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1 Introduction

Inclusive deep-inelastic lepton-hadron scattering (DIS) and semi-inclusive electron-positron

annihilation (SIA) are phenomenologically and theoretically important benchmark pro-

cesses in perturbative quantum chromodynamics (QCD). Data on their cross sections,

respectively expressed in terms of structure functions and fragmentation functions, form

a primary source of information on the parton distributions and fragmentation distribu-

tions of initial- and final-state hadrons [1]. The calculation of these functions in dimensional

regularization is a standard way to determine the splitting functions governing the scale de-

pendence (evolution) of the perturbatively incalculable but process-independent parton and

fragmentation distributions. The coefficient functions (partonic cross sections) for DIS and

SIA, together with those for inclusive lepton-pair and Higgs-boson production in hadron

collisions, facilitate studies of the analytic structure of QCD corrections at and beyond the

next-to-next-to-leading order (NNLO) of the renormalization-group improved perturbative

expansion [2–16], an accuracy that is harder to achieve for less inclusive quantities.

With the notable exception of the MS-scheme quark-quark and gluon-gluon splitting

functions in the threshold limit [17–23], all those perturbative quantities receive logarithmi-

cally enhanced higher-order corrections near kinematic limits. Depending on the observable

and the kinematic region, these logarithms can require an all-order resummation in order

to achieve phenomenologically reliable predictions. Knowledge of the endpoint behaviour

of splitting or coefficient functions is also useful beyond such situations, e.g., if it can

be combined with other partial information such as a finite number of Mellin moments

of the splitting function or coefficient function under consideration, for a recent example

see ref. [24].

In this article we address the all-order resummation of threshold (x→ 1) logarithms

of the form

(1−x)ξ ln 2n−n0−ℓ(1−x) with ξ = 0, 1 and ℓ = 0, 1, 2 (1.1)
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for the n th -order splitting functions and coefficient functions occurring in DIS and SIA. For

some coefficient functions the ξ = 0 terms are subleading to the ξ = −1 logarithms which

are the subject of the soft-gluon exponentiation (SGE) [25–29] — for the present status in

DIS and SIA see refs. [30, 31]; for other quantities the ξ = 0 or even ξ = 1 terms form the

leading contributions. Specifically, we complete the study of DIS in ref. [32] by deriving

analytic formulae for the next-to-next-to-leading logarithmic (NNLL) ℓ = 2 corrections

and present the corresponding results for SIA. A brief previous account of the latter can

be found in ref. [33], see also ref. [34].

The present resummations of DIS and SIA to NNLL accuracy are based on the NNLO

fixed-order results, the structure of the unfactorized structure functions and fragmentation

functions in D dimensions and the constraints imposed by the all-order mass-factorization

formula. It is worthwhile to note that the different phase-space structure of the Drell-Yan

process and Higgs production prevents a direct generalization of this approach to these

cases beyond the leading-logarithmic ℓ = 0 accuracy of ref. [35]. The reader is referred

to refs. [36–40] for an alternative approach (with identical results where both methods are

applicable) using physical evolution kernels, which is particularly suited for deriving all-ξ

results at a fixed order n. For other, partly more formal research on subleading threshold

logarithms see refs. [41–50].

2 Threshold limits, mass factorization and resummation

The calculations in massless perturbative QCD often take a more compact and transparent

form in Mellin-N space, defined through the integral transforms

f(N) =

∫ 1

0
dx xN−1 f(x) and f(N) =

∫ 1

0
dx
(
xN−1 − 1

)
f(x)+ , (2.1)

respectively, of integrable functions and of plus-distributions. A main advantage of working

in N -space is that the ubiquitous (multiple) Mellin convolutions are reduced to simple

product, e.g.,

[f ⊗ g](x) =

∫ 1

x

dy

y
f(y) g

(
x

y

)
M
= f(N) g(N) , (2.2)

where M
= indicates that the r.h.s. is the Mellin transform of the previous expression. The

threshold limit x→1 for the scaling variable, e.g., Bjorken-x in DIS, corresponds to the limit

N →∞ . To NNLL accuracy the dictionary between the x-space and N -space threshold

logarithms reads

(
ln k−1(1−x)

1− x

)

+

M
=

(−1)k

k

(
[S1−(N)] k +

1

2
k(k − 1)ζ2 [S1−(N)] k−2 +O

(
[S1−(N)] k−3

))
,

ln k(1−x) M
=

(−1)k

N

(
ln k Ñ +

1

2
k(k − 1)ζ 2 ln k−2 Ñ +O

(
ln k−3 Ñ

))
, (2.3)

(1−x) ln k(1−x) M
=

(−1)k

N 2

(
ln k Ñ − k ln k−1 Ñ +

1

2
k(k − 1)ζ 2 ln k−2 Ñ +O

(
ln k−3 Ñ

))
,

– 2 –
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where S1−(N) = ln Ñ − 1/(2N) + O(1/N 2) and Ñ = Ne γe with Euler’s constant γe ≃

0.577216. Terms suppressed by an extra power of 1/N have been included only in the first

line of eq. (2.3).

In order to obtain resummed expressions for the splitting and coefficient functions,

we address the unfactorized partonic structure functions and fragmentation functions Ta,k

for a = 2 (T ), L, φ and k = q, g, where φ denotes a scalar directly coupling only to

gluons, such as the Higgs boson in the limit of a heavy top-quark and negligible other

quark masses. These functions depend on N , the strong coupling αs and, in dimensional

regularization, D = 4− 2ǫ. In contrast to the physical structure functions F 2, L, φ and the

transverse, longitudinal and φ-exchange fragmentation functions FT and F T
L, φ, the Ta,k are

parton-level quantities that contain poles in the dimensional regulator ǫ and that have not

been convoluted with the parton or fragmentation distributions.

