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1 Introduction and summary

1.1 Motivation and antecedents

One of the useful ways to inquire into the behavior of a field theory is to couple an external

probe to it and deduce the response of the fields. The vevs of line operators associated

with such probes serve as diagnostics of the phase of the field theory. Furthermore, even

for a simple theory such as Maxwell’s, once one considers probes with generic motion,

one encounters the fascinating phenomenon of radiation, with far-reaching implications

both on a theoretical and a practical level. For generic interacting quantum field theories,

the analytic treatment of detailed properties of radiation, like its frequency and angular

distribution, its broadening, or the damping it induces on the probe, is mostly based on

perturbation theory and therefore limited to the realm of weak coupling. In recent years,

it has been appreciated that for quantum field theories with additional symmetries (e.g.,

conformal invariance and/or supersymmetry) and for suitably chosen probes, there are a

number of techniques that allow us to address these questions for strongly-coupled field

theories. In very fine-tuned examples, and for very specific questions, we can even obtain

exact answers, something quite unusual for a field theory in more than two dimensions.

Depending on the questions we want to address, we sometimes need to be able to handle

probes with arbitrary timelike trajectories, while for selected questions having control over

very specific trajectories is enough. As a first illustration of this point, let us start by
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recalling the definition of one of the most interesting quantities associated to a heavy probe,

the cusp anomalous dimension. Consider a probe at rest that receives a sudden kick and

afterwards moves with constant speed; its worldline presents a cusp at the event of the kick.

The evaluation of the corresponding Wilson line will feature a logarithmic divergence [1]

〈W 〉 ∼ e−Γcusp(ϕ) log L
ε , (1.1)

with ϕ the boost parameter, and L, ε IR and UV cutoffs, respectively. The function Γcusp(ϕ)

is the cusp anomalous dimension. This logarithmic divergence will be on top of other di-

vergences that the vev of a similar Wilson line with a smooth contour might have. While

the determination of this function for generic boosts is an interesting problem, its evalua-

tion at either very large or very small boosts is already quite rewarding physically. Let us

focus in particular in the small boost limit, by performing a Taylor expansion of the cusp

anomalous dimension in terms of the boost parameter,

Γcusp(ϕ) = B(λ,N)ϕ2 +O(ϕ4) . (1.2)

The coefficient of ϕ2 was called the Bremsstrahlung function in [2], and as indicated, it

depends on the rank N of the gauge group and the coupling λ = g2
YMN . At this point, we

can start to illustrate the power of focusing on theories with additional symmetries. It was

argued in [2] that for probes coupled to arbitrary four-dimensional conformal field theories

(CFTs), a number of physically interesting quantities are completely determined up to a co-

efficient, and for all these quantities, the undetermined coefficients are the same and equal to

the Bremsstrahlung function. In particular, the energy loss of a probe at small velocities is

E = 2πB

∫
dt(v̇)2 . (1.3)

This identification is valid for any line operator and any conformal field theory.

A second example of a very interesting specific trajectory is that of a probe with

constant proper acceleration. Its worldline is a branch of a hyperbola, which translates into

a circle in Euclidean signature. If the probe is coupled to a conformal field theory, from the

vev of the circular Wilson loop and the one-point function of the stress-energy tensor in the

presence of such Wilson line, one can obtain an alternative derivation of the Bremsstrahlung

function [3, 4], the momentum difussion coefficient of the accelerated probe [5], or the

change in entanglement entropy of a spherical region when adding a static probe [4]. In

the case of a 1/2 BPS probe of N = 4 SU(N) super-Yang-Mills (SYM), it was argued in [2]

that the Bremsstrahlung function is very simply related to the vev of a circular Wilson loop,

B =
1

2π2
λ∂λlog 〈W}〉 . (1.4)

Relation (1.4) allows us to derive the exact Bremsstrahlung function from the exact

vev of a circular Wilson loop [6], which can be evaluated by means of a matrix model

computation [7] that ultimately finds its justification through localization arguments [8].

One then finds for a fundamental 1/2 BPS probe coupled to U(N) [2]

B =
λ

16π2

L2
N−1

(
− λ

4N

)
+ L2

N−2

(
− λ

4N

)
L1
N−1

(
− λ

4N

) , (1.5)
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where the Lαn are generalized Laguerre polynomials. This expression was also deduced by

a different chain of reasoning in [3, 4].

