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1 Introduction

The correlated stability, namely, the equivalence between thermodynamical and dynamical

stability in gravitational physics, is a long-standing problem and has recently received

renewed attention due to AdS/CFT correspondence. AdS/CFT correspondence states

that a gravitational system in the AdS bulk is dual to an ordinary laboratory type system

without gravity on the boundary. In particular, the bulk black hole is dual to the boundary

system at finite temperature. So it is tempting to conjecture that the correlated stability

should hold for such holographic gravitational systems [1, 2]. Actually there are plenty of

holographic models available for such a test, where a lot of works have been done [3–9].

Of special interests, the authors of [10] investigated a holographic model with two

charged scalar fields not coupled directly to each other, which are correlated to two order

parameters in the dual field theory, in the four dimensional bulk AdS spacetime under

the probe limit, which we call the BHMRS model. More than one order parameters may

describe a more complicated system, which has been extensively studied in condensed

matter physics (e.g., in multicomponent superconductors and superfluids) [11–13].

In [10], a new superconducting phase with two coexisting orders was found in a certain

range of chemical potential in the dual theory, besides the ordinary phase and the phase

with only one superconducting order. The coexisting phase is competitive between the

two order parameters, or in other words, when one of the two scalar fields’ condensation

– 1 –



J
H
E
P
0
1
(
2
0
1
6
)
0
1
6

increases, the condensation of the other would decrease. Taking account of the backreac-

tion, the BHMRS model was studied in detail in [14] and a much richer phase structure

was found, which is determined by calculating and minimizing the free energy (grand po-

tential) of each phase when there are more than one possible phases for a fixed set of

thermodynamic parameters.

In this paper, we focus on the dynamical (in)stability of the BHMRS model in the probe

limit. In order for comparison with the thermodynamical (in)stability, we first calculate

the free energy of the system in the rigorous probe limit. Then, we investigate the quasi-

normal modes (QNMs) of the system. Since the QNM investigation only involves linearized

equations of motion, it is a quick and reliable way to find out the phase structure of a model.

Actually, we propose a new method to calculate QNMs without using the gauge in-

variant forms in the coexisting phase. Our new method looks more convenient than other

widely used methods, e.g., the determinant method proposed by [16] for which one should

first find a maximal set of linearly independent numerical solutions of the linearized equa-

tions of motion. In particular, compared with the gauge invariant formalism, the boundary

conditions and gauge fixing of the linearized equations of motion are treated in a very nat-

ural way in our method, which is remarkably adapted for comparison with the late time

behaviors of the real time evolution.

In addition to describing the late time behaviors of the evolution, QNM can also be

used to investigate the phase transitions. Although we do not show the figures in this paper,

we have made sure that there will be the lowest lying quasi-normal mode passing through

the real axis around the critical values where a stable phase converts to be unstable.

We investigate the real time dynamical (in)stability of the system by giving the sys-

tem various strength of Gaussian wave packets as perturbations to different equilibrium

states in the initial time and then numerically evolving the system to find out which phase

is dynamically stable when there are more than one possible phases. We find that the

phase whose free energy is the lowest in certain area of charge density is also dynamically

stable, i.e., the dynamical stability is consistent with the thermodynamic stability in this

holographic system.

Interestingly, we find that the relaxation time of the system is generically much longer

than the simplest holographic system, both in the case of far from criticality. Actually,

we first observe this phenomenon in the dynamical evolution, and later confirm it through

careful identification of the corresponding QNM, which would otherwise be confused with

the mode w = 0. It needs further investigation to see if there is some physical mechanism

behind this phenomenon.

We also investigate the late time behaviors of the above evolution, in comparison

with the QNMs as linear perturbations over the final stable configuration, and find the

late time behaviors of the coexisting phase and the order parameter that will decay to

zero in non-coexisting phases can be described well by the QNMs. Unexpectedly, the late

time behaviors of the order parameters that will condense in non-coexisting phases are not

consistent with their own QNMs, which is believed to be due to the nonlinear effects, which

we will discuss in some detail.
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This paper is organized as follows. In the next section, we will review the aforemen-

tioned holographic model for our two band superconductor. Then in section 3 we confirm

the phase diagram presented in [10] by comparing the free energy for all possible static

solutions in the canonical ensemble. As a warm-up, in the subsequent section we develop

the gauge dependent formalism with the gauge fixed to work out the quasi-normal modes,

which indicates the thermodynamically stable phases are also dynamically stable at the

linear level. In section 5, by evolving our system with different Gaussian wave packets as

perturbations at the initial time we find the thermodynamically stable phases are dynam-

ically stable at the fully non-linear level. Moreover, it is found that the late time behavior

can be well captured by the lowest lying quasi-normal modes except for the non-vanishing

order parameters towards the single ordered phases. The reason for this exception comes

essentially from the non-linear effect, or put it in a physical way, the competition between

the two bands such that the relaxation time for the non-vanishing order is generically

elongated by the dying-out order. We conclude our paper in the end.

