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1 Introduction

The black hole information problem is a fundamental tension between the presumed finite

density of black hole states and the presumed validity of effective field theory for infalling

observers. The issue was recently re-emphasized in the arguments of [1–4], which showed

that black hole complementarity [5] alone is insufficient to resolve the tension and which also

critiqued a variety of other approaches. Ref. [1] argued that three widely-held assumptions

are mutually inconsistent: (1) the existence of an S-matrix describing black hole formation

and evaporation, (2) the validity of effective field theory outside the black hole, and (3)

the absence of drama for an infalling observer. We emphasize that a contradiction results

even when requirement (2) is used only to order one accuracy for simple quantities.

The form of drama envisioned in [1] was what we might call ‘fiery drama,’ a wall of high

energy particles [6], though we will include in same category any strong modification of the

smooth horizon geometry, including braney drama ([7], but without fuzzball complementar-

ity [8, 9]), stringy drama [10–12] and [13, 14], or other scenarios [15–19]. Many attempts to

evade this conclusion have instead substituted what we might call ‘quantum drama,’ where

the rules of quantum mechanics are modified or augmented for the infalling observer. Ideas

in this class include the black hole final state proposal [20, 21], limits on quantum compu-

tation combined with strong complementarity [22], ER = EPR [23], and state-dependent

observables as developed in [24–29] (related ideas appeared in [30–32] and [33–36]).

In this note we clarify the way in which the last of these ideas, state-dependence,

modifies ordinary quantum mechanics. Ref. [37] has already critiqued the proposal of [24–

29] in some detail. Our point of view is largely the same, but we wish to step back from the

details of specific proposals. We will argue that any framework relying on state-dependence

alone to eliminate firewalls in generic states implies large violations of the Born rule. We

do so by generalizing to the context of state-dependent quantum mechanics an argument
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of [2] for firewalls in generic states. We also provide a sense in which these violations can

be visible to infalling observers.

In the remainder of this introduction we review the idea of state-dependence. In section

2 we demonstrate Born rule violation, and we close with some final discussion in section

3. To avoid infra-red issues and for comparison with [24–29] we focus on asymptotically

anti-de Sitter (AdS) black holes below. Some calculations and refinements are set aside in

the appendices.

While textbook quantum mechanics associates any physical observable with some fixed

linear operator on the Hilbert space, state-dependence would change this for observers

falling into black holes. To see how state-dependence enters the discussion, suppose that

one postulates i) that any near-equilibrium state of the black hole has a smooth horizon as

predicted by effective field theory and ii) that such states are typical in the Haar measure

associated with the unitary group on the finite-dimensional Hilbert space of fixed energy.

Refs. [3, 4] have shown that one can find a basis of states (eigenstates of number operators

of the Hawking modes) such that almost all have firewalls — high energy excitations of

many modes as seen by an infalling observer. If there were a linear projection operator

onto states with such excitations, it would then be very close to the identity. So typical

states would have firewalls in contradiction to the assumption. State-dependence avoids

this by allowing the projection defining the excitation to vary in a nonlinear way as one

moves across the Hilbert space. The physical interpretations of the original basis states

can then be unrelated those of other states.

The term ‘state-dependence’ describes in a precise way the nature of the observables

being considered, but its innocuous sound hides the radical nature of the idea. It is easily

conflated by the unwary with the more general and usually benign property of background-

dependence. A simple example of the latter is given by the collective coordinate quanti-

zation of solitons [38–40]. Here there are many classical background solutions, related by

translation. Internal excitations of the soliton are defined relative to the center of mass,

and so are background-dependent. However, they remain linear operators in the Hilbert

space. The change of variables from the original path integral fields to the center-of-mass

variables is nonlinear in the fields, but fully linear in terms of the Hilbert space struc-

ture. Thus one may assemble the naturally-defined background dependent operators into

a background-independent operator. In contrast, as shown above, using state-dependence

to eliminate firewalls requires that such an assembly into a linear operator be impossible

even in principle.

Other familiar examples of background dependence are similarly field-dependent, not

state-dependent [37]. For example, measurements that are conditioned on earlier measure-

ments remain linear — see section 5 of [37], and section 3.1 of [41]. We know of no situation

in ordinary quantum mechanics where observables are fundamentally state-dependent.

