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1 Introduction

The study of supersymmetric gauge theories has greatly benefited in recent years from

the development of the localization of supersymmetric gauge theories by Pestun [1] ([2–4]

for recent reviews). The localization procedure manages to reduce the original functional

integral describing a quantum field theory into a much simpler matrix integral. Thus, it

enormously reduces the task of computing observables in a supersymmetric gauge theory.

However, there still remains the issue of explicitly computing N integrations, in which case

one needs to employ matrix model tools [5] in order to obtain explicit expressions for the

observables of the gauge theory.

The theory we shall focus on is N = 2 and N = 3 supersymmetric U(N) Chern-Simons

(CS) on three-sphere, S3, with Nf fundamental and Nf anti-fundamental chiral multiplets

of mass m. Indeed the partition function on S
3 can be determined by the localization

techniques of [1], which were used in the 3d case in [6–9]. In the case of the partition

function for U(N) N = 2 Chern-Simons theory at level k coupled to Nf fundamental and
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N̄f anti-fundamental chiral multiplets of R-charge q the matrix model is [9]1

Z =
1

N !

∫
dNσ

N∏

j=1

eiπkσ
2
j (sb=1(i− iq − σj))

Nf (sb=1(i− iq + σj))
N̄f

N∏

i<j

(2 sinhπ(σi − σj))
2,

(1.1)

where sb=1(σ) denotes the double sine function [8, 9] (and references therein). This matrix

model corresponds to the case where the matter chiral multiplets have R-charge q and

belong to the representation R of the gauge group. The fact that for N = 3 theories the

R-symmetry is non-abelian allows us to fix an R-charge which is not altered under the RG

flow. In this paper, we focus on a detailed study of the case where q = 1/2 and R = r⊕ r.

In this case, due to the basic property of the double sine function [9]

∏

ρ∈r

sb=1

(
i

2
− ρiσ̂i

)
· sb=1

(
i

2
+ ρiσ̂i

)
=

∏

ρ∈r

1

2 coshπρiσ̂i
, (1.2)

and setting N̄f = Nf , the matter contribution simplifies, leaving the matrix model to be

Z
U(N)
Nf

=
1

(2π)N N !

∫
dNµ

∏
i<j 4 sinh

2
(
1
2(µi − µj)

)
e
− 1

2g

∑

i µ
2
i+iη

∑

i µi

∏
i

(
2 cosh

(
1
2(µi +m)

))Nf
, (1.3)

where g = 2πi
k with k ∈ Z the Chern-Simons level and µi/2π represent the eigenvalues of

the scalar field σ belonging to the three dimensional vector multiplet. In (1.3) the radius R

of the three-sphere has been set to one. It can be restored by rescaling m → mR, µi → µiR.

The partition function is periodic in imaginary shifts of the mass, Z(m + i2πn) = Z(m),

for integer n. The addition of a Fayet-Iliopoulos term (FI) in the Lagrangian adds a linear

term in the potential of the matrix model [6, 7, 9]. Thus η is a real parameter denoting the

FI parameter. Notice that the variables in (1.3) are rescaled with a 2π factor with regard

to those in [6, 7, 9] and with regard to the ones in (1.1). That is, µi = 2πσi.

We shall focus in this work specifically on the model (1.3) but also consider a variant of

the same model, with matter content a pair of fundamental and a pair of anti-fundamental

chiral multiplets (Nf hypermultiplets of mass m and Nf hypermultiplets of mass −m). The

corresponding matrix model is

Z̃
U(N)
Nf

=
1

(2π)N N !

∫
dNµ

∏
i<j 4 sinh

2
(
1
2(µi − µj)

)
e
− 1

2g

∑

i µ
2
i

∏
i

(
4 cosh

(
1
2(µi +m)

)
cosh

(
1
2(µi −m)

))Nf
, (1.4)

which was previously studied for large N in [10] and for finite N and Nf = 1 in [11]. In

this paper we consider both models, as spelled out in detail in the next section.

In [11], the approach is to express the matrix model (1.4) for Nf = 1, as a Hankel

determinant whose entries are (combinations of) Mordell integrals [12]

I(l,m) =

∫ ∞

−∞
dµ

e(l+1)µ+m

1 + eµ+m
e−µ2/2g, (1.5)

1Notice that we have changed the sign of the Chern-Simons level with respect to that in [9] in order to

make contact with our conventions.
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where l ∈ C.2 This integral, I(l,m), was computed by Mordell [12] for general parameters.

In general, it is given in terms of infinite sums of the theta-function type. However, in

specific cases it assumes the form of a Gauss’s finite sum [11, 12]. These specific cases

precisely contain the one which is physically relevant: g = 2πi/k with k ∈ Z. Exactly the

same method can be applied to (1.3) and, as a matter of fact, it is simpler in that case

since the identification with the Mordell integral is more direct, as we shall see below.

The main difference between [11], where analytical results for the case Nf = 1 were

given using Mordell integrals, and this work, can be succinctly summarized by substitut-

ing (1.5) for

J(l,m) =

∫ ∞

−∞
dµ

e(l+1)µ+m

(1 + eµ+m)Nf
e−µ2/2g, (1.6)

as the main building block in all computations. This allows us to do the same computations

as in [11], but also for higher flavour cases Nf ≥ 1 and for both all the above-mentioned

properties for (1.6), following from those of (1.5). We will achieve this by using (1.5)

and systematically differentiating under the integral sign, establishing also a recurrence

relationship between the different derivatives. At this stage, it is worth mentioning that

Mordell integrals have been applied before in problems of theoretical physics, in particular,

in the study of superconformal algebras [13, 14]. In number theory, they have become

especially prominent in the last decade, after [15], due to their intimate relationship with

Mock theta functions and also due to their modular properties. For example, in [16] we

find an analysis of roughly the same generalization of the integral, namely (1.6), but not

in the physical setting required to study (1.3).3

The main use of the formulas derived, apart from the computation of the partition

functions (1.3) and (1.4), is as a tool to further analyze a Seiberg-like duality in a 3d

theory [17, 18]. The two main types of Seiberg-like dualities in 3d are:

1. Aharony duality [18] for three dimensions, which holds for Chern-Simons level k = 0

and is characterized by an unusual coupling between electric and magnetic monopoles.

2. Giveon-Kutasov duality [17], which applies to theories with any Chern-Simons level

and resembles a 4d Seiberg duality for theories with fundamental matter or an adjoint

field. This allows for compact expressions for the observables of the Chern-Simons-

matter theory as was shown in [11] and is discussed here as well.

These two dualities can be related by starting with the Aharony duality and adding

masses and generating Chern-Simons terms, leading to the Giveon-Kutasov duality. The

reverse renormalization group flow from Giveon-Kutasov duality in the UV to Aharony

duality in the IR has been studied in [19]. We shall focus here on the Giveon-Kutasov

duality, which implies for the partition function [20]

Z
U(Nc)
Nf ,k

(η) = esgn(k)πi(c|k|,Nf
−η2)Z

U(|k|+Nf−Nc)
Nf ,−k (−η) , (1.7)

2That will be the case if there is a FI parameter, see below. In simpler settings, such as in [11] and also

below, it may only be an integer.
3The analysis in [16] focusses on real values of the parameters in the exponential in the context of a

heat-kernel expansion, which is not the physical setting needed in the analysis of our matrix models.
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where the l.h.s. denotes the partition function of a theory with Nc colors, Nf hypermul-

tiplets, Chern-Simons level k, and a Fayet-Iliopoulos term η. The term c|k|,Nf
is a phase,

which is a quadratic polynomial in k. The principal result is an explicit expression, char-

acterized by modular arithmetic (mod 4) behavior, for the phase factor in (1.7). Previous,

conjectured results, for this phase factor can be found in [20–22].

