As the sharpening parameter b is increased we see a

convergence of both critical exponents. These values should also be compared to those obtained

with the optimised cutoff (6.5) given by (6.11).

less relevant. With the exponential cutoff (6.4), less relevant eigenvector also points more

strongly in the ρk direction.

It is intriguing to note that we obtain real critical exponents and not a complex conju-

gate pair found in previous Einstein-Hilbert approximations [17–20], including the on-shell

approach [66]. However real exponents have been found in work that goes beyond this ap-

proximation by utilising vertex expansions around flat space [48, 49, 59]. Also the critical

exponents have been shown to be real provided a global f(R)-type fixed point solution

exists [65]. This suggests that by not explicitly expanding in powers of the curvature we

have a better approximation to such a solution.

6.4 One-loop scheme independence

The semi-classical or ‘one-loop’2 approximation to the flow equation (2.1) is achieved by

putting Γ
(2)
k = S(2) in the right hand side. This leads to the equation

∂tΓ
one−loop
k =

1

2
STr

[
∂tRk

S(2) +Rk

]
, (6.13)

where the regulator function Rk should be modified accordingly. To obtain this approxima-

tion at the level of our beta-function we neglect the running of Gk and Λk on the right-hand

side of the flow equation which is equivalent to putting Φ̃n = 0 = Φ̂n. The beta-functions

then simplify to the form

βg = 2g − 11g2Φ1

4π
, (6.14)

βλ =
−24πλ+ gλΦ1 + 6gΦ2

12π
. (6.15)

2This is a slight abuse of language since the flow equation (2.1) is manifestly one-loop exact. By one

loop we therefore mean the semi-classical approximation, keeping quantum effects up to order ~.
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These beta-functions have a single non-trivial UV fixed point

g∗ =
8π

11Φ1
, λ∗ =

3Φ2

16Φ1
, (6.16)

with regulator Rk independent critical exponents

θ0 = 2 , θ1 =
64

33
≈ 1.939 . (6.17)

The more relevant exponent θ0 = θG,1 is just the canonical mass dimension of the Planck

mass squared M2
Pl whereas θ1 is a true quantum correction. In [49] a real critical exponent

for g of θ = 2 has been found in agreement with the one-loop result found here. This

scheme independence can be traced to our treatment of the cosmological constant and

is directly linked to the use of the truncated heat kernel expansion suggesting that this

approximation may better converge to the physical result. Ultimately this can be tested

by increasing nmax in a systematic way [24].

7 Comparison with curvature expansions

The beta functions found and studied in the previous section were extracted using a trun-

cation of the heat kernel expansion rather than a standard curvature expansion. The idea

was to minimise the effects of being too far off-shell and hence also expand in the equation

of motion R − 4Λk. An alternative root is to take the full curvature dependence of the

r.h.s. of the flow equation and expand around a solution to the equation of motion R = 4Λk
to linear order [66]. One interesting difference between the results obtained here using a

truncation of the heat kernel expansion and of standard Einstein-Hilbert truncations is

that the critical exponents found here are real.

To understand the situation better we will now evaluate the flow equation to extract the

beta functions without truncating the heat kernel expansion taking the background to be of

constant curvature. We will then extract the beta functions in two ways first by expanding

around vanishing curvature and secondly by expanding around a solution to the equation

of motion. In this section we shall restrict our study to using the optimised regulator func-

tion (6.5) while evaluating the flow equation with the early time heat kernel expansion. Re-

sults obtained using other regulators and evaluating the flow equation via spectral sums will

be given else where [72]. We shall also continue to use a type III take the regulator as before.

To this end we then compute the full early heat kernel expansion which, for the opti-

mised cut-off, truncates at order curvature cubed in four dimensions. Expanding around

R = 0 we obtain the beta functions for Newton’s constant and the cosmological constant

which possess a non-trivial fixed point at

g∗ = 0.611269 , λ∗ = 0.090203 , g∗λ∗ = 0.0551384 (7.1)

with a complex conjugate pair of UV attractive critical exponents

θ = 2.60189± 0.998516i , (7.2)
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This is inline with previous studies when using a small curvature expansion. Next we

expand around a solution to the equation of motion to linear order in R− 4Λk and obtain

a different set of beta functions which again possess a UV fixed point at

g∗ = 0.734062 , λ∗ = 0.117721 , g∗λ∗ = 0.0864143 . (7.3)

