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1 Introduction

The CERN Large Hadron Collider (LHC) has successfully completed the decades-long quest

to discover the particles of the Standard Model (SM) by finding the Higgs Boson [1, 2].

The paramount question in the current Run 2 of the LHC is whether the LHC can reach

the relevant energy scale to discover physics beyond the standard model (BSM). Popular

frameworks for new physics such as Supersymmetry (SUSY) [3–6] and Universal Extra

Dimensions (UED) [7, 8] predict:
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1. The presence of particles, such as neutralinos or KK-photons, that are not recon-

structed in the detector, and are hence termed “invisible”. In general, the production

of these particles will lead to “missing transverse energy”1 (MET) in an event.

2. Relatively complex decay topologies, in which pair-produced, generally colored, par-

ticles undergo several subsequent decays. Each “decay chain” thus produces one or

more visible particles, as well as at least one invisible particle.

Searches for new particles that produce such long decay chains in combination with a

MET signature are complicated by large backgrounds from tt̄, W , and Z production, often

with additional jets from initial state radiation (ISR). The severity of these backgrounds in

multijet and multilepton channels increases with the collider energy. Even if a signal of such

new physics is seen, the corresponding measurements of particle properties such as masses,

couplings, and spins, are highly nontrivial [9–11]. Therefore, sophisticated procedures must

be used to separate signal from background and to extract the quantum numbers of the

new particles.

In a given event, one observes some number of “physics objects” which correspond

to physical particles that have produced appropriate energy deposits in the tracker and

calorimeters of the detector; we will refer to these objects as “visible particles”. We shall

denote their measured four-momenta by pµj , where j is the visible particle label. At the

same time, the existence of a non-vanishing MET in the event indicates the presence of

some number of additional, invisible, particles with four-momenta qµk , where k now labels

the invisible particles. The individual momenta qµk are not measured, and the only available

piece of information is the missing transverse momentum

/~PT ≡
∑
k

~qTk = −
∑
j

~pTj . (1.1)

The MET, ET/ , is then simply the magnitude of the missing transverse momentum vector:

ET/ ≡ | /~PT |. (1.2)

The essential question is how to take these sets of measured four-momenta, {pµj }a, (one for

each event a) and determine whether the events are produced purely by SM processes or

whether new physics is at work. The standard procedure is to construct some kinematic

variable, v, and compare the v distribution predicted by the SM to the data. In choosing

a suitable variable, v, one typically follows one of these approaches:

1. The variable, v, is an analytic function of some, but not all, of the measured momen-

tum degrees of freedom. This is the preferred approach in inclusive analyses, where

one targets a specific subset of the event. For example, in an inclusive search for a vis-

ibly decaying resonance, X, one would select only the momenta of the hypothesized

decay products j1, j2, . . . , jn, and form the invariant mass of the resonance X,

MX ≡
√

(pj1 + pj2 + . . .+ pjn)2, (1.3)

leaving out all other objects in the event.2 In the case of missing energy events,

1Or more precisely, missing transverse momentum.
2In forming the variable (1.3), one also ignores, e.g., additional angular information.
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the situation is much more complicated — we cannot reconstruct the mass of the

resonance as in eq. (1.3), since we have not measured the momenta, qµk , of the invisible

decay products. Then, one typically tries to form a variable which correlates with the

scale of MX . Various candidates have been tried, including the transverse momentum

of the hardest object of a given type (lepton, jet, etc.) [12, 13], the scalar pT sum of the

four hardest jets (or of all jets) [14], the jet multiplicity [15, 16], the “fat” jet mass [17],

the “contransverse mass”, MCT [18–20], the lepton energy [21–23] or lepton energy

ratios [24, 25], and many more. The advantage of such techniques is their simplicity

and robustness — they do not involve too many theoretical assumptions, making

them ideal for model-independent searches for new physics. At the same time, they

appear to be suboptimal, since they do not utilize the full set of measured degrees

of freedom, leading to a certain loss of information. It is also rather challenging to

assign a proper physical meaning to a kinematic variable which only uses such partial

information (for more detailed discussion, see refs. [14, 26, 27]).

2. The variable, v, is an analytic function of some measured momentum degrees of free-

dom and the measured ET/ . The explicit inclusion of the measured ET/ in the definition

of v was the next attempt to design a better performing class of variables. Perhaps

the best known example is the W transverse mass [28, 29], where one identifies the

transverse momentum of the missing neutrino with the measured /~PT . Other possibil-

ities include the “effective mass”, Meff [14, 30], the
√
ŝmin variable [31–33], and the

“razor” variables [34–37]. The outputs of neural nets, boosted decision trees, and

other multivariate analyses [38], particularly those involving some form of machine

learning, are also variables in this class. Incorporating the measured ET/ , which is

often a sensitive variable all by itself [39, 40], into the definition of the kinematic

variable, v, is certainly a step in the right direction.

3. The definition of the variable, v, involves all measured momentum degrees of freedom

and the individual invisible momenta, qµk . Finally, one may construct the variable, v,

so that from the onset it has explicit dependence on the individual invisible momenta,

qµk . The advantage of this approach is that one works with theoretically motivated

quantities with clear physical meaning [26]. The obvious downside is that the indi-

vidual invisible particle momenta, qµk , are unknown, and something must be done to

fix their values in the calculation. There are two possible alternatives:

• Integrate over all possible values of the invisible momenta. Perhaps the simplest

solution is to allow all possible values of the invisible momenta, qµk , which are

consistent with the measured missing transverse momentum (1.1), and compute

the variable, v, as a suitably weighted average. A celebrated example of this

approach is the Matrix Element Method (MEM) [41–43] which is finding in-

creased use in hadron collider physics [44–53]. However, the method is often too

computationally challenging, requiring novel ideas and approaches [54–56]. Ad-

ditionally, it is generally difficult to incorporate “reducible” backgrounds, which
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consist of events where the reconstructed particles are misidentified and/or their

momenta significantly mismeasured.

• Use a physically motivated ansatz for the invisible momenta. Alternatively, in-

stead of considering all possible values of the set of invisible momenta, {qµk}, one

could fix them by following some prescription specified in advance. With this

approach, one gives up on trying to “guess” the correct values of the invisible

momenta, and instead focuses on constructing a useful variable, v, whose proper-

ties can reveal important information about the underlying physics. Examples

of such variables include the Cambridge MT2 variable [57, 58] and its vari-

ants [59–61], and the variables M2C [62, 63], MCT2 [64, 65], M?
T [66], MW

T2 [67],

and Mmin [68]. The variables in this class are often specified, not by analytic

formulae, but by the algorithm used to calculate them.3

Our focus in this paper will be on the algorithmically specified variables from the very

last category, which are known to possess several attractive features:

1. They are “maximally constraining” [26, 76] in the sense that, on an event per event

basis, they provide the best possible lower bound on an invariant mass quantity

of interest, such as the parent masses or the center-of-mass energy,
√
ŝ. This is

particularly useful in cases where it is not possible to determine the actual values of

that quantity due to incomplete event information.

2. Their kinematic distributions exhibit sharper endpoints which are easier to measure

over the SM backgrounds [77], leading to a more precise determination of the new

physics mass spectrum.

3. Certain measurements of their properties can be used as a self-consistency check on

the assumed signal event topology [77, 78]. If the check fails, our conjecture about

the event topology is falsified, thus narrowing down the allowed set of possibilities.

At the same time, such algorithmically defined variables are notoriously difficult to

compute. The algorithmic procedure typically involves calculating a mass for a set of

hypothesized particles in an event (possibly after projecting their momenta onto the trans-

verse plane), and minimizing the value of that mass with respect to all invisible momenta,

qµk . What makes the problem particularly challenging, however, is the presence of addi-

tional non-linear mass-shell constraints. In essence, we are faced with a multidimensional

constrained optimization problem, where our objective function is an energy function which

is to be minimized. Given the importance of the maximally constraining invariant mass

variables for new physics searches and measurements [26, 76–78], it is important to have

publicly-available software for performing constrained minimizations to calculate kinematic

variables from high energy collision data with sufficient generality and efficiency. The exist-

ing packages described in the literature are typically only applicable to a specific variable,

3For some of the variables, analytical formulas may exist in certain special cases [69–75], but not in

general.
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e.g., MT2 [58, 79–81], or MW
T2 [67] and cannot be readily generalized to the whole class of

on-shell constrained variables [76, 77]. The standard approach is to try to solve the con-

straining equations, thus reducing the unknown number of degrees of freedom (d.o.f.), then

implement an unconstrained minimization over the remaining d.o.f. While this approach

generally provides the most efficient algorithm for a specific event topology, it is not ex-

tendable to more general event topologies, where not all constraints can be simultaneously

solved analytically.