The paper is organized as follows. In the next section we use the determinant for-

mulation of [11], applying it to (1.3) while also extending it to the case Nf > 1. This

extension is based on explicit finite Gauss sums expressions for the generalized Mordell

integral (1.6) that we obtain. In section 3, we use such analytical results, together with

their practical implementation in Mathematica, to obtain exact analytical expressions for

both (1.3) and (1.4) for a number of values of (N,Nf , k) which leads also to discuss some

physical interpretations in terms of symmetry protected phases [23, 24] and mathematical

features like a complex conjugacy property under the transformation k → −k.

Finally, in the last section, we use the formalism developed to perform an exhaustive

test of Giveon-Kutasov duality in the N = 3 setting, by explicit and systematic computa-

tion of the matrix model (1.3) on both sides of (1.7). We propose an explicit expression of

the phase factor in (1.7), which is different from previous expressions in the literature [20–

22] and that we have tested to hold for a large range of the parameter space, going up to

12 flavours.

2 Parametric derivatives of Mordell integrals for the arbitrary Nf setting

Let us develop the method based on generalized Mordell integrals in order to compute (1.3)

for higher flavour Nf > 1, therefore extending the methodology and results in [11]. It is

enough to directly consider the derivatives of a single Mordell integral. More precisely, by

making the change of variables

zi = c eµi , c = e
g
(

N−
Nf
2

)

, (2.1)

we may write (1.3) in the form

Z
U(N)
Nf

=
e
− gN

2

(

N−
Nf
2

)(

N+
Nf
2
+2iη

)

(2π)N N !

∫

[0,∞)N
dNz

∏

i<j

(zi − zj)
2 e

− 1
2g

∑

i(ln zi)
2+iη

∑

i ln zi

∏
i

(
1 + ziem

c

)Nf
. (2.2)

Its determinantal formulation becomes

Z
U(N)
Nf

=
e

NNfm

2 c
−N

2

(

N+
Nf
2
+2iη

)

(2π)N
det ((gi, gj))

N−1
i,j=0 ,

where the matrix elements are given by

(gi, gj) ≡ ci+j+1+iηe
− 1

2g
(ln c)2

∫ ∞

−∞
dµ

e
µ
(

i+j+1−N+
Nf
2
+iη

)

(1 + eµ+m)Nf
e
− 1

2g
µ2

. (2.3)
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The matrix elements may also be written in terms of a Mordell integral as follows

(gi, gj) = ci+j+1+iηe
− 1

2g
(ln c)2 (−1)Nf−1e−m

(Nf − 1)!

d

dm

(

e−m d

dm

(

e−m d

dm

(

e−m d

dm
· · ·

d

dm

(

e−mI(l,m)
)

)))

,

where the derivative has to be applied Nf − 1 times and l = i + j + 1 − N − Nf
2 + iη.

Alternatively, one may exploit the relation

∫ ∞

−∞
dµ

e(l+Nf)µe−µ2/2g

(1 + eµ+m)Nf
=

(−1)Nfe−mNf

(Nf − 1)!

Nf−1∑

n=0

CNf−1,nI
(n)(l,m) (2.4)

and hence express (2.3) as follows

(gi, gj) = ci+j+1+iηe
− 1

2g
(ln c)2 (−1)Nf

(Nf − 1)!
e−mNf

Nf−1∑

n=0

CNf−1,nI
(n)(l,m) ,

where I(n) stands for the n-th derivative of I(l,m) with respect to m and the coefficients

Cp,q satisfy

Cp,q =





−p Cp−1,q + Cp−1,q−1, p > q > 0,

(−1)p+1p!, p > q = 0,

−1, p = q.

(2.5)

As it was shown in [11], (1.5) is proportional to the Mordell integral

I(l,m) = 2πe−ml+ikm2/(4π)

∫ ∞

−∞
dt
eiπkt

2+2πt(l+1)−itkm

e2πt + 1
(2.6)

and has the following explicit expression [11]

I(l,m) = 2π




e−iπ(l+ k

4 ) e−m(l+ k
2 )+

ikm2

4π G+

(
k, 1,−l − 1 + ikm2π − k

2

)
, k > 0,

eiπ(l−
k
4 ) e−m(l− k

2 )+
ikm2

4π G−

(
−k, 1,−l − 1 + ikm2π + k

2

)
, k < 0,

, (2.7)

with

G+

(
k, 1,−l − 1 + i

km

2π
− k

2

)
=

1

e−2πil−km − 1

(
−
√

i

k

k∑

r=1

e
iπ
k (r−l−1− k

2
+i km

2π )
2

+ i

)
,

(2.8)

G−

(
−k, 1,−l − 1 + i

km

2π
+

k

2

)
=

1

1− e2πil+km

(√
i

k
e2πil+km

−k∑

r=1

ei
π
k (r+l− k

2
−i km

2π )
2

+ i

)
.

(2.9)

Notice that, if l ∈ Z, the denominator in, say, G+(a, b, x) could vanish in principle. How-

ever, a Gauss’s sum identity [11, eq. (2.28)] prevents the partition function to diverge. We

will see that for Nf odd we get l ∈ Z/2 (if we set the FI parameter to zero); in that case

the identity does not apply, but the factor e−2πil 6= 1 implies that the denominator does

– 5 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
8

not vanish. Notice that the prefactor of G+ in [11] is slightly different. This is due to the

fact that, there, we discussed the model with 2Nf hypermultiplets, which we study later

in section 2.1 for Nf > 1.

The first derivative of the Mordell integral (2.7) takes the form

I ′(l,m) =





e−iπ(l+ k
4 ) e−m(l+ k

2 )+
ikm2

4π

(
(ikm− (k + 2l)π)G+

(
k, 1,−l − 1 + ikm2π − k

2

)

+2πG′

+

(
k, 1,−l − 1 + ikm2π − k

2

)
)
, k > 0,

eiπ(l−
k
4 ) e−m(l− k

2 )+
ikm2

4π

(
(ikm+ (k − 2l)π)G−

(
−k, 1,−l − 1 + ikm2π + k

2

)

+2πG′

−

(
−k, 1,−l − 1 + ikm2π + k

2

)
)
, k < 0,

where we also have the Gauss sums

G′
+

(

k, 1,−l − 1 + i
km

2π
−

k

2

)

=
ekm+2ilπ

(−1 + ekm+2ilπ)2

(

√

i

k

(

− k
k
∑

r=1

e
iπ
k (−1− k

2
−l+ ikm

2π
+r)2

+
(

ekm+2ilπ
−1
)

k
∑

r=1

e
iπ
k (−1− k

2
−l+ ikm

2π
+r)2

(

1+
k

2
+l−

ikm

2π
−r

)

)

+ ik

)

,

(2.10)

G′
−

(

−k, 1,−l − 1 + i
km

2π
+

k

2

)

=
ekm+2ilπ

(−1 + ekm+2ilπ)2

(

√

i

k

(

k

−k
∑

r=1

e
iπ
k (− k

2
+l− ikm

2π
+r)2

−
(

−1 + ekm+2ilπ
)

−k
∑

r=1

e
iπ
k (− k

2
+l−ikm

2π
+r)2

(

−
k

2
+ l−

ikm

2π
+r

)

)

+ ik

)

.

(2.11)

2.1 The theory with 2Nf hypermultiplets

We now consider the case of Nf hypermultiplets with vector massm and Nf hypermultiplets

with vector mass −m. This theory was analyzed in detail in [11] for Nf = 1 and previously

in [10]. One of its distinctive features is the existence of third order phase transitions in a

certain double scaling limit which involves a decompactification limit, in which the radius

of S3 is taken to infinity [10, 11]. The partition function, expressed as a matrix integral, is

Z̃
U(N)
Nf

=
1

(2π)N N !