Ref. [29] has suggested that state-dependence might be needed for the construction of

bulk fields even exterior to a black hole in terms of a dual CFT. However, ref. [42] argued

that this construction is simply field-dependent, with the background-dependence arising

from the nonlinearity in the fields of the bulk-boundary map. The construction [42–45]

was given as an expansion in powers of fields, whose convergence might appear to be an
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issue. But it is better to think of this as a differential construction, allowing one to move

continuously from one background to another until one encounters a natural barrier, in

the spirit of analytic continuation. One known natural barrier is a black hole horizon. We

know of no evidence for any other barrier, nor any reason to believe that if one did exist it

could be surmounted by state-dependence.

Finally, we should note that if state-dependence does turn out to be a necessary prop-

erty of quantum gravity — a feature and not a bug — it will be essential to make clear

both its precise nature and the obstacles to its consistent implementation. The discussion

below would then provide a step in this direction.

2 State-dependence and the Born rule

We now argue that any state-dependence strong enough to allow the horizons of typical

black holes to be experienced as vacuum by infallers leads to gross violations of the Born

rule. Furthermore, there is a sense in which these violations can be visible to sufficiently

powerful infalling observers. We assume only

(1) that simple experiences of infallers in typical pure quantum states with sufficiently

large fixed energy E0 are, with high probability, governed by effective field theory in

the Hartle-Hawking state |HH〉 on the classical black hole background,

(2) that operators at the AdS boundary obey the usual rules of quantum mechanics

(e.g., because they can be mapped directly to a dual CFT); in particular, they —

or at least bounded functions thereof — are linear operators defined globally on the

entire Hilbert space,

(3) that the Bekenstein-Hawking entropy SBH describes the logarithmic density of

states at energies E0 for which (1) holds.

The detailed constructions of [24–27] or [33–36] are not required. Indeed, the argument

below applies to any proposal that achieves the above goals whether or not state-dependence

is explicitly involved.

Following the terminology of [24–27], we refer to the states in (1) as being in near-

equilibrium. Just how near is quantified by the probability ε of an infaller experiencing an

excitation relative to |HH〉. The term ‘typical’ is similarly quantified by saying that these

states form a set of measure 1 − ε̃ with respect to the normalized round measure on the

unit-sphere of normalized states with energy E < E0. Since we consider a theory of gravity,

this energy can be measured at the boundary and so by (2) defines a state-independent

operator. It is implicit in (1) that ε, ε̃ vanish in the limit where the AdS scale `AdS is large

compared with the Planck scale `P .

We note that (1) includes the results of simple manipulations of these states by infallers.

If these manipulations are performed outside the black hole, they may be expressed in

terms of operators that, again by (1) may be mapped to operators on the AdS boundary

using the techniques of [42–51]. Using (2) then shows that simple effective field theory

operators outside the horizon — which might for example add extra particles or correlated

– 3 –



J
H
E
P
0
1
(
2
0
1
6
)
0
0
8

small sets thereof to |HH〉 — correspond to state-independent operators whose action on

near-equilibrium states differs only be terms of order ε.

For concreteness, in all cases below we work in asymptotically AdSd spacetimes for

d ≥ 3 and assume the existence of a dual conformal field theory with order N2 ∼
(
`AdS
`P

)k
fields for some positive k. We consider states near some energy E0 above the Hawking-Page

transition, where the density of states is dominated by large global AdS-Schwarzschild (or

BTZ) black holes (in appendix A we will have use for black holes that are smaller but still

stable). As usual, we take their area-radius to be r0 and their temperature to be T0. We

will use HE0 to refer to the space of pure states with energy E < E0. Taking GN to be

the bulk Newton constant, to leading order in 1/GN the density of states is eS = eA/4GN

in terms of the horizon area A.

Some arguments in [1–4] applied to black holes that are maximally entangled with an-

other system, and others to pure states. In standard quantum mechanics these settings are

equivalent due to the fact that observables are defined by fixed linear operators. Properties

of entangled black holes are thus determined by the reduced density matrix obtained by

tracing out the system with which it is entangled. Since we now consider relaxing the rules

of quantum mechanics, these need to be considered separately. In the present section we

consider pure states, and in conclusions we discuss some issues of entanglement.

2.1 Violations of the Born rule

The Born rule of quantum mechanics states that the probability to observe a particular

experimental outcome χ in a quantum state |ψ〉 is
∑

i |〈χ, i|ψ〉|2, where |χ, i〉 are a complete

set of orthonormal states in which χ occurs with probability one. In particular, given two

physically exclusive experimental outcomes χ, χ′ that occur with probability one in states

|χ〉, |χ′〉, we must have 〈χ|χ′〉 = 0. We show this condition to be strongly violated by any

proposal satisfying the assumptions above.