Dropping all the functional dependences for brevity, these quantities can be factor-

ized as

Ta,k = C̃a,i Z
(T )
ik , (2.4)

where the universal transition functions Z
(T )
ik collect all negative powers of ǫ and, in the

flavour-singlet DIS (‘space-like’) case, satisfy the equation

− γ ≡ P =
dZ

d lnQ 2
Z −1 with P =

(
Pqq Pqg

Pgq Pgg

)
, (2.5)

where Pik are the initial state (space-like) splitting functions; the D-dimensional coefficient

functions C̃a,i are addressed below in eq. (2.12). The final-state fragmentation (‘time-

like’) transition functions Z T
ik satisfy an analogous equation with Pik replaced by P T

ki . In

eq. (2.5) we have identified, without loss of information, all scales with the physical scale

Q 2 provided by the (space-like or time-like) momentum q of the exchanged gauge boson or

scalar, Q 2 = −q 2 in DIS and Q 2 = q 2 in SIA. This identification will be used throughout

this article for both the renormalization and the mass-factorization scale in the MS scheme.

The (space-like and time-like) splitting functions Pik — for the rest of this section we

suppress the superscripts (T ) and T — can be expanded in powers of the strong coupling

constant αs as

Pik(N,αs) =
∞∑

n=0

an+1
s P

(n)
ik (N) with as ≡

αs

4π
. (2.6)

These functions are (in the time-like case: almost, with an uncertainty irrelevant to the

present considerations) completely known to NNLO, here the third order in αs [19–23].

The diagonal (quark-quark and gluon-gluon) splitting functions have a stable form in the

large-N limit [17, 18],

P
(n−1)
kk (N) = −A

(n)
k ln Ñ +B

(n)
k ± C

(n)
k N −1 ln Ñ +O

(
N −1

)
, (2.7)

with the n-loop quark and gluon cusp anomalous dimensions related by A
(n)
g /A

(n)
q =

CA/CF at n ≤ 3, a fact often referred to as Casimir scaling. The coefficient of N −1 ln Ñ

can be expressed in terms of lower-order cusp anomalous dimensions [18], and differs in sign

– 3 –
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between the DIS and SIA cases. The large-N behaviour of the off-diagonal (quark-gluon

and gluon-quark) splitting functions, on the other hand, is characterized by a double-

logarithmic higher-order enhancement,

P
(n)
i 6=k(x) =

1

N

2n∑

ℓ=0

D
(n,ℓ)
ik ln 2n−ℓ Ñ + O

(
1

N 2
lnm Ñ

)
, (2.8)

where the terms with ℓ = 0 form the leading-logarithmic (LL) approximation [51], those

with ℓ = 1 the next-to-leading-logarithmic (NLL) contributions etc. Analytic results for

the ℓ ≤ 2 coefficients in eq. (2.8) will be presented in sections 4 and 5 below.

After expanding the transition functions in powers of the strong coupling as

Zik =
∞∑

n=1

an
s Z

(n)
ik (2.9)

Eq. (2.5) can be solved order by order in as. With γn = −P (n) this results in

Z = 1 + as
1

ǫ
γ0 + a 2

s

{
1

2ǫ2
(γ0 − β0) γ0 +

1

2ǫ
γ1

}

+a 3
s

{
1

6ǫ3
(γ0 − β0) (γ0 − 2β0) γ0 +

1

6ǫ2

[
(γ0 − 2β0) γ1 + (γ1 − β1) 2γ0

]
+

1

3ǫ
γ2

}

+a 4
s

{
1

24ǫ4
(γ0 − β0) (γ0 − 2β0) (γ0 − 3β0) γ0

+
1

24ǫ3

[
(γ0−2β0) (γ0−3β0) γ1 + (γ0 − 3β0) (γ1 − β1) 2γ0 + (γ1−2β1) (γ0−β0) 3γ0

]

+
1

24ǫ2

[
(γ0 − 3β0) 2γ2 + (γ1 − 2β1) 3γ1 + (γ2 − β2) 6γ0

]
+

1

4ǫ
γ3

}
+ . . . . (2.10)

Here βn are the usual NnLO coefficients of the beta function of QCD, with β0 = 11/3CA−

2/3nf , where nf is the number of effectively massless quark flavours and CA = ncolours =

3. There is no general closed all-order form of this result; however for the present large-

N limit an explicit, if still rather lengthy form has been given in eq. (2.7)–(2.13) of

ref. [32]. Schematically, the leading-logarithmic behaviour of Z in N -space correspond-

ing to eqs. (2.7) and (2.8) is given by

Z
(n)
kk ∼ (1 + ǫ ln Ñ + . . . + ǫn−1 lnn−1 Ñ ) ǫ−n lnn Ñ ,

Z
(n)
i 6=k ∼ (1 + ǫ ln Ñ + . . . + ǫn−1 lnn−1 Ñ ) ǫ−nN −1 lnn−1 Ñ . (2.11)

The process-dependent D-dimensional coefficient functions C̃a,i in eq. (2.4) include

contributions with all non-negative powers of ǫ. Their expansion in powers of αs and ǫ can

be written as

C̃a,i = δ aγ δ iq + δ aφ δ ig +
∞∑

n=1

an
s

∞∑

k=0

ǫ kc
(n,k)
a,i . (2.12)

Here the index γ of the Kronecker-delta indicates that δ aγ is equal to one if a = 2 in DIS

and a = T in SIA, and zero for a = φ or L. The ǫ-independent contributions, c
(n,0)
a,i ≡

– 4 –
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c
(n)
a,i , are the n th -order coefficient functions entering the physical structure functions and

fragmentation functions.

The quark coefficient functions for the gauge-boson-exchange structure and fragmenta-

tion functions F 2, T and the gluon coefficient function for the scalar-exchange structure and

fragmentation function Fφ, also referred to as ‘diagonal’ coefficient functions, are dominated

in the large-N limit by Mellin-transformed plus-distributions with a the double-logarithmic

enhancement,

c
(n)
a,k (x) =

2n∑

ℓ=0

D
(n,ℓ)
a, k ln 2n−ℓ Ñ +

1

N

2n−1∑

ℓ=0

E
(n,ℓ)
a, k ln 2n−1−ℓ Ñ +O

(
1

N 2
lnm Ñ

)
(2.13)

for {a, k} = {2, q}, {T, q} and {φ, g}. The first sum in eq. (2.13) includes the contributions

that are resummed by the soft-gluon exponentiation [25–29], with the coefficients D
(n,0)
a, k

. . .D
(n,2n−2)
a, k at order n fixed by lower-order information. At present the coefficients of the

six highest logarithms are known analytically, and for the seventh only the (numerically

small) contribution from the four-loop cusp anomalous dimension is missing; see ref. [30]

and ref. [31] for the respective gauge-boson exchange DIS and SIA results.