∫
dNµ

∏
i<j 4 sinh

2
(
1
2(µi − µj)

)
e
− 1

2g

∑

i µ
2
i

∏
i

(
4 cosh

(
1
2(µi +m)

)
cosh

(
1
2(µi −m)

))Nf
,

where for simplicity (and to compare with [11]) we have not included the FI term. The

simple change of variables is [10, 11]

zi = ceµi , c = eg(N−Nf) , (2.12)

which recasts the integral in the form

Z̃
U(N)
Nf

=
e−

gN
2

(N2−N2
f )e2gNNf

(2π)N N !

∫

[0,∞)N
dNz

∏

i<j

(zi − zj)
2 e

− 1
2g

∑

i(ln zi)
2

∏
i (ce

−m + zi)
Nf (cem + zi)

Nf
.

(2.13)
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As in [11], the partition function can be written as

Z̃
U(N)
Nf

= N !e−
gN
2

(N2−N2
f ) det ((fi, fj))

N−1
i,j=0 (2.14)

where the functions fi have the form

(fi, fj) = ci+j+1e−(ln c)2/2g

∫ +∞

−∞
dµ

ei+j+1+Nf−N

(1 + eµ+m)Nf (1 + eµ−m)Nf
e−µ2/2g. (2.15)

The objective is to compute (2.15) for generic Nf and then the partition function follows

from (2.14). First we expand the denominator in (2.15) using the identity

1

(1 + ax)n(1 + bx)n
=

1

(a− b)n

n−1∑

s=0

(
n+ s− 1

s

)(
ab

a− b

)s
(
(−1)s

(
a

1 + ax

)n−s

+(−1)n
(

b

1 + bx

)n−s
)
. (2.16)

This is a generalization for n > 1 of the identity used in [11]. Using the summation form

of (2.16) and setting ℓ = i+ j + 1−N , we are able to write (2.15) as

(fi, fj) =
ci+j+1e−(ln c)2/2g

2Nf (sinhm)Nf

Nf−1∑

s=0

(
Nf + s− 1

s

)
1

(2 sinhm)s

×
(
(−1)sem(Nf−s−1)

∫ ∞

−∞
dµ

eµ(ℓ+Nf)+me−µ2/2g

(1 + eµ+m)Nf−s

+(−1)Nfe−m(Nf−s−1)

∫ ∞

−∞
dµ

eµ(ℓ+Nf )−me−µ2/2g

(1 + eµ−m)Nf−s

)
. (2.17)

The integrals in (2.17) can be expressed in terms of a Mordell integral (1.5). Specifically,

we note that

d

dm

(
e−m d

dm

(
e−m d

dm
· · · d

dm

(
e−mI(ℓ+ s,m)

)))

= (−1)Nf−s−1(Nf − s− 1)!

∫ ∞

−∞

eµ(ℓ+Nf )+me−µ2/2g

(1 + eµ+m)Nf−s
, (2.18)

d

dm

(
em

d

dm

(
em

d

dm
· · · d

dm
(emI(ℓ+ s,−m))

))

= (Nf − s− 1)!

∫ ∞

−∞

eµ(ℓ+Nf)−me−µ2/2g

(1 + eµ−m)Nf−s
, (2.19)

where the derivative on the left hand side of the above expressions is applied Nf − s − 1

times. These expressions help us to alternatively express (2.17) as a sum of derivatives

– 7 –
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of (1.5) with respect to m. Particularly,

∫ ∞

−∞
dµ

e(ℓ+Nf )µe−µ2/2g

(1 + eµ+m)Nf−s
=

(−1)Nf−se−(Nf−s)m

(Nf − s− 1)!

Nf−s−1∑

n=0

C
(+)
Nf−s−1,nI

(n)(ℓ+ s,m), (2.20)

∫ ∞

−∞
dµ

e(ℓ+Nf )µe−µ2/2g

(1 + eµ−m)Nf−s
=

e(Nf−s)m

(Nf − s− 1)!

Nf−s−1∑

n=0

C
(−)
Nf−s−1,nI

(n)(ℓ+ s,−m), (2.21)

where I(n)(ℓ,m) ≡ dnI(ℓ,m)
dmn . The constant factors C

(±)
p,q are given by the recursion relations

C(+)
p,q =





−p C
(+)
p−1,q + C

(+)
p−1,q−1, p > q > 0,

(−1)p+1p!, p > q = 0,

−1, p = q.

(2.22)

C(−)
p,q =





pC
(−)
p−1,q + C

(−)
p−1,q−1, p > q > 0,

p!, p > q = 0,

1, p = q,

(2.23)

respectively. To summarize

(fi, fj) =
ci+j+1e−(ln c)2/2g(−1)Nf

2Nf (sinhm)Nf

Nf−1∑

s=0

(
Nf + s− 1

s

)
1

(2 sinhm)s(Nf − s− 1)!

×
(

Nf−s−1∑

n=0

C
(+)
Nf−s−1,nI

(n)(ℓ+ s,m) +

Nf−s−1∑

n=0

C
(−)
Nf−s−1,nI

(n)(ℓ+ s,−m)

)
(2.24)

where the derivatives of I(ℓ+ s,m) are estimated from (2.7) as before.

3 Analytical expressions for the partition functions and some interpre-

tations

We put the formalism we have just developed into use and compute, as in [11], specific

instances of the partition function of both models (1.3) and (1.4) for Nf ≥ 1. In general,

we restrict ourselves with presenting the cases comprising U(1), U(2) and U(3), with Nf =

1, 2, 3, η = 0 and also |k| = 1, 2, 3.

3.1 Abelian partition functions

The Abelian partition function is given directly by Mordell’s integral. In the case Nf = 2

and k arbitrary, we can use the first derivative of the Mordell integral to obtain an explicit

– 8 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
8

expression

Z
U(1)
k,Nf=2(η) =

e−m

2π
(I(ℓ = −1 + iη,m)− I ′(ℓ = −1 + iη,m))

=





−e−iπ(iη+ k
4 ) e−m(iη+ k

2 )+
ikm2

4π

(
(
iη − ikm

2π + k
2

)
G+

(
k, 1,−iη + ikm2π − k

2

)

−G′

+

(
k, 1,−iη + ikm2π − k

2

)
)
, k > 0,

−eiπ(iη−
k
4 ) e−m(iη− k

2 )+
ikm2

4π

(
(
iη − ikm

2π − k
2

)
G−

(
−k, 1,−iη + ikm2π + k

2

)

−G′

−

(
−k, 1,−iη + ikm2π + k

2

)
)
, k < 0,

where the Gauss sums are again (2.8) and (2.10). As pointed out in [11], the formulae con-

tain perturbative as well as non-perturbative terms. The perturbative terms arise from the

weak-coupling expansion of factors e
iπ
k
(r−1)2 = e

g
2
(r−1)2 , whereas non-perturbative terms

are factors e
ik(m−iπ)2

4π = e
−

(m−iπ)2

2g and ekm = e
2πim

g . For specific values of k, and flavour

Nf = 1, we obtain

Z
U(1)
k=1,Nf=1 =

em/2ei
π
2

(
1− ei

π
4 e

im2

4π

)

em + 1
,

Z
U(1)
k=−1,Nf=1 =

em/2

(
−ei

π
2 + ei

π
4 e−

im2

4π

)

em + 1
,

Z
U(1)
k=2,Nf=1 =

e
πi
2 em/2

(
−
√
2e

m(im+π)
2π + e−

πi
8 (1 + em)

)

√
2 (1 + e2m)

,

Z
U(1)
k=−2,Nf=1 = −

√
2em/2e

5iπ
8 (1 + em)− 2ieme−

im2

2π

2 (e2m + 1)
,

Z
U(1)
k=3,Nf=1 =

e3m/2

(
1/
√
3− eiπ/4e

3im2

4π +
(
eiπ/2 + 1/

√
3
)
coshm

)

(e3m + 1)
.