While the response of the theory to probes following these two particular trajectories is

quite interesting, it is certainly far from covering all the rich physics of accelerating probes,

and for other questions we need to be able to handle probes with arbitrary trajectories. In

what follows we will concentrate on the study of (locally) 1/2-BPS probes of the vacuum

state of N = 4 SU(N) SYM by means of the AdS/CFT correspondence, so we find it

appropriate to start by reviewing some known results.

Consider first a probe in the fundamental representation of the SU(N) gauge group, i.e.,

a quark. In the context of the AdS/CFT correspondence [9–11], its dual is a fundamental

string embedded in AdS5×S5 and governed by the Nambu-Goto action. Mikhailov [12] con-

sidered such a probe following an arbitrary timelike trajectory, and found the corresponding

string embedding in the supergravity regime (N � 1, λ� 1). The energy of the string at a

given time was shown to contain both the expected instantaneous energy of the quark [13],

Eq = γm, and the energy that the quark has radiated over all of its previous history [12],

Erad =

√
λ

2π

∫
dtr a

µaµ =

√
λ

2π

∫
dtr γ

6
(
~a2 − |~v × ~a|2

)
. (1.6)

Notice this says that, remarkably, the total radiated power by the fundamental probe in

this strongly-coupled non-Abelian theory is given (up to the coefficient) by the familiar

Liénard formula from classical electrodynamics. The coefficient of (1.6) informs us that

the Bremsstrahlung function for a 1/2-BPS particle in the fundamental representation is

given in the supergravity limit by

B =

√
λ

4π2
. (1.7)

matching the result first obtained in [14]. In hindsight, it could have also been deduced by

applying (1.4) to the vev of the corresponding circular Wilson loop [15, 16]

〈W}〉 = e
√
λ . (1.8)

Alternatively, the same Bremsstrahlung function can be deduced from the computation of

the one-point function of the Lagrangian density [3, 17–19] or energy density [4, 20–22] in

the presence of a quark, or the momentum diffusion coefficient of the same probe following

a trajectory with constant proper acceleration [23, 24].

When we move on to probes in higher-rank representations of the gauge group, the

totally antisymmetric representations turn out to be the easiest generalization. In the

supergravity regime, the dual of an antisymmetric k-quark is given [25, 26] by a D5-brane

with k units of worldvolume electric flux (and consequently, string charge). The brane

wraps an S4 ⊂ S5 at polar angle ϑk such that [27, 28]

sinϑk cosϑk − ϑk =
πk

N
. (1.9)

Combining a very general result due to Hartnoll [29] with the string solutions of Mikhailov,

it is immediate to obtain the D5-brane solution dual to an antisymmetric probe following
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an arbitrary trajectory. This allows for the determination of the energy loss [30],

EAkrad =
N
√
λ

3π2
sin3 ϑk

∫
dtr γ

6
(
~a2 − |~v × ~a|2

)
. (1.10)

We observe that again the radiated power is given by a Liénard-type formula. The corre-

sponding Bremsstrahlung function in the supergravity regime can be read off from (1.10)

to be

BAk =
N
√
λ

6π3
sin3 ϑk . (1.11)

Similarly to what happens in the fundamental representation, the exact vevs of the cir-

cular Wilson loops for probes in the antisymmetric representations have been computed

exactly [31], and from them one can deduce the corresponding Bremsstrahlung function

using (1.4).

Let us now turn to probes in the totally symmetric representation of N = 4 SU(N)

SYM, which will be the main focus of the present work.1 In the AdS/CFT correspondence,

a symmetric k-quark is dual to a D3-brane with k units of electric flux, which is embed-

ded fully within AdS5 and reaches the boundary of this spacetime at the worldline of the

probe [26, 32]. Contrary to what happens for probes in the fundamental and antisymmetric

representations, up until now the D3-brane embedding dual to an arbitrary timelike world-

line was not available. This limitation was bypassed in [30] by considering a D3-brane dual

to a probe with constant proper acceleration, essentially obtained in [33]. The computation

of the energy loss for that particular trajectory yielded the Bremsstrahlung function

BSk =
k
√
λ

4π2

√
1 +

k2λ

16π2N2
. (1.12)

Again, since the Bremsstrahlung function for this 1/2-BPS probe appears in various phys-

ical quantities, it is also possible to determine it by considering the momentum difussion

coefficient [5] of the probe following accelerated motion, or the one-point function of the

Lagrangian density in the presence of a static probe [3], which in turn is related by super-

symmetry to the one-point function of the ∆ = 2 chiral primary operator computed in [34].