Complete all-order results for the LL, NLL and NNLL (ℓ ≤ 2) coefficients E
(n,ℓ)
2, q and

E
(n,ℓ)
T, q in eq. (2.13) were derived in ref. [37] from a conjecture on the respective physical

evolution kernels. In the present approach, we were able to verify those results (and hence

the underlying conjecture) and to extend them to the ℓ = 3 coefficients, thus fixing the

corresponding unknown coefficients in ref. [37] as ξDIS4 = ξSIA 4
[34]. This agrees with the

result obtained in ref. [49].

The remaining coefficient functions for the observables in eq. (2.13) start only at order

αs and can be considered as ‘off-diagonal’ quantities (the off-diagonal splitting functions

arise from their unfactorized counterparts). Their leading large-N behaviour is completely

analogous to the subleading 1/N contributions in eq. (2.13), viz

c
(n)
a,k (x) =

1

N

2n−1∑

ℓ=0

D
(n,ℓ)
a, k ln 2n−1−ℓ Ñ + O

(
1

N 2
lnm Ñ

)
(2.14)

for {a, k} = {2, g}, {T, g} and {φ, q}. Besides their splitting-function counterparts in

eq. (2.8) above, the all-order determination of the l ≤ 2 coefficients constitutes in eq. (2.14)

a main objective of this article; the corresponding DIS and SIA results can be found in

sections 4 and 5.

Finally the large-N expansion of the n th -order coefficient functions for the structure

function FL and the fragmentation function F T
L have the form, for k = q, g,

c
(n)
L,k(x) =

1

N 1+ δkg

2n−2∑

ℓ=0

D
(n,ℓ)
L, k ln 2n−2−ℓ Ñ + O

(
1

N 2+ δkg
lnm Ñ

)
. (2.15)

In the quark cases our present calculations verify the physical-kernel based results of

refs. [36, 37] for the coefficients up to NNLL accuracy (l ≤ 2), but cannot add to those

– 5 –
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results. The closed form of the NNLL resummation for the case of DIS has been given

already in eq. (6.3) of ref. [32]; the corresponding SIA result will be presented in section 5.

The k > 0 coefficients c
(n,k)
a,i in the ǫ-expansion of theD-dimensional coefficient function

in eq. (2.12) are enhanced by factors ln k Ñ with respect to the four-dimensional coefficient

functions discussed in eqs. (2.13)–(2.15), i.e., the pattern for the non-negative powers of

ǫ is the same as in eq. (2.11) for the 1/ǫ poles. Consequently the unfactorized structure

functions and fragmentation functions Ta,k in eq. (2.4) exhibit the same structure over all

powers of ǫ.

Disregarding the logarithms and (except for TL,g) terms C̃a,i Z ik that contribute only

at order 1/N 2, the large-N behaviour of the unfactorized structure functions and fragmen-

tation functions can be summarized as follows, with γ = 2 in DIS and γ = T in SIA,

T γ,q ≃ C̃ γ,q Zqq ∼ O(1) → T γ,g = C̃ γ,q Zqg + C̃ γ,g Zgg ∼ O(1/N) ,

Tφ,g ≃ C̃φ,g Zgg ∼ O(1) → Tφ,q = C̃φ,g Zgq + C̃φ,q Zqq ∼ O(1/N) , (2.16)

TL,q ≃ C̃L,q Zqq ∼ O(1/N) → TL,g = C̃L,q Zqg + C̃L,g Zgg ∼ O(1/N 2) .

Here the arrows indicate that the resummation of the quantities on the left-hand-side,

including positive powers of ǫ, is needed in order to extract the all-order ‘off-diagonal’

coefficient functions.

Once the unfactorized structure function is known at order an
s , it is possible to extract

the coefficient function c
(n,0)
a,i , provided that the lower-order contributions c

(m,k)
a,i are known

to a sufficiently high power of ǫ. In particular, the calculation of Ta to order a ℓ≤n
s and

ǫn−ℓ is required for the extraction of the coefficient function at order an
s . On the other

hand, one can see from eq. (2.10) that a full Nn−1LO result completely fixes the highest n

powers of 1/ǫ to all orders in as. In order to be able to extract the splitting and coefficient

functions from the unfactorized structure function and fragmentation functions at all orders

(at the logarithmic accuracy under consideration), it is thus necessary to consider the D-

dimensional coefficient functions at all powers of ǫ.

It was noted in ref. [32] that the an
s contributions to the unfactorized structure func-

tions T2, g , Tφ, q and TL, k in Mellin space can be written as

T
(n)
a,k (N) =

1

N 1+δaLδkg ǫ 2n−1−δaL

n−1∑

i=0

(
A

(n,i)
a,k + ǫB

(n,i)
a,k + ǫ2C

(n,i)
a,k + . . .

)
exp (ǫ(n− i) lnN) .

(2.17)

The fact that the right-hand-side features double poles in ǫ, whereas the mass-factorization

formula ensures that only single poles appear in the unfactorized structure function, im-

poses constraints on the coefficients A
(n,i)
a,k , B

(n,i)
a,k and C

(n,i)
a,k . In the large-N limit, once

the exponential on the r.h.s. is expanded, only the leading logarithmic (LL) coefficients

A
(n,i)
a,k appear in all the vanishing ǫ−2n+1 , . . . , ǫ−n−1 terms, so we immediately have n− 1

relations for these coefficients. The next-to-leading logarithmic (NLL) coefficients B
(n,i)
a,k

will appear in all double-pole terms except the one proportional to ǫ−2n+1, resulting in

n− 2 equations; at next-to-next-to-leading logarithmic (NNLL) level there are n− 3 rela-

tions for the coefficients C
(n,i)
a,k and so on. In general, the cancellation of the double poles

– 6 –
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in ǫ provides n− 1−m relations between the n NmLL coefficients. The first k+1 powers

of ǫ−1 with non-vanishing coefficients are fixed by a full NkLO calculation, as discussed at

the end of the previous section, leading to a total of n −m + k relations. Since at order

an
s each linear system has n unknowns (notice the sum over the index i in eq. (2.17)), the

coefficients up to the NkLL terms are fixed in terms of the NkLO results. The NmLL coef-

ficients with m < k are over-constrained to all orders, providing a check on the correctness

of eq. (2.17). The same holds for m = k beyond order k.