Notice that there seem to be apparent poles at m = iπ/k and, even though masses are

real, one can still look for poles or zeros of the partition function on the complex plane,

see [25, 26] for example. As we shall see below with more cases, these supposed poles seem

to appear for m = 2iπ/k for Nf even and m = iπ/k for odd Nf . That is actually not

the case, and the partition function is smooth at these points, as expected. We explicitly

compute and check that the derivatives are smooth functions of the mass too.
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As a matter of fact, it is known that the Mordell integral (1.5) is an holomorphic

function4 in l. Since the Abelian partition functions are directly Mordell integrals, then

they are holomorphic in that parameter, which comprises both the mass5 and the FI

parameter. The same implication holds for the non-Abelian case, since it is a determinant

of holomorphic functions.

In the k = 1 case, the duality is between Abelian theories and we indeed check that

Z
U(1)
k=1,Nf=1

Z
U(1)
k=−1,Nf=1

= e
iπ
4
+ im2

4π . (3.1)

Likewise, the cases k = 2 and k = 3 above, will be related with duals below, with gauge

group U(2) and U(3) respectively. For Nf = 2 we have

Z
U(1)
k=1,Nf=2 =

ei
π
4

(
−π + e

im2

4π (π cosh (m/2)− im sinh(m/2))

)

2π (coshm− 1)
,

Z
U(1)
k=−1,Nf=2 =

−em/2e−
im2

4π

(
2πe

i(m−iπ)2

4π + eiπ/4 (m− emm+ iπ (1 + em))

)

2π (em − 1)2
,

Z
U(1)
k=2,Nf=2 =

e
m
2 (6+

im
π )(π − im) + em+ im2

2π (π + im)− (1− i)πe2m (coshm+ i)

π (e2m − 1)2
,

Z
U(1)
k=−2,Nf=2 =

−
√
2e

πi
4 πe2m (coshm− i) + 2e

m
2 (4−

im
π )(π coshm+ im sinhm)

π (e2m − 1)2
.

It is not manifest from the form in which the partition functions are given (for example,

in the last two expressions above) but the partition functions satisfy

Z(Nc, Nf , k,m, η) = Z(Nc, Nf ,−k,m,−η), (3.2)

where Z denotes the complex conjugate. In the massless case it also holds that

Z(Nc, Nf , k,m = 0, η) = Z(Nc, Nf ,−k,m = 0, η),

because the partition function can be shown to be an even function in the FI parameter.

We have checked these properties explicitly in all the cases analyzed, both analytically and

numerically as well up to Nf = 12. A rigorous proof is immediate, but since it has more

implications, it will be given elsewhere. As an example, let us rewrite the two examples

above, showcasing their real and imaginary parts, which we respectively name Zr and ZI

Z
U(1)
k=±2,Nf=2 = Zr ∓ iZI ,

4We write (1.5) in the equivalent form h(z, τ) =
∫

R
dx exp(πiτx2 − 2πzx)/ coshπx, then, with z ∈ C and

τ ∈ H. It is the only holomorphic function in z which satisfies [15] h(z) + h(z+1) = 2√
−iτ

eπi(z+1/2)2/τ and

h(z) + e−2πiz−πiτh(z + τ) = 2e−πiz−πiτ/4. It also satisfies an S-modular property, which can be used to

obtain the Giveon-Kutasov duality in the Abelian case (3.1). Details will appear elsewhere.
5Although l does not explicitly depend on m, we can promote the mass term into the linear part of the

exponential in the numerator, by shifting the eigenvalues by the mass m.
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where

Zr =
e2m

(e2m − 1)2

(
−1− coshm+ 2

(
cos

(
m2

2π

)
coshm+

m

π
sin

(
m2

2π

)
sinhm

))
,

ZI =
e2m

(e2m − 1)2

(
1− coshm− 2

(
sin

(
m2

2π

)
coshm− m

π
cos

(
m2

2π

)
sinhm

))
.

It is well-known that, in general, the partition functions computed with the localization

method are complex [27, 28], whereas unitarity demands the partition function to be real.

See [27, 28] for a detailed discussion. In addition, we have seen explicitly that there is

a complex conjugate property when k → −k and below we identify a family of partition

functions whose complex conjugate is the partition function of the inverse field theory

(see [24, 30] for the notion of inverse field theory).

3.2 U(2) gauge group

We begin with the Nf = 1 case and consider some duals with the Abelian examples above

Z
U(2)
k=1,Nf=1 = e−

3πi
4

+ im2

4π , (3.3)

Z
U(2)
k=2,Nf=1 =

e−
iπ
4

(
2em −

√
2e

iπ
8 e

im2

2π em/2(1 + em)

)

2 (e2m + 1)
,

Z
U(2)
k=−2,Nf=1 =

e
iπ
4 e

m
2
− im2

2π

(
2e

m
2
+ im2

2π +
√
2e

7iπ
8 (1 + em)

)

2 (e2m + 1)
,

Z
U(2)
k=−3,Nf=1 =

i− e
5iπ
12

− 3im2

4π√
3(−1 + 2 coshm)

.

Some duality cases are

Z
U(1)
k=2,Nf=1

Z
U(2)
k=−2,Nf=1

= e−
3πi
4

+ im2

2π ,

and
Z

U(1)
k=−2,Nf=1

Z
U(2)
k=2,Nf=1

= e
3πi
4

− im2

2π ,

as expected, because of the complex conjugation of the partition function under the change

k → −k. Let us now present some U(2) examples with Nf = 2, and relate them with some

of their duals above, mostly with U(1) and Nf = 2 cases

Z
U(2)
k=1,Nf=2 =

em/2e
im2

4π

(
m(1− em) + iπ

(
1 + em − 2e

m
2
+ im2

4π

))

2π (em − 1)2
,

Z
U(2)
k=−1,Nf=2 =

em/2e−
im2

2π

(
2πiem/2 + e

im2

4π (m(1− em)− iπ (1 + em))

)

2π (em − 1)2
.
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We can combine these particular cases to highlight a few more explicit analytical examples

of Giveon-Kutasov duality. Namely,

Z
U(1)
k=1,Nf=2

Z
U(2)
k=−1,Nf=2

= e
3πi
4

+ im2

2π ,

Z
U(1)
k=−1,Nf=2

Z
U(2)
k=1,Nf=2

= e−
3πi
4

− im2

2π .

3.3 Supersymmetry breaking and partition functions of modulus 1

Notice the special form of the partition function (3.3) (see also [11, eq. (2.36)]). Such

partition functions arise when the dual is actually a theory with U(Nc = 0) and hence the

partition function of the dual is just 1. Therefore, the only term remaining is the phase

factor of the Giveon-Kutasov duality (1.7).

Thus, there is a family of partition functions, satisfying |k|−Nc+Nf = 0, whose value

are just Giveon-Kutasov phases. This family of partition functions therefore constitute a

marginal case, separating the partition functions which are identically zero, namely those

which satisfy |k| −Nc +Nf < 0, due to spontaneous supersymmetry breaking [29] and the

regular ones (that satisfy |k| − Nc + Nf > 0). Our determinantal method indeed directly

gives null results for those cases characterized by |k|−Nc+Nf < 0. In this way for example,

we obtained

Z
U(4)
k=±1,Nf=1 = Z

U(4)
k=±2,Nf=1 = 0 and Z

U(4)
k=±3,Nf=1= e±

iπ
12

± 3im2

4π ,

Z
U(5)
k=±1,Nf=1 = Z

U(5)
k=±2,Nf=1 = Z

U(5)
k=±3,Nf=1 = 0 and Z

U(5)
k=±4,Nf=1 = e±

7iπ
4

± im2

π

and so on. It is noteworthy that this type of partition function, being a complex number of

modulus one, is the one that emerges in the description of symmetry protected phases [23].