We observe that the fixed point values obtained with the truncated heat kernel expan-

sion (6.9) lie in between the values obtained with the small curvature expansion (7.1) and

the expansion around the equation of motion (7.3) suggesting that this is the same fixed

point found in different approximations. The critical exponents found for the on-shell

expansion are also found to be real

θ0 = 4.07816 , θ1 = 1.69001 , (7.4)

notably the gap between the eigenvalues θ0 − θ1 has widened with respect to the one

optioned with the truncated heat kernel expansion. These findings suggest that the fixed

point obtained via the truncation of the heat kernel expansion lies close to that of one

obtained by expanding around non-vanishing curvature. To support this hypothesis we

can expand around curvature R = R0 ∝ Λk to see if a value of the proportionality constant

reproduces a fixed point which is in quantitive agreement with those obtained with the in

the previous section. Explicitly we find that for R0 = 2.9Λk a fixed point at

g∗ = 0.687377 , λ∗ = 0.114647 , g∗λ∗ = 0.0788058 (7.5)

which lies very close to (6.9). The critical exponents at this fixed point are also real and

close to this found in the previous section (6.11)

θ0 = 3.38661 , θ1 = 1.88038 . (7.6)

These results suggest that indeed complex conjugate critical exponents may be due to

evaluating the flow equation at small curvatures where unphysical off-shell effects become

more pronounced. Taking steps to reduce these effects either my also expanding in R−4Λk
as well as R or expanding directly around non-zero curvature can lead to real critical

exponents. One should also note that the critical exponents found in [66] were complex

even though the on-shell expansion was used. However the means by which the equation was

evaluated and the type of regulator differ from the ones used here. A more thorough study

of fixed points and critical exponents at non-zero curvature will be present else where [72].

8 Globally safe trajectories

We now turn to the renormalisable trajectories which leave the UV fixed point (6.8) and

flow into the IR as k is decreased. To find infra-red fixed points other than the gaussian

one λ = 0 = g we switch our parameterisation to {τ, g} where τ ≡ Gk · Λk. In nature we

know that the product τ is very small, in particular if we Λ it to be the driving force of the

late time expansion of the universe we get the numerical value G0 · Λ0 ≡ GN · Λ ≈ 10−122.

It is therefore of interest to find RG trajectories consistent with this value.
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Figure 3. Phase diagram in the {λ, g} parameterisation. We plot the globally safe trajectories

originating from the asymptotically safe fixed point (blue dot) for k → ∞ and ending in classical

general relativity for k = 0. Each trajectory corresponds to a different value of GN ·Λ for k → 0 lying

in the range −∞ < GN ·Λ ≤ τmax. The red lines are the trajectories GN ·Λ = τmax = 18π
25 , GN ·Λ = 0

and GN ·Λ = −∞ corresponding to the infinite fixed point λ = −∞, g∗ = 25π
94 . In the regions where

no trajectories are plotted no globally safe trajectories exist. Here we use the optimised cutoff (6.5).
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Figure 4. Phase diagram in the {τ, g} parameterisation. Along g = 0 axis there is a line of classical

IR fixed points in the range −∞ < GN · Λ < τmax. Here we plot several globally safe trajectories

(thin lines) emanating from the asymptotically safe fixed point (blue dot) and ending along the line

of classical fixed points. There corresponding values of GN · Λ can be read off the g = 0 axis.
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In terms of τ and g the beta functions (6.6) read

βτ = g
3gΦ2

(
−36π − 146τ Φ̂1 + 99gΦ̃1

)
+ Φ1

(
576πτ + 752τ2Φ̂1 + 99g

(
17τ Φ̂2 − 3gΦ̃2

))
9
(

6π + 17gΦ̂2

)(
−4π + 11gΦ̃1

)
+ Φ̂1

(
752gτ Φ̃1 − 6

(
50πτ + 73g2Φ̃2

)) , (8.1)

βg = g

2−
g
(

Φ1

(
99
(

17gΦ̂2 + 6π
)

+ 752τ Φ̂1

)
− 438gΦ2Φ̂1

)
Φ̂1

(
438g2Φ̃2 − 752gτ Φ̃1 + 300πτ

)
+ 9

(
17gΦ̂2 + 6π

)(
4π − 11gΦ̃1

)
 . (8.2)

From which we recover the UV fixed point (6.8) as well as a line of classical IR at fixed

points,

g∗ = 0 , τ = const = GN · Λ , Gk = GN . (8.3)

This implies that GN ·Λ can take any value for trajectories that reach this line as k → 0. Due

to the considerations of section 4 the regulator Rk will vanish at such fixed points provided

R ≥ 4Λ0. The interesting question is whether there exists renormalisable trajectories which

reach the classical IR fixed point (8.3) and for which values of GN · Λ they correspond.