Having determined the coefficients of eq. (2.17), the mass-factorization formula (2.4),

together with the all-order solution of eq. (2.5) in the large-N limit, see eqs. (2.7)–(2.13)

of ref. [32], allows the iterative determination of the coefficients D
(n,ℓ≤ 2)
ik in eq. (2.8) and

D
(n,ℓ≤ 2)
a, k in (2.14) and (2.15) to, in principle, any order in αs. It may be worthwhile to

note that the all-order expressions for Z
(n)
ik are not a superfluous luxury: the results of the

mass factorization are required to a very high order, beyond what can be easily achieved

by an order-by-order brute-force solution of eq. (2.5), for the reconstruction of the NNLL

analytic forms presented in the next two sections.

3 The NNLL corrections in DIS in closed form

In ref. [51] it was found that the LL contributions to the resummed off-diagonal splitting

and coefficient functions can be expressed in a closed form in terms of an apparently new

function B0,

B0(x) =
∞∑

n=0

Bn

(n!)2
xn = 1−

x

2
−

∞∑

n=1

(−1)n

[(2n)!]2
|B2n|x

2n

= 1−
x

2
− 2

∞∑

n=1

(−1)n

(2n)!
ζ2n

( x

2π

)2n
. (3.1)

Here Bn are the Bernoulli numbers as normalized in ref. [52]; ζn denotes Riemann’s

ζ-function. Due to ζn → 1 for n → ∞, the Taylor series (3.1) absolutely converges for

all values of x.

This resummation was extended to the NLL and NNLL contributions to the splitting

functions for the evolution of parton distributions and the coefficients functions for inclusive

DIS in ref. [32]. However, with the exception of the longitudinal structure function, closed

forms were found only for the NLL corrections. Besides eq. (3.1), these expressions involve

the generalizations

Bk(x) =
∞∑

n=0

Bn

n!(n+ k)!
xn , B−k(x) =

∞∑

n= k

Bn

n!(n− k)!
xn (3.2)

which are related to B0 by

d k

dx k
(x kBk) = B0 ,

d k

dx k
B0 =

1

x k
B−k . (3.3)

Specifically, the NLL terms can be expressed by Bk with −2 ≤ k ≤ 1; plots of these

functions can be found in figure 1 of ref. [32]. On the other hand, the NNLL corrections for

– 7 –
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Pqg, Pqg, C2,g and Cφ,q were only given via tables to order α18
s for the off-diagonal splitting

functions and to order α12
s for the corresponding coefficient functions.

By extending the calculations to a considerably higher order than before, and thus

generating an over-constrained system of linear equations for a suitably general ansatz,

we have been able to derive the hitherto missing closed forms. They are much more

complicated than their LL and NLL counterparts, but involve the same ingredients: the

functions Bk, for the coefficient functions in combination with the LL exponentials for the

soft-gluon resummation of C2,q and Cφ,g.

The large-N space-like gluon-quark and quark-gluon splitting functions read, at NNLL

accuracy,

NP S
qg(N,αs) = 2nf as B0 (3.4)

+nfa
2
s ln Ñ

{
(6CF − β0)

[
B1 + 2ã−1

s B−1

]
+ β0ã

−1
s B−2

}

+
nfa

2
s

48CAF

{
108C 2

F

[
2ãsB2 − 4B1 + 5B0 + 2ã−1

s B−1 + 4ã−1
s B−2

]

− 36β0CF

[
ãsB2 − 3B1 + 4B0 − B−1 + 2ã−1

s B−1 + ã−1
s B−2 − 2ã−1

s B−3

]

+β 2
0

[
2ãsB2 − 12B1 + 12B0 − 6B−1 − 12ã−1

s B−2 − 4ã−1
s B−3 + 3ã−1

s B−4

]

+80CAFβ0

[
ãsB2 − 4B1 + 4B0 + B−1

]

− 32CAF CF

[
(19− 3ζ2)ãsB2 − 34B1 + (13 + 6ζ2)B0 − (2− 3ζ2)B−1

]

+32C 2
AF

[
(2 + 3ζ2)ãsB2 + 4(1 + 3ζ2)B1 + 2(1− 6ζ2)B0 + (2− 3ζ2)B−1

]}

(this expression was already presented in ref. [34]) and

NP S
gq(N,αs) = 2CF as B0

+CFa
2
s ln Ñ

{
(14CF − 8CA − β0) B1 + 6 (2CF − β0) ã−1

s B−1 − β0ã
−1
s B−2

}

+
CFa

2
s

48CAF

{
108C 2

F

[
2ãsB2 − 8B1 + 7B0 + 2ã−1

s B−1 + 4ã−1
s B−2

]

−36β0CF

[
ãsB2 − 19B1 + 16B0 + B−1 + 6ã−1

s B−1 + 15ã−1
s B−2 + 2ã−1

s B−3

]

+β 2
0

[
2ãsB2 − 108B1 + 84B0 + 6B−1 + ã−1

s

(
48B−1 + 156B−2 + 44B−3 + 3B−4

) ]

−32CAFβ0

[
ãsB2 − 7B1 − 9B0 − 4B−1

]

+32CAF CF

[
(10− 3ζ2)ãsB2 − 25B1 + 3(1− 2ζ2)B0 + (2− 3ζ2)B−1

]

−32C 2
AF

[
(2− 9ζ2)ãsB2 − 4(5 + 3ζ2)B1 + 6(1 + 2ζ2)B0 − (2− 3ζ2)B−1

]}
(3.5)
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with the shorthand notations

ãs ≡ 4asCAF ln2 Ñ , CAF ≡ CA − CF . (3.6)

Further, we have suppressed everywhere the argument of the Bk functions and used Bk ≡

Bk(ãs) and Bk ≡ Bk(−ãs). The respective first lines in eqs. (3.4) and (3.5) represent the

LL result [51], the second lines the NLL result [32] and the remaining parts are the new

NNLL expressions.