These partition functions ZS3 = eiΦ are of a topological quantum field theory which is

invertible [24, 30], with its inverse being the theory with complex conjugate partition

function Z−1
S3

= e−iΦ, which in our case corresponds to k → −k. Thus, for our N = 2

theory, through the Giveon-Kutasov duality, we have seen that the partition functions

that exhibit such behavior come exclusively from the anomaly phase factor. This is also

consistent with the idea that anomalies are invertible field theories ([30] and references

therein). Further analysis of this result here from the perspective of study of the topological

phases of matter seems an interesting open problem. In the next section, we actually give

an analytical expression for Φ = Φ(k,Nc, Nf ,m, η).

3.4 U(3) gauge group

For Nf = 1 we have

Z
U(3)
k=1,Nf=1 = 0,

Z
U(3)
k=2,Nf=1 = e−

3πi
4

+ im2

2π ,
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Z
U(3)
k=3,Nf=1 =

e
3πi
4 em/2

(
6e−

11πi
12 em + 2

√
3e

m
4 (8+

3im
π ) +

(
3i +

√
3
)
em+ 3im2

4π + 2
√
3e

3im2

4π

)

6 (e3m + 1)
,

Z
U(3)
k=−3,Nf=1 =

√
2e−

3πi
4 e

3
4
m(4− im

π ) cosh(m/2)(2 coshm− 1)

6 (e3m + 1)2

(
2
√
6e−

πi
3 − 6

√
2e−

πi
12 e

3im2

4π

+4
√
6 coshm

)
.

For these values of the parameters the duality now becomes

Z
U(3)
k=2,Nf=1

Z
U(0)
k=2,Nf=1

= e−
3πi
4

+ im2

2π ,

Z
U(1)
k=3,Nf=1

Z
U(3)
k=−3,Nf=1

= e−
11πi
12

+ 3im2

4π .

For Nf = 2 we have

Z
U(3)
k=1,Nf=2 = e

3πi
4

+ im2

2π ,

Z
U(3)
k=2,Nf=2 =

em+ im2

2π

√
2π (e2m − 1)2

(√
2
(
1− e2m

)
m+

√
2πe

πi
2
(
1 + e2m

)
+

πe−
πi
4 e

1
2
m(4+ im

π ) − 2πe
πi
4 em+ im2

2π + πe−
πi
4 e

im2

2π

)
,

Z
U(3)
k=3,Nf=2 =

e
3im2

4π

sinh
(
3m
2

)
(√

3m

4π
e

7πi
12 +

e
πi
2

2
√
2
coth

(
3m

2

))
+

e7πi/12

4 sinh2
(
3m
2

)

+
e

3im2

4π√
3 sinh2

(
3m
2

)
(
e7πi/4

(
1

2
+ cosh

(m
2

))
+

cosh (m)

2

)
.

The duals we extract from these cases are

Z
U(1)
k=−2,Nf=2

Z
U(3)
k=2,Nf=2

= e
3πi
2

− im2

π and
Z

U(1)
k=2,Nf=2

Z
U(3)
k=−2,Nf=2

= e
πi
2
+ im2

π ,

and we also find
Z

U(2)
k=3,Nf=2

Z
U(3)
k=−3,Nf=2

= e−
11πi
12

+ 3im2

2π .

3.5 Cases with Nf = 3

Instead of giving the explicit partition functions for the Nf = 3 case, we give the ratio of

the dual partition functions directly

Z
U(2)
k=1,Nf=3

Z
U(2)
k=−1,Nf=3

= e
3iπ
4

+ 3im2

4π ,

Z
U(2)
k=2,Nf=3

Z
U(3)
k=−2,Nf=3

= e
iπ
4
+ 3im2

2π .
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Note that the duals in the former case have the same gauge group. It is immediate to

check that this is always the case when, for m,n ∈ N (or, more generally n ∈ Z if |n| < m)

we have

Nc = m+ n, k = m and Nf = m+ 2n, (3.4)

because then Z(m+ n,m+ 2n,m) = eiπφGKZ(m+ n,m+ 2n,−m). In addition, since the

partition function on the r.h.s. is the complex conjugate of the one in the l.h.s., if we write

Z(m+n,m+2n,m) = reiθ in polar form, we see that for partition functions characterized

by (3.4) it holds that θ = φGK/2.

4 Giveon-Kutasov duality

The Giveon-Kutasov duality is between U(Nc) and U(|k|+Nf −Nc), where k is the Chern-

Simons level. In particular, the theories are:

• N = 2 U(Nc) gauge theory with Nf flavors and a Chern-Simons term at level k.

• N = 2 U(|k| + Nf − Nc) gauge theory with Nf flavors and a Chern-Simons term at

level −k. In addition, there are N2
f uncharged chiral multiplets Ma

b, which couple

through a superpotential q̃aMa
bqb.

As explained in the Introduction, the Giveon-Kutasov duality specifically implies for

the partition function

Z
U(Nc)
Nf ,k

(η) = esgn(k)πi(c|k|,Nf
−η2)Z

U(|k|+Nf−Nc)
Nf ,−k (−η) , (4.1)

where c (|k| , Nc, Nf) is a polynomial quadratic in the level k (or rather on its absolute value)

and the coefficients have a non-trivial dependence on Nf (and, we find, on Nc as well). As

discussed in [28], this phase can be attributed to certain contact terms that must be added

to the action to ensure reflection positivity. Thus, using the matrix model representation

of the partition function of the N = 3, U(Nc) theory with Nf fundamental flavors6 [22]

Zk,Nf ,Nc
(η,ma) = eiδ(Nc,k,Nf ;η,ma)

1

Nc!

∫
dNcλ

Nc∏

j=1

e−kπiλj
2+2πiηλj

∏Nf

a=1 2 coshπ(λj +ma)

∏

i<j

(2 sinhπ(λi − λj))
2
,

(4.2)

where, following the notation and presentation in [22], δ is chosen so that Z is real and

positive, then the statement (4.1) is encapsulated in

Zk,Nf ,Nc(η,ma) = Z−k,Nf ,|k|+Nf−Nc
(−η,ma). (4.3)

In [22], it is argued that an explicit formula for the relative phase can be computed by

studying the contact terms of the dual theories [28] and the expression

γ(Nc, k,Nf ; η,ma) := δ(|k|+Nf −Nc,−k,Nf ;−η,ma)− δ(Nc, k,Nf ; η,ma)

=
1

24
(k2 + 3(k +Nf)(Nf − 2) + 2) +

1

2
η2 − 1

2
k
∑

a

ma
2 − η

∑

a

ma

(4.4)

6Setting µi = 2πλi and ma = m for all a = 1, 2, . . . , Nf one obtains (1.3).
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is provided. Its derivation appeared in the previous work [21]. The formulas in [21] and [22]

are very similar with the exception of a global −2π multiplicative re-scaling, which indeed

seems to be missing in (4.2)–(4.4). Additionally, the expression in [21] does not contain

the last term in (4.4), involving both the FI parameter and the masses.7 Former work of

the same authors conjectured that [20]

Z
(Nc)
k,Nf

(η;ma) = esgn(k)πi(c|k|,Nf
−η2)e

∑

a(kπima
2+2πiηma)Z

(|k|+Nf−Nc)
−k,Nf

(−η;ma), (4.5)

where

ck,Nf
= − 1

12
(k2 + 3(Nf − 2)k + aNf

) (4.6)

with

aNf
=





−1, Nf = 1, (mod 4),

2, Nf = 2, 4 (mod 4),

−13, Nf = 3 (mod 4).

It is mentioned in [21] that there is consistency between the two formulas, but in general

they do give different results for the phase factor. For example, while the two formulas

agree for Nf = 1 and Nf = 2 and generic k, they differ for Nf = 3. For instance

−2πγ(Nc, 1, 3, η = 0,ma = 0) = −5

4
π whereas πc1,3 =

3

4
π.

Note also that the factor sgn(k) that appears in (4.5) but not in the other two, above

mentioned, expressions, guarantees consistency if one applies the duality again on the

r.h.s. of (4.5).

We further test the duality, in the N = 3 setting, of the matrix model (4.2) using the

formalism developed in section 2.