These are the globally safe trajectories defined for all scales ∞ ≥ k ≥ 0 with the classical

limit at k = 0. Since we have regulated the potential poles in λ arising in the type I and II

regulators (i.e. Λk-independent cutoff functions) there should be renormalisable trajectories

for GN · Λ > 0 (as well as those for negative and vanishing GN · Λ). However, evaluating

βτ/g at g = 0 there is a pole in the rescaled beta function at

τmax = − 18π

25Φ̂1

opt
=

18π

25
, (8.4)

which is positive independent of the regulator due to (6.3). This value of τ = τmax then

places a maximum value on τ in the IR for globally safe trajectories. That is we find

that only trajectories with GN · Λ < τmax are globally safe. Note that in the one-loop

approximation this pole is removed since Φ̂1 → 0. In addition to the IR and UV fixed

points we find a non-gaussian solution βg = 0 = β1/τ given by

g∗ =
75π

94
(

Φ1 + 2Φ̃1

) opt
=

25π

94
, 1/τ∗ = 0 , (8.5)

which corresponds to an infinite cosmological constant GN · Λ → ±∞. Due to the

maximum (8.4) renormalisable trajectories will only reach this fixed point in the limit

GN ·Λ→ −∞. In Lorentzian signature this would correspond to universes of ‘nothing’ [73]

i.e. anti-de-Sitter universes with vanishing radius. At the point (8.5) the critical exponents

are given by

θ =

{
−2, 2 +

4Φ̃1

Φ1

}
. (8.6)

The −2 corresponds to the IR attractive behaviour λ = Λ/k2 →∞ whereas the IR repul-

sive direction indicates that this is a saddle point. The non-canonical scaling of the second

critical exponent and the nontrivial fixed point for g∗ show that this is not a classical fixed
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point and that no classical limit exists for 1
GNΛ → ±0. In figure 3 we plot renormalisable

trajectories in the standard parameterisation {λ, g} for the optimised cutoff. Additionally

we plot the same trajectories in the parameterisation {τ, g} in figure 4 . We observe that

the saddle point (8.5) is approached for trajectories in the limit τ = −∞ which is a sepa-

ratrix between globally safe trajectories and unphysical trajectories which are incomplete.

For positive τ the pole at τmax provides the separatrix. These results suggest that grav-

ity is asymptotically safe with a classical limit where the cosmological constant is a free

parameter lying in the range −∞ < GN · Λ < τmax.

We therefore find no evidence for non-classical behaviour in the IR within our approx-

imation and in particular no non-trivial IR fixed point for positive λ. Instead flowing from

UV fixed point into the IR, our choice of regulator has guaranteed that renormalisable tra-

jectories exist which reach general relativity for k = 0 for all values of the cosmological con-

stant in the range −∞ < Λ < τmaxM
2
Pl where τmax ∼ 1. The exists of a non-trivial IR fixed

point found in previous studies [49, 52, 56–59] can therefore be traced to expansions around

flat space where the massless nature of gravity is obscured. In [49] zero graviton mass is

nonetheless recovered at an IR fixed point which ensures convexity while Λ scales classically.

However, since we have used a truncation to only local operators there may still be non-

trivial IR effects from non-local operators which are neglected due to our use of the early

time heat kernel expansion. For discussions on IR effects in the functional RG approach

to quantum gravity and the rôle of non-local terms we refer to [41, 71] and to [74] where a

screening of the cosmological constant has been observed.

9 Conformally reduced theory

In this section we consider the toy model where only the conformal mode σ is quantised.

Asymptotic safety has also been studied in conformally reduced toy models [75–79]. In

this case only the conformal fluctuations are quantised and the fluctuations of the other

metric degrees of freedom are neglected. Such approximations depend on the whether the

RG scheme breaks Weyl invariance [77]. Following the suggestion of [7] this route could

also be understood as a first step towards a consistent theory of gravity.

As noted at the end of section 3 there are two conceptually different approaches to the

conformal reduction at the level of the flow equation derived here (3.10). In one approach

we only include the contribution Sσ and neglect the other contributions.3 However, this

would mean that σ is a propagating degree of freedom since the contribution S0, coming

from the Jacobian J0 in (3.5), is not there to cancel it on-shell. In the second approach we

quantise the conformal mode as a topological degree of freedom, as it is in full theory. This

amounts to including both Sσ and S0 in the righthand side of the flow equation (3.10).