2 The holographic model

We will consider a holographic superconductor model in (3+1) dimensional AdS. The action

is given by [10]

S =
1

2κ2

∫
M
d4x
√
−g
(
R+

6

L2

)
+

∫
M
dx4
√
−gLmatt. (2.1)

Here L is the radius of AdS, κ2 = 8πG with G the gravitational constant in the bulk, and

the matter field Lagrangian is given by

Lmatt =
1

e22

(
− 1

4
F abFab − |D1ψ1|2 − |D2ψ2|2 −m2

1|ψ1|2 −m2
2|ψ2|2

)
(2.2)

where D1 = ∇− i e1e2A,D2 = ∇− iA with ei and mi (i = 1, 2) the charge and mass of the

scalar field ψi (i = 1, 2), respectively.

In this paper we shall work with the probe limit in which the back reaction of matter

fields to the metric can be ignored by taking e2 →∞ but keeping the ratio e = e1/e2 finite.

This allows us to start with the planar black hole as follows

ds2 =
L2

z2
(−f(z)dt2 − 2dtdz + dx2 + dy2), (2.3)

where f(z) = 1 − ( z
zh

)3 with z = 0 the AdS conformal boundary and z = zh the posi-

tion of horizon. The temperature of the dual boundary system is given by the Hawking

temperature

T =
3

4πzh
. (2.4)

Then on top of this background geometry the probe matter fields are governed by the

following equations of motion, i.e.,

D1aD
a
1ψ1 −m2

1ψ1 = 0, D2aD
a
2ψ2 −m2

2ψ2 = 0,
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∇aF ab = jb = ie[ψ∗1D
b
1ψ1 − ψ1(D

b
1ψ1)

∗] + i[ψ∗2D
b
2ψ2 − ψ2(D

b
2ψ2)

∗]. (2.5)

For simplicity but without loss of generality, below we will focus exclusively on the

case of m2
1L

2 = 0,m2
2L

2 = −2. Moreover, to make our life easier, we shall turn off Ax, Ay,

and require all the other quantities depend only on coordinates t and z. With this, the

asymptotic behavior of the solutions near the AdS boundary can be written as

ψ1 =
1

L
(ψ−,1 + ψ+,1z

3 + . . . ),

ψ2 =
1

L
(ψ−,2z + ψ+,2z

2 + . . . ),

At = µ− ρz + . . . , (2.6)

where we have been working in the axial gauge Az = 0. According to the usual dictionary

in the AdS/CFT correspondence, we know that the constants µ and ρ can be regarded as

the chemical potential and charge density of the dual boundary theory, respectively. In

addition, when the sources ψ−,1 and ψ−,2 are switched off, ψ+,1 and ψ+,2 correspond to the

spontaneous broken order parameters of our two band holographic superconductor with

dimension three and dimension two, respectively.

In what follows, we will work in the units where L = 1 and zh = 1, making use of the

scaling symmetry of AdS. Then the evolution equations can be written as

f

2
ψ′′1 − (∂t − ieAt)ψ′1 +

1

z
(∂t − ieAt)ψ1 +

ie

2
A′tψ1 +

(
f ′

2
− f

z

)
ψ′1 = 0, (2.7)

f

2
χ′′ − (∂t − iAt)χ′ +

i

2
A′tχ+

f ′

2
χ′ − z

2
χ = 0, (2.8)

∂tA
′
t =

ief

z2
(ψ∗1ψ

′
1 − ψ1ψ

∗′
1 )− 1

z2
[ie(ψ∗1∂tψ1 − ψ1∂tψ

∗
1) + 2e2ψ∗1ψ1At]

+if(χ∗χ′ − χχ∗′)− [i(χ∗∂tχ− χ∂tχ∗) + 2χ∗χAt], (2.9)

with the constraint equation

A′′t =
ie

z2
(ψ∗1ψ

′
1 − ψ1ψ

∗′
1 ) + i(χ∗χ′ − χχ∗′), (2.10)

where χ = ψ2

z .