4.1 Explicit expression for the phase factor

For Nf > 1, it becomes computational intractable to estimate (1.3) in pen and paper. Thus,

we programmed (1.3), using Mathematica, as a function which takes as input parameters

the variables (k,Nf , Nc,m, η). These computations are symbolical and work well for low

values of Nf , Nc, k, however for larger values, the symbolical calculations become time

consuming.8 As a first step, we solved symbolically (1.3) for low values Nf , Nc, see also

section 3. We verified that neither the mass term nor the FI term couple with k, as expected

and suggested in (4.4) and (4.5). Therefore, to further investigate the form of the quadratic

function in k we focus on the massless and η = 0 case. This is convenient because floating-

point arithmetic and parallelization methods on Mathematica scripts, speed up our code

and enable us to compute cases up to Nf = 12.

7The duality considered in [21] is between Zk,Nf ,Nc(η,m) and Z−k,Nf ,|k|+Nf−Nc
(η,−m) instead of

eq. (4.3).
8All computations were performed on a laptop with Intel Core2 Duo CPU T6400 2.00 GHz and 3GB

RAM and a Fujitsu Server Primergy TX100 S3 with 8 processors and 8GB RAM.
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Typically, our process is the following: for specific values of Nf and Nc we find the

ratios
Z

U(Nc)
Nf ,k

(0)

Z
U(|k|+1Nf−Nc)
Nf ,−k (0)

= eiπθ (4.7)

for 0 < |k| ≤ 5. The ratio is always a phase, e.g. eiπθ, θ ∈ R. We then determine a

quadratic function in |k|, φNf ,Nc(k), that captures all phases for 0 < |k| ≤ 5. We repeat for

different values of Nf and Nc and certain patterns for the quadratic functions φNf ,Nc(|k|)
arise.

We summarize our results in table 1, where we present the parameter θ for different

values of Nf , Nc and 0 < |k| ≤ 5. We observe the anti-symmetry between negative and

positive k, which leads us to write eiπθ = esgn(k)iπφNf ,Nc (|k|). This confirms the phase in (4.1)

when η = 0 and m = 0. First, we see that neither (4.4) nor (4.6) are good candidates for

reproducing the values in table 1. In particular, applying (4.4) and (4.5) with (4.6) for

Nf = 1 and k = 1, 2, . . . , 5 one finds

θ =





1
4 , k = 1,

1
4 , k = 2,

1
12 , k = 3,

−1
4 , k = 4,

−3
4 , k = 5,

respectively. These values are different from those presented in table 1. Therefore we need

to go beyond the existing conjectured quadratic functions and find a new one. Thus, we

search for a universal quadratic function

φ(Nf , Nc, |k|) = α(Nf , Nc)k
2 + β(Nf , Nc)|k|+ γ(Nf , Nc), (4.8)

which captures all the values obtained. This is done in two steps. In the first step, for each

Nf and Nc we use the θ values for k = 1, 2, 3 to find a quadratic function. That is, we solve

the system of equations

θ1 = αNf ,Nc + βNf ,Nc + γNf ,Nc

θ2 = 4αNf ,Nc + 2βNf ,Nc + γNf ,Nc

θ3 = 9αNf ,Nc + 3βNf ,Nc + γNf ,Nc

to find the parameters αNf ,Nc , βNf ,Nc , γNf ,Nc . It is worth mentioning that there is not

a unique quadratic function that gives rise to the same phase. Had we solved for k =

2, 3, 4 we would have found different parameters which still give the same overall phase.

Therefore, we find different quadratic functions for different values of Nf , Nc. For example,

for Nf = Nc = 1 we find φ1,1(k) =
5
12k

2 − 9
4k + 25

12 which gives esgn(k)πiφ1,1(|k|)/eπiθ = 1 for

all θ in the first row of table 1. We further do some “blind” tests computing θ for a k > |5|
and verifying the correctness of the expression φNf ,Nc(k).
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k

Nf Nc −5 −4 −3 −2 −1 1 2 3 4 5

1 1 3/4 1/4 11/12 3/4 −1/4 1/4 −3/4 −11/12 −1/4 −3/4

1 2 −1/4 1/4 −1/12 3/4 3/4 −3/4 −3/4 1/12 −1/4 1/4

1 3 −3/4 1/4 11/12 3/4 NaN NaN −3/4 −11/12 −1/4 −3/4

2 1 −3/4 −1/2 11/12 −1/2 −3/4 3/4 1/2 −11/12 1/2 3/4

2 2 −3/4 1/2 11/12 1/2 −3/4 3/4 −1/2 −11/12 −1/2 3/4

2 3 −3/4 −1/2 11/12 −1/2 −3/4 3/4 1/2 −11/12 1/2 3/4

2 4 −3/4 1/2 11/12 1/2 NaN NaN −1/2 −11/12 −1/2 3/4

3 1 −3/4 1/4 5/12 −1/4 1/4 −1/4 1/4 −5/12 −1/4 3/4

3 2 1/4 1/4 −7/12 −1/4 −3/4 3/4 1/4 7/12 −1/4 −1/4

3 3 −3/4 1/4 5/12 −1/4 1/4 −1/4 1/4 −5/12 −1/4 3/4

3 4 1/4 1/4 −7/12 −1/4 −3/4 3/4 1/4 7/12 −1/4 −1/4

3 5 −3/4 1/4 5/12 −1/4 NaN NaN 1/4 −5/12 −1/4 3/4

4 1 3/4 1/2 −7/12 −1/2 3/4 −3/4 1/2 7/12 −1/2 −3/4

4 2 3/4 −1/2 −7/12 1/2 3/4 −3/4 −1/2 7/12 1/2 −3/4

4 3 3/4 1/2 −7/12 −1/2 3/4 −3/4 1/2 7/12 −1/2 −3/4

4 4 3/4 −1/2 −7/12 1/2 3/4 −3/4 −1/2 7/12 1/2 −3/4

4 5 3/4 1/2 −7/12 −1/2 3/4 −3/4 1/2 7/12 −1/2 −3/4

5 1 −1/4 1/4 −1/12 3/4 3/4 −3/4 −3/4 1/12 −1/4 1/4

5 2 3/4 1/4 11/12 3/4 −1/4 1/4 −3/4 −11/12 −1/4 −3/4

5 3 −1/4 1/4 −1/12 3/4 3/4 −3/4 −3/4 1/12 −1/4 1/4

5 4 3/4 1/4 11/12 3/4 −1/4 1/4 −3/4 −11/12 −1/4 −3/4

5 5 −1/4 1/4 −1/12 3/4 3/4 −3/4 −3/4 1/12 −1/4 1/4

6 1 1/4 −1/2 −1/12 −1/2 1/4 −1/4 1/2 1/12 1/2 −1/4

6 2 1/4 1/2 −1/12 1/2 1/4 −1/4 −1/2 1/12 −1/2 −1/4

6 3 1/4 −1/2 −1/12 −1/2 1/4 −1/4 1/2 1/12 1/2 −1/4

6 4 1/4 1/2 −1/12 1/2 1/4 −1/4 −1/2 1/12 −1/2 −1/4

6 5 1/4 −1/2 −1/12 −1/2 1/4 −1/4 1/2 1/12 1/2 −1/4

7 1 1/4 1/4 −7/12 −1/4 −3/4 3/4 1/4 7/12 −1/4 −1/4

8 1 −1/4 1/2 5/12 −1/2 −1/4 1/4 1/2 −5/12 −1/2 1/4

9 1 3/4 1/4 11/12 3/4 −1/4 1/4 −3/4 −11/12 −1/4 −3/4

11 1 −3/4 1/4 5/12 −1/4 1/4 −1/4 1/4 −5/12 −1/4 3/4

Table 1. Values of the parameter θ for different values of Nf , Nc and k for the theory with Nf

massless hypermultiplets, i.e. matrix model (1.3). NaN refers to instances where the dual theory is

not well defined because the dual number of colours is negative, i.e. |k|+Nf −Nc < 0, see discussion

in section 3.3.