9.1 Propagating conformal mode approximation

First we consider the approach where we include just the conformal mode contribution Sσ
without the contribution S0. Here we find two non-gaussian fixed points at positive and

3The contribution S− from the constant mode σ− should also be included but it is neglected in our

approximation since it leads to R2 terms.
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negative g∗ respectively, and both with negative λ∗. For the optimised regulator (6.5) the

positive g∗ fixed point is given by,

g∗
opt
= 18

(
7 +
√

57
)
π ≈ 822 , λ∗

opt
= − 1

16

(
11
√

57
)
≈ 5.19 . (9.1)

Note that g∗ is three orders of magnitude higher than the UV fixed point of the full

approximation (6.8) indicating that this approximation is questionable. Evaluating the

critical exponents for the optimised cutoff we find θ0
opt
≈ 1.53784 , θ1

opt
≈ −19.6375 which

suggests that there is just one relevant operator at this fixed point. On the other hand

using the exponential cutoff (6.4) we find that the critical exponents are both positive

and that θ0 depends strongly on the parameter b. For example with b = 2 we find θ0 ≈
367.403 , θ1 ≈ 1.48858 whereas for b = 30 we have θ0 ≈ 8.21878 , θ1 ≈ 1.44758. We

therefore see that the number of relevant directions is scheme dependant, implying that

this is not a good approximation.

9.2 Physical conformal reduction

We now turn to the physically well motivated approximation whereby we keep the scalar

Jacobian contribution S0 in addition to the conformal mode contribution Sσ. This ensures

the topological nature of the conformal mode. The beta functions then read

βλ = λ

−2− 3gπΦ1

−
(

3π + gΦ̂2

)(
6π − gΦ̃1

)
+ 2gλΦ̂1

(
−5π + gΦ̃1

)
 , (9.2)

βg = g

2 +
gΦ1

(
3π + 2gλΦ̂1 + gΦ̂2

)
−
(

3π + gΦ̂2

)(
6π − gΦ̃1

)
+ 2gλΦ̂1

(
−5π + gΦ̃1

)
 . (9.3)

We observe that βλ is proportional to the cosmological constant and that therefore trajec-

tories cannot cross the λ = 0 line. This is a direct consequence of the cancelations between

the conformal mode and the Jacobian (3.5) and splits the phase diagram into three regions

λ = 0, λ < 0 and λ > 0. The corresponding phase diagram for the conformally reduced

toy model is plotted in fig 6.

Along the λ = 0 line there is a non-gaussian UV fixed point at

g∗ =
12π

Φ1 + 2Φ̃1

, λ∗ = 0 , (9.4)

with critical exponents

θ0 = 2 +
4Φ̃1

Φ1

opt
= 3 , θirr =

8Φ̂2

Φ1 + 4Φ̂2 + 2Φ̃1

opt
= −4 . (9.5)

We note that the values obtained with the optimised cutoff (6.5) are integer. Setting λ = 0

and using the optimised cutoff the beta-function for g is given by

βg
opt
= 2g +

4g2

g − 12π
, (9.6)
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Figure 5. Here we plot the critical exponents of the λ∗ = 0 fixed point (9.4) evaluated with the

exponential cutoff (6.4). As b is increased the cutoff becomes increasingly sharp. We note that for

increasing b the critical exponents tend towards the values given by the optimised cutoff (6.5) given

by θ0 = 3 and θirr = −4. In particular ν = 1/θ0 tends towards ν = 1/3 obtained with the optimised

cutoff and in agreement with numerical lattice studies.

where the fixed point (9.4) is at g∗ = 4π and the critical exponent θ0 = − ∂βg
∂g

∣∣∣
g=g∗

= 3 can

be seen. The eigen-direction along the λ = 0 line corresponds to θ0 and is relevant. The

other direction corresponding to θirr is irrelevant for all regulators considered. In figure 5 we

plot the dependence of the critical exponents on b for the exponential cutoff (6.4). Unlike

the previous approximation of section 9.1 the critical exponents show only a mild scheme

dependence and appear to tend towards the optimised cutoff values {3,−4} as b is increased.

Remarkably the value ν = 1/θ0 = 1/3 obtained here is in agreement with lattice studies [33].