3 Phase diagram and thermodynamical stability

In this section, we shall reproduce the phase diagram for the homogeneous and isotropic two

band holographic superconductor. The corresponding bulk static equations of motion are

f

2
ψ′′1 + ieAtψ

′
1 −

ie

z
Atψ1 +

ie

2
A′tψ1 +

(
f ′

2
− f

z

)
ψ′1 = 0, (3.1)

f

2
χ′′ + iAtχ

′ +
i

2
A′tχ+

f ′

2
χ′ − z

2
χ = 0, (3.2)

ief

z2
(ψ∗1ψ

′
1 − ψ1ψ

∗′
1 )− 2e2

z2
ψ∗1ψ1At + if(χ∗χ′ − χχ∗′)− 2χ∗χAt = 0, (3.3)

A′′t −
ie

z2
(ψ∗1ψ

′
1 − ψ1ψ

∗′
1 )− i(χ∗χ′ − χχ∗′) = 0. (3.4)
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There is a trivial solution ψ1 = χ = 0 and At = ρ(1− z), which corresponds to the normal

phase of our boundary system by holography. But generically it is hard to find out the

analytic expression for the static bulk solution dual to the boundary superconducting

phase. So we would like to obtain the corresponding numerical solution by pseudo-spectral

method. To achieve this, we first set ψ1 = |ψ1|eieθ1 = φ1e
ieθ1 and χ = |χ|eiθ2 = φ2e

iθ2 ,

and then rewrite the above static equations to get the following five independent ones (see

appendix for details):

fφ′′1 + f ′φ′1 −
2f

z
φ′1 − e2(2Atθ′1 + fθ′21 )φ1 = 0, (3.5)

fφ′′2 + f ′φ′2 − zφ2 − (2Atθ
′
2 + fθ′22 )φ2 = 0, (3.6)

At + fθ′1 = 0. (3.7)

At + fθ′2 = 0. (3.8)

A′′t +
2e2

z2
θ′1φ

2
1 + 2θ′2φ

2
2 = 0. (3.9)

Therefore we shall solve the above equations of motion to obtain our numerical solution.

To this end, we are required to specify the appropriate boundary conditions. θ1 = θ2 = 0

can be achieved on the horizon by gauge fixing. In addition, the above equations of motion

give rise to the following natural boundary conditions

At = 0, φ′1 = 0, φ2 + 3φ′2 = 0 (3.10)

on the horizon. Finally since we want to find out the spontaneously broken phase for our

boundary system at a fixed charge density, we impose the boundary conditions on the AdS

boundary as follows:

φ1 = 0, φ2 = 0, A′t = −ρ. (3.11)

When there is only ψ1 under the condensation, we call the phase as Phase-I. Phase-II

represents the phase in which only ψ2 is under the condensation. By our numerics we obtain

the phase diagram in figure 1 for the one band holographic superconductor, and the phase

diagram in figure 2 for our two band holographic superconductor. Here the condensations

of the two scalar fields can coexist in a certain range of ρ, which we call as Phase-III.

In figure 1, we denote the critical charge density for the condensations of scalar fields

ψ1 and ψ2 as ρ1 and ρ2, respectively. In figure 2, the occurrence of the attenuation of the

condensation of ψ1 is also the beginning of the emergence of condensation of ψ2, and the

corresponding critical charge density is denoted as ρc1. We use ρc2 to denote the critical

charge density where the condensation of ψ1 vanishes.

To make sure figure 2 represents the genuine phase diagram for our two band holo-

graphic superconductor, we are required to check whether the corresponding free energy

density is the lowest among all possible phases.1 Upon taking into account the back re-

action, [14] shows that the grand potential results in the case of weak back reaction are

consistent with the claim in [10], but direct confirmation in the probe limit is still lacking.

1This has not been achieved in [10].
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Figure 1. The left panel shows the relation between chemical potential µ and charge density ρ in

the one band holographic superconductor while the right one shows the corresponding condensation

with respect to the charge density, where the critical charge density is given by ρ1 = 3.891166 and

ρ2 = 4.0745, respectively.

Figure 2. The left panel shows the relation between chemical potential µ and charge density ρ in

our two band holographic superconductor while the right one shows the corresponding condensa-

tion with respect to the charge density, where the lower and upper critical charge density for the

coexistent phase are given by ρc1 = 8.21996 and ρc2 = 8.69349, respectively.

Now we will calculate the free energy in the real probe limit. By holography, the free

energy density can be obtained from the on shell Lagrangian of matter fields as follows:

F = −e22
[ ∫

dz
√
−gLmatt +

√
−h(naAbF

ab + |∂ψ1|2 − |ψ2|2)|z=0

]
= −1

2

∫
dz(
√
−gAaja +

√
−hnaAbF ab|z=0). (3.12)

In the first line we have added the first boundary term to guarantee that we are working

in the canonical ensemble rather than the grand canonical ensemble, and the last two

boundary terms as the counter terms in the holographic renormalization to make the bulk

on shell action finite, where h is the determinant of the induced metric on the AdS boundary.