In the second step, we attempt to combine these different quadratic functions into a

single quadratic function, such as (4.8). Our result is

φ (Nf , Nc, k) =
1

12

(
5k2 + β (Nf , Nc) k + γ (Nf , Nc)

)
(4.9)
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where

β (Nf , Nc) = (−1)Nf3 (Nf + c+ 4 (Nc − 1)) ,

γ (Nf , Nc) = 12 (Nf − 1) (Nc − 1) +





−2, Nf mod 4 = 2,

10, Nf mod 4 = 0,

1, Nf mod 4 = 1 or 3,

(4.10)

and

c =

{
4, Nf mod 4 = 0,

0, otherwise.

The quadratic function (4.9) captures all the phases presented in the table 1, meaning

that esgn(k)iπφ(Nf ,Nc,|k|)/eiπθ = 1. This expression is further tested as follows. As explained

above, in step 1 we have found a quadratic function for each Nf , Nc. This function is

different from (4.9) and different for each Nf , Nc . Therefore, we further test the equality

esgn(k)iπφ(Nf ,Nc,|k|)/e sgn(k)iπφNf ,Nc (|k|) = 1

for |k| > 5.

We do not claim that our result is the only valid quadratic function. It is the simplest

one we could find for which esgn(k)iπφ(Nf ,Nc,|k|)/eiπθ = 1. There might be other quadratic

functions φ(Nf , Nc, k) which reproduce our results in table 1. As an open problem, it

would be interesting to compare such results with a full computation coming from the

complete analysis of supersymmetric Chern-Simons counterterms, since they characterize

the anomaly [27, 28]. In [31] (see also [32]) all the required counterterms are explicitly

given, actually for a much more general setting, including chiral theories, described by the

matrix model (1.1). By taking the parameters s1, s2 in [31] as s1 = s2 = Nf one finds that

the explicit expressions of the counterterms have a similar dependence, in appearance, in

Nc and Nf to the one obtained here, although without the modular arithmetic (mod 4)

behavior obtained here. The combination of the counterterms that give the phase factor

is also well-known in general (see [31, eq. (5.13)] or [32, eq. (A.15)]), but we leave the

eventual comparison of the results obtained here with matrix models with a direct explicit

computation of the phase with the Chern-Simons counterterms [31, 32] as an open question

for further work.

4.2 Massive hypemultiplets and non-zero Fayet-Iliopoulos term

Having determined the quadratic k-dependence of the phase factor we investigate the de-

pendence on the mass, m, and the Fayet-Iliopoulos, η, terms in (1.3). As before, we use

Mathematica to symbolically find the ratio

Z
U(Nc)
Nf ,k

(η)

Z
U(|k|+Nf−Nc)
Nf ,−k (−η)

= eiπ(sgn(k)φ(Nf ,Nc,|k|)+ϕ(Nf ,Nc,k,m,η)). (4.11)

To find this ratio we employ symbolical calculations using Mathematica. Alternatively,

one could attempt to numerically find (4.11) for several values of m and η and then restore
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k

Nf Nc −2 −1 1 2

1 1 − i(m2+2mπη−2π2η2)
2π − i(m2+4mπη−4π2η2)

4π

i(m2−4mπη−4π2η2)
4π

i(m2−2mπη−2π2η2)
2π

1 2 − i(m2+2mπη−2π2η2)
2π − i(m2+4mπη−4π2η2)

4π

i(m2−4mπη−4π2η2)
4π

i(m2−2mπη−2π2η2)
2π

2 1 − i(m2+4mπη−2π2η2)
2π

i(m2−4mπη−2π2η2)
2π

2 2 − i(m2+2mπη−π2η2)
π − i(m2+4mπη−2π2η2)

2π

i(m2−4mπη−2π2η2)
2π

i(m2−2mπη−π2η2)
π

Table 2. Dependence of the phase factor of the duality on the mass and FI terms for the theory

with Nf massive hypermultiplets, i.e. the matrix model (1.3). For values of the parameters where

the duality is not tested, due to computer memory limitations, the cell is left empty.

their functional dependence. The latter process is time consuming in many aspects and

we focus on the symbolic approach. As we also mentioned previously, these calculations

are very memory-demanding and one cannot handle as many cases as presented in table 1.

However for the values of Nf , Nc, k we compute, we do get a conclusive formula for the

function ϕ(Nf , Nc, k,m, η). In particular, in table 2 we present the term πϕ(Nf , Nc, k,m, η)

in the right hand side of (4.11). Comparing the second row to the first and the fourth row

to the third one, we observe that there is no Nc dependence in ϕ, hence ϕ(Nf , Nc, k,m, η) ≡
ϕ(Nf , k,m, η). One can easily work out the following functional form of ϕ, which covers

all the cases presented in table 2

ϕ(Nf , k,m, η) = sgn(k)

( |k|Nfm
2

4π2
− sgn(k)Nfmη

π
− η2

)

=
kNfm

2

4π2
− Nfmη

π
− sgn(k)η2. (4.12)

Recalling that the mass terms in (4.2) are related to the mass term in (1.3) via 2πma = m

we compare the (4.12) to the phase factors in (1.3) and notice that the two expressions are

almost identical apart from a sign difference in the term Nfmη/π.

While we found an expression for ϕ we further test it for η = 0, in which case we are

able to explore more values of the parameters Nf , Nc, k. We present our findings in table 3,

which also provides further evidence for the functional form (4.12).

4.3 Nf hypermultiplets with mass m and Nf hypermultiplets with mass −m

Next we present the results on the phase factor for the theory with Nf hypermultiplets of

mass m and Nf hypermultiplets of mass −m discussed in section 2.1. In the case of 2Nf

hypermultiplets, Giveon-Kutasov duality is between U(Nc) and U(|k|+2Nf −Nc), where k

is the Chern-Simons level. Similarly to the previous section, we implement in Mathematica

the solution (2.14) with (2.15) and proceed in two steps. First we numerically and/or

symbolically compute the phase factor for the massless and η = 0 case. Then we turn on

the mass terms and compute the mass dependence of the phase. For the first step, we
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k

Nf Nc −3 −2 −1 1 2 3

1 1 −3im2

4π − im2

2π − im2

4π
im2

4π
im2

2π
3im2

4π

1 2 − im2

2π − im2

4π
im2

4π
im2

2π

2 1 − im2

π − im2

2π
im2

2π
im2

π

2 2 3im2

2π − im2

π − im2

2π
im2

2π
im2

π
3im2

2π

3 1 −3im2

4π
3im2

4π

3 2 −3im2

2π −3im2

4π
3im2

4π
3im2

2π

Table 3. Dependence of the phase factor of the duality only on mass with η = 0 for the theory

with Nf massive hypermultiplets, see (1.3). For values of the parameters where the duality is not

tested, due to computer memory limitations, the cell is left empty.

numerically compute the ratio

Z̃
U(Nc)
Nf ,k

(0)

Z̃
U(|k|+2Nf−Nc)
Nf ,−k (0)

= eiπθ (4.13)

for 0 < |k| ≤ 5. We present the values of the parameter θ in table 4. One may proceed as

before to find a universal expression as a function of Nf , Nc, k that covers all the values in

the table. However we observe that the values of θ for Nf = 1, 2, 3, 4 in table 4 are identical

to the values for Nf = 2, 4, 6, 8 in table 1. This is expected, because in the massless case

the matrix models (1.3) and (1.4) are identical with Nf replaced by 2Nf . Since we already

have an expression for the quadratic function of the former matrix model, we use (4.9)

replacing Nf with 2Nf and further test the remaining values of Nf and Nc, confirming that

φ (2Nf , Nc, k) does give the expected results, which means that eiπφ(2Nf ,Nc,k)/eiπθ = 1.