The fixed point (9.4) splits the phase space region λ = 0 into two regions. For g < g∗
we recover flat space where as for g > g∗ we recover the ‘branched polymer’ region [33]

where g diverges and the renormalised metric,

χµν ≡ Zkgµν , (9.7)

tends to zero χµν → 0 as k is decreased. This is observed by noting that wave function

renormalisation Zk = GN/Gk (see (2.4)) goes towards zero before hitting a pole for the

renormalisable trajectory g > g∗. For g < g∗ we instead recover classical scaling Z0 = 1.

At the fixed point χµν scales as k2 also running to zero for k = 0. The fixed point (9.4)

therefore represents a second order phase transition for which χµν is the order parameter. In

figure 7 we plot the wave function renormalisation for the three renormalisable trajectories,

g∗ = 0, g∗ < 0 and g∗ > 0, as a function of the RG time t.

Note that the irrelevant critical exponent θirr is proportional to Φ̂2 which arises from the

divergences of the vacuum energy and it is therefore the quantum fluctuations of the vacuum

themselves that cause Λk to be an irrelevant coupling. The renormalisable trajectory

coming from this fixed point for g < g∗ runs directly into the Gaussian fixed point at

g = 0 = λ. This trajectory therefore provides a UV completion of gravity while also

solving the cosmological constant problem; the UV theory predicts that the vacuum energy

is exactly zero for all scales. That the critical exponent is recovered in this approximation

strongly suggests that the exists of the UV fixed point is due to topological degrees of
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Figure 6. Phase diagram in the conformally reduced approximation. For λ∗ = 0 there exists a

UV fixed point (blue dot) which has only a single globally safe trajectory running from {0, g∗} to

{0, 0} (dark blue line) which ends in classical general relativity with a vanishing vacuum energy.

For g > g∗ and λ = 0 the theory has no classical limit and instead corresponds to a phase with a

vanishing renormalised metric χµν = 0. For negative λ there is a fully UV attractive fixed point

(red dot). Trajectories run from this fixed point to negative values of GN ·Λ in the infra-red limit.

Trajectories for positive cosmological constant are not renormalisable and run into the singular line

(thin blue curve) for finite k but still have a classical k → 0 limit.

freedom. This is in agreement to the observation of [80] that the fixed point is due to the

dominance of paramagnetic interactions for which the Laplacian operator ∇2 plays no rôle.

For λ < 0 there is a further non-trivial fixed point with positive g∗ given by

g∗ =
36π

3Φ1 − 2Φ̂2 + 6Φ̃1

, λ∗ = − Φ̂2

2Φ̂1

. (9.8)

This fixed point has two relevant directions and trajectories emanating from it lead to

a negative cosmological constant at low energies. A fundamental theory based on (9.8)

is therefore less predictive than that of (9.4). It is inconsistent with the ΛCDM model

of cosmology and would instead lead to anti-de-Sitter universes. For λ > 0 there is no

UV completion since trajectories are not attracted to a fixed point in the UV. Instead

trajectories run into a singularity for finite k. We conclude that asymptotic safety, based

on this approximation, predicts either a vanishing cosmological constant when the theory

is quantised at (9.4) or a negative Λ when the theory is quantised at (9.8). Note that the

former case involves no fine tuning since we just set Λ = 0 in the bare action. From the

λ > 0 region of the phase diagram 6 we conclude that a positive cosmological constant

would be inconsistent with asymptotic safety.
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Figure 7. The wave function renormalisable trajectories for Λ = 0 as a function of RG time t.

The green dotted line is the trivial trajectory that remains at the fixed point β(g∗) = 0 for all t.

The red dashed line starts at g > g∗ and Zk rapidly decreases before g runs into a pole. For the

trajectory g > g∗ the wave function renormalisation is given by the blue solid line and we observe

that it reaches Z0 = 1 for decreasing t corresponding to classical scaling as k → 0.