The resummed expressions for the gluon coefficient functions for F 2 and the quark

coefficient function for Fφ at NNLL accuracy read

NC2,g(N,αs) =
nf

2CAF ln Ñ
[B0EF − EA] +

nf (β0 − 3CF )

8C 2
AF ln2 Ñ

[B0EF − EA]

+
nfas

4CAF

{
6CF

[(
B1 + B0 + 2ã−1

s B−1

)
EF − 2EA

]
− 8CAFEA − β0

[(
B1

+4ã−1
s B−1 − ã−1

s B−2

)
EF − EA

]}
+

nfa
2
sβ0 ln

2 Ñ

3CAF
[CFB0EF − CAEA]

+
nf

32C 3
AF ln3 Ñ

{
β 2
0

[
1

3
B−3 +

1

8
B−4

]
EF − β0(β0 − 3CF )

[
B−2 + B−3

]
EF

+(β0 − 3CF )
2

[
(B0 − B−1 + 2B−2) EF − EA

]}

+
nfas

96C 2
AF ln Ñ

{
− 3β 2

0

[
(4B1 − 4B0 + B−1) EF − 2 EA

]

−54C 2
F

[
(6B1 − 3B0 − 4B−1) EF − 4 EA

]
− 40β0CAF

[(
4B1 − 2B0

−B−1

)
EF − 2EA

]
+ 18β0CF

[
(6B1 − 4B0 − 3B−1 + B−2) EF − 4 EA

]

+16CFCAF

[
(34B1 − 2 (22 + 3ζ2)B0 + (2− 3ζ2)B−1) EF + 2 (5 + 3 ζ2) EA

]

+16C 2
AF

[
(2(1 + 3ζ2)(2B1 − B0) + (2− 3ζ2)B−1) EF − 2(1 + 3ζ2)EA

]}

+
nfa

2
s ln Ñ

24C 2
AF

{
β 2
0 CF

[
(2B0 − 4B−1 + B−2) EF − 2 EA

]

−6β0C
2
F

[
(B0 − 2B−1) EF − EA

]
+ β 2

0 CAF

[
B2 EF − EA

]

−2β0CFCAF

[
(9B2 + 9B1 − 29B0) EF + 17 EA

]

+2C 2
FCAF

[
(54(B2 + B1) + (43− 24ζ2)B0) EF − 4 (31− 6ζ2) EA

]

+40β0C
2
AF

[
B2 EF − EA

]
+ 16C 3

AF

[
(2 + 3ζ2)B2 EF − (20− 9ζ2)EA

]
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−16CFC
2
AF

[
((19− 3ζ2)B2 − (2− 3ζ2)B0) EF + 4 (7− 3ζ2) EA

]}

+
nfa

3
sβ0 ln

3 Ñ

6CAF

{
− β0CF (B1 − B0) EF − 8C 2

AF EA − 20CFCAFEA

+ 6C 2
F

[
(B1 + B0) EF − 2 EA

]}
+

nfa
4
sβ

2
0 ln5 Ñ

9CAF

[
C 2
FB0EF − C 2

AEA

]
(3.7)

and

NCφ,q(N,αs) =−
CF

2CAF ln Ñ

[
EAB0 − EF

]
−

CF (β0 − 3CF )

8C 2
AF ln2 Ñ

[
EAB0 − EF

]

−
CFas
4CAF

{
6CF

[
EA
(
B1 + 2ã−1

s B−1

)
− EF

]
− 4CAF

[
2EAB1 − 3EF

]

−β0

[
EA
(
B1 − 2B0 + 4ã−1

s B−1 + ã−1
s B−2

)
+ EF

]}

−
CFa

2
sβ0 ln

2 Ñ

3CAF

[
CAEAB0 − CFEF

]
−

CF

32 ln3 ÑC 3
AF

{
β 2
0

(
1

3
B−3 +

1

8
B−4

)
EA

+β0(β0 − 3CF )
(
B−2 + B−3

)
EA + (β0 − 3CF )

2

[ (
B0 − B−1 + 2B−2

)
EA − EF

]}

+
CFas

96C 2
AF ln Ñ

{
3β0

2

[ (
20B1 − 16B0 + 7B−1 + 2B−2

)
EA − 2 EF

]

+54C 2
F

[ (
10B1 − 7B0

)
EA − 2 EF

]
− 18β0CF

[ (
22B1 − 16B0 + 3B−1

)
EA

−4 EF

]
− 32β0CAF

[ (
2B1 + 3B0 + 2B−1

)
EA − 5 EF

]

+16CFCAF

[ (
16B1 − 3(1− 2ζ2)B0 − (2− 3ζ2)B−1

)
EA − (13 + 6ζ2)EF

]

−16C 2
AF

[ (
4(5 + 3ζ2)B1 − 6(1 + 2ζ2)B0 + (2− 3ζ2)B−1

)
EA − 14 EF

]}

+
CFa

2
s ln Ñ

24C 2
AF

{
− 2β0CFCAF

[ (
−9B2 + 18B1 + 17B0 + 6B−1

)
EA − 38 EF

]

+6β0C
2
F

[ (
B0 − 2B−1

)
EA − EF

]
− β 2

0 CF

[ (
2B0 − 4B−1 − B−2

)
EA − 2EF

]

−β 2
0 CAF

[ (
B2 − 6B1 + 14B0 − 4B−1 −B−2

)
EA − 5 EF

]

−2C 2
FCAF

[ (
54B2 + 8(2− 3ζ2)B0

)
EA − (43− 24ζ2) EF

]

+8C 3
AF

[ (
2(2− 9ζ2)B2 − 2(2− 3ζ2)B0

)
EA + 12(1 + 2ζ2) EF

]
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−8CFC
2
AF

[ (
(20− 6ζ2)B2 + 4(2− 3ζ2)B0

)
EA + (23 + 6ζ2) EF

]

+8β0C
2
AF

[ (
2B2 + 6B1 − 5B0

)
EA − 9 EF

]}

+
CFa

3
sβ0 ln

3 Ñ

6CAF

{
CF (β0 − 6CF )

[
B1EA − EF

]
− 3β0CF

[
B0EA − EF

]

+β0CAF

(
B1 − 3B0

)
EA + 8C 2

AFB1EA + 2CFCAF

[
B1EA − 6EF

]}

−
CFa

4
sβ

2
0 ln5 Ñ

9CAF

[
C 2
AB0EA − C 2

F EF

]
(3.8)

with EA,F = exp(2asCA,F ln2 Ñ). The first term in these results represent the LL con-

tributions, the second to forth terms the NLL corrections, and the rest the new NNLL

expressions.