The presence of some violation of the Born rule follows from the definition of state-

dependence. If the Born rule held exactly we could construct a linear projector P =∑
i |χ, i〉〈χ, i| onto the outcome χ, and this is excluded if typical states are firewall-free. On

the other hand, the firewall basis states defined above have only O(e−S/2) overlap with typ-

ical states since the latter are linear combinations of O(eS) basis states. But by applying an

argument from section 5 of [2] we demonstrate much larger violations of the Born rule below.

Before proceeding with a precise discussion, we discuss a toy example so as to identify

the issues. Consider bω, a fermionic mode of definite frequency in the static geometry exter-

nal to the black hole. In the infalling vacuum state, this is entangled with an inner mode b̃ω,

|ψ〉 =
|0̃, 0〉+ x1/2|1̃, 1〉

(1 + x)1/2
, x = e−ω/T0 . (2.1)

Now let U = exp(iπb†ωbω), where we take discrete normalization for convenience. Then

U |ψ〉 =
|0̃, 0〉 − x1/2|1̃, 1〉

(1 + x)1/2
. (2.2)
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Computing the inner product 〈ψ|U |ψ〉, the state U |ψ〉 has probability [(1− x)/(1 + x)]2 to

be in its ground state |ψ〉 and so probability 4x/(1+x)2 to be excited. We see that U maps

the space of typical states to a space of states with nonvanishing excitation probability.

However, the state U |ψ〉 would seem to be every bit as typical as |ψ〉, contradicting the

assumption that typical states have vacuum near the horizon.

The problem that we have found is not precisely as was advertised above. One differ-

ence is that |ψ〉 and U |ψ〉 are not orthogonal. But this can be accomplished by a similar

construction using two modes, bω, b
′
ω with identical frequencies, both in the same state (2.1).

For

U = exp(iθb†ωbω − iθb′†ωb′ω − iπb†ωbωb′†ωb′ω) , (2.3)

one finds

〈ψ,ψ|U |ψ,ψ〉 =
1 + 2x cos θ − x2

(1 + x)2
. (2.4)

For x not too small there is a choice of θ where this vanishes. For two modes with distinct

frequencies ω, ω′ both in (2.1) (with distinct x, x′) one can similarly obtain an orthogonal

state by separately tuning the phases in (2.3) separately.

We now have a single state vector with two orthogonal physical interpretations. If one

declares that all such states are vacuum, one encounters the frozen vacuum problem [52].

There are operations by the infalling observer that should produce excitations in effective

quantum field theory, but they do not, and so the rules of physics are changed in an

observable way at the horizon.

However, this toy example has an important limitation [26]. Modes of definite fre-

quency are distributed over all space and time. As a result, they cannot be measured by

the infalling observer, and in particular the interior part b̃ω cannot. In order for a phe-

nomenon to be seen by this observer, we must restrict to modes with limited support in

space and time. These have a nonzero width in frequency, and so their number operator

does not commute with the Hamiltonian.1 Then U |ψ〉 does not have the same energy as |ψ〉
(and generically its energy is greater). Our goal will be to show that the increase in energy

is small enough that most typical states are nearly parallel to states having an orthogonal

physical interpretation. This gives a large and observable violation of the Born rule.

Consider now a normalizeable wave-packet b supported outside the horizon. We also

use the symbol b to denote the operator obtained by taking the symplectic product of our

wave packet (i.e., the Klein-Gordon product in the case of a scalar field) with the associated

linearized quantum field, with conventions set so that b would be the usual annihilation

operator for an eigenmode of positive frequency. Using the bulk-boundary dictionary,

we can write b in terms of an operator at the AdS boundary [42–51].2 To be precise,

1This is in part a good thing, because for a chaotic system with finite density of states one expects the

only operators commuting with the Hamiltonian to be functions of the global conserved charges. This is

a sign that effective field theory breaks down when used to describe operators which act entirely within a

subspace of energies with width of order e−SBH . Below, we use operators whose energy uncertainties are

small, but not exponentially small. Their description by effective field theory is self-consistent.
2For large angular momenta, the construction becomes complicated due to large grey-body factors, but

we will not need such modes.
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this construction applies in typical states, for which the external geometry is an AdS-

Schwarzschild black hole; let the definition be extended to atypical states in an arbitrary

manner consistent with linearity and preserving the operator norm of b. For a fermionic

field, b is bounded and thus a globally-defined linear operator on the Hlibert space.