9.3 Critical exponents in d dimensions and the ε-expansion

Since the critical exponent (9.5) is a universal quantity we generalise to d dimensions where

we have

θ0 ≡ 1/ν
opt
= 2d+

4

d
− 6 =

2ε(1 + ε)

2 + ε
, (9.9)

with ε = d − 2. The large d limit θ0 → 2d is in agreement with previous studies [20]. We

note that θ0 = 0 in both d = 1 and d = 2 dimensions and that d = 4 lies on the radius of

convergence of the small ε expansion. Expanding the critical exponent in ε we obtain

θ0 = ε+
ε2

2
− ε3

4
+
ε4

8
+ . . . , (9.10)

which for d = 4 gives the well known divergent series θ0 = 2 + 2− 2 + 2− 2 + . . . leading to

θ0 = 2 and θ0 = 4 at alternating orders. This series indicates that the exact result in four

dimensions could be obtained from a re-summation of the ε-expansion.4 This expansion

should be compared with the two loop result [81] that gives θ0 = 2 and θ0 ≈ 4.4 at the

first two orders in ε showing an error of ten percent between the two-loop calculation our

4For example, defining x = θ0−2
2

we have x = 1 − 1 + 1 − 1 + . . . and therefore (x − 1) + x = 0 which

gives θ0 = 3.
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result. This non-trivial agreement with perturbative methods gives more evidence that the

critical exponent (9.5) is physical and not an artefact of our approximation. Furthermore

our analytical formula suggests the ε-expansion converges in d < 4 dimensions.

9.4 Absence of essential divergences

To better understand our results we now make the one-loop approximation (6.13) while

including both scalar contributions S0 and Sσ. Expressing the beta functions in terms of

τ ≡ Gk · Λk and g we find that τ is scale independent

βτ ≡ k
∂

∂k
(GkΛk) = 0 . (9.11)

This tells us that the cosmological constant (measured in Planck units) receives no quantum

corrections from the conformal sector at one-loop. The beta function for g reads

βg = 2g − g2Φ1

6π
, (9.12)

for which there is a fixed point for g∗ = 12π
Φ1

. The critical exponents are given by

θ0 = 2 , θτ = 0 , (9.13)

independent of the regulator Rk or the parameterisation of the couplings. Thus, at one-

loop the conformally reduced model shows that the τ is exactly marginal and that Gk is

asymptotically safe. The former can be understood by noting that at one-loop Sσ + S0 is

proportional to the equations of motion R−4Λk. This follows from the on-shell cancelations

between the conformal mode and the scalar Jacobian (3.5) and the fact that we neglect

terms ∂tΛk in the right hand side of the flow equation. Therefore only the ‘inessential’

coupling Gk runs. Here inessential refers to the fact that ∂tGk appears as a coefficient of

the equations of motion in the left hand side of the flow equation. This can be seen by

writing the left hand side of (3.10) as

∂tΓk =

∫
d4x
√

det gµν

(
∂tτ

8πG2
k

+
∂tGk

16πG2
k

(R− 4Λk)

)
. (9.14)

Normally inessential couplings do not require fixed points and can be removed via an

appropriate field redefinition. However, Gk can only be removed by a redefinition of the

metric and since this would also rescale k [82] Newton’s couplings also requires a fixed

point for gravity to be asymptotically safe. Therefore, due to the double rôle of the metric,

as a force carrier and the origin of scale, Gk is promoted to an essential coupling.

In fact we can make a more general statement about the form of divergences coming

from the conformal sector, Sconf ≡ S0 + Sσ, beyond one loop and our truncation to the

first two heat kernel coefficients. Let’s first consider a type I or type II regulator, such that

Rk is independent of Λk, then Sσ is independent of ∂tΛk. It now follows that for R = 4Λk
we have Sconf = 0 thus only inessential curvature terms, those proportional to (R − 4Λk),

can be generated. All essential divergences must cancel between the conformal fluctuations

and the Jacobian J0 (provided we choose the same regulator for both). That is

Sσ + S0 ∝ (R− 4Λk) for Λk − independent regulators . (9.15)
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If we instead use a type III Λk-dependent cutoff we will then gain additional essential

divergences

Sσ + S0 ∼ ∂tΛk , (9.16)

which are proportional to the scale derivative of the cosmological constant Λk. This is the

case we have encountered above (9.2) where there exists a fixed point at Λk = 0. Along the

renormalisable trajectory ∂tΛk remains zero, therefore we would not generate any essential

divergences in this case either. This leads us to conclude that these cancelations remain

beyond the truncated heat kernel expansion and that therefore conformal fluctuations may

generate no physical divergences. Furthermore if we are forced to use a type III cutoff

to ensure stability (i.e. convexity of the effective action) this would only be possible for a

vanishing cosmological constant. Whether or not we are forced to use a type III regulator

we reach the conclusion that by setting Λk→∞ = 0 at a UV fixed point (i.e. setting the

cosmological constant to zero in the bare action) we would recover a vanishing renormalised

cosmological constant Λ = Λ0 in the classical limit without any fine tuning. This follows

since the τ = Gk · Λk either receives no quantum corrections or the quantum corrections

are proportional to ∂tΛk.