In the second line, we have made use of the equations of motion and the asymptotic AdS

boundary behavior for the static solutions of matter fields.

As shown in the left panel of figure 3, compared to the normal phase the free energy

density of three superconducting phases is much lower. Furthermore, as demonstrated in

figure 4 and the right panel of figure 3, by scrutinizing the free energy density difference

– 6 –
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Figure 3. The left panel shows the free energy density difference of the three superconducting

phases from the normal phase. The right panel shows the free energy density difference of Phase-I

from Phase-II. Whence Phase-I is thermodynamically stable when the charge density is between ρ1
and ρc1, while Phase-II is thermodynamically stable when the charge density is larger than ρc2.

8.3 8.4 8.5 8.6 8.7

-0.020

-0.015
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-0.005
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ó
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0.000
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F

Figure 4. The two panels show the free energy density difference of Phase-III from Phase-I and

Phase-II between ρc1 and ρc2, respectively. Whence Phase-III is the thermodynamically stable

phase in this region.

among these three superconducting phases, we lead to the above desired phase diagram in

the canonical ensemble.

4 Quasi-normal modes

Before we move onto the fully non-linear dynamical stability by the real time evolution of

our bulk fields, we would like to pause to play a little bit with the quasi-normal modes for

our holographic model as a warm-up because the spectrum of quasi-normal modes can be

regarded as a diagnosis of dynamical stability in the linear regime. If the phase in con-

sideration is dynamically stable, then all the quasi-normal modes sit in the lower complex

frequency plane. Actually as we shall show later on, all the thermodynamically stable

phases in consideration is dynamically stable at such a linear level. In addition, he onset

of Goldstone mode at the origin generically signals a transition from one phase to another.

Moreover, among others, the lowest lying QNM is believed to capture the late time behav-

ior during the real time fully non-linear evolution towards the desired final state as the late

time perturbation is supposed to be small enough to validate the linear perturbation theory.
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To our knowledge, so far there have been two methods developed to calculate the quasi-

normal modes for the gauged systems. One is the gauge invariant formalism [15], and the

other is the gauge dependent formalism, where the gauge degree of freedom is freed [16].

We would like to take a third route by the gauge dependent formalism but with the fixed

gauge. As seen later on, this alternative method is highly efficient and particularly suited

for the comparison with the late time behavior of fully non-linear dynamical evolution of

bulk fields.

To begin with, we first write down the linear perturbation equations of (2.7), (2.8)

and (2.10) as

−iwδψ′1 − ie1ψ′1δAt − ie1Atδψ′1 +
iw

z
δψ1 +

ie1
z
ψ1δAt

+
ie1
z
Atδψ1 −

ie1
2
ψ1δA

′
t −

ie1
2
A′tδψ1 −

f

2
δψ′′1 −

(
f ′

2
− f

z

)
δψ′1 = 0, (4.1)

−iwδχ′ − ie2χ′δAt − ie2Atδχ′ −
ie2
2
χδA′t

− ie2
2
A′tδχ−

f

2
δχ′′ − f ′

2
δχ′ +

z

2
δχ = 0, (4.2)

δA′′t =
ie1
z2

(δψ∗1ψ
′
1 + ψ∗1δψ

′
1 − δψ1ψ

∗′
1

−ψ1δψ
∗′
1 ) + ie2(δχ

∗χ′ + χ∗δχ′ − δχχ∗′ − χδχ∗′). (4.3)

Here we simply ignore the linear perturbation equation of (2.9) because it will be satisfied

automatically in the whole bulk once it holds at the AdS boundary by our later boundary

condition there. To calculate the quasi-normal modes, we further make the following

consistent ansatz for the perturbed fields, i.e.,

δψ1 = pe−iwt + p̄eiw
∗t,

δχ = qe−iwt + q̄eiw
∗t,

δAt =
1

i
(ae−iwt − a∗eiw∗t) (4.4)

with p, p̄, q, q̄ and a complex functions of z. It is noteworthy that p̄ is independent of p

and q̄ is independent of q.