We are interested in smooth wave-packets of small width ∆ω in frequency space near

some ω0 > 0 of order T0 and which are supported in a Rindler-like region near the black hole

horizon. In flat space, such modes can be localized in a region of space of size ∆x ∼ 1/∆ω,

in which the mode executes n ∼ ω0/∆ω oscillations. A similar principle applies in the black

hole background, as may be seen by considering an asymptotically flat black hole that emits

such a mode into the surrounding flat-space region. Running the evolution backward to a

slice of Killing time where the mode is confined to the near-horizon region leaves ∆ω, ω0,

and the number of oscillations unchanged. So we have ∆ω ∼ ω0/n ∼ T0/n in this region as

well (whether the desired black hole is asymptotically flat or asymptotically AdS). What

changes, however, is that modes of definite Rindler frequency oscillate logarithmically in the

near-horizon region, executing an infinite number of oscillations outside the horizon. We

restrict our modes to those supported at more than a Planck length `P of proper distance

from the bifurcation surface. The fact that the Rindler region for a large black hole extends

to proper distances of order `AdS then bounds the maximum number of oscillations, but

still allows n ∼ ln(`AdS/`P) ∼ lnN .

We will make use of a set of outside modes bi for i = 1 . . . Nmodes associated with a

fermionic semi-classical quantum field. We choose Nmodes to be small enough that we may

take all modes to be peaked near the same frequency ω0 ∼ 1/r0 ∼ T0, and to differ only in

their radial profile so that all bi are naturally intercepted by a common infalling observer.

We construct unitary transformations by the same strategy as above. Taking the uni-

tary to be diagonal in the occupation number basis to minimize the commutator with

the Hamiltonian, there are 2Nmodes − 1 phases to choose. If we wish to prepare m mutu-

ally orthogonal states UI |ψ〉, there are m(m − 1) conditions on these phases. For linear

equations, the largest possible number would be m ∼ 2Nmodes/2 states. Some numerical

experimentation indicates that lnm ∝ Nmodes for the present problem as well.3

For a given unitary UI constructed as above we wish to study the states UIHE0 obtained

by applying UI to all states in HE0 . By construction infalling vacuum states in HE0 , which

are Haar-typical, map to excited states under UI for each I. Recall that the unitary UI
is a state-independent operator since it acts only on the external fields. The action of the

unitary raises the mean energy of typical states by order

∆Emean ∼
Nmodes(∆ω)2

T0
∼ NmodesT0

n2
. (2.5)

For appropriate choices of modes the probability of a fluctuation ∆E above the mean is

e−O(n2∆E2/NmodesT
2
0 ) . (2.6)

3The analysis is not completely trivial because the state does not factorize for modes of nonzero ∆ω,

but it is a small perturbation of this.
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Similar calculations are given in a slightly different context in appendix A. The width

∆Evar ∼ N
1/2
modesT0/n in (2.6) is larger than the shift in the mean in (2.5) so we focus

∆Evar. If we project UIHE0 onto HE+ for E+ = E0 +λ∆Evar with λ a constant somewhat

larger than one, this projection P will leave a typical state invariant up to corrections that

vanish as e−O(λ2).

The space PUIHE0 is a subspace of HE+ . The respective dimensionalities are

dim(PUIHE0) = dim(HE0) = eS0 , dim(HE+) = eS0+λ∆E/T0 . (2.7)

In the first equality we use the fact that P has negligibly small kernel for generic U , as

is readily seen by counting equations and unknowns, but any kernel associated with non-

generic U would shrink as we increase λ and a small kernel would not affect the result. The

difference of dimensions is enormous, as noted in [29], but the ratio is close to unity provided

δ ≡ λ∆E

T0
=
λNmodes

n2
� 1 . (2.8)

We will shortly see that the probability of Born rule violations is e−δ for small δ. So we will

obtain violations with probability parametrically close to unity by taking n large with fixed

λ and Nmodes. In the present construction, we have noted that n ∼ lnN . This is already

a strong result, as any construction in which the probability of violations fails to vanish

as N → ∞ would already show that such violations cannot be neglected at large N . But

it turns out that the violations can be even larger. For those interested in this technical

point, appendix A describes a context involving small-but-stable black holes where n is a

power of N .