4 NNLL resummation in semi-inclusive e
+
e
− annihilation

We now address the final-state (‘time-like’) off-diagonal splitting functions, which have not

been presented at NNLL accuracy before, for the NLL expressions see ref. [33]. Since these

quantities are closely related to their initial-state (‘space-like’) counterparts, the formulae

for the two cases are very similar. Hence it is convenient to express the time-like results

via their difference with respect to the corresponding space-like results as presented in the

previous section as

N

nf
P T
qg(N,αs) −

N

CF
P S
gq(N,αs) = 8 a2s CAF ln Ñ B1

+ a2s

{
4 as (6CF − β0)CAF ln2 Ñ B2 − 2 (24CAF ζ2 + 3CF − β0) B1

+6 (4CAF ζ2 + 2CF − β0) B0 − β0 B−1

}
, (4.1)

N

CF
P T
gq(N,αs) −

N

nf
P S
qg(N,αs) = 8 a2s CAF ln Ñ B1

+ a2s

{
4 as (6CF − β0)CAF ln2 Ñ B2 + 2 (24CAF ζ2 − 3CF + β0) B1

− 2 (12CAF ζ2 − 6CF + β0) B0 + β0 B−1

}
. (4.2)

The difference between the LL terms of the time-like and space-like splitting functions is

zero (after removing the overall leading-order colour factors) [51], the difference of the NLL

terms is given by the respective first lines of eqs. (4.1) and (4.2), and the remaining terms

represent the difference between the NNLL contributions.

In figure 1 the numerical size of the corrections beyond order a 3
s is illustrated at a

scale Q 2 ≃ M 2
Z , where these corrections are entirely dominated by the a 4

s terms. The

presently known contributions are small, but more large-N terms are needed to arrive at

quantitatively reliable results.
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αs = 0.12, nf = 5

P T

gq /P T to α
3

s

gq

N
302010

1.004

1.002

1

0.998

+NNLL

+NLL

+LL

P T

qg /P T to α
3

s

qg

N
302010

1.02

1.01

1

0.99

Figure 1. The relative size of the leading-logarithmic (LL), next-to-leading logarithmic (NLL)

and next-to-next-to-leading logarithmic (NNLL) higher-order large-N corrections to the NNLO

off-diagonal splitting functions P T
ij (N) at a typical high-scale reference point.

These a 4
s contributions to eqs. (4.1) and (4.2), recall the normalization of as in

eq. (2.6), read

1

nf
P T (3)
qg (x) = ln 5(1−x)

[
22

27
C 3
AF −

14

27
C 2
AFCF −

4

27
C 2
AFnf

]

+ ln 4(1−x)

[(
1432

81
+

64

9
ζ2

)
C 3
AF +

(
1471

54
− 8ζ2

)
C 2
AFCF

−
49

81
CAFC

2
F −

16

3
C 2
AFnf +

17

81
CAFCFnf +

32

81
CAFn

2
f

]

+O
(
ln3(1−x)

)
, (4.3)

1

CF
P T (3)
gq (x) = ln 5(1−x)

[
−

26

27
C 3
AF −

14

27
C 2
AFCF −

4

27
C 2
AFnf

]

+ ln 4(1−x)

[(
469

27
−

128

9
ζ2

)
C 3
AF +

(
5317

162
− 8ζ2

)
C 2
AFCF

−
13

81
CAFC

2
F −

212

81
C 2
AFnf +

17

81
CAFCFnf −

4

81
CAFn

2
f

]

+O
(
ln3(1−x)

)
(4.4)

after transformation to x-space using the second line of eq. (2.3). The corresponding NLO

and NNLO expressions can be found in ref. [23]. Note that the coefficients of ln 6 (1−x)

are zero for both the space-like and time-like functions. This is due to fact that the LL

contributions at order an+1
s are proportional to the Bernoulli numbers Bn which vanishes

for all odd values n > 1. Eqs. (4.3) and (4.4) can be used, e.g., as a check for future

fourth-order Feynman diagram calculations of the next-to-next-to-next-to-leading order

(N3LO) time-like splitting function or, before, for use with other partial information on

these quantities.
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Also for the SIA coefficient functions, the large-N expressions can be conveniently

presented via their differences with the corresponding quantities in DIS. In this form the

results for transverse and φ-exchange coefficient functions CT,g and C T
φ,q can be written in

a surprisingly compact form,

N

CF
CT,g(N,αs) −

N

nf
C2,g(N,αs) = 2 as EF B1

+
as

4CAF ln Ñ

{[
β0 (4B1 − 4B0 + B−1) + 12CF (−B1 + (1 + 2ζ2)B0)

+ 24CAF ζ2 (2B1 − B0)
]
EF − 24CA ζ2 EA

}

− a2s ln Ñ
{
β0B2 − 6CF (B2 + B1)

}
EF +

4

3
a3sCFβ0 ln

3 ÑEFB1 , (4.5)

N

nf
C T
φ,q(N,αs) −

N

CF
Cφ,q(N,αs) =−2 as EA B1

+
as

4CAF ln Ñ

{[
− β0

(
4B1 − 4B0 − B−1

)
+ 12CF

(
B1 − (1 + 2ζ2)B0

)

+48CAF ζ2
(
B1 − B0

) ]
EA + 24CF ζ2 EF

}

+ a2s ln Ñ
{
β0
(
B2 − 2B1

)
− 6CFB2

}
EA −

4

3
a3sCAβ0 ln

3 ÑEAB1 . (4.6)

As for the splitting functions, the difference between the space- and time-like coefficient

functions is zero at LL accuracy after dividing out the LO colour factors. The first line

of eq. (4.5) is the NLL difference and the remaining terms represent the difference of the

NNLL corrections.