In this paper, we describe an alternative approach that is sufficiently universal and

flexible, and can be applied to arbitrarily general event topologies. The main idea is

to use the Augmented Lagrangian Method (ALM) [82, 83], briefly described below in

section 2.3. In this approach, the feasibility (i.e., the validity of the constraints) is ensured

by penalizing infeasibility by adding “penalty terms” to the objective function, rather

than by directly solving the constraining equations. The fact that the method does not

require the solving of any constraints beforehand makes it very flexible and applicable to

a very general class of event topologies. Of course, we still have to perform a standard

unconstrained minimization, for which we can take advantage of any one of the many

publicly available packages — we have chosen to use Minuit [84], which is widely popular

in high energy physics. We also supply a comprehensive software package, Optimass,4 in

the form of a library, which interfaces with Minuit to perform the constrained minimization

of a user-specified kinematic function using the ALM. Appendix B contains instructions

on the installation and usage of Optimass.

The paper is organized as follows. In section 2, we review the general problem of

constrained optimization with special emphasis on the motivation and the techniques used

by Optimass, in particular the ALM. The relevant Minuit routines with which it inter-

faces are described in appendix A. Section 3 describes in detail the algorithm behind the

Optimass package and presents several toy examples for its validation. In section 4 we

briefly review the M2 variables [26, 76, 77], and provide examples of their use, in the study

of the fully leptonic decays of pair-produced top quarks. We use this as an opportunity to

compare the results from Optimass with previous studies and known analytical calcula-

tions. Finally, section 5 is reserved for our conclusions and a brief discussion of the future

of Optimass.

2 Review of constrained minimization

While many excellent textbooks and references discuss the optimization techniques that

we will utilize (see, e.g., refs. [85–87] and references therein), we feel that a brief review

of the elements of optimization theory relevant to the operation of Optimass will prove

useful. We first note that while we will sometimes speak of “optimization” rather than

“minimization”: (i) in the calculation of kinematic variables we will be interested only in

minimization, and (ii) the methods used to find a maximum are, up to obvious changes

in the sign of certain parameters, identical to those used to find a minimum. So in what

follows we will not worry much about this distinction.

4For OPTImization of MASS variables.
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The first issue that will concern us is the important division of minimization problems

into two types: (i) constrained and (ii) unconstrained. In constrained minimization, we

want to minimize an objective function,

f(~x), (2.1)

subject to a set of m constraints

ca(~x) = 0, a = 1, . . . ,m, (2.2)

where ~x, in general, refers to a point in Rn formed from some unknown momentum degrees

of freedom x1, x2, . . . , xn. In what follows, we shall assume that the number of constraints,

m, is always less than the number of independent degrees of freedom, n, so that we are

dealing with a true minimization problem.

If the constraints in eq. (2.2) are all independent, then the parameter space is effectively

reduced from n dimensions to n−m dimensions. Sometimes this reduction can be performed

analytically. For example, consider an optimization problem in R3, subject to the constraint

x2 + y2 + z2 = 1 — then we should parameterize the two dimensional subspace that

satisfies the constraints, i.e., the surface of the unit sphere, S2, by the angles θ and ϕ in

the standard way.

However, this reduction of dimensionality cannot always be performed analytically. A

useful alternative procedure, therefore, is to turn the constrained minimization problem

into the problem of an unconstrained minimization5 of a modified objective function, f̃(~x),

over the full, unconstrained, parameter space, Rn. This new problem can then be solved

by setting the gradient of some function equal to zero, or by searching for a local/global

minimum using one of the many standard numerical algorithms conventionally used for

this purpose.

When performing this unconstrained minimization iteratively, one develops an algo-

rithm for finding the location of the minimum of f̃(~x), ~x∗, which is also referred to as the

minimizer. At each iteration, one starts with some initial estimate, ~xk, (typically taken to

be the minimizer of the previous, k−1st, iteration), then refining this estimate by obtaining

a new minimizer, ~xk+1, in some prescribed way, until certain convergence criteria are met.

Since we have not analytically solved the constraints (2.2), the estimates, ~xk, will not, in

general, satisfy the constraints exactly. Following the standard mathematical terminology,

we shall refer to values of ~x that satisfy the constraints in eq. (2.2) as feasible. The absolute

value of ca(~x) is then a measure of the feasibility.6 Even though feasibility is not strictly

guaranteed, the ultimate solution found by the method should nevertheless be such that

the constraints are satisfied to within a required degree of numerical precision.

5Or possibly, a series of unconstrained minimization problems.
6A point ~x in the unknown momentum space Rn is feasible if it is an element of the feasible set Ω

defined by

Ω = { ~x | ca(~x) = 0, a = 1, . . . ,m} .
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In the remaining three subsections of this section, we discuss three possible ways to

transform a constrained minimization problem into an unconstrained minimization prob-

lem, namely (i) the method of Lagrange multipliers (in section 2.1), (ii) penalty methods

(in section 2.2), and (iii) the Augmented Lagrangian Method (in section 2.3). We shall

see how penalty methods solve some of the problems associated with the use of Lagrange

multipliers, while the ALM, in turn, resolves certain numerical issues related to the use

of penalty methods. Of course we also must be able to solve the resulting unconstrained

optimization problem; we discuss approaches to this challenge in appendix A.

2.1 The method of Lagrange multipliers

As noted above, in a generic constrained minimization problem we are looking for the

minimum value of the target function, f(~x), subject to the constraints (2.2):

f(~x ∗) ≡ min
x∈Rn

f(~x) such that ca=1,...,m(~x ∗) = 0. (2.3)

Alternatively, one is trying to find the location of the minimizer, ~x∗, in Rn. We note that

in practical applications of the maximally constraining invariant mass variables both the

minimum value of the function, f(~x∗), and the minimizer, ~x∗, itself can serve a useful

purpose. For example, in the MT2-assisted on-shell (MAOS) reconstruction method, the

minimizer is used to provide an ansatz for certain transverse components of the invisible

momenta [88, 89]. Both the function, f(~x), and the constraints, ca(~x), are assumed to be

smooth7 real-valued functions in Rn.

The method of Lagrange multipliers provides necessary and sufficient conditions for

finding local solutions of the minimization problem (2.3) above. In this method, we define

a corresponding Lagrangian, henceforth denoted by L, for an objective function, f(~x), and

constraints, ca(~x), by

L(~x,λ) = f(~x) −
m∑
a=1

λa ca(~x), (2.4)

where λ ≡ (λ1, λ2, . . . , λm) is an m-component vector8 of Lagrange multipliers, λa. We

now describe the conditions that must be satisfied in this method in order to establish the

existence of a local minimum at the proposed minimizer, ~x∗.

First order condition (FOC). In unconstrained optimization, a necessary condition

for the existence of a local minimum of f at ~x∗ is that the gradient vector, ∇xf(~x∗),

vanishes. As this condition involves the gradient, we may term it a first order condition.

In the method of Lagrange multipliers, an analogous condition holds for the existence of a

local minimum. Here it is only necessary that the gradient of the objective function, f , at

~x∗ is orthogonal to the surface defined by the constraints. This condition will hold if the

7In some cases, the objective function may depart from smoothness in a specific way; we discuss this

point and related issues in sections 3.2.2 and 4.1, see also ref. [77].
8Throughout this paper we shall use the notation ~v for n-dimensional vectors in the space of independent

variables, Rn, and v to denote m-dimensional vectors in the space of constraints, Rm.
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gradient of f , ∇xf(~x∗), is an element of the vector space spanned by the gradient vectors

of ca, ∇x ca(~x∗). Thus the FOC is that there exists a Lagrange multiplier vector, λ∗, in

Rm, such that at the point (~x∗,λ∗) ∈ Rn ⊗ Rm, the following conditions hold{
∇λ L(~x∗,λ∗) = ca(~x

∗) = 0,

∇x L(~x∗,λ∗) = ∇x f(~x∗)−
∑

a λ
∗
a∇x ca(~x∗) = 0.

(2.5)

Therefore, at least at the level of the FOC, the problem of constrained optimization has

been reformulated as an unconstrained optimization problem.