The key observation is that a typical state |ψ+〉 in HE+ can be written

|ψ+〉 = cos θ|ψ1〉+ sin θ|ψ2〉, with cos2 θ ∼=
dim(PUIHE0)

dim(HE+)
= e−δ , (2.9)

where |ψ1〉 and |ψ2〉 are normalized states in PUIHE0 and its orthogonal complement

H⊥ = HE+/PUIHE0 respectively. This is readily seen by expanding in a basis, and the

variations of θ are actually quite small due to the high dimensionality. So for small δ almost

all states in HE+ are nearly parallel to states in PUIHE0 .

We are essentially done. We have just seen that almost all states in HE+ are nearly

parallel to states in PUIHE0 . And almost all states in PUIHE0 are nearly parallel to

states in UIHE0 , the exceptions arising from states in UIHE0 whose energy happens to

vary upward in energy far enough that the projection P has a large effect. Finally, almost

all states in UIHE0 are excited, the exception being those obtained from atypical states in

HE0 . So almost all states in HE+ are assumed to be in vacuum, but almost all are nearly

parallel to excited states in UIHE0 : this is the Born rule violation.4 A precise version of

this statement is derived in appendix B.

4This contradicts an argument in sections 8.3.1 and 8.3.2 of [29], which considers a tiny neighborhood of

a subspace like PUIHE0 ⊂ HE+ . The key point is that almost all the volume of a high-dimensional sphere

is very close to the equator; the calculation in that work ignored the curvature of the sphere.
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2.2 Observing the violation

To describe the sense in which the above violation is visible to infallers, it is again useful

to think of our AdS system as a conformal field theory sitting inside a larger laboratory.

In fact, we may imagine this laboratory to contain many copies of the CFT which may be

manipulated at will by a sufficiently powerful experimenter.5 After performing some num-

ber of tests and manipulations, the experimenter then injects herself into some particular

copy of the CFT so as to become a bulk AdS observer and fall into the black hole. For

clarity, we take the target CFT for this injection to be unentangled with anything else in

the laboratory. We imagine this setting to be analogous to having an extremely powerful

observer in asymptotically flat space, who may test and prepare as many black holes as

she likes before finally choosing one into which she will jump. The advantage of moving

the observer completely outside the gravitating spacetime is simply that it frees us from

discussing possible practical constraints on the extent to which the black holes (and the

ensuing Hawking radiation) might be manipulated.

We assume that our observer knows the full theory describing the bulk. Her goal is

to test this theory, and in particular to produce strong evidence that the experiences of

infallers violate the Born rule. She would like to verify that there is a set of states {|I〉},
labeled by a set of distinct outcomes I, which nearly coincide in the CFT Hilbert space

but where bulk infalling observers in each |I〉 have probability essentially one to experience

the corresponding I. Verifying that two given CFT states |I〉 and |J〉 nearly coincide is

straightforward. She merely entangles the CFT with a spin — a j = 1/2 representation

of SU(2) — elsewhere in her laboratory to prepare the state |I〉|up〉+ |J〉|down〉 and then

measures the spin in the basis |±〉 = |up〉 ± |down〉. Since |I〉 and |J〉 are nearly equal,

she finds the state |up〉 with overwhelming probability. Note that she is free to repeat this

experiment as many times as she desires by making use of the many copies of the CFT in

her lab, verifying that the probability is very high and showing that the same conclusion

holds for every pair of states taken from the set {|I〉}.
On the other hand, almost by definition it is impossible for her to verify that all of

the states {|I〉} lead to the predicted outcome for infallers. Here we assume that infallers

cannot communicate their experiences back to anyone outside the black hole. We also

assume that once our observer decides to enter some black hole she will be destroyed in

the singularity and thus unable to probe any further black holes. This prohibits her from

testing more than one of the states |I〉.
But what she can do is to choose a complicated |I〉, where the binary representation of

I encodes a message that requires a large number of bits. By verifying that the modes are

excited as expected, she obtains strong evidence that the algorithm mapping state |I〉 to

outcome I is correct, and thus that the physics of infallers is governed by massive violations

of the Born rule. The strength of this evidence, quantified by the number of bits in the

message, can be arbitrarily large at large N .