The corresponding x-space expressions for the coefficient function CT,g at order a
3
s and

a 4
s read

1

CF
c
(3)
T,g(x) = ln 5(1−x)

[
2

3
C 2
A +

10

3
C 2
F

]

+ ln 4(1−x)

[
7

27
CAnf −

269

54
C 2
A +

17

27
CFnf −

338

27
CFCA −

97

18
C 2
F

]

+ ln 3(1−x)

[(
2990

81
−

16

9
ζ2

)
C 2
A +

(
3652

81
−

88

9
ζ2

)
CFCA

−

(
41

9
+

112

9
ζ2

)
C 2
F −

140

81
CAnf −

436

81
CFnf

]

+O
(
ln2(1−x)

)
, (4.7)

a result that has already been presented in ref. [33], and

1

CF
c
(4)
T,g(x) = ln 7(1−x)

[
46

135
C 3
A +

14

45
CFC

2
A −

14

45
C 2
FCA +

314

135
C 3
F

]

+ ln 6(1−x)

[
112

405
C 2
Anf −

1696

405
C 3
A +

106

405
CFCAnf −

703

162
CFC

2
A

+
502

405
C 2
F nf −

5407

405
C 2
FCA −

59

10
C 2
F

]
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+ ln 5(1−x)

[(
75403

1620
−

149

15
ζ2

)
C 3
A +

(
22937

648
+

52

15
ζ2

)
CFC

2
A

+

(
10055

108
−

99

5
ζ2

)
C 2
FCA −

(
143

120
+

326

15
ζ2

)
C 3
F +

23

405
CAn

2
f

−
521

135
C 2
Anf +

97

405
CFn

2
f −

3503

540
CFCAnf −

6013

540
C 2
F nf

]

+O
(
ln4(1−x)

)
. (4.8)

The corresponding results for scalar-exchange SIA are given by

1

nf
c
T (3)
φ,q (x) = ln 5(1−x)

[
10

3
C 2
A +

2

3
C 2
F

]

+ ln 4(1−x)

[
47

27
CAnf −

517

54
C 2
A +

13

27
CFnf −

310

27
CFCA −

55

6
C 2
F

]

+ ln 3(1−x)

[(
6554

81
−

104

9
ζ2

)
C 2
A +

(
6139

81
−

248

9
ζ2

)
CFCA

+

(
64

3
+

208

9
ζ2

)
C 2
F +

16

27
n 2
f −

1268

81
CAnf −

970

81
CFnf

]

+O
(
ln2(1−x)

)
, (4.9)

1

nf
c
T (4)
φ,q (x) = ln 7(1−x)

[
314

135
C 3
A −

14

45
CFC

2
A +

14

45
C 2
FCA +

46

135
C 3
F

]

+ ln 6(1−x)

[
1004

405
C 2
Anf −

5522

405
C 3
A +

2

405
CFCAnf −

6403

810
CFC

2
A

+
254

405
C 2
F nf −

2171

405
C 2
FCA −

559

90
C 3
F

]

+ ln 5(1−x)

[(
194611

1620
−

1183

45
ζ2

)
C 3
A +

(
16873

216
−

796

45
ζ2

)
CFC

2
A

+

(
103781

1620
−

499

45
ζ2

)
C 2
FCA +

(
9649

360
+

226

15
ζ2

)
C 3
F +

187

135
CAn

2
f

−
10846

405
C 2
Anf +

53

135
CFn

2
f −

709

60
CFCAnf −

20993

1620
C 2
F nf

]

+O
(
ln4(1−x)

)
. (4.10)

As for C 2, q, CT, q and C
(T )
φ,g , the leading (and subleading) 1/N k parts of the DIS

and SIA quark coefficient functions for FL are given by ‘non-singlet’ contributions that

have been derived and discussed in refs. [36, 37]. The gluon coefficient functions have an

analytical structure analogous to eqs. (4.1) and (4.5), with the SIA (time-like, T) and DIS

large-N expressions for CL,g differing only at NNLL accuracy. The same holds for CL,q ,
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see eq. (6.16) of ref. [37]. We find

N 2

CF
C T
L,g(N,αs) −

N 2

2nf
CL,g(N,αs) = 4 a2s CF EFB1 + 48 a2sCAζ2EA , (4.11)

where the analytic NNLL expression for CL,g has already been given in eq. (6.3) of ref. [32].

The resulting third- and fourth-order NNLL threshold expansion of C T
L,g in x-space is

given by

(1−x)−1 c
T (3)
L,g (x) = 8CFC

2
A ln 4(1−x)

+ ln 3(1−x) CF

[
20

3
C 2
F +

52

3
CFCA −

952

9
C 2
A +

16

9
CAnf

]

+ ln 2(1−x) CF

[
(62− 32ζ2)C

2
F −

(
784

3
− 32ζ2

)
CACF +

5720

9
C 2
A

−
224

9
CAnf +

16

3
CFnf − 64n 2

f

dabcdabc
na

flg11 (11 + 2 ζ2 − 12 ζ3)

]

+O (ln(1−x)) , (4.12)

(1−x)−1 c
T (4)
L,g (x) =

16

3
CFC

3
A ln 6(1−x)

+ ln 5(1−x) CF

[
20

3
C 3
F +

52

3
CFC

2
A −

1040

9
C 3
A +

32

9
C 2
Anf

]

+ ln 4(1−x) CF

[(
323

9
−

160

3
ζ2

)
C 3
F +

(
536

27
+ 16 ζ2

)
CAC

2
F

−

(
12629

27
−

160

3
ζ2

)
CFC

2
A +

(
35380

27
− 80 ζ2

)
C 3
A

+
154

27
C 2
F nf +

278

27
CFCAnf −

2096

27
C 2
Anf +

16

27
CAn

2
f

−128n 2
f

dabcdabc
na

flg11CA (11 + 2 ζ2 − 12 ζ3)

]

+O
(
ln3(1−x)

)
. (4.13)

Eq. (4.13) was already given in ref. [33] if, for brevity, without the flg11 contribution (see

figure 1 of ref. [6] for a typical DIS diagram contributing to this flavour structure) which,

for photon-exchange SIA, corresponds to the charge factor

fl g11 = 〈e〉2/〈e 2〉 with 〈e k〉 = nf
−1 ∑n

f

i=1 e k
i , (4.14)

where ei is the charge of the i-th effectively massless flavour in units of the proton charge.