Then substituting (4.4) into the above perturbation equations (4.1)–(4.3), we eventu-

ally end up with the following equations

−iwp′ − e1aψ′1 − ie1Atp′ +
iw

z
p+

e1
z
aψ1 +

ie1
z
Atp

−e1
2
a′ψ1 −

ie1
2
A′tp−

f

2
p′′ −

(
f ′

2
− f

z

)
p′ = 0, (4.5)

−iwp̄∗′ + e1aψ
∗′
1 + ie1Atp̄

∗′ +
iw

z
p̄∗ − e1

z
aψ∗1 −

ie1
z
Atp̄

∗

+
e1
2
a′ψ∗1 +

ie1
2
A′tp̄

∗ − f

2
p̄∗′′ −

(
f ′

2
− f

z

)
p̄∗′ = 0, (4.6)

−iwq′ − e2χ′a− ie2Atq′ −
e2
2
a′χ− ie2

2
A′tq −

f

2
q′′ − f ′

2
q′ +

z

2
q = 0, (4.7)

– 8 –
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−iwq̄∗′ + e2χ
∗′a+ ie2Atq̄

∗′ +
e2
2
a′χ∗ +

ie2
2
A′tq̄

∗ − f

2
q̄∗′′ − f ′

2
q̄∗′ +

z

2
q̄∗ = 0, (4.8)

a′′ +
e1
z2

(p̄∗ψ′1 + ψ∗1p
′ − pψ∗′1 − ψ1p̄

∗′) + e2(q̄
∗χ′ + χ∗q′ − qχ∗′ − χq̄∗′) = 0 (4.9)

with

p = p̄∗ = q = q̄∗ = a′ = 0 (4.10)

on the AdS boundary.

Note that for a small parameter λ and arbitrary w the gauge transformation

A→ A+∇θ, ψ1 → eieθψ1, χ→ eiθχ (4.11)

with

θ =
1

i
(λe−iwt − λ∗eiw∗t) (4.12)

always induces a spurious perturbation solution as follows

a = −iwλ, p = eλψ1, p̄ = −eλ∗ψ1, q = λχ, q̄ = −λ∗χ. (4.13)

This spurious perturbation solution can be removed by setting λ = 0, which can be further

implemented by requiring a = 0 on the horizon.2

The boundary conditions (4.10) together with a = 0 are naturally proposed with clear

physical meaning. Whereas in the gauge invariant formalism, it is difficult to propose

proper boundary conditions that exactly correspond to the gauge free boundary conditions

that we need in the equations of dynamical evolution in the coexisting phase. This is one

of the advantages of our method.

Finally, we cast the above linear perturbation equations and boundary conditions into

the form L(w)v = 0 with v the perturbation fields evaluated at the grid points by the

pseudo-spectral method. The quasi-normal frequencies are then obtained by the condition

det[L(w)] = 0, which can be further identified by the density plot of |det[L(ω)]′/det[L(ω)]|
with the prime the derivative with respect to ω. The relevant results are summarized as

follows.

When ρ < ρ1, the system is in the normal phase and we thus have two sets of decoupled

quasi-normal modes from δψ1 and δχ, respectively. Both of the lowest lying modes are

sitting symmetrically with respect to the imaginary axis. They migrate towards the origin

with the increase of the charge density and the lowest lying modes from ψ1 meet at the

origin when ρ1 is reached, which indicates the occurrence of phase transition to Phase-I.

When ρ1 < ρ < ρc1, the system is in Phase-I and we still have two sets of decoupled

quasi-normal modes, where one is from δψ1 coupled to δAt, and the other is from δχ. The

lowest lying modes from δχ keep migrating with the increase of the charge density and

meet at the origin when ρc1 is reached, signaling the phase transition to Phase-III. Among

the quasi-normal modes from δψ1 and δAt, one mode is pinned at the origin as Goldstone

mode, and the other travels down the imaginary axis as Higgs mode with the increase of

2The only one exception is the spurious mode with w = 0. We care mainly about, however, the lowest

lying mode in the lower complex frequency plane.
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Figure 5. The left panel shows the QNMs with ρd = 3.99. The QNMs siting on the origin and

imaginary axis come from δψ1 coupled to δAt, while the QNMs lying symmetrically away from the

imaginary axis come from δχ. The right panel shows the QNMs with ρm = 8.44.

the charge density, eventually exceeded by the aforementioned lowest lying mode from δχ

at a certain charge density ρd as plotted in figure 5.

When ρc1 < ρ < ρc2, the system is in the coexistent phase and we only have one set of

quasi-normal models from the coupled δψ1, δAt, and δχ. The lowest lying mode sits right

at the imaginary axis. With the increase of the charge density, this mode travels down the

imaginary axis from the origin till a certain charge density ρm and then travels up to the

origin as plotted in figure 5.