Second order condition (SOC). As is well-known, the condition that a first derivative

vanishes is not sufficient to establish that there is an extremum at that point — one must

also verify that the second derivative is, in the case of a minimum, positive. The extension

of this idea to unconstrained optimization in many dimensions is to require that the Hessian

matrix, defined for the objective function, f , by

Hjk(~x
∗) =

∂2f(~x∗)

∂xj∂xk
, (2.6)

and evaluated at the prospective minimizer, ~x∗, be positive definite.9 This is the “second

order condition” (SOC); that both the FOC and the SOC are satisfied is sufficient for the

existence of a local minimum. As long as we are not at a boundary of the parameter space,

these conditions are both necessary and sufficient.

We now consider the corresponding SOC for the Lagrange multiplier method, hoping

that, as in the case of the FOC, we can obtain a condition analogous to the case of uncon-

strained minimization, i.e., a constraint involving the positive definiteness of some Hessian.

We therefore evaluate the Hessian of the Lagrange function (2.4) with respect to ~x:

(HL)jk(~x
∗,λ∗) ≡ ∂2L(~x∗,λ∗)

∂xj∂xk
=
∂2f(~x∗)

∂xj∂xk
−
∑
a

λ∗a
∂2ca(~x

∗)

∂xj∂xk
. (2.7)

To determine the SOC, we note that for ~x∗ to be a minimizer (with Lagrange multiplier

vector, λ∗), we must have

~dT HL(~x∗,λ∗) ~d > 0, (2.8)

for any infinitesimal displacement, ~d, from the proposed minimizer, ~x∗, in a direction

allowed by the constraints.

Thus the relevant condition is not the positive definiteness of the Hessian (2.7), but the

positive definiteness of the restriction of the Hessian to the space allowed by the constraints.

The fact that we must still use the constraints to see if a given stationary point (i.e., a

point satisfying the FOC) is a minimum, means that we have failed in our mission to

convert the constrained minimization problem to an unconstrained minimization problem.

We therefore proceed to look for methods for which the SOC does not explicitly involve

the constraints.
9In linear algebra, a symmetric n× n real matrix, M , is said to be positive definite if ~z TM~z is positive

for every non-zero column vector, ~z, of n real numbers.
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2.2 Penalty methods

A natural approach to our problem of transforming a constrained optimization problem to

an unconstrained optimization problem is to follow the example of the method of Lagrange

multipliers in modifying the objective function, but to do so in a different way. Clearly, we

would like to modify the function so that infeasibility incurs a penalty. One possible way

to achieve this is via “convexification” of the geometry near the desired solution point, i.e.,

making sure that a solution to the constrained minimization problem is a local minimum

of the transformed function, f̃(~x), even if it is not a local minimum of f(~x) in the absence

of constraints. We now proceed to give an example of one such convexification approach.

In the so-called penalty methods, the original objective function, f(~x), is modified by

the addition of a penalty term, i.e., a functional of ca(x) weighted by a positive penalty

parameter, µ, so that the term vanishes when ca(~x) = 0, but becomes large if ca(~x) 6= 0

in the µ → 0 limit. While there are various penalty methods, which differ in the form of

the penalty function, we consider the “Quadratic Penalty Method” (QPM) here, because

of its connection with the ALM discussed below. In the QPM, the penalty term is chosen

so that the modified function10 under consideration is

P (~x ;µ) ≡ f(~x) +
1

2µ

∑
a

c2
a(~x). (2.9)

In the course of the algorithm, the parameter, µ, will be reduced, as the desired properties

of this function hold in the µ→ 0 limit. The gradient of (2.9) is

∇P (~x ;µ) = ∇f(~x) +
∑
a

ca
µ
∇ca(~x), (2.10)

which reproduces the gradient of the Lagrange function (2.5) if we take

λa(µ) ≡ −ca(~x)

µ
(2.11)

to be (the components of) the Lagrange multiplier vector, λ. This shows that the necessary

FOC for a minimum is the same as for the method of Lagrange multipliers, only the

Lagrange multiplier vector is now determined for us. Since a minimization using a QPM

should give the same value for the solution, ~x∗, as the Lagrange multiplier method (which

gives the solution (~x∗,λ∗)), it follows that as we approach this solution, we must have

lim
~x→~x∗

(
−ca(~x)

µ

)
= λ∗a, (2.12)

thus |ca(~x)| → 0 as µ→ 0.

In determining the SOC for the QPM, we note that the Hessian of the function

in (2.9) is

HP (~x∗)jk =
∂2f(~x∗)

∂xj∂xk
+

1

µ

∑
a

(
(∇ca)j(∇ca)k + ca∇2

jkca

)∣∣∣∣
~x=~x∗

. (2.13)

10From here on, we shall use a semicolon, “;”, to separate the arguments of a function into two groups:

independent variables, with respect to which an optimization is to be done, and fixed parameters.
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If ~x∗ satisfies the constraints, then this expression simplifies to

HP (~x∗)jk =
∂2f(~x∗)

∂xj∂xk
+

1

µ

∑
a

(∇ca)j(∇ca)k
∣∣∣∣
~x=~x∗

. (2.14)

If we consider an infinitesimal displacement, ~d, along the surface allowed by the constraints,

then as
~d · ∇ca(~x∗) = 0, (2.15)

we find that
~dT HP (~x∗) ~d = ~dT Hf (~x∗) ~d, (2.16)

where Hf (~x) is the Hessian (2.6) for the original objective function, i.e., ∂j∂kf(~x).

On the other hand, for displacements, ~d′, orthogonal to this surface, we obtain non-zero

terms from both the objective function and the penalty term, i.e.

~d′T HP (~x∗) ~d′ = ~d′T Hf (~x∗) ~d′ +
1

µ

∑
a

(∇ca(~x∗) · ~d′)2, (2.17)

where ∇ca(x) · ~d′ is now non-vanishing. In the µ → 0 limit, the second term will dom-

inate. So if the Hessian is positive definite with respect to allowed displacements, it is

automatically positive definite in general. Thus, we now have that in the limit of µ → 0,

the sufficient condition that the stationary point, ~x∗, be a local minimum is simply that the

Hessian of the function (2.9) is positive definite. Thus we have succeeded in overcoming

the limitation of the method of Lagrangian multipliers in that both the FOC and SOC are

the same as in unconstrained minimization.

Unfortunately, all is not well when it comes to practical applications of the QPM. The

basic problem is that in the µ → 0 limit the algorithm becomes too sensitive to small

departures from feasibility, hence numerical instabilities may prevent convergence to the

solution. In more formal language, small values of µ→ 0 can result in severe ill-conditioning

of the Hessian, since the rightmost term in (2.14), which dominates in the µ→ 0 limit, is

not invertible. Therefore, we will need to further modify the QPM, retaining the way in

which it maps constrained optimization problems to unconstrained optimization problems,

but reducing the relative importance given to feasibility in the µ→ 0 limit. The solution,

presented in the next subsection, is the Augmented Lagrangian Method (ALM).

2.3 Augmented Lagrangian Method

We seek a method which preserves the success of the QPM in generating FOC and SOC that

correspond exactly to those obtained in unconstrained minimization, but which overcomes

the difficulties encountered by the QPM in the µ→ 0 limit. One approach is to introduce

augmented Lagrange multiplier terms, leading to the following modified objective function:

L̃(~x ;λ, µ) ≡ f(~x)−
∑
a

λaca(~x) +
1

2µ

∑
a

c2
a(~x). (2.18)

Note that λ is no longer determined numerically by the optimization procedure, but is in-

stead a fixed vector, just like the penalty parameter, µ. As was the case for the QPM, (2.18)
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is used iteratively; unconstrained minimization of L̃(~x ;λ, µ) is performed for the chosen

values of λ and µ in each step of the procedure. After optimizing L̃(~x ;λ, µ) to within

some tolerance, new values of λ and µ are chosen; the process is repeated until the desired

levels of optimality and feasibility are satisfied. This procedure is the ALM.

We must verify that the ALM indeed avoids the problems of the QPM. To do this, we

note that

∇L̃(~x ;λ, µ) = ∇f(~x)−
∑
a

λa∇ca(~x) +
∑
a

ca
µ
∇ca(~x), (2.19)

while the Hessian is given by

HL̃(~x)jk =
∂2f(~x)

∂xj∂xk
−
∑
a

λa
∂2ca(~x)

∂xj∂xk
+

1

µ

∑
a

(
(∇ca)j(∇ca)k + ca(~x)∇2

jkca(~x)

)
. (2.20)

We note that (2.19) recovers the expression for the method of Lagrange multipliers (2.5)

with the substitution

λa → λa −
ca(~x)

µ
, (2.21)

which shows that the FOCs for optimality are the same as for the problem of unconstrained

minimization, just as in the case of the QPM. It is also possible, albeit more challenging, to

show that the SOC for a minimum is the same as in the unconstrained case; see refs. [82, 83],

and [86, Proposition 4.2.3, Theorem 17.6, “Numerical optimization”] for details.