Analogous terms also contribute to CT,g at the same powers of ln (1−x), but there these log-

arithms are below NNLL accuracy, recall eqs. (2.14) and (2.15). Note that different normal-

izations are used in the literature for the QCD group factor dabcdabc/na = 3/8 dabcdabc/nc =

5/48. Also note that our normalization of both functions (as that of other recent articles)
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+NNLL

+NLL

+LL

to α2
s

CT,g(N = 20)

n
108642

-0.008

-0.012

-0.016+NNLL

+NLL

+LL

to α2
s

CT,g(N)

N
3020100

0

-0.01

-0.02

-0.03

Figure 2. Left: the large-N behaviour of the second-order and resummed MS-scheme gluon

coefficient function for the transverse fragmentation function at a high-scale reference point αs =

0.12 for nf = 5 light quark flavours. Right: the LL, NLL and NNLL contributions of the third

to the tenth orders in αs, added at the corresponding values of the abscissa, to those results at

N = 20.

differs by a factor of 1
2 from that of refs. [8, 9, 11], i.e., here the first-order large-x limits read

CT,g(x, as) = 2CFas ln (1−x) + . . . and C T
L,g(x, as) = 4CFas (1− x) + . . . . (4.15)

The results for CT,g in eq. (4.5) and for C T
L,g in eq. (4.11) are illustrated at the stan-

dard high-scale reference point Q 2 ≃ M 2
Z (recall that we identify the renormalization and

factorization scales with Q 2 throughout this article) in figure 2 and figure 3, respectively.

As for the splitting function in figure 1, the LL terms have a small numerical effect. How-

ever, the overall (relative) size of the corrections — note that the effect of these coefficient

functions is much smaller than that of their quark counterparts [36, 37] — is large here,

and contributions beyond order a 4
s are not negligible as shown for one moment N in the

right panels. Clearly higher terms in the large-N expansion, or other information comple-

menting our results, are required to quantitatively establish the size of the higher-order

large-N contributions to CT,g and C T
L,g. The results for C T

φ,q in eq. (4.6) are similar but

not shown here, since this quantity is of mainly theoretical importance.

5 Summary and outlook

Considerable progress has been made in the past seven years on the resummation of large-x

(or, in Mellin space, large-N) threshold logarithms [32–51] beyond those addressed by the

soft-gluon exponentiation (SGE) [25–29]. This holds for sub-leading contributions, in terms

of powers of (1−x) or 1/N for x → 1 or N → ∞, to quantities to which the SGE is

applicable for the leading terms, as well as for which the SGE is not applicable at all.

– 16 –
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+NNLL

+NLL

+LL

to α2
s

NCT
L,g(N = 20)

n
108642

0.02

0.016

0.012

0.008

+NNLL

+NLL

+LL

to α2
s

NCT
L,g(N)

N
3020100

0.03

0.02

0.01

0

Figure 3. As figure 2, but for the gluon coefficient function of the longitudinal fragmentation

function in photon-exchange SIA. All curves have been multiplied by N for display purposes.

So far most of the explicit large-x results for higher-order splitting functions and coef-

ficient functions have been obtained by studying physical evolution kernels [36–40, 48–50]

and the structure of unfactorized cross sections in dimensional regularization [32–35, 51]

(see refs. [53, 54] for an analogous small-x resummation in SIA). The former approach is

particularly suited for non-singlet quantities, i.e., quantities that only involve the quark-

quark and gluon-gluon splitting functions which are stable in the threshold limit [17–22] in

the standard MS factorization scheme adopted throughout this article. Where applicable

beyond the leading logarithms, presently for inclusive deep-inelastic scattering (DIS) and

semi-inclusive e+e− annihilation (SIA), the resummation via unfactorized cross sections

leads to the same results but is slightly more powerful even in those non-singlet cases. The

resummation of the off-diagonal quark-gluon and gluon-quark splitting function is possible

only in this second approach.

Both methods are, so far, less effective for lepton-pair and Higgs-boson production,

the former due to the lack of suitable flavour-singlet physical evolution kernels, the latter

due to the different phase-space structure of these hadron collider processes. However, the

complete analogy of the non-singlet physical kernels for SIA, DIS, the Drell-Yan process

and Higgs production [37, 40] suggests that there is presently unearthed resummation

information also in the unfactorized expressions for the latter two processes.

In the present article, we have first reconsidered the NNLL threshold resummation of

the flavour-singlet structure functions in DIS. This resummation was performed already

in ref. [32] where, however, a closed NNLL expression was given only for the simplest

case, the longitudinal structure function FL. Here we have presented corresponding closed

forms also for the off-diagonal splitting functions Pqg and Pgq for the evolution of the

parton distributions of hadrons and for the corresponding coefficient functions for F 2 and

Fφ, where the latter occurs in DIS via Higgs-boson exchange in the heavy-top limit.

– 17 –
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We have then extended this resummation to the theoretically closely related, see

ref. [21–23], case of SIA and presented the NNLL resummation of the ‘time-like’ splitting

functions P T
qg and P T

gq for the evolution of final-state fragmentation distributions and the

corresponding coefficient functions for flavour-singlet fragmentation functions. All these

results can be expressed in terms of the Bernoulli functions introduced in ref. [51] together

with, for the coefficient functions, the quark and gluon leading-logarithmic soft-gluon ex-

ponentials. As already in ref. [32, 51], the analysis of physical kernels was useful for finding

the rather complicated closed NNLL expressions for the coefficient functions.

We find that the resummation of the highest three logarithms, which leads to small

corrections for the off-diagonal splitting functions but large effects for the corresponding

coefficient functions, does not lead to numerically reliable results: the LL terms are always

small, and the NLL contributions mostly smaller than the NNLL ‘corrections’; a situa-

tion that, in fact, is similar to that in the SGE of the corresponding diagonal quantities

refs. [30, 31]. Yet we expect our results to become phenomenologically useful in connection

with other efforts such as, e.g., the extension of the fourth-order calculations of ref. [55–58]

to higher moments and other quantities. Furthermore one may hope that the wealth of

results derived here and before can provide some assistance to extending the reach of the

non-SGE threshold resummation to higher logarithmic accuracies.

Acknowledgments

This research has been supported by the German Research Foundation (DFG) through Son-

derforschungsbereich Transregio 9, Computergestützte Theoretische Teilchenphysik, the
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