When ρ > ρc2, the system is in Phase-II and we again have two sets of decoupled

quasi-normal modes, where one is from δψ1 and the other is from δχ coupled to δAt. The

lowest lying modes from δψ1 migrate symmetrically away from the origin with the increase

of the charge density. While the Higgs mode from δχ and δAt keeps traveling down the

imaginary axis, eventually exceeded by the climbing-up modes, which sit symmetrically

with respect to the imaginary axis.

In addition, we ascertain the points of phase transition by seeing that the lowest lying

QNM crosses the real axis, and confirm the results that have been accurately obtained

from the nonlinear static solutions. In some sense, the QNM provides a quicker and more

reliable method to fix the points of phase transition, since it only involves solving the linear

equations of perturbation, while the Newton-Raphson method used to solve the nonlinear

static equations is inevitably sensitive to initial approximations.

As alluded to in the very beginning, suppose that the fully non-linear dynamical evo-

lution ends up with one of the above phases, then the late time behavior is believed to be

captured by the lowest lying quasi-normal modes on top of the final equilibrium state. To

be more specific, if the final equilibrium state has a non-vanishing condensate |〈Of 〉| 6= 0,

then the late time behavior is supposed to be approximated by

|〈Ot〉| = |〈Of 〉|+ δe−iwt + δ∗eiw
∗t. (4.14)

On the other hand, if the final condensate |〈Of 〉| = 0, then the late time behavior can be

captured by

|〈Ot〉| = |〈Of 〉+ δe−iwt| = |δ|eIm(w)t. (4.15)
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In the next section, we shall check whether these thermodynamically stable phases

are also dynamically stable at the fully non-linear level by the real time evolution and

see whether the late time behavior can be captured by our lowest lying quasi-normal

modes(QNMs).

5 Real time evolution and dynamical stability

5.1 Initial data and evolution scheme

Although the parameter space of ρ is divided into five parts by points ρ1, ρ2, ρc1, and

ρc2, in what follows we shall focus only onto the regime where there can exist at least two

superconducting phases, namely ρ2 ≤ ρ ≤ ρc1, ρc1 ≤ ρ ≤ ρc2 and ρ ≥ ρc2.
Because Phase-I and Phase-II are always the possible phases in the above three regions,

we will take two different kinds of initial data in each region. The first case is that we only

let ψ1 under the superconducting phase while give χ a perturbation of Gaussian wave

packets, and we call this Case-I. The second case is that we only let χ under condensation

while give ψ1 a perturbation of Gaussian wave packets, and we call this Case-II.

In each case, the perturbation of Gaussian wave packets takes the form as s∗e−30(z−0.5)2

with s = 1, 0.1 or 0.01, which satisfies the source free boundary condition on the AdS

boundary within our numeric error. In order to decrease the error during the long-time

evolution, we do not evolve the dynamical equation (2.9) of At, but obtain At by solving

the constraint equation (2.10), combining the boundary condition A
′
t = −ρ on the AdS

boundary and At = 0 on the horizon.

With the above fixed charge density, we resort to the pseudo-spectral method to dis-

cretize the spatial direction, while in the time direction we take the forth order Runge-Kutta

method to perform the evolution.The relevant numerical results will be presented in the

following sections.

5.2 ρ2 ≤ ρ ≤ ρc1

Phase-I is thermodynamically stable in this region of ρ and we take ρ = 7.5 as an example.

As shown in figure 6, the larger the perturbation strength is, the more time it takes for

the system to approach Phase-I in Case-I, while for Case-II, the system exhibits an inverse

behavior as the perturbation strengthens, which is demonstrated in figure 7.

5.3 ρc1 ≤ ρ ≤ ρc2

Phase-III is thermodynamically stable in this region of ρ and we take ρ = 8.5 as an example.

As shown in figure 8 for Case-I and figure 9 for Case-II, the larger the perturbation strength

is, the less time it takes for the system to approach Phase-III for both cases.

5.4 ρ ≥ ρc2

Phase-II is thermodynamically stable in this region of ρ and we take ρ = 9.5 as an example.

As shown in figure 10 for Case-I, the larger the perturbation strength, the less time it takes

for the system to approach Phase-II . For Case-II, the system exhibits an inverse behavior,

which is demonstrated in figure 11.
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Figure 6. The two figures show the Case-I with ρ = 7.5 The left one shows the time evolution

of condensation of the massless scalar field ψ1 while the right one shows the time evolution of

condensation of the scalar field χ during the same time period.

Figure 7. The two figures show the Case-II with ρ = 7.5. The left one shows the time evolution

of condensation of the massless scalar field ψ1 while the right one shows the time evolution of

condensation of the scalar field χ during the same time period.