5Despite having states with distinct infaller-outcomes that are extremely close together, we assume the

outcomes are sufficiently continuous that an ardent experimenter can produce a state with high probability

to give the desired results.
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We should note some potential obstacles and improvements. First, if we use the L = 0

wave modes only, then a single infalling observer cannot measure their state with perfect

fidelity, since this is spread over all directions on the sphere [53]. However, we are free to use

a linear combination of different partial waves, and a modest number will produce a mode

sufficiently localized to be measured with some accuracy. Alternatively, we could use an

error-correction scheme to encode each bit of the message in multiple L = 0 modes so that

the fidelity to retrieve the message remains large even with imperfect fidelity for each mode.

Second, the number of measurable modes that one can excite is of order lnN in the

above construction, and so enormous values of N are needed in order to obtain high sta-

tistical certainty that the Born rule is violated. This should not be a concern, since we

are simply establishing a point of principle. But it is also possible to do better. Appendix

A describes a context involving small-but-stable black holes in which the frequency width

can be of order N−2, drastically reducing the value of δ. If we keep to a single partial

wave, the number of modes visible behind the horizon before the infalling observer hits the

singularity is still only of order lnN . We could multiply this by using many partial waves,

but this would lead to very large gray-body factors. The necessary operators b in the CFT

can still be constructed, but they involve terms of order eL canceling against each other

and so this is theoretically complicated.

A better approach is to use a large number of species. We can cross AdS5 with a stack

of M D1-branes, with M a power6 of N , which will thread the black hole. This gives M2

species: our observer can excite some and not others behind the horizon, and then verify

the Born-rule violating prediction. This construction has two further advantages as well.

First, the excitations are localized at one point on the horizon and so more easily measured.

Second, one may note that choosing modes with small ∆ω forces some part of the excitation

to be very close to the horizon, and thus to have high energy in the frame of an infalling ob-

server. Confining the excitation to a D1-brane crossing the horizon immediately makes clear

that this excitation can be detected by our infaller without causing her total annihilation.

Finally, some readers will object that our infaller performs crucial phases of our ex-

periment while outside the AdS system. It remains an interesting open question whether

similar violations might be visible to observers who remain inside the AdS space at all times.

This may be possible in a context involving many small-but-stable black holes of the sort

discussed in appendix A, though such investigations are beyond the scope of this work.

3 Discussion

Violations of the Born rule do not necessarily imply an intrinsic inconsistency. It remains

possible that this will prove to be a necessary feature of quantum gravity. But giving up

the basic structure of quantum mechanics means that there are many things to check. In

particular, the theory must ultimately give a definite prediction for what the observer will

find in the interior of a black hole, for any given state of the system — including those that

describe black holes entangled with external systems. The linearity of quantum mechanics

6The largest power allowed is determined by a calculation analogous to [54–57].
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allows definite predictions in this case, but in the state-dependent context new information

is required.

Consider for example two states such as we have constructed, |v〉 and |e〉 = U |v′〉,
which are nearly equal as state vectors but where the first is infalling-vacuum and the

second has an excitation at the horizon. If we entangle the black hole with another qubit

and then jump in, what prediction is to be made for the state

|v, 0〉+ |e, 1〉√
2

, (3.1)

where 0, 1 are the states of the external qubit? It is natural to suppose that the probability

is 1
2 to find the state v and 1

2 to find the state e. But what if we write the same state as

|e+ v, 0 + 1〉+ |e− v, 0− 1〉
2
√

2
? (3.2)

Since e− v is very close to zero, the black hole state is essentially (e+ v)/2. But to make

contact with the prediction of (3.1) one must know to separate this state into the specific

parts e and v, and if just given this state as a sum there is no indication of how to make this

split. Indeed, in the particular formalism of ref. [26] will find a single unitary U ′ that takes

this total state to a vacuum v′′, and there is no simple connection between the physical

interpretation of this state and that given by (3.1).

Refs. [58, 59] noted exotic behavior in one version of nonlinear quantum mechanics [60].

Depending how the nonlinearity was implemented, it was possible either to construct an

‘EPR phone,’ which could send signals faster than light, or an ‘Everett phone,’ which could

send signals between branches of the wavefunction. Very likely the same is possible with

state dependence, but without a more complete proposal it is impossible to say which, or

whether signals can only be sent into the black hole or more generally. Again, once one gives

up the linearity of quantum mechanics one has to replace it with a complete new theory of

measurement, and ask whether this is a plausible basis for a theory of quantum gravity.