We also conclude from (2.21) that in the asymptotic limit

λ∗a → λa −
ca(~x

∗)

µ
. (2.22)

in analogy to (2.12). The point of the ALM is that now that we are free to choose both λa
and µ, we can enforce (2.22) without taking the µ→ 0 limit. We shall do this by choosing

the value of λa in the (k + 1)st iteration as follows

λk+1
a = λka −

ca(~xk)

µk
; (2.23)

As we do not take µk → 0, the Hessian defined in (2.20) should never become ill-conditioned.

Hence the ALM avoids the major drawback of the QPM, while preserving its successes. We

therefore implement the ALM in the Optimass code, as described in the following section.

3 The Optimass code

Having reviewed both unconstrained and constrained minimization, we now state precisely

how Optimass accomplishes the task of minimizing a mass function with constraints. The

basic algorithm is presented in figure 1 and is the main subject of this section.11

11Readers who are not interested in the details of the code may skip directly to the next section.

– 11 –



J
H
E
P
0
1
(
2
0
1
6
)
0
2
6

Figure 1. Flowchart of the minimization procedure in Optimass.

3.1 Operational algorithm

3.1.1 Step one: initialization

At the onset, we must specify certain parameters. We first discuss the parameters associ-

ated with the optimality condition, followed by those related to the feasibility condition.

Finally, we will discuss the penalty/Lagrange multiplier parameter, and the starting value

for the minimizer.

Optimality condition. The test of optimality, i.e., whether the relevant sub-

minimization procedure, has reached an acceptable local minimum in the kth iteration,

should be performed in terms of some relevant geometric quantity. In Optimass, we

choose the Migrad algorithm of Minuit (see appendix A.1), where the optimality crite-

rion utilizes the so called “Estimated vertical Distance to the Minimum” (EDM) defined

as follows

EDM ≡ 1

2

(
~∇L̃(~x0)

)T
·H−1(~x0) · ~∇L̃(~x0) =

1

2
∆~xT ·H(~x0) ·∆~x ≈ f(~x)− f(~x0), (3.1)

where

∆~x ≡ ~x− ~x0 = −H(~x0)−1 · ~∇L̃(~x0). (3.2)
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Using the EDM (3.1), at each iteration k in Optimass the optimality convergence test in

Minuit is performed by checking if the EDM is smaller than the optimality tolerance, ωk:

EDM < ωk. (3.3)

We have observed that simply setting ωk to a constant, ω∗, suffices. By default in Migrad,

this constant is set by the internal re-parametrization

ω∗ = 0.001 · tolerance · up. (3.4)

In Optimass, the optimality tolerance ω∗ is controlled and set by the tolerance param-

eter through the interface with Migrad.12 Its default value is set to be

tolerance = 0.1, (3.5)

while the parameter up is not used, it is set internally in Optimass to up = 1.

Feasibility condition. Throughout the whole minimization procedure, we test for fea-

sibility by computing the quantity13

||c(~xk)||2 ≡
∑
a

c2
a(~xk) (3.6)

in each iteration. Then, the test for feasibility is

||c(~xk)|| < ηk, (3.7)

where ηk denotes the feasibility tolerance in the kth iteration; this criterion evolves iteration-

by-iteration, unlike the optimality parameter ωk. Although ηk eventually approaches zero

as k →∞, we set the final convergence criterion as follows:

||c(~xk)|| < η∗, (3.8)

where η∗ denotes the terminal feasibility tolerance set to be

η∗ = 0.001×M. (3.9)

Here M is the appropriate typical mass scale associated with the target mass function, its

value should be chosen depending on the specific physics process at hand. In the current

version of Optimass, the user is expected to provide the relevant fixed value of the scale

12The specific method to set this quantity is

MnMigrad::operator()(unsigned int maxfcn, double tolerance),

where maxfcn denotes maximum number of function calls after which the Minuit minimization routine

will be stopped even if it has not yet obtained satisfactory convergence to an acceptable minimum. The

default value is maxfcn = 5000.
13In eq. (3.6), we assume that all constraints ca have the same mass dimension dim(ca) = dim(c) = 1,

otherwise each term in the r.h.s. should be raised to the appropriate power of 1/dim(ca).
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M .14 The rules for updating ηk will be described in section 3.1.3. The starting feasibility

tolerance is initialized by

η0 = η̄ (min [µ0, γ̄])β
0
η . (3.10)

Here the pre-factor η̄ is given by

η̄ = α · η∗, (3.11)

with some coefficient α chosen in the range

10 <∼ α <∼ 1000, (3.12)

µ0 is the starting penalty parameter given in (3.16) below, while γ̄ ∈ (0, 1), and our default

for it is

γ̄ = 0.2. (3.13)

By adjusting the coefficient α within the range (3.12), one can control the relative scale

of the initial feasibility tolerance, η0, to its terminal value, η∗. This in turn determines

the relative number of iterations within each of the two regimes (phase-1 and phase-2)

described in section 3.1.3 below. If α is too large, the ALM iterations in phase-1 terminate

very quickly, and the majority of the ALM iterations are performed in the regime of phase-

2, where the Lagrange-multipler driven evolution may not be efficient. On the other hand,

if α is chosen to be too small, most of the ALM iterations will be done in the regime of

phase-1, which only reduces the penalty parameter µk. In that case, Optimass will not be

able to take full advantage of the ALM method in avoiding the ill-conditioning as explained

in section 2.2. We recommend that users test several different values of α, until the number

of iterations in each phase is adequate and the results are stable.

Finally, the “tightening” parameters, βkη ∈ (0, 1), for the feasibility constraint are set

to be

β0
η = 0.5, (3.14)

βkη = 0.3 (k ≥ 1). (3.15)

Penalty and Lagrange multiplier parameters. The penalty parameter, µ, and La-

grange multiplier parameter vector, λ, are updated in each iteration (the actual assignment

rule will be explained below in section 3.1.3). Their starting values are

µ0 = 0.1 (3.16)

λ0
a = 0 (a = 1, · · · ,m). (3.17)

For the reduction of the penalty parameter µ, Optimass introduces another parameter,

τµ ∈ (0, 1), defined in (3.20) and by default set to

τµ = 0.5. (3.18)

14One possibility is M = [f(~x0)]1/dim(f(~x)), where dim(f(~x)) is the mass dimension of f(~x).
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If the value of τµ is too small, the penalty parameter µ may decrease too quickly, causing

strong convexification, which can lead to ill-conditioning. Conversely, if the value of τµ is

too large, one can experience slow convergence and a premature transition to phase-2 (see

section 3.1.3 below).

Initial minimizer and initial step size for Minuit. The initial guess for the minimizer

of the objective function, ~xs0, (referred to as “seeding” in the flowchart of figure 1), is set

by the invisible momentum configuration corresponding to ŝmin [31], i.e., the invisible

momenta are such that the total invariant mass in the event is minimized. In addition, the

initial step size, ∆~xs0, from from the ~xs0 toward the final minimizer, ~x∗, is another input

parameter for the Minuit initialization.15

3.1.2 Step two: unconstrained minimization with Minuit

Once the initial parameters have been chosen, we use the ALM mapping of a constrained

minimization problem to an unconstrained minimization problem and then perform the

latter minimization with Minuit (see appendix A). In the process of this minimization, we

perform an appropriate adjustment of parameters in each step of the algorithm. The code

has two different options for minimization with Minuit in the kth iteration:

1. Migrad:

Using as a starting value the minimizer, ~xk−1, obtained in the previous iteration,

Migrad searches for a minimizer, ~xk,1.

2. Simplex and Migrad:

Again using as a starting value the minimizer, ~xk−1, obtained in the previous itera-

tion, Simplex first finds a minimizer, ~xk,S , and then Migrad uses ~xk,S as a starting

value to find the final minimizer, ~xk,2.