We note that the situation here is quite different from that encountered in f(R)

gravity [83] where all operators where found to be inessential at a potential UV fixed

point [84, 85]. In that case there existed no solutions to the equations of motion, and thus

no essential operators were present. Here there are essential operators since the equation

of motion has solutions, however no essential quantum corrections are generated and they

can be consistently neglected.

10 Beta functions at vanishing Λ

The fact that we have recovered a critical exponent θ = 3, which is in very good agreement

with lattice studies, deserves more attention. While it is encouraging it is also slightly

disconcerting that this result is obtained for a reduced theory. However, that the this value

of the critical exponent was found for the conformally reduced theory when Λk = 0 indicates

that perhaps this is linked to the beta function for Newton’s constant being independent of

Λk and that if a mechanism existed to remove this dependence in the full theory a similar

value for θ might be found.

To test this idea we set Λk = 0 and ∂tΛk = 0 from the outset to obtain a single beta

function for g retaining contributions from all degrees of freedom. The beta function now

depends on the two regulator dependent numbers Φ̃1 and Φ1 explicitly we find

βg = 2g +
11g2Φ1

11gΦ̃1 − 4π
. (10.1)

For this beta function we find one non-trivial fixed point at

g∗ =
8π
11

Φ1 + 2Φ̃1

(10.2)
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which differs from the fixed point of the conformally reduced theory by an overall factor

but is manifestly positive for all regulator functions. The critical exponent at this fixed

point is given by

θ = 2 +
4Φ̃1

Φ1

opt
= 3 (10.3)

which is in exact agreement with the relevant exponent found in the conformally reduced

theory (9.5). This result is reassuring since it seems to confirm that the agreement with the

lattice theory is not just a fluke of the conformally reduced theory. It remains to understand

better how the cosmological consent might naturally fall out of the beta function for g.

11 Summary and conclusion

11.1 Summary

In this work we have revisited the renormalisation group flow of quantum gravity in the

Einstein Hilbert approximation. In doing so we have made three novel steps:

i) In section 3 we have disentangled the gauge variant, topological and propagating

degrees of freedom at the level of the renormalisation group equations by a careful

treatment of the ghosts and auxiliary fields coming from the functional measure.

While the gauge variant fields {ξ, ψ} have been made to cancel exactly with the

ghosts [66], we have also identified the contributions from propagating graviton modes

Sgrav = S⊥ + S1 and the topological conformal mode Sconf = Sσ + S0 each of which

have contributions from the Einstein-Hilbert action and the functional measure.

ii) Further to this in section 4 we have implemented the regularisation using a spectrally

adjusted cutoff (4.4) depending on the full inverse propagator ∆ and determined the

curvature constraint R > 4Λ0 for which the regulator vanishes in the limit k → 0.

This was done to obtain the correct IR limit of the flow equation while ensuring the

convexity of the effective action (2.2).

iii) In section 5 we adopted a new non-perturbative approximation scheme whereby we

truncate the early time heat kernel expansion at a finite order. In doing so we avoid

an explicit curvature expansion to close our approximation while remaining sensitive

to the UV divergences that renormalise Gk and Λk.

These modifications to the standard approach have had a direct effect on the physical

results emerging from the resulting RG flow. First in the full theory we have the following

results:

a) In the UV there exists an asymptotically safe fixed point for positive g∗ and λ∗ in

agreement with all previous studies of the Einstein-Hilbert truncation in the back-

ground field approximation. However here we have found that the critical exponents

are real and not a complex conjugate pair. This is in contrast to the standard back-

ground field approach but in agreement with vertex expansions which disentangle the

background and dynamical metric and possible global fixed points in f(R) gravity.
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b) At one-loop the UV fixed point is still present and we find critical exponents are

independent of the regulator function given by θ0 = 2 , θ1 = 64
33 .

c) We have found globally safe RG flows which lead to classical general relativity at

small distances compatible with a finite cosmological constant.

Only quantising the conformal mode σ as a topological (i.e. non-propagating) degree

of freedom we find the following:

d) For this theory we find two UV fixed points. One compatible with a negative cos-

mological constant and one at λ∗ = 0 for which Λk = 0 for all scales. For the λ∗ = 0

fixed point we recover the critical exponent ν = 1/3 from non-perturbative lattice

studies [33].

e) At one-loop the essential parameter Gk · Λk has a vanishing beta function while Gk
reaches an asymptotically safe fixed point.

f) We have argued that the integration over the topological conformal mode leads to

no essential divergences at all loop orders, providing the first step towards a finite

theory of quantum gravity along the lines suggested by ’t Hooft [7].