We have not discussed the ER=EPR idea [23], although it shares some features with

state-dependence. In particular, the interior geometry depends on the degree of entangle-

ment, which cannot be measured by a linear operator [23]. So again there is nonlinearity

in the observables. However, in some versions of this idea it is considered that typical

states of sufficient complexity might have firewalls [61]. This could entail a weaker use of

state-dependence than assumed above so that our arguments do not immediately apply.

The associated modification of quantum mechanics would then be harder to observe.
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A Other constructions

To reduce the width of the wavepackets in frequency space, and thereby reduce the small

parameter δ, we will consider small but stable black holes in anti-de Sitter space. For

example, in AdS5 × S5 one can have a ten-dimensional black hole with Schwarzschild

radius r0 & N−2/17`AdS [62]. The number of modes in a given partial wave external to the

black hole with frequencies of order 1/r0 is Next ∼ N2/17, and we can take a basis bi with

frequency widths of order 1/Nextr0, or n ∼ Next in the notation of (2.5). The point is that,

in order to construct our unitary, we need all of the modes to be external to the black hole

on a common time slice. Note that while power law n requires our wave packet to extend

over times long compared to the so-called scrambling time of these black holes, our black

holes are small enough that we are still far from the chaotic regime studied recently in [63]

For small black holes, modes outside retain their coherence for times long compared to the

Schwarzschild time, and there is a delay of order the AdS timescale ∼ N1/4 before any

exponential growth will begin. In the language of [63], this delay arises from the fact that

for shorter times the relevant shock waves collide far from the black hole where the action

of the time translation acts much as in the AdS vacuum and does not create large boosts.

The delay is also related to the absence of chaos in flat-space outgoing Hawking radiation

described in [64].

We wish to determine the effect of the unitary

U = eiX , X =
∑
i

θib
†
ibi (A.1)

on the energy

〈ψ|e−iXHeiX |ψ〉 . (A.2)

Writing

bi =

∫
dω

2π
gi(ω)bω , (A.3)

the first two terms in the expansion of the exponential involve

i[H,X] = i
∑
i

θi

∫
d2ω

(2π)2
(ω1 − ω2)g∗i (ω1)gi(ω2)b†ω1

bω2 ,

−[[H,X], X] = −
∑
ij

θiθj

∫
d3ω

(2π)3
(ω1 − ω2)g∗i (ω1)gi(ω2)

×
[
g∗j (ω2)gj(ω3)b†ω1

bω3 − g∗j (ω3)gj(ω1)b†ω3
bω2

]
. (A.4)

Inserting the thermal average

〈ψ|b†ω1
bω2 |ψ〉 = 2πδ(ω1 − ω2)N(ω1) , (A.5)
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the first term vanishes and the second becomes

−
∑
ij

θiθj

∫
d2ω

(2π)2
(ω1 − ω2)(N(ω1)−N(ω2))g∗i (ω1)gi(ω2)g∗j (ω2)gj(ω1) . (A.6)

Because the packets are narrow, the product gi(ω)gj(ω) falls rapidly for i very different from

j, so we can estimate the sum by setting i = j. Noting that the total area of g∗i (ω1)gi(ω2)

is 1, and that (N(ω1)−N(ω2)) ∼ (ω2 − ω1)/T0, this is of order

1

T0

∑
i

θ2
i

∫
d2ω

(2π)2
(ω1 − ω2)2|gi(ω1)|2|gi(ω2)|2 ∼ T0

N2
ext

∑
i

θ2
i . (A.7)

For all θi of order one, this is of order

T0/Next , (A.8)

suppressed by a power of N as compared to the lnN obtained in the construction in the

main text. Higher terms are of the same order.

We should also estimate the probability for a upward fluctuation of the energy, i.e.

the overlap with a high energy eigenstate. Fluctuations add in quadratures, so if we act

on Nmodes = Next modes the overall width is T0/N
1/2
ext . This is much larger than the

movement (A.8) of the mean, and so is a more important effect. The probability of a

fluctuation ∆E is given by the central limit theorem as

e−Next∆E2/T 2
0 . (A.9)

By acting with all θi = π, one can change the entanglements for all of these modes.

A single infalling observer still has a limited time for observation, and so will only see a

logarithmic number of excited modes. In fact, with unitaries of this form it is difficult to

act differently on the different localized radial modes, and so to send a message of many

bits one would want to use multiple species of field and/or multiple partial waves.