Among the two possible answers, ~xk,1 and ~xk,2, we choose as our minimizer, ~xk, the one

which gives a lower value for the objective function. One could repeat either algorithm 1

or algorithm 2 (or other minimization procedures) with various starting points, ~x0, to find

a global minimum more accurately. However, we find that the combination of algorithms 1

and 2 described above is adequate to obtain accurate on-shell constrained M2 values, while

keeping the computational effort to a minimum. Interestingly, we find that algorithms 1

and 2 are complementary to each other. For example, in the M2 calculations of section 4,

we found that for the maximally constrained case of M2CC , the final solution, ~xk, was given

by the answer ~xk,1 from algorithm 1 (~xk,2 from algorithm 2) in 83% (17%) of the events.

This trend was reversed in the calculation of the minimally constrained case of M2XX ,

where algorithm 1 (algorithm 2) supplied the final solution ~xk in 19% (81%) of the events.

This behavior can be understood as follows. Migrad relies on gradient information, thus

15The initial input values for ~xs0 and ∆~xs0 can be set via the method

MnUserParameters::Add(const char* par-name, double init-point, double init-step-size).
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it can be fast and accurate if the objective function is smooth and continuous. On the other

hand, Simplex does not require gradient information, and can handle more complicated

functions (including “folds” and “creases”), although the ultimate accuracy is not as high.

In the case of M2CC , the objective function is convexified by the penalty terms, which

makes the relevant geometry near the local minimum smooth and well-defined, thus we

expect algorithm 1 by Migrad to outperform algorithm 2. However, it is known that the

M2XX objective function, “the maximum of the two invariant masses”, develops a crease,

on which the solution is found [77], and therefore one might expect algorithm 2 by Simplex

to work better for this case. The performance of Optimass with regard to the M2 variables

will be discussed in more detail in section 4.

3.1.3 Step three: ALM parameter adjustment

Once the minimization routine has obtained a value of the minimizer, ~xk, we then evaluate

the constraints at this minimizer, i.e., ca(~xk). Depending on the value of the feasibility (3.6),

we define three phases: “Phase 1”, “Phase 2”, and “Phase 3”. While “Phase 3” is nothing

but terminating the entire minimization procedure, the other two phases basically tighten

the feasibility tolerance. Our tightening scheme is inspired by the LANCELOT pack-

age [90–92]. As mentioned earlier, the tolerance, ωk, for the optimality condition (3.3) is

not evolved: ωk = ω∗.

Phase 1. The feasibility condition is far from satisfied:

||c(~xk)|| > max [ηk, η
∗] . (3.19)

In this case we put more weight on the penalty term by reducing µk+1 for the next iteration.

At the same time, the Lagrange multiplier vector, λk, remains unchanged. In the next

iteration, the starting value of the minimizer, ~xsk+1, is set to be the minimizer obtained

in the previous iteration, ~xk. Finally, the feasibility tolerance, ηk+1, is also evolved. The

detailed updating rules for Phase 1 are thus

µk+1 = τµ · µk, (3.20)

λk+1
a = λka, (3.21)

~xsk+1 = ~xk, (3.22)

ηk+1 = η̄(γ̄ · µk+1)β
k+1
η . (3.23)

Phase 2. The feasibility condition is converging, but insufficient to terminate the algo-

rithm:

η∗ < ||c(~xk)|| < ηk. (3.24)

In this case, we do not reduce the penalty parameter, µk, and instead adjust the values of

the Lagrange multiplier vector by the rule in eq. (2.23). The starting value of the minimizer,

~xsk+1, for the next iteration is set as in Phase 1. The feasibility tolerance is also modified.
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The detailed updating rules are given by

µk+1 = µk, (3.25)

λk+1
a = λka −

ca(~xk)

µk
, (3.26)

~xsk+1 = ~xk, (3.27)

ηk+1 = ηk · µ
βk+1
η

k+1 . (3.28)

Phase 3. In this phase, we have achieved sufficient feasibility:

||c(~xk)|| < η∗. (3.29)

We therefore break the sub-minimization loop and return ~xk as the final value, ~x∗, of the

minimizer.

3.2 Validation

We now demonstrate the performance of the algorithm described in the previous subsec-

tion with two simple examples, for which one can also obtain analytic solutions for the

minimizer, ~x∗, and the Lagrange multiplier vector, λ∗. The first example, considered in

section 3.2.1, yields a well-defined solution at a unique global minimum. In the second

example, treated in section 3.2.2, we find that the solution for the Lagrange multiplier

vector is not well-defined because the relevant objective function is “folded” and is not

differentiable at ~x∗. The examples illustrate the evolution of the ALM parameters and

demonstrate how the solution found in the kth iteration converges to the true value in

terms of feasibility and optimality.

3.2.1 Example one

Our first example involves minimizing the objective function

f(x, y) = x+ y, (3.30)

over the usual plane, ~x ≡ (x, y), subject to the constraint

x2 + y2 − 1 = 0. (3.31)

This constraint implies that our solution must lie on a unit circle centered at the origin.

Clearly, the function (3.30) is minimized along the circle at the point

(x∗, y∗) =

(
−
√

2

2
,−
√

2

2

)
, (3.32)

which is the global minimizer in this example.

The objective function, (3.30), is plotted in the left panel of figure 2. The locus of

feasible points (i.e., the unit circle about the origin,) is shown in black. With the Lagrange

multiplier method, one adds a Lagrange multiplier term to the objective function as in (2.4)

L(x, y, λ) = x+ y − λ (x2 + y2 − 1). (3.33)
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Figure 2. Test of the ALM for the objective function f(x, y) = x+ y subject to x2 + y2 = 1. (a)

Plot of the objective function (color coded) and the constraint curve (in black). (b) Contour plot

of the augmented Lagragian (3.38) for the last (fifth) iteration. The magenta points denote the

minimizers, ~xk, found at each iteration.

There are two stationary points given by

(x∗, y∗ , λ∗) = ±
(√

2

2
,

√
2

2
,

√
2

2

)
. (3.34)

The Hessian corresponding to the function (3.33) is

HL =

(
−2λ 0

0 −2λ

)
, (3.35)

and the condition for a minimum (i.e., that HL should be positive definite) requires us to

choose λ < 0, which selects the correct minimizer among the two stationary points (3.34):

(x∗, y∗ , λ∗) =

(
−
√

2

2
,−
√

2

2
, −
√

2

2

)
, (3.36)

confirming the earlier result (3.32).

We now wish to verify that the Optimass algorithm reproduces this solution. After

running the code, we obtain

(x∗, y∗;λ∗) = (−0.707106,−0.707106;−0.707180), (3.37)

which is consistent with (3.36) (
√

2/2 = 0.707107 . . .). We note that this convergence only

required five steps, suggesting that the minimum was found relatively easily. The right
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Figure 3. Tracing the convergence state of the solution and the evolution of relevant parameters

of the ALM algorithm for the minimization problem depicted in figure 2.

panel of figure 2 shows a contour plot of the augmented Lagrangian,

L̃(x, y;µ5, λ5) = (x+ y)− λ5 (x2 + y2 − 1) +
1

2µ5
(x2 + y2 − 1)2 with (3.38)

(µ5, λ5) = (0.027,−0.707180),

for the final minimization step (k = 5) at which the correct solution, (3.37), was obtained.

The convexification due to the penalty term

1

2µ5
(x2 + y2 − 1)2

ensures that the solution of the constrained optimization problem is (at least) a local

minimum. The magenta dots (connected by green lines) in the figure denote the solution,

~xk, of the kth minimization, starting with a randomly chosen initial point, ~xs0 = (0, 0.7).

In the four panels of figure 3, we trace the evolution of several parameters of the

algorithm as well as the properties of the approximate solutions, ~xk. The upper left panel

shows the evolution of the intermediate feasibility tolerance, ηk, (blue dashed line) and the

real feasibility, ||ci(xk)||, (red solid line) calculated at the end of each iteration, as well as

the scale set by the ultimate feasibility tolerance, η∗, given by the horizontal black dashed
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Figure 4. The same as figure 4, but using (3.39) as an objective function instead.

line. We see that in the first two iterations ||ci(xk)|| > ηk, and so we are in Phase 1(brown

shade). The onset of Phase 2 is marked by the crossing of the red solid and blue dashed

lines; in iterations 3 and 4 we are in Phase 2. The terminal Phase 3 is entered when the

red solid line dips below the horizontal black dashed line marking the value of η∗, and this

finally occurs during the 5th iteration.