Figure 8. The two figures show the Case-I with ρ = 8.5. The left one shows the time evolution

of condensation of the massless scalar field ψ1 while the right one shows the time evolution of

condensation of the scalar field χ during the same time period.
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Figure 9. The figures show the Case-II with ρ = 8.5. The left one shows the time evolution

of condensation of the massless scalar field ψ1 while the right one shows the time evolution of

condensation of the scalar field χ during the same time period.

Figure 10. The two figures show the Case-I with ρ = 9.5. The left one shows the time evolution

of condensation of the massless scalar field ψ1 while the right one shows the time evolution of

condensation of the scalar field χ during the same time period.

Figure 11. The figures show the Case-II with ρ = 9.5. The left one shows the time evolution

of condensation of the massless scalar field ψ1 while the right one shows the time evolution of

condensation of the scalar field χ during the same time period where the evolution lines s = 0.1

and s = 0.01 are too close to distinguish.
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Figure 12. The panels show the QNMs for the dying-out order χ with ρ = 7. The left one shows

the large scale situation with spurious ω = 0 mode at the origin. The extraordinary relaxation time

implies that we should amplify the origin area to find the real lowest lying QNM, and the right

panel shows the lowest lying QNMs we want.

5.5 Late time behavior towards the equilibrium state

We see that the dynamical stability of the system is consistent with the thermodynamical

stability in all the regions we are concerned with. But now we would like to turn to the

detailed analysis of late time behavior of such a relaxation.

One of the remarkable characteristics of the evolution is that the relaxation time of the

system is generically much longer than that of the simplest holographic system with only

one scalar field.3 The relaxation time in such simplest system at 6.5 < ρ < 7.5 is less than

one hundred time units. However, it is several thousand time units here at 6.5 < ρ < 7.5 (in

the non-coexisting phase), so the difference is two orders of magnitude. This characteristic

in return indicates us that the lowest lying QNM must be very close to the real axis (see

figure 12 for example), which would otherwise be confused with the mode w = 0. It is

interesting to investigate the possible physical mechanism behind such long relaxation time

in this model.

Without loss of generality, we focus only onto the case of s = 1. As fitted in figure 13

for χ at ρ = 7.5, there is an exponential decay with the decay frequency consistent with

the lowest lying QNMs for χ, which is obtained by the aforementioned density plot in the

right panel of figure 14.

We find the late time behavior of ψ1 is also controlled by the lowest lying QNMs at

ρ = 9.5, where the decay frequency is obtained as −0.000718787
√
ρ. The late time behavior

towards the coexisting phase is controlled by an exponential decay as well with the decay

frequency −0.00025727
√
ρ for ρ = 8.5, which is consistent with its lowest lying QNM.

As we see, so far the late time behavior can be well captured by the lowest lying QNMs

from the linear perturbation theory. But we find the non-linear effect starts to play a role

in the late time behavior for ψ1 in Phase-I and χ in Phase-II.

3The relaxation time of any system should diverge when tending to the critical points, so we focus on

the cases that are far from criticality.
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Figure 13. The fitting plot for χ at ρ = 7.5. In the left panel, the red line is the time evolution of

logarithm of condensation of χ towards the final state for Case-I, and the green line is the fitting line

with Log(|ψ+,2|) = 0.692259− (0.0010934
√
ρ)t, so the decay frequency is −0.0010934

√
ρ. The right

panel is the fitting for Case-II, and the fitting line is Log(|ψ+,2|) = −0.322169 − (0.0010934
√
ρ)t,

so the decay frequency is also −0.0010934
√
ρ. This decay frequency is consistent with the lowest

lying QNMs in the right panel of figure 14.

Figure 14. The density plot of QNMs for ρ = 7.5. The left panel shows the QNMs from δψ1

coupled to δAt, and the lowest lying QNM sits on the imaginary axis with w = −i0.20
√
ρ. The

right panel is the QNMs from δχ, and the imaginary part of the lowest lying mode is −0.00109
√
ρ.

To be concrete, we denote the ratio of the absolute value of the imaginary part of the

lowest lying QNM from δψ1 coupled to δAt over that from δχ as r1 for Phase-I, and the

ratio of the absolute value of the imaginary part of the lowest lying QNM from δχ coupled

to δAt over that from δψ1 as r2 for Phase-II. In the case of ρ = 7.5, we can see from figure 14

that the lowest lying QNM from δψ1 coupled to δAt sits at the imaginary axis, and r1 is

around 200. But as fitted in figure 15, the real decay frequency for ψ1 turns out to be the

double of that for χ rather than its own lowest lying QNM frequency. In the case of ρ = 9.5,

the decay frequency for χ is −0.00144
√
ρ which is also the double of that for ψ1 mentioned

before although the lowest lying QNM frequency for χ has the ratio r2 = 500 or so.