The relatively small power of N , 2/17, comes about as follows. The black hole is

stable when its entropy is greater than that of a gas with the same energy confined to

the AdS volume. Because the geometry is ten-dimensional, the entropy of the gas grows

rapidly with the radius of the space available. A more favorable geometry would couple

AdS containing a large black hole to a one-dimensional auxiliary system as in [65]; this

allows one to access N2 modes.

B Measures on Hilbert space

We now make precise the argument in the last paragraph of section 2.1: for any ε1 > 0

and ε2 > 0, there are choices of λ, N , and δ such that, for at least a fraction 1 − ε1 of

the normalized states |ψ+〉 in HE+ , there is a normalized excited state |ψe〉 in UIHE0 such

that |〈ψ+|ψe〉| ≥ 1− ε2. We remind the reader that by the construction in section 2.1, for

any equilibrium state in HE0 the state UIHE0 has the specific excitations I. The relevant

spaces are shown in figure 1.
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Figure 1. a) States with energy E < E0. Atypical states, which are not in the infalling vacuum,

are indicated by the small subregion. b) The image under a unitary U . States outside the subregion

are excited. c) The states from (b) projected down to E < E+. Rare states whose projection is

not close to the identity are represented by the second hole. d) States with energy E < E+, almost

all of which are nearly parallel to excited states. The parametrically rare exceptions are those that

project to the two subregions in (c), and those that are not close to the subspace in (c).

To find |ψe〉, we first make the orthogonal decomposition (2.9) of E+ into PUIHE0 and

H⊥ = HE+/PUIHE0 ,

|ψ+〉 = cos θ|ψ1〉+ sin θ|ψ2〉, cos2 θ ∼=
dim(PUIHE0)

dim(HE+)
= e−δ . (B.1)

A state in UIHE0 can similarly be decomposed under the orthogonal decomposition into

PUIHE0 and (1 − P )UIHE0 . Defining orthonormal bases |ui〉, |vj〉, |wk〉 for these three

spaces, we have

|ui〉 = cij |vj〉+ dik|wk〉 ,
∑
j

c∗ijci′j +
∑
k

d∗ikdi′k = δii′ . (B.2)

By unitary rotations of the u, v bases we can set cij = ξiδij with real ξi ≤ 1, and generically

all ξi are positive. We define a generically-norm-preserving map from HE+ to PUIHE0 by

mapping |ψ+〉 in (B.1) to |ψ1〉. We define a map from PUIHE0 to UIHE0 by mapping |vi〉
to |ui〉. The composition of the maps defines the candidate |ψe〉 associated with |ψ+〉.

The inner product of |ψ+〉 with the candidate |ψe〉 is

〈ψ+|ψe〉 = cos θ
∑
i

ξi|〈vi|ψ1〉|2 . (B.3)

We are interested in the fraction of states for which (B.3) is greater than 1− ε2 for a given

ε2; this fraction is at least as great as that for which

cos θ >
√

1− ε2 and ,
∑
i

ξi|〈vi|ψ1〉|2 >
√

1− ε2 . (B.4)

As noted in the main text, cos θ is highly peaked at e−δ/2, so that the fraction of states

satisfying the first inequality rises to unity very rapidly for δ < − ln(1 − ε2) ∼ ε2. In the

second inequality, the mean value of ξi will differ from 1 by an amount that vanishes with
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increasing λ. There will be rare variations upward for some ξi, but we have seen that the

falloff is gaussian in λ as in (A.9) for moderate λ values.7 So we can satisfy the second

inequality by taking λ to be large.

It follows that appropriate choices of λ, N , and δ wcan make an arbitrarily large

fraction of the states in HE+ arbitrarily close to states in UIHE0 . Now, not all of the latter

are excited, only those that are the images of near-equilibrium states in HE0 . We have

not given a qualitative description of this discrepancy, but proponents of state-dependent

smoothness for horizons would naturally expect the proportion of nonequilibrium states

to fall rapidly with N : an infalling observer perceives the state |ψe〉 above as containing

excitations with energies that can be greater than the Hawking temperature by a power

of N , so the Boltzmann factor would provide an exponential suppression. This effect

would then give only a parametrically small reduction in the fraction of states in HE+ with

excitations comparable to |ψe〉.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or

firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[2] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls,

JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

[3] D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev.

Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].

[4] R. Bousso, Firewalls from double purity, Phys. Rev. D 88 (2013) 084035 [arXiv:1308.2665]

[INSPIRE].

[5] L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole

complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].
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