The upper right and lower left panels in figure 3 respectively show the evolution of

(the initial values of) the penalty parameter, µk, and the Lagrange multiplier, λk, in each

iteration. We see that during Phase 1, µk was updated while λk was fixed, while in Phase

2, λk was updated while µk was held fixed. Throughout this process, the solution, ~xk, from

each step gradually converges to the analytic solution, (3.32), as shown in the lower right

panel in figure 3. Note that from the first iteration on, the solutions are on the diagonal

line x = y (see also the right panel in figure 2) — except for their starting values, the red

and blue lines in the lower right panel of figure 3 essentially overlap.

3.2.2 Example two

Our second example is very similar to the one considered in the previous subsection, except

now we change the objective function to

f(x, y) = |x+ y| , (3.39)

and we keep the same constraint as before:

x2 + y2 − 1 = 0. (3.40)

The left panel in figure 4 plots the objective function, f(x, y), as well as the feasible set

(the unit circle centered on the origin). Note the “fold” along the line y = −x. On this

line, the objective function is not a smooth function, hence one of the basic assumptions
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generally employed in the theory of constrained optimization (see section 2) is not satisfied.

Nevertheless, in such cases we typically find that the Optimass algorithm still converges

efficiently to the correct solution.

It is clear from figure 4 that the current problem has a two-fold ambiguity, there are

two equivalent solutions for the global minimizer:

(x∗, y∗) =

(√
2

2
,−
√

2

2

)
or (x∗, y∗) =

(
−
√

2

2
,

√
2

2

)
. (3.41)

Starting from the initial point (xs0, y
s
0) = (0.6, 0.7), Optimass converges to

(x∗, y∗) = (−0.707132, 0.707132) (3.42)

in a single iteration (i.e., without taking µ → 0). The right panel in figure 2 shows a

contour plot of the augmented Lagrangian,

L̃(x, y;µ0, λ0) = |x+ y| − λ0 (x2 + y2 − 1) +
1

2µ0

(
x2 + y2 − 1

)2
, (3.43)

for the only step that the algorithm needed, the initial step. The “folded valley” feature

of the objective function suggests that one does not need much additional convexification

from the penalty term (since we are already in a valley), and the algorithm converges

very quickly.

In both of these two toy examples, as well as in numerous physics motivated stud-

ies described in the next section, we verified that the numerical solutions obtained with

Optimass are stable with respect to small variations of the default initial values of the

parameters, and in particular ~xs0.

4 Calculating M2 variables with Optimass

In this section, we describe the main intended use of Optimass, the calculation of kinematic

variables suitable for analyzing missing energy events at hadron colliders. The calculation

involves a minimization of a mass function over a number of invisible particle momenta,

subject to certain constraints (e.g., on-shell constraints, or the missing transverse momen-

tum constraint (1.1)). In particular, we will show how the code can be used to calculate

the recently proposed M2 variables with non-linear constraints [26, 76, 77].

We first provide a brief review of the M2 variables; then define the relevant objective

function and identify the sorts of constraints that may be imposed. We then demonstrate

the performance of Optimass in the calculation of M2 in the physically important case of

top quark pair production, when both tops decay leptonically.

4.1 Introduction to M2

The M2 variable [26, 76, 77] is a (3 + 1)-dimensional analogue of the well-known MT2

variable [57]. Both are typically applied to final states that may result from (a) the pair16

16Hence the subscript “2”.
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production of “mother” particles that (b) subsequently decay to both visible and invisible

particles. The best motivated scenarios typically have too many invisible particles in the

final state, so that we cannot, in general, reconstruct the masses or momenta of all of the

intermediate particles in the event with certainty. Both M2 andMT2 are thus constructed to

provide an ansatz for the invisible particle momenta. This ansatz involves the minimization

of a suitably defined kinematic mass function of the visible and invisible momenta in the

event. MT2, by construction, is restricted to the transverse plane, and does not involve the

longitudinal momenta of the invisible particles. On the other hand, M2 is not limited to

the transverse plane, and thus provides an ansatz for the longitudinal invisible momenta

as well. This ansatz can be usefully applied to particle mass reconstruction and event

topology disambiguation [77, 78]: once we obtain values for the three-momenta of the

invisible particles, we can work backwards to reconstruct the masses of the heavier particles

produced in the intermediate steps of the relevant decay in terms of the hypothesized masses

of the invisible particles in the final state. While the mass of such intermediate resonances

is a priori unknown, in symmetric event topologies the two decay sides are identical (by

definition), and we can impose the condition that the mass of an intermediate resonance

of interest is the same in both decay chains. Adding such on-shell constraints further

restricts the allowed solution space for the individual invisible momenta, leading in general

to a different outcome from the procedure of minimization. Thus the imposition of different

on-shell constraints leads to new, physically-motivated kinematic variables.

Let us consider for concreteness a process in which a pair of heavy particles, A, un-

dergo identical two-step, two-body, cascade decays, i.e., each A decays into two (massless)

visible particles, a and b, plus a (massive) invisible particle, C, via an on-shell intermediate

particle, B, (see figure 5)

A→ a B → a b C. (4.1)

For simplicity, we assume that all visible particles are fully distinguishable and that particle

a is emitted before particle b, i.e., we do not address the combinatorial issues since they

are not relevant for the current discussion of computing the M2 variables.

Given the event topology of figure 5, one can consider three different subsystem topolo-

gies, depending on which of the particles along the red dashed lines are treated as mothers

and which are treated as daughters [73, 77]. For example, considering the event as a whole

corresponds to subsystem (ab), in which Ai are the mothers, Ci are the daughters, while Bi
are intermediate resonances, dubbed “relatives” in [77]. We are interested in placing the

maximum possible lower bound on the mass of A, as a function of the hypothesized mass,

m̃, of C. The prescription for doing so is well-known (see, e.g., [26]): we minimize of the

heavier of the two parent masses, MA1 and MA2 , subject to relevant kinematic constraints.

In the simplest case, we only apply the missing transverse momentum constraint, (1.1),

and obtain

M2(m̃) ≡ min
~q1,~q2
{max [MA1(~q1, m̃), MA2(~q2, m̃)]} , (4.2)

~q1T + ~q2T = /~PT
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A1 B1 C1

A2 B2 C2

a1 b1

a2 b2

(a)

(b)

(ab)

Figure 5. The event topology for the decay process in eq. (4.1), together with the three possible

subsystems. The blue dotted, the green dot-dashed, and the black solid lines indicate the subsystems

(a), (b), and (ab), respectively.

where ~qi denotes the three-momentum of the invisible particle, Ci. Note that the missing

transverse momentum condition is linear and is easily solved, so that the minimization

in (4.2) is unconstrained and can be performed over an unconstrained four-dimensional

momentum space, e.g., {~q1T , q1z, q2z}.
The situation becomes much more interesting (and challenging) when we consider

additional nonlinear constraints. Given the process of figure 5, it is natural to consider

additionally constrained versions of eq. (4.2). Having already made the assumption that

the two decay chains are identical,17 we can additionally impose that the particles A1 and

A2 have the same mass,

MA1 = MA2 , (4.3)

that the particles B1 and B2 have the same mass,

MB1 = MB2 , (4.4)

or both (4.3) and (4.4). Together with the case where neither (4.3) or (4.4) is required

to hold, a total of four variants are therefore possible. Following the same notation as

ref. [77], we introduce two more subscripts on the M2 variable to indicate whether the

constraints in eqs. (4.3) and (4.4) were applied during the minimization or not. The first

subscript will refer to the parent constraint in eq. (4.3), while the second subscript will

refer to the relative constraint in eq. (4.4). If a constraint is imposed, the corresponding

index is “C”, otherwise it is “X”. Therefore, eq. (4.2) can be expressed as M2XX because

no extra constraints are imposed:

M2XX(m̃) ≡ min
~q1,~q2
{max [MA1(~q1, m̃), MA2(~q2, m̃)]} , (4.5)

~q1T + ~q2T = /~PT .

17See refs. [60, 61, 78] for relaxing this assumption.
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The other three variables are formally defined as follows:

M2CX(m̃) ≡ min
~q1,~q2
{max [MA1(~q1, m̃), MA2(~q2, m̃)]} , (4.6)

~q1T + ~q2T = /~PT

MA1 = MA2

M2XC(m̃) ≡ min
~q1,~q2
{max [MA1(~q1, m̃), MA2(~q2, m̃)]} , (4.7)

~q1T + ~q2T = /~PT

M2
B1

= M2
B2

M2CC(m̃) ≡ min
~q1,~q2
{max [MA1(~q1, m̃), MA2(~q2, m̃)]} . (4.8)

~q1T + ~q2T = /~PT

MA1 = MA2

M2
B1

= M2
B2

Eqs. (4.5)–(4.8) define the four possible M2 variables for the (ab) subsystem. One can

similarly define four M2 variables for each of the (a) and (b) subsystems, we refer the

reader to [77] for the exact definitions.