Such a double relation is believed to come from the very non-linear character of our

full equations of motion. To be more specific, due to the above large ratio r1 or r2, the

lowest lying QNM for the non-vanishing order has died away long before the late time

evolution in consideration. Then it follows from our non-linear equations of motion that
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Figure 15. The fitting plot for ψ1 at ρ = 7.5. The left panel for Case-I with the fitting line

Log(||ψ+,1t| − |ψ+,1f ||) = 0.101703− (0.0021803
√
ρ)t (ψ+,1t denotes the condensation of ψ1 during

evolution, and ψ+,1f denotes the condensation in final equilibrium state). The right panel is for

Case-II with the fitting line Log(||ψ+,1t| − |ψ+,1f ||) = −1.91539 − (0.00218354
√
ρ)t. The decay

frequency for ψ1 turns out to be the double of that for χ.

such a double relation is generated by taking the lowest lying QNMs for the dying-out order

as a source. This can also be regarded as the competition between the two orders, namely

the dying-out order always tends to keep the other from relaxing towards the equilibrium

state. Actually further numerical investigation indicates that this double relation occurs

when r1 or r2 is bigger than 6. Beyond this regime, such a double relation becomes obscure

and the situation becomes more complicated due to the non-linear effect.

6 Conclusion

In this paper, we investigate the dynamical stability of the two band holographic super-

conductor (the BHMRS model). In passing, we find it more convenient (if not inevitable)

for one to calculate the QNMs by gauge fixing the gauge dependent formalism. Actually,

this method is especially adapted for models with more than one scalar fields and for direct

comparison with the late time behavior of the dynamical evolution as we performed later

in this paper. As a result, the thermodynamically stable phase is also dynamically stable

at the linear level.

Furthermore, by evolving the system with different Gaussian wave packets as pertur-

bations at the initial time, we find the dynamical stability of the system is also consistent

with the thermodynamical stability at the fully non-linear level. We also analyze the late

time behavior towards the final equilibrium state, and find it consistent with the lowest

lying QNM in the coexisting phase as well as the lowest lying QNM for the field whose

order dies out in the single ordered phases, while the late time behavior for the field whose

order parameter does not vanish in the single ordered phases obeys a double relation or

behaves in a much complicated way because of the non-linear effect induced competition

between the two orders. In this sense, not only does the competition exhibit its existence in

the phase diagram, but also does leave a footprint in the dynamical evolution. In addition,

to our knowledge, this footprint is supposed to be the first counter example to the general
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belief that the late time behavior towards a final stable state can be captured by the lowest

lying QNM obtained from the linear perturbation theory.

In comparison to the simplest holographic model with only one scalar field, the long

relaxation time of the BHMRS model far from criticality is unexpected and interesting.

This phenomenon may need further investigation, in particular for various other models

with more than one order parameter.
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A Derivation for the static equations

Rewriting static equations (3.1)–(3.4) by replacing ψ1 = |ψ1|eieθ1 = φ1e
ieθ1 , χ = |χ|eiθ2 =

φ2e
iθ2 , we obtain six equations. Besides (3.5), (3.6) and (3.9), the other three are:

Atφ
′
1 −

1

z
Atφ1 +

1

2
A′tφ1 + fφ′1θ

′
1 +

f

2
φ1θ
′′
1 +

(
f ′

2
− f

z

)
φ1θ
′
1 = 0, (A.1)

Atφ
′
2 +

1

2
A′tφ2 + fφ′2θ

′
2 +

f

2
φ2θ
′′
2 +

f ′

2
φ2θ
′
2 = 0, (A.2)

e2φ21
z2

(fθ′1 +At) + φ22(fθ
′
2 +At) = 0. (A.3)

Multiplying the equation (A.1) by φ1, we obtain(
At
2
φ21 +

fθ′1
2
φ21

)′
=

2

z

(
At
2
φ21 +

fθ′1
2
φ21

)
, (A.4)

which gives rise to
At
2
φ21 +

fθ′1
2
φ21 = Cz2. (A.5)

Note that we have f = 0 at the horizon z = 1 as well as At = 0 there by (A.3), so we

obtain C = 0, which further implies

At + fθ′1 = 0. (A.6)

Similarly we can have

At + fθ′2 = 0. (A.7)

These two equations make (A.3) automatically satisfied.
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