The exact result for the circular Wilson loop in the totally symmetric representation was

determined recently in [31], but it is given in a form that makes it very hard to carry out a

systematic large N expansion. The first subleading correction in 1/N was worked out and

successfully matched to the D3-brane description very recently in [35].

As we have stressed, there are physically interesting questions where one needs to have

a handle on probes following arbitrary timelike trajectories. In the case at hand this means

finding a D3-brane that reaches the boundary of AdS5 at such trajectories. Besides the

intrinsic interest of studying probes in higher-rank representations, there is an additional

motivation that is specific to the totally symmetric case. Upon setting k = 1 in the

supergravity result (1.12) for the k-symmetric Bremsstrahlung function, one obtains the

1Since the configurations we study lie at a fixed position on the S5, our results make no use of the

internal dimensions and should be relevant for other four-dimensional CFTs, whose gravity dual would

involve AdS5 times a different compact manifold.
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result in the fundamental representation, corrected by an infinite series in
√
λ/N . What is

striking is that these corrections precisely match those found in the exact result (1.5) for

the fundamental, in the limit where one takes λ,N →∞ with
√
λ/N fixed. This was first

noticed in the computation of the vev of the 1/2 BPS circular Wilson loop [33], and it is true

in spite of the fact that, a priori, k = 1 lies outside the regime of validity of the D3-brane

calculation [30]. The reasons behind this better than expected behavior are not known, and

in particular it is not clear what symmetries the trajectory must preserve for the D3-brane

to correctly capture these subleading terms. It then seems worth exploring to what extent

one can use D3-brane probe results to obtain 1/N corrections to other properties of probes

in the fundamental representation. In order to do so, the first ingredient we need are the

relevant D3-brane probes, and to those we turn next.

1.2 Outline and main results

In this paper we construct the D3-brane solution dual to a symmetric k-quark with arbitrary

motion in the vacuum of N = 4 SYM. We start in section 2 by reviewing Mikhailov’s

embedding (2.5) for the string. Whereas the emphasis in many of the early applications

(see, e.g., [13, 36, 37]) was on the reliance of his construction on null geodesics on the string

worldsheet, which are only known after the embedding has been specified, we observe here

that these curves turn out to also be null geodesics directly in spacetime (see also [21]). This

implies that Mikhailov’s solution can be constructed by shooting light rays in from the AdS

boundary. Concretely, the string worldsheet is obtained by tracing an inbound null geodesic

from each point on the quark’s worldline, with tangent determined by the quark’s velocity.

In section 3.1 we generalize this technique to the case of the D3-brane. This re-

quires that from each point on the k-quark’s trajectory we shoot not one but infinitely

many light rays, spanning the surrounding S2. This ultimately leads to the 4-dimensional

embedding (3.5), which, when combined with a worldvolume field strength chosen to be

proportional to the induced metric, as specified in (3.13), quite remarkably turns out to

satisfy all of the (highly nonlinear) equations of motion. We thus achieve our main goal in

the paper, to obtain the heretofore unknown embeddings dual to k-symmetric probes with

an arbitrary timelike worldline. We illustrate the general construction with the explicit

example of a probe in circular motion.

The eminently geometric character of our construction method suggests that it should

have wider relevance, and indeed, in section 3.2 we show that the known D5-brane em-

beddings dual to k-antisymmetric probes are correctly reproduced by tracing light rays in

from the AdS boundary and selecting the field strength according to (3.13). Many other

extensions seem possible and desirable, and we intend to pursue them in future work.

As a first application of our D3-brane solutions, we compute their total energy and show

that, much as in [12, 13], it cleanly splits into two contributions attributable respectively

to the k-quark’s intrinsic and radiated energy. For the former, we find

Ekq = kγm , (1.13)

meaning that even for arbitrary motion our probe continues to be a threshold bound state.
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For the latter, we obtain

ESkrad =
k
√
λ

2π

√
1 +

k2λ

16π2N2

∫
dtr
[
γ6
(
~a2 − |~v × ~a|2

)]
. (1.14)

which has the by now familiar Liénard-type form, and confirms the Bremsstrahlung func-

tion (1.12) deduced previously for a probe with proper constant acceleration. This shows

in particular that, at least for this observable, the relation between the fundamental and

totally symmetric representations extends to arbitrary probe trajectories.