Returning to the full theory we have found that:

g) The critical exponent found in the conformally reduced theory can be reproduced

provided we set the cosmological constant to zero from the outset.

11.2 Conclusion

Since it seems highly unlikely that quantum gravity in four dimensions can be solved exactly

we must always rely on approximations. Furthermore, since gravity becomes strongly

coupled at high energies the approximation schemes used should be non-perturbative by

construction. The question then arises on how to implement these schemes in a consistent

manner. Here we have approached this question by concentrating on the convexity of

the effective action and its relation to the physical degrees of freedom which are being

quantised. Our attention has been focused on the UV behaviour of gravity assuming that

the high energy theory is that of quantum general relativity.

Our results suggest that gravity is asymptotically safe and that the low energy theory

is consistent with Einstein’s classical theory. In turn we have shed light on the cosmological

constant problem finding a UV theory consistent with a vanishing cosmological constant

on all scales. Although this fixed point is only found in the conformally reduced theory, the

critical exponent ν = 1/3 is in agreement with lattice studies of full quantum gravity [33].

Furthermore setting Λ = 0 from the outset in the full theory also reproduces this exponent.

These result are a vindication of our general philosophy to disentangle physical degrees of

freedom at the level of the regulated functional integral. We therefore conclude that the

methods developed here should be extend beyond the simple approximation studied here,

and that the combination of lattice and continuum approaches to quantum gravity may

prove fruitful in the near future.
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A Heat kernels and flow equation

To evaluate the traces in (3.10) we use the (truncated) early time heat kernel expan-

sion (5.1) which depends on the heat kernel coefficients An. Due to our field redefini-

tions we will obtain coefficients Ai,n where i labels the field each of which takes the form

Ai,n =
∫
d4
√

det gµνai,n(Ui). Here Ui are the potentials appearing in each component

∆i = −∇2 + Ui of the differential operator ∆ given in (3.9). These potentials are give by

Uσ = −R
3
− 4

3

(
Λk −

R

4

)
, U⊥ =

R

6
− 2

(
Λk −

R

4

)
, U0 = −R

3
, U1 = −R

4
. (A.1)

which lead to the corresponding heat kernel coefficients

aσ,0 = a0,0 = 1 , a0,1 =
R

2
, aσ,1 =

R

2
+

4

3

(
Λk −

R

4

)
,

a⊥,0 = 5 , a⊥,1 = −5

3
R+ 10

(
Λk −

R

4

)
, a1,0 = 3 , a1,1 = R . (A.2)

To evaluate the right hand side of (3.10) we insert these coefficients along with the

Qm,i functionals (6.1) into the trace formula (5.1) retaining terms up to n = nmax = 1.

The left hand side is then found by taking the scale derivative of the action (2.3). In terms

of the threshold constants (6.2) this leads to the following flow equation

Ṽ

[
βλ + 2λ

8πg
− βg − 2g

16πg2
(2λ− R̃)

]
=
∑
i

Si , (A.3)

where i = {2, σ, 1, 0} sums over the various fields. Here we have introduced the dimension-

less quantities g = k2Gk, λ = k−2Λk, R̃ = k−2R and Ṽ = k4
∫
d4x
√

det gµν and the beta

functions βg = ġ = g(2− η) and βλ = λ̇. The terms on the right side are given by

S0 =−2ηΦ̃2 + ηR̃Φ̃1 + R̃Φ1 + 2Φ2

64π2
Ṽ , S1 = −3ηΦ̃2 + ηR̃Φ̃1 + R̃Φ1 + 3Φ2

32π2
Ṽ , (A.4)

Sσ =
ηΦ̃2 − 1

18 (8λ+ R̃)
(
−3ηΦ̃1 + 4Φ̂1 (βλ + 2λ)− 3Φ1

)
− 4

3 Φ̂2 (βλ + 2λ) + Φ2

32π2
Ṽ , (A.5)

S2 =
5
(
ηΦ̃2 − 2Φ̂2 (βλ + 2λ) + Φ2

)
+ 5

6 (5R̃− 12λ)
(
−ηΦ̃1 + 2Φ̂1 (βλ + 2λ)− Φ1

)
32π2

Ṽ . (A.6)
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