4.2 Calculating M2 for dilepton top events

From the definitions (4.6)–(4.8) it is clear that the problem of computing the variables

M2CX , M2XC , and M2CC falls into the general category of constrained minimization prob-

lems (2.1), (2.2) which Optimass is designed to solve. In the remainder of this section,

we shall therefore illustrate the functionality of Optimass with the physics example of

figure 5. Specifically, we consider the case of pair-produced top quarks that decay fully

leptonically:

pp→ tt̄, (t→ bW+ → bl+νl), (t̄→ b̄W− → b̄l−ν̄l). (4.9)

Thus, in figure 5, particle A is associated with the top quark, particle B with the W -boson,

and particle C with the neutrino. For simplicity, since our major interest is not in the shape

of the distributions but in the precision of the minimization procedure, we consider events

where the top quarks are produced at threshold and decay according to phase space. We

neglect initial and final state radiation, and also do not take into account experimental

efficiencies, cuts, combinatorics, and detector resolution. All those effects are important in

a real physics analysis, but are irrelevant to the question of evaluating the performance of

the Optimass minimization algorithm, which is our goal here.

We use Optimass to compute the values for the M2CX , M2XC , and M2CC variables for

all three subsystems. In order to judge the precision of this numerical calculation, ideally

we need to identify an alternative method for computing these answers, which would give

us reference benchmarks. Fortunately, for the case of the M2CX variable, such a benchmark

is provided by the MT2 variable itself — we can use the result, proven in ref. [77], that
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Figure 6. Comparison between MT2 (blue shaded histograms) and M2CX (red histograms) for

each subsystem. For the (ab) and (a) subsystems, the relevant MT2 values are evaluated by the

well-known analytic formula, whereas those for the (b) subsystem are computed numerically with

the package from ref. [79]. The vertical black dashed lines indicate the expected endpoint of the

MT2 distribution for the given test mass.

Figure 7. Scatter plots of the difference M2CX −MRef
T2 versus the reference value, MRef

T2 .

M2CX and MT2 are identical event by event. This enables us to directly compare the values

of MT2 and M2CX for each of the three possible subsystems. The Cambridge variable MT2

can already be reliably computed with one of several publicly available codes; here we

use the package from ref. [79]. Furthermore, for the (ab) and (a) subsystems, analytical

formulae for MT2 are also available [69, 72], facilitating the comparison.18

Figures 6 and 7 show the results from the comparison between the value of M2CX

obtained from Optimass and the corresponding reference value, MRef
T2 , for all three sub-

systems. Since the exercise is performed with the tt̄ decay sample, we take the trial mass to

be the true mass of the daughter particle: m̃ = 0 GeV for the (ab) and the (b) subsystems

18In the case of the (b) subsystem, the b-quarks simulate initial state radiation, in which case no analytical

formula for MT2 is known, so we need to rely on the computer code from ref. [79].
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Figure 8. The comparison between the values of M2XC obtained by two different internal codes.

Figure 9. The same as figure 8, but for M2CC .

and m̃ = 80 GeV for the (a) subsystem. We choose the M parameter in eq. (3.9) to be

200 GeV for subsystems (ab) and (a), and 100 GeV for subsystem (b). Figure 6 reveals that

the distributions of the on-shell constrained M2 variable, M2CX , (red dashed histograms)

are almost identical to the corresponding MT2 distributions (blue dot-dashed shaded his-

tograms). Only a handful of events show a difference on the order of 1 − 2 GeV, as seen

in the scatter plots of figure 7. The results shown in figures 6 and 7 were obtained with

the default values of the Optimass parameters. Of course, the precision can be further

improved by tweaking the relevant tolerance parameters, increasing the maximum number

of iterations, or improving on the initial guess of ~xs0. However, this will come at the cost

of increased computation time; we believe that the level of precision seen in these figures

should be sufficient for most practical analyses.

Figures 8 and 9 provide a similar validation for the case of the M2XC and M2CC vari-

ables. In this case, however, we do not have a readily available benchmark for comparison:

first, because analytical formulas for those cases do not exist, and second, because there

is no publicly available code which is able to handle M2XC and M2CC . This is why we

produced two different versions of our code (created independently by different sets of the

current authors), and proceeded to compare their results for M2XC and M2CC in figures 8
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and 9, respectively. The figures show that the two internal codes agree reasonably well, with

notable differences only in about 1% of the events. The events with the largest deviations

were scrutinized further, revealing that one of the codes typically found a local minimum,

due to a different choice of starting values for ~xs0. When repeating the minimization with

a range of possible choices for ~xs0, and taking the minimum of the obtained set of values of

M2, the two codes were shown to be in exact agreement.

4.3 Demonstration of Optimass for one event

In conclusion, we supplement the toy examples from section 3.2 with one example of a real

tt̄ event. The 4-momenta (E, px, py, pz) of the four visible particles (in GeV) are

pa1 = (68.003, −8.404, 16.069, −65.541)

pb1 = (56.168, −29.282, −29.683, 37.635) (4.10)

pa2 = (68.003, 6.881, −56.711, −36.890)

pb2 = (81.160, −27.332, 68.553, 33.769),

thus the missing transverse momentum is

/~PT = (58.137, 1.772). (4.11)

The initial parameters for the algorithm are given by

(qs1x,0, q
s
1y,0, q

s
1z,0, q

s
2z,0) = (−40,+40,−40,+40) (GeV), (λ0

1, λ
0
2) = (0, 0).

Figure 10 is the analogue of figure 3, showing the convergence to a satisfactory solution

for M2CC in subsystem (ab) after the k = 4 step, giving

(q∗1x, q
∗
1y, q

∗
1z, q

∗
2z) = (38.082, 5.612, 26.598, −8.717) (GeV),

(λ1∗
4 , λ

2∗
4 ) = (0.000001,−122.329803), (4.12)

µ4 = 0.025.

Figure 11 is analogous to figures 2 and 4 for this case. The left panel plots the original

objective function, while the right panel shows a contour plot of the augmented Lagrangian

function as of the final (k = 4) iteration. In the right panel, the set of points which satisfy

the constraint eq. (4.3) (eq. (4.4)) is shown in blue (red). As before, the magenta points

mark the locations of the minimizer, ~xk, found in the kth iteration.

5 Conclusions

With the restart of the LHC, the quest for new physics has resumed. We believe that

kinematic variables like M2 will play an increasingly important role in searching for SUSY

and related models; the gain in sensitivity that these variables provide (see, e.g., [78]) aids

both in setting limits on and in discovering BSM physics.

Since the calculation of M2, like many other kinematic variables, involves a constrained

minimization that must be performed numerically, it is important to ensure that this
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event considered in section 4.3.
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Figure 11. The same as figures 2 and 4, but for the single event considered in section 4.3. Since

the objective function has four independent arguments, in order to visualize the evolution of the

minimizer, we plot q1z and q2z, having fixed the other two variables, q1x and q1y, to the values

which minimize the objective function for the given choice of q1z and q2z.

– 28 –



J
H
E
P
0
1
(
2
0
1
6
)
0
2
6

Figure 12. An example of the general event topology which can be handled by Optimass. We

allow for two decay chains, involving a sequence of 2-body or 3-body decays. In each decay, the

final state particles can be visible, invisible, or both.

calculation is performed in an efficient and reliable way. Thus we have introduced the

public package, Optimass, which achieves these important goals. Our algorithm utilizes

the ALM and interfaces with the popular unconstrained minimization package, Minuit.

We have described the relevant issues in what we hope will be sufficient depth to aid

the physicist new to the challenges of constrained optimization. The Optimass algorithm

has been described in detail and examples of its use have been provided. We compared

analytically calculated values of MT2 to the M2CX variable obtained using Optimass and

found excellent agreement. Other tests of Optimass were performed and the results are

encouraging. We stress that while our physics example in section 4 was limited to the

dilepton tt̄ topology of figure 5, Optimass has been designed to handle arbitrarily general

event topologies, as indicated in figure 12:

• Multiple invisible particles in each decay chain. In many motivated scenarios, invisible

particles may appear not only at the end of the decay chain (as is customary for dark

matter particles), but also at intermediate stages. The Optimass code can handle

such cases, since the total number of invisible particles is unrestricted. In figure 12,

the first decay in the lower chain and the second to last decay in the upper chain

provide examples of sources of such intermediate invisible particles.

• Multi-body decays. The decay chains can be constructed of two-body decays, three-

body decays, etc. Furthermore, a multi-body decay may result in a set of final state

particles which can be visible, invisible, or both. As an illustration, in figure 12

we show three two-body decays and three three-body decays. Two of the three-body

decays result in visible particles only, while the remaining one produces both a visible

and an invisible final state particle.

This more general functionality of Optimass will be explored and demonstrated in a future

publication [103].

In conclusion, we look forward to implementing improvements to and extensions of the

Optimass framework, and to its use in the search for new physics that lies ahead.
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A Unconstrained minimization with Minuit

Using the methods of section 2, and in particular the ALM, we can convert a constrained

optimization problem into an unconstrained minimization problem; the next step is to

actually solve the resulting unconstrained minimization problem. For this task we use

Migrad and Simplex, two algorithms which are part of the Minuit library. Thus, after

briefly introducing this ubiquitous library, we will discuss these algorithms in sections A.1

and A.2, respectively.

Minuit [84] is a popular function minimization library. It is often used for data

analysis, as the minimization of χ2 functions and likelihoods represents perhaps the main

use of minimization in experimental particle physics. Minuit was initially written in

Fortran, but has been reimplemented (as Minuit2 [93]) in C++, taking advantage of

its object-oriented features; Minuit2 is included in the math library of the omnipresent

data analysis package Root [94]. Minuit and Minuit2 (which we will henceforth refer to

simply as “Minuit”) contain various minimization algorithms, offering the user a choice.

Among the several main algorithms (Migrad, Seek, Scan, Simplex), we choose to use

Migrad and Simplex which are briefly described in the next two subsections.

A.1 Migrad

Migrad utilizes a variation of the Newton’s method called a Variable Metric Method

(VMM) [95, 96]. We remind the reader that Newton’s method is an iterative method for

finding the root of a function f(x) in which

xn+1 − xn = − f(xn)

f ′(xn)
. (A.1)

Finding a minimum of f(x) rather than a root corresponds to finding a zero of f ′(x). In this

case the sequence of approximate solutions obtained by Newton’s method are described by

xn+1 − xn = − f
′(xn)

f ′′(xn)
. (A.2)

The analogous expression in the multidimensional case is

~xn+1 − ~xn = −H−1(~xn)∇f(~xn), (A.3)

where H−1(~xn) is the inverse of the Hessian matrix. The name “Variable Metric Method”

is due to an interesting parallel with General Relativity. Namely, in the limit where the

objective function, f(~x), is a quadratic form with minimum at ~x = ~0, then, for small ~x,

f(~x)− f(~0) ≈ ~xT
(

1

2
H(~x)

)
~x. (A.4)

The expression on the right hand side is a bilinear form with (1/2)H(~x) playing the role

of the metric tensor. If one chooses

f(~x) =

n∑
i=1

x2
i (A.5)
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in n dimensions, then (1/2)H(~x) is precisely the n-dimensional Euclidean metric. The

quantity on the right hand side of eq. (A.4) is known as the “estimated vertical distance

to minimum” (EDM), i.e.,

EDM ≡ ~xT
(

1

2
H(~x)

)
~x. (A.6)

Generally, when using a VMM, the optimality condition will check whether the calculated

value for the EDM exceeds a certain tolerance parameter.

Eq. (A.3) describes the essential idea of the VMM. However, the VMM is a “quasi-

Newton method” (as opposed to Newton’s method itself) because instead of calculating the

Hessian (or “metric”) exactly, it approximates it iteratively. The main differences among

different VMM algorithms lie in the precise form of this iterative approximation procedure.

The first VMMs used the so-called DFP updating formula [95–97] (after Davidon, Fletcher,

and Powell). Currently, the most common algorithms, including Migrad, use the BFGS

method [98–101].

A very useful property of VMMs is that subsequent steps are in “conjugate” directions,

i.e., in orthogonal directions with respect to the metric provided by the Hessian; addition-

ally, convergence to the minimum is efficient. Thus, the algorithm rarely crosses the folded

region of the M2-objective function where the gradient and Hessian are not defined. This

fact motivates the use of the Migrad implementation of the VMM for our constrained M2

calculations.

A.2 Simplex

Unlike VMMs, the downhill simplex (or Nelder-Mead) method [102], does not require the

calculation of gradients. Instead, one calculates the values of f(~x) at the n+ 1 vertices of

a simplex, a non-degenerate solid in n dimensions with n + 1 sides and n + 1 vertices. A

new vertex for the simplex is generated in each iteration of the method. If the value of the

objective function at the new point is lower than the value at one of the existing vertices,

the worst vertex is replaced by the new point. In this way, the volume of the simplex

becomes smaller; the algorithm stops when the simplex, now enclosing the minimum, has

shrunk to a specified size.

To be more concrete, let us first consider a (large) simplex of n+ 1 points in n dimen-

sions, with vertices

p1, p2, . . . , pn, pn+1. (A.7)

These points are ordered so that

f1 ≤ f2 ≤ . . . ≤ fn ≤ fn+1, (A.8)

where fi ≡ f(pi). We define the “center of mass”, p̄, using all points except pn+1 as follows,

p̄ =
1

n

n∑
i=1

pi. (A.9)
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In each step, the algorithm tries to replace the worst point, pn+1. First, a new test point,

pr, is obtained by reflection of the worst point about the center of mass,

pr = p̄+ α(p̄− pn+1), (A.10)

for some typical value of the expansion factor (generally α = 1; this is the value we shall

use in our use of Simplex). A new point is then determined using the value of f(pr) as

follows:

1. f1 ≤ fr ≤ fn: The previous worst point, pn+1, is replaced by pr, and the points are

relabeled in accordance with (A.8).

2. fr ≤ f1: The test point, pr, is the best point, so the current search direction is con-

sidered to be effective. We therefore shift the first n points

p1 → p2, p2 → p3, . . . ., pn → pn+1. (A.11)

To determine the new value for p1, we try one additional point, ps1 = p̄+ β(pr − p̄)
(typically β = 2), and evaluate its functional value, fs1. If fs1 < fr, we set p1 = ps1,

otherwise p1 = pr.

3. fr > fn: The simplex may be too big and therefore its size must be reduced. If

fr > fn+1, then a new contracted simplex is defined around the best point, p1, by

replacing all points except p1 by pi = p1 + δ(pi − p1) with 0 < δ < 1 (typically

δ = 0.5). If fn < fr < fn+1, then pn+1 is replaced by pr. A test of the new inner

point, ps2 = p̄ − γ(p̄ − pn+1) (typically γ = 0.5), is then performed, and pn+1 is

replaced by ps2 if fs2 < fn+1.

Since the simplex method is always designed to take as big a step as possible, it is rather

insensitive to shallow local minima and other small-scale structures in the objective func-

tion. Thus, we use the method to identify promising candidates for global minima. Once

the location of a possible global minimum has been identified, the Migrad algorithm de-

scribed above is used to obtain a more precise value of any local minimum in this area,

hopefully obtaining an accurate value for the location of the global minimum. The downhill

simplex method is implemented in Minuit using the Simplex algorithm.

B Installation and user instructions

The latest version of the Optimass has been developed and designed to achieve the au-

tomation of kinematic mass function minimization with constraints for general particle

decay system. In particular,

1. It has generality to treat various decay topologies from multiple parent particles

where in general the multiplicity can be larger than two.

2. It also has generality to include decay vertices where in general the multiplicity of

branch legs can be larger than three.

– 32 –



J
H
E
P
0
1
(
2
0
1
6
)
0
2
6

3. It has flexibility to easily define a specific sub-system of intermediate parent particles

with effective invisibles, in the full decay system.

4. It also has flexibility to define kinematic constraint functions of user’s own interest,

in terms of visible and invisible particles’ momentum degrees of freedom.

5. All these generality and flexibility can be initiated from user’s simple model card file

which defines 1) full decay process with user’s own particle label scheme, 2) parent

node particle in each decay chain, 3) effective invisible nodes in each decay chain,

and 4) constraint functions of particle momenta which can be interactively expressed

by the user’s particle label scheme.

The Optimass is free software written in C++ and Python under the copyleft of the

GNU General Public License. The latest version of the Optimass can be downloaded from

the following web page:

http://hep-pulgrim.ibs.re.kr/optimass

More detailed Optimass installation guide and the tutorial with examples on how to run

the code implementing user’s own decay topologies, can be found on the webpage as well.
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