2 Strings of light

We focus on the duality between maximally supersymmetric Yang-Mills theory (MSYM)

in 3+1 dimensions, with gauge group SU(N), and Type IIB string theory on 5-dimensional

anti-de Sitter (AdS) spacetime cross a 5-sphere. To examine the gauge theory on Minkowski

spacetime, we work in the Poincaré patch of AdS5, where the metric reads

Gmndx
mdxn =

L2

z2

(
ηµνdx

µdxν + dz2
)

=
L2

z2

(
−dt2 + dx2

1 + dx2
2 + dx2

3 + dz2
)
. (2.1)

There are also a constant dilaton eφ = gs and N units of flux of the self-dual Ramond-

Ramond 5-form field strength. The AdS component of the corresponding potential can be

taken to be

C0123 = −L
4

z4
. (2.2)

The ratio of the AdS radius of curvature L to the string length ls is related to the MSYM

’t Hooft coupling through
L

ls
= λ1/4 . (2.3)

An external (infinitely massive) quark in MSYM is dual to a fundamental string ex-

tending from the AdS boundary at z = 0 to the Poincaré horizon at z →∞. More precisely,

it is the endpoint of the string that is dual to the quark, whereas the body of the string

encodes the profile of the gluonic (and other) field(s) sourced by the quark. Given a quark

trajectory xµ(τ), the dual string embedding Xµ(τ, z) is found by extremizing the usual

Nambu-Goto action, subject to the condition that the string endpoint follow the same

path as the quark, Xµ(τ, 0) = xµ(τ). Remarkably, Mikhailov [12] was able to solve this

problem for arbitrary quark motion. His solution takes the surprisingly simple form

Xµ(τ, z) = xµ(τ) + vµ(τ)z , (2.4)

where τ is chosen to be the proper time of the quark, and vµ ≡ dxµ/dτ denotes its 4-

velocity. This solution is retarded or purely outgoing, i.e., it is appropriate for the situation

of primary physical interest, where excitations of the MSYM fields propagate outward from

the quark toward infinity. Flipping the sign in front of vµ gives instead an advanced or

purely ingoing solution.2

2The more generic embedding would be a nonlinear superposition of retarded and advanced contribu-

tions, but its form is not known.
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The physics of the embedding (2.4) is more easily unpacked by rewriting it in nonco-

variant notation,

t(tr, z) = tr + γ(tr)z , (2.5)

~X(tr, z) = ~x(tr) + γ(tr)~v(tr)z .

The information of interest here is the position at time t of the string bit at radial depth

z, which essentially codifies the configuration at that time of the gluonic field a distance ∼ z
away from the quark. We see from the second equation that this information is determined

by the position ~x and 3-velocity ~v of the quark/endpoint at the earlier, retarded time tr
defined by the first equation, in close analogy with the Liénard-Wiechert story in classical

electromagnetism.3

The curves at constant tr (or τ) are null geodesics on the string worldsheet, and this

property played an important role in Mikhailov’s construction. But what will be of interest

to us in this paper is the observation that they are also null geodesics in spacetime, as is

clear from (2.5), where we see that they are straight lines in the Poincaré coordinates (2.1).

We can therefore interpret the Mikhailov embedding as the surface obtained by shooting

light rays from the AdS boundary into the bulk, with the starting point and slope of

each ray determined respectively by the position and velocity of the quark, according

to (2.4) or (2.5). The nontrivial fact that the ruled surface so obtained is a classical string

worldsheet (i.e., a solution of the Nambu-Goto system) was proven somewhat indirectly

in [12], by arguing that it extremizes the action, and later verified in [42] by directly

plugging it into the equations of motion.

A connection between null geodesics and strings was discussed previously in studies of

light parton energy loss in a thermal gluon plasma [43–46]. Light rays were employed there

to estimate the trajectory of the endpoint of the string dual to a light quark or gluon, as

it falls towards the black hole horizon (see however [47]). In contrast, we are here finding

that (at least in pure AdS) the entire worldsheet of the string dual to a heavy quark can be

generated by throwing light rays in from the boundary.4 It is perhaps worth emphasizing

that the motion of internal points of the string, unlike that of its endpoint, depends on

the choice of worldsheet coordinates. To uncover the geometric description of the string in

terms of light rays, it is crucial then that in (2.5) (or (2.4)) we are choosing to parametrize

the worldsheet in terms of the (proper) retarded time tr (τ) at the boundary.

3The fact that, unlike in classical electromagnetism, the gluonic field is a nonlinear medium that can

rescatter signals is accounted for in the dual gravity description by the fact that fields at the AdS boundary

receive contributions from each and every point along the string [18, 19]. Even so, 1-point functions of

gluonic field observables turn out to have some surprising features, such as beaming [20, 38–40], lack of

radial/temporal broadening [19, 21