Having determined the quadratic k-dependence of the phase factor, we turn on the

masses. We present the results for several cases of the parameters Nf , Nc, k in table 5.

Comparing with the results in table 3 we observe that they differ by a factor of 2, due

to the fact that we now have two copies of Nf hypermultiplets. Therefore one may safely

assume that (4.12) is still valid for η = 0 and Nf replaced by 2Nf .

The case of non-zero FI term will be examined in a more general setting of the theory,

with Nf hypermultiplets of mass m1 and Nf hypermultiplets of mass m2, which is the topic

of the next section.

4.4 Nf hypermultiplets with mass m1 and Nf hypermultiplets with mass m2

In this section we study a theory similar to (1.4) but with masses m1 and m2 and a non-zero

FI term, η,

Ẑ
U(N)
Nf

=
1

(2π)N N !

∫
dNµ

∏
i<j 4 sinh

2
(
1
2(µi − µj)

)
e
− 1

2g

∑

i µ
2
i+iη

∑

i µi

∏
i

(
4 cosh

(
1
2(µi +m1)

)
cosh

(
1
2(µi +m2)

))Nf
. (4.14)
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k

Nf Nc −5 −4 −3 −2 −1 1 2 3 4 5

1 1 −3/4 −1/2 11/12 −1/2 −3/4 3/4 1/2 −11/12 1/2 3/4

1 2 −3/4 1/2 11/12 1/2 −3/4 3/4 −1/2 −11/12 −1/2 3/4

1 3 −3/4 −1/2 11/12 −1/2 −3/4 3/4 1/2 −11/12 1/2 3/4

1 4 −3/4 1/2 11/12 1/2 NaN NaN −1/2 −11/12 −1/2 3/4

2 1 3/4 1/2 −7/12 −1/2 3/4 −3/4 1/2 7/12 −1/2 −3/4

2 2 3/4 −1/2 −7/12 1/2 3/4 −3/4 −1/2 7/12 1/2 −3/4

2 3 3/4 1/2 −7/12 −1/2 3/4 −3/4 1/2 7/12 −1/2 −3/4

2 4 3/4 −1/2 −7/12 1/2 3/4 −3/4 −1/2 7/12 1/2 −3/4

2 5 3/4 1/2 −7/12 −1/2 3/4 −3/4 1/2 7/12 −1/2 −3/4

3 1 1/4 −1/2 −1/12 −1/2 1/4 −1/4 1/2 1/12 1/2 −1/4

3 2 1/4 1/2 −1/12 1/2 1/4 −1/4 −1/2 1/12 −1/2 −1/4

3 3 1/4 −1/2 −1/12 −1/2 1/4 −1/4 1/2 1/12 1/2 −1/4

3 4 1/4 1/2 −1/12 1/2 1/4 −1/4 −1/2 1/12 −1/2 −1/4

3 5 1/4 −1/2 −1/12 −1/2 1/4 −1/4 1/2 1/12 1/2 −1/4

4 1 −1/4 1/2 5/12 −1/2 −1/4 1/4 1/2 −5/12 −1/2 1/4

4 2 −1/4 −1/2 5/12 1/2 −1/4 1/4 −1/2 −5/12 1/2 1/4

4 3 −1/4 1/2 5/12 −1/2 −1/4 1/4 1/2 −5/12 −1/2 1/4

4 4 −1/4 −1/2 5/12 1/2 −1/4 1/4 −1/2 −5/12 1/2 1/4

4 5 −1/4 1/2 5/12 −1/2 −1/4 1/4 1/2 −5/12 −1/2 1/4

4 6 −1/4 −1/2 5/12 1/2 −1/4 1/4 −1/2 −5/12 1/2 1/4

5 1 −3/4 −1/2 11/12 −1/2 −3/4 3/4 1/2 −11/12 1/2 3/4

5 2 −3/4 1/2 11/12 1/2 −3/4 3/4 −1/2 −11/12 −1/2 3/4

5 3 −3/4 −1/2 11/12 −1/2 −3/4 3/4 1/2 −11/12 1/2 3/4

5 4 −3/4 1/2 11/12 1/2 −3/4 3/4 −1/2 −11/12 −1/2 3/4

5 5 −3/4 −1/2 11/12 −1/2 −3/4 3/4 1/2 −11/12 1/2 3/4

5 6 −3/4 1/2 11/12 1/2 −3/4 3/4 −1/2 −11/12 −1/2 3/4

5 7 −3/4 −1/2 11/12 −1/2 −3/4 3/4 1/2 −11/12 1/2 3/4

Table 4. Values of the parameter θ for different values of Nf , Nc and k of the theory with 2Nf

massless hypermultiplets, actually the massless case of the matrix model (1.4). NaN refers to

instances where the dual theory is not well defined because the dual number of colours is negative.

We solve it by substituting z = ceµ and c = eg(N−Nf) and following the steps in sections 2

and 2.1. We find

Ẑ
U(N)
Nf

= e
1
2
(m1+m2)NNf c−

N
2
(N+Nf+2iη) det ((hi, hj))

N−1
i,j=0 , (4.15)

where the elements of the (hi, hj) matrix are given by

(hi, hj) =
ci+j+1+iηe

− 1
2g

(ln c)2

(em1 − em2)Nf

Nf−1∑

s=0

(
Nf+s−1

s

)

(Nf − s− 1)!

(
em1+m2

em1 − em2

)s

×
Nf−s−1∑

n=0

(
(−1)NfCNf−s−1,nI

(n)(ℓ̂+ s,m1) + (−1)sCNf−s−1,nI
(n)(ℓ̂+ s,m2)

)

(4.16)
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k

Nf Nc −3 −2 −1 1 2 3

1 1 −3im2

2π − im2

π − im2

2π
im2

2π
im2

π
3im2

2π

1 2 −3im2

2π − im2

π − im2

2π
im2

2π
im2

π
3im2

2π

2 1 − im2

π

2 2 − im2

π
im2

π

2 3 −2im2

π − im2

π
im2

π
2im2

π

Table 5. Dependence of the phase factor of the duality on mass for the theory with Nf hyper-

multiplets with masses m and Nf hypermultiplets with masses −m. For values of the parameters

where the duality is not tested, due to computer memory limitations, the cell is left empty.

where ℓ̂ = i+j+1−N+iη and Cp,q given by (2.5). One can verify that for m1 = −m2 = m

and η = 0 finds the solution (2.15).

We again implement (4.16) in Mathematica and test the Giveon-Kutasov duality for

low values of the parameters Nf , Nc, k. For Nf = Nc = k = 1 we get

Ẑ
U(Nc)
Nf

Ẑ
U(|k|+2Nf−Nc)
Nf

= e
3πi
4 e

i(m2
1+m2

2)
4π

−iη(m1+m2)−iπη2 . (4.17)

For Nf = 1, Nc = 2, k = 1 we find

Ẑ
U(Nc)
Nf

Ẑ
U(|k|+2Nf−Nc)
Nf

= e
3πi
4 e

i(m2
1+m2

2)
4π

−i(m1+m2)η−iπη2 , (4.18)

whereas for Nf = 1, Nc = 2, k = −2 the ratio becomes

Ẑ
U(Nc)
Nf

Ẑ
U(|k|+2Nf−Nc)
Nf

= e
πi
2 e−

i(m2
1+m2

2)
2π

−i(m1+m2)η+iπη2 . (4.19)

From these few examples we do observe a pattern, as we notice that only the k-quadratic

phase depends on Nc and not the mass and FI terms. The latter terms are validated

through

ϕ̂(Nf , k,m1,m2, η) =
kNf(m

2
1 +m2

2)

4π2
− Nf(m1 +m2)η

π
− sgn(k)η2, (4.20)

which is a generalization of (4.12) and is in agreement with the phase in (4.5), again up to

a sign difference in the (m1 +m2)η term, as mentioned above.
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