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1 Background

In D spacetime dimensions the trace-reversed Einstein equations read

RMN = κ2
(
TMN −

1

d
T P

P gMN

)
, (1.1)

with d = D − 2. This suggests that the d-dimensional curvature, Rµν , for a maximally

symmetric d-dimensional source (with stress energy Tµν = τ gµν) can be independent of

τ since

Rµν = −κ
2

d
Tmm gµν , (1.2)

where we split the D directions into d- and 2-dimensional subsets: {xM} = {xµ, xm}. This

is ultimately why (for instance) relativistic strings can be flat for any value of their tension

when embedded into asymptotically flat 4D spacetimes [2].

Several brane-world approaches to the cosmological constant problem have tried to

build upon this observation [3–5], using (D, d) = (6, 4) to explain why cosmology sees such

small curvatures, Rµν , despite the expectation that the known elementary particles should

produce a large 4D vacuum energy, τ . Besides allowing 4D energy to curve unobservable

higher dimensions (rather than those seen by cosmologists) higher dimensions are also

useful because in them supersymmetry can also forbid a higher-dimensional cosmological

constant, leading to the Supersymmetric Large Extra Dimensions (SLED) proposal1 [5].

As eq. (1.2) shows, the proposal hinges on properly identifying the off-brane stress-energy,

Tmn, for both bulk fields and brane-localized sources.

Although this is a tempting line of argument, people remain (rightly) skeptical [7–9],

pointing out many things that could generically go wrong, often boiling down to variants

of a generic ‘no-go’ argument [10] that identifies scale-invariance as usually playing an

important role, and shows why this leads to a problem. What is more difficult is to pin

1For a recent review see [6].
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this down precisely, to identify whether or not the generic arguments contain loopholes and

to determine systematically on which parameters low-energy curvatures depend.2

We argue here why ref. [1] is similarly inconclusive, using its appearance to highlight

how a commonly used δ-function technique for coupling branes to the bulk can be mislead-

ing (or at best insufficiently precise to resolve the issues involved) and how to do better.

In 6D supergravity the curvature (and so effective cosmological constant) on a space-filling

brane turns out to be directly linked to the near-brane radial derivative [15, 16], φ′, of

one of the bulk fields (the dilaton). A central question therefore asks how φ′ is related to

the properties of the source branes and under what circumstances can it and the on-brane

curvature be small. A detailed answer to this is given in [14], but ref. [1] claims to be able

to do so using a much simpler δ-function technique, which sidesteps the ostensibly super-

fluous complications of [14]. We repeat — then critique — this argument to underline a

trap into which one can easily fall.

2 A critique

The basic problem is to determine how a specific source brane, described say by an action3

Sloc = −
∫

d4ξ
√
−γ T (φ) , (2.1)

couples to the bulk fields, described say by

SB = −
∫

d6x
√
−g
[

1

2κ2

[
R+ (∂φ)2

]
+

1

4
e−φA2

MN +
2g2

κ4
eφ
]
, (2.2)

with AMN representing a Maxwell field strength and γµν = gMN∂µz
M∂νz

N denoting the

induced metric on the brane, whose position is xM = zM(ξ) (see [14] for notational conven-

tions). An important role in this system is played by the invariance of the classical bulk

equations under the rigid rescalings gMN → c gMN and e−φ → c e−φ.

The problem when coupling Sloc to SB is that the source action is lower-dimensional

than the bulk action, and this difference must be bridged to infer the effects of the source on

the bulk. There are two related ways to proceed. What we call the ‘δ-function’ procedure

simply promotes the lower-dimensional source action to a 6D action by introducing a

localization function

Ŝloc = −
∫
d6x
√
−g T (φ)

[
δ(x− z(x))√

h

]
, (2.3)

which specializes to a metric ds2 = gµν(x, y) dxµdxν + hmn(y) dymdyn (where we have set

the mixed metric components gµm = 0) and introduces a scalar-density δ-function that, for

2For instance, although [8] identifies a problem if one assumes back-reaction comes only from the defect

angle induced by a brane, it is in the end inconclusive because it ignores equally large contributions branes

induce for other features of the extra-dimensional geometry [11–14] that must also be included to reliably

infer how the system really behaves.
3Much of the most interesting discussion in [13, 14] is about localized flux carried by the branes, but

this is not important for the δ-function ambiguity described here so we do not introduce this complication.
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any F , satisfies ∫
d2y δ(y − z)F (x, y) = F (x, z) , (2.4)

(without metrics) as usual. The field equations are then computed by adding eq. (2.3) to

SB and varying the bulk fields in the usual way. In particular, the crucial stress-energy

component, Tmn, is obtained by differentiating Ŝloc with respect to gmn.

The subtle part is deciding how δ(y − z) depends on the fields, and it is tempting

to assume it does not depend on them at all (as [1] effectively does, as we see below).

Although plausible at first glance, this assumption is suspicious for the extra-dimensional

metric given that δ(y − z) is designed to discriminate points according to their proper

distance from the point y = z. We show here that δ really must depend on gmn, and —

more importantly — how this dependence can be simply derived in terms of T (φ) from the

stress-energy balance of the UV physics that the δ-function is meant to represent.

To see how, we use the metric ansatz ds2 = W 2(ρ) ǧµν(x) dxµdxν + dρ2 + B(ρ)2 dθ2

(with ǧµν(x) a maximally-symmetric 4-metric) and find the Maxwell equation integrates

to give the nonzero component Aρθ = QB eφ/W 4 with integration constant Q. Assuming

δ(y − z) to be dilaton independent, the dilaton field equation reads

�φ =
1

BW 4

(
BW 4φ′

)′
= κ2eφ

(
2g2

κ4
− Q2

2W 8

)
+
∑
b

κ2T ′b(φ)

[
δ(y − zb)

B

]
, (2.5)

where primes denote derivatives with respect to the appropriate arguments — ie ρ for B,

W and φ for Tb — and the sum is over any source branes present. Assuming δ(y − z) is

metric independent gives the Einstein equations

− 1

κ2

[
B′W 4

]′
BW 4

= eφ
(

3Q2

4W 8
+
g2

κ4

)
+
∑
b

Tb(φ)

[
δ(y − zb)

B

]
, (2.6)

Ř

W 2
+

[
B(W 4)′

]′
BW 4

= 2κ2eφ
(
Q2

2W 8
− 2g2

κ4

)
(2.7)

together with the ‘constraint’

8

(
B′W ′

BW

)
+

Ř

W 2
+ 12

(
W ′

W

)2

−
(
φ′
)2

= 2κ2eφ
(
Q2

2W 8
− 2g2

κ4

)
. (2.8)

These agree with those found in [1].

Boundary conditions. The connection between curvature and φ′ comes from sum-

ming (2.7) with twice (2.5), multiplying by BW 4 and integrating the result over the trans-

verse directions, giving

Ř

∫
d2y BW 2 +

∫
d2y
[
2BW 4φ′ + (BW 4)′

]′
=
∑
b

2κ2
∫

d2y W 4T ′b(φ) δ(y − zb) . (2.9)

On one hand, integrating this over a region completely exterior to the branes, ending an

infinitesimal distance, ρ = ε, away, shows that Ř vanishes if BW 4(φ′+2W ′/W )ρ=ε vanishes

– 3 –
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near both branes. On the other hand φ′, W ′ and B′ at ρ = ε can be found by integrating

the above field equations over a complementary infinitesimal region, (ρ− ρb) ≤ ε, that just

barely includes each brane, and then taking the limit ε→ 0. This leads to the other way to

connect the brane and bulk actions: relating the near-brane boundary conditions for bulk

fields directly to the derivative of the 4D action, (2.1).

For example, performing this operation on the dilaton field equation gives

2π lim
ε→0

(
BW 4φ′

)
ρ=ρb+ε

= lim
ε→0

∫
ρ−ρb<ε

d2y
√
−g�φ = κ2W 4

b T
′
b(φb) , (2.10)

where φb = φ(ρb) and similarly for Wb. Making sense of this equation requires knowing

how each side behaves as ρ→ ρb, but this is determined by the bulk field equations which

in the near-brane limit (see appendix) give power-law solutions [17]

eφ ∝ ρ̂zb , B ∝ ρ̂βb and W ∝ ρ̂wb , (2.11)

where ρ̂ = ρ− ρb and the powers βb, wb and zb must satisfy the ‘Kasner’ conditions

4wb + βb = 4w2
b + β2b + z2b = 1 . (2.12)

This leaves one independent combination, and it is this that is fixed by the boundary

conditions in terms of T (φ).

Notice that in general (unless zb = 0) φ diverges logarithmically as ρ→ ρb, and (2.11)

shows how this can also lead to singular curvature in this limit. Notice however that the

condition βb+4wb = 1 implies that the left-hand side of (2.10) in all cases has a finite limit

as ε→ 0. Naively the same need not also be true of the right-hand side, depending on the

functional form of T (φ). But as shown in [14] (see also [18]) consistency is always restored

by the ε-dependence implied by the renormalization of the brane-bulk couplings [19, 20]

required even at the classical level to ensure physical properties remain finite as ε→ 0. In

particular these relations ensure that eφ and W are smooth enough at the brane position

that the integral over the potential and Maxwell contributions to the dilaton field equation

generally do not survive the limit ε→ 0.

To the extent that one trusts eqs. (2.6) the boundary condition for the metric function

B follows similarly

2π lim
ρ→ρb

[
W 4B′ − 1

]
= −κ2W 4

b Tb(φb) (tentative) , (2.13)

(which is the usual relation between tension and defect angle.) Eq. (2.7) similarly gives a

trivial boundary condition for the warp factor

2π lim
ρ→ρb

[B(W 4)′] = 0 (tentative) . (2.14)

δ-function failure. We now can see more precisely what is wrong with taking the δ-

function independent of bulk fields. As argued in [21–23] the problem is that the boundary

conditions derived generically do not satisfy the constraint equation, (2.8). To see this

multiply (2.8) through by (W 4B)2 and evaluate the result in the limit ρ→ ρb. This gives

2 lim
ρ→ρb

[
W 4B′

] [
B(W 4)′

]
+

3

4
lim
ρ→ρb

[
B(W 4)′

]2
= lim

ρ→ρb

[
W 4Bφ′

]2
, (2.15)
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which is a nontrivial relation between the near-brane boundary conditions for the fields

B, W and φ. Furthermore, each factor is finite as ρ → ρb and so (2.14) combined

with (2.15) implies

lim
ρ→ρb

[
W 4Bφ′

]
= 0 . (2.16)

This result is in general inconsistent with the dilaton boundary condition (2.10), which indi-

cates (supported by the numerics of [14], which constructs explicit UV completions for the

brane) that choices for T (φ) should exist that are consistent with nonzero limρ→ρb BW
4φ′.

What is going on? The problem is the assumption of metric-independent δ(y). The

constraint equation breaks down ultimately because this assumption is inconsistent with

stress-energy balance, which is satisfied for any UV completion of the brane. A similar

breakdown is also seen if the brane is regularized by giving it substructure (such as rep-

resenting it as a codimension-one ring [21–24]) if care is not taken to stabilize the ring’s

radius since the failure of the radial stresses to balance implies an inconsistency with the

radial Einstein equation.

Determining the field-dependence of δ(y). If δ(y) must depend on gmn, how is this

dependence determined? We here recap the arguments [14, 21–23] that show how this can

be inferred using the constraint (2.15). To see how, we leave the derivative

∂ δ(y)

∂gmn
= Cmn δ(y) , (2.17)

unspecified in the field equations, which for rotationally invariant sources gives two inde-

pendent components:4 Cρρ and Cθθ. This modifies eqs. (2.6)–(2.8) to become

[
B′W 4

]′
BW 4

= −κ2
[
eφ
(

3Q2

4W 8
+
g2

κ4

)
+
∑
b

Tb(φ)

B
δ(y − zb)

(
1 +

3

2
Cθθ −

1

2
Cρρ

)]
Ř

W 2
+

[
B(W 4)′

]′
BW 4

= 2κ2

[
eφ
(
Q2

2W 8
− 2g2

κ4

)
−
∑
b

Tb(φ)

B
δ(y − zb)

(
Cθθ + Cρρ

)]

8

(
B′W ′

BW

)
+

Ř

W 2
+ 12

(
W ′

W

)2

−
(
φ′
)2

= 2κ2

[
eφ
(
Q2

2W 8
− 2g2

κ4

)
+ 2

∑
b

Tb(φ)

B
δ(y − zb)Cρρ

]
, (2.18)

which we integrate as before to relate near-brane asymptotics to brane properties.

Integrating the third of these equations over the disc |ρ− ρb| < ε and taking the limit

ε→ 0 gives

Cρρ = 0 , (2.19)

4The counting is the same for rotationally invariant sources with higher codimension, so the arguments

given here suffice to determine Cmn in this case as well.
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because the equation is smooth in the near-source limit.5 Integrating the other two similarly

modifies the tension/defect-angle boundary conditions eqs. (2.13) into

2π lim
ρ→ρb

[
W 4B′ − 1

]
= −κ2W 4

b Tb(φb)

(
1 +

3C

2

)
, (2.20)

while (2.14) becomes

2π lim
ρ→ρb

[B(W 4)′] = −2κ2W 4
b Tb(φb)C , (2.21)

where C = Cθθ. The constraint evaluated as ρ→ ρb then requires C to satisfy

− 4

[
1− τb

(
1 +

3C

2

)]
τbC + 3 τ2b C

2 = τ ′b
2
, (2.22)

where we define for convenience τb := 1
2π κ

2W 4
b Tb(φb) and τ ′b := 1

2π κ
2W 4

b T
′
b(φb).

Solving — with root chosen so τ ′b → 0 gives C → 0 — completely determines C in

terms of Tb and its derivative,

τbC = −2

9
(1− τb) +

√(
2

9

)2

(1− τb)2 +
τ ′b

2

9
'

τ ′b
2

2(1− τb)
+O(τ ′b

4
) , (2.23)

and so shows explicitly how the δ-function must depend on the metric to remain consis-

tent with the known boundary conditions and stress-energy balance within the brane. In

particular, C is always nonzero whenever T ′ 6= 0 in agreement with what is found with the

more elaborate but explicit UV completions of the brane source considered in [14].

Notice in particular that (2.20) implies a deviation from the usual tension/defect-angle

relation whenever T ′ is nonzero.

3 Where we stand

The above arguments show how pressure-balance constraints dictate a brane’s transverse

stress-energy, Tmn, as a specific function of its tension, T (φ), and that this function gener-

ically does not vanish unless ∂T/∂φ also does. Inferences drawn (such as those of [1]

about the circumstances under which δSloc/δφ can vanish) using incomplete arguments

that do not track the implications of stress-energy conservation are clearly not trustwor-

thy. Because of (1.2) this is clearly important when determining the size of the effective

cosmological constant seen by an on-brane observer.

However just because a statement is not adequately supported does not make it false.

Some of the conclusions of [1] are supported by the more detailed explorations of [14],

and by the determination of the 4D perspective of the low-energy 4D effective theory

below the KK scale provided in [25]. In particular these studies do identify an important

conceptual error in some of the earlier SLED papers, most notably in [26] and its subsequent

extensions6 [27–29].

5The asymptotic form (2.11) actually gives terms that diverge but these cancel due to (2.12).
6The papers [27–29] discuss loop corrections to the background proposed in [26]; although the loop

calculations remain valid despite this error, a more refined perspective should be adopted when considering

the background about which they are computed.
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The important issue concerns whether or not the limit φ′ → 0 as ρ → ρb is possible

without the branes being scale invariant. This issue is important because we know from

the above that the constraint ensures that if φ′ vanishes in the near-brane limit then W ′

does as well and so also does φ′ + 2W ′/W . The latter quantity vanishing then ensures

vanishing on-brane curvature, Ř = 0, but if this only occurs in the scale-invariant case

then Weinberg’s no-go argument [10] makes this less interesting, since all other mass scales

vanish too.

For the pure-tension branes discussed here (ie with action (2.1)) it has long been known

that the brane preserves the bulk scale-invariance iff T ′(φ) = 0, and because T ′ = 0 implies

φ′ → 0 near the brane it is true that strictly vanishing Ř only occurs in the scale-invariant

case. Furthermore, it has been known since [5] that the requirements of flux quantization

make the bulk components of Tmn the most dangerous for generating nonzero Ř. These

issues are what led to the study of the interplay between tension and a brane-localized flux

(BLF) term in the brane action [11, 12]

SBLF = −
∫
ω(φ)?A , (3.1)

where ?A is the 6D Hodge dual of the Maxwell field strength and the coupling function ω(φ)

is related to the amount of flux localized on the brane. Because of the metrics hidden in
?A the BLF interaction preserves scale invariance only if ω ∝ e−φ, making scale invariance

appear to differ from the condition δSloc/δφ = 0 once BLF is present, potentially opening

up the possibility of having φ′ → 0 (and so Ř = 0) without scale invariance.

This reasonable-sounding conclusion turns out to be wrong and closer examination

shows that the conditions for scale invariance and Ř = 0 remain equivalent even with brane-

localized flux. The reason for this is that although the limit φ′ → 0 requires δSloc/δφ = 0,

the back-reaction of the gauge field to the presence of the BLF interaction also introduces

a localized energy into the bulk Maxwell action, and it is the total localized action that

must be φ-independent to ensure Ř = 0. As proven in [13, 14] (and indeed argued in [1])

the conditions for scale invariance and vanishing near-brane φ′ agree once all sources of

localized dilaton coupling are included.

Although conceptually important, it is also true that this observation does not ap-

preciably alter the specifics of how Ř depends on brane properties. This can be seen by

comparing the results of [13, 14, 25] with those of [11, 12], for the value of Ř for various

choices of φ-dependent Sloc. What it does is clarify why Ř is not smaller than was found

in these explicit examples.

In the end what we seek is not a precise vanishing of Ř but a suppression in the low-

energy cosmological consant relative to the electroweak scale, which necessarily involves

breaking scale invariance. The issue is whether (and if so, by how much) Ř can be sup-

pressed by different choices for brane-bulk couplings, and if these choices can be technically

natural. The first indications are [25] (see also [11, 12]) that some suppression may be pos-

sible classically, but the re-examination of its stability to perturbations (including quantum

corrections) remains incomplete.

– 7 –
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A Asymptotic forms

Bulk fields generally diverge near codimension-two (and higher) sources, and these diver-

gences can complicate asymptotic arguments like those of section 2 if not treated properly.

We summarize here how the near-brane solutions of [17] (also reproduced in [14]) more

precisely govern the near-brane derivatives despite these divergences.

The starting point is the near-brane power-law solutions of the bulk equations near a

singular source point, which can be written as a power series in the proper distance from

the source, ρ̂ := ρ− ρb,

W = W0

(
ρ̂

`

)wb

+W1

(
ρ̂

`

)wb+1

+ · · ·

B = B0

(
ρ̂

`

)βb
+B1

(
ρ̂

`

)βb+1

+ · · · (A.1)

and eφ = eφ0
(
ρ̂

`

)zb
+ · · · ,

where ` is a dimensionful measure of the bulk’s proper size which is by assumption much

larger than the brane’s size: `� ρ̂. The coefficients of the series Wi, Bi and φi are dictated

by recursion relations arising from the bulk field equations, and these equations also impose

two relations — the Kasner conditions of (2.12) — amongst the three powers wb, βb and zb
(which capture the divergent behaviour of the bulk fields near the source). In particular,

the quadratic relation constrains how seriously the bulk fields can diverge by implying wb,

βb and zb must satisfy the inequalities

|wb| ≤
1

2
and |βb|, |zb| ≤ 1 . (A.2)

The bulk field equations leave one combination of the parameters βb, wb and zb free, and

it is this free combination that is determined by the physical properties of the source,

as follows.

The near-brane solution in eq. (A.1) can be inserted into the boundary condition (2.10)

and this gives

τ ′b(φb) = lim
ρ→ρb

[
BW 4φ′

]
= zb

(
B0W

4
0

`

)(
ρ̂

`

)βb+4wb−1
= zb

(
B0W

4
0

`

)
. (A.3)

where the last equality uses the linear Kasner condition (2.12). We similarly find

from (2.20) that

1− τb
(

1 +
3C

2

)
= lim

ρ→ρb

[
W 4B′

]
= βb

(
B0W

4
0

`

)
, (A.4)

and the boundary condition from (2.21) gives

4wb

(
B0W

4
0

`

)
= −2τbC . (A.5)

– 8 –
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Notice that this is always consistent with the constraint equation (2.8) because of the

quadratic Kasner condition (2.12).

As in the main text we see that a tacit assumption that C = 0 (as made so seductive

in the δ-function approach) immediately implies wb = 0, from which the Kasner conditions

then give βb = 1 and zb = 0; in manifest constradiction with (A.3). It was precisely to

nail down this problem that the UV completions in [14] were constructed, allowing these

asymptotic arguments to be tested in detail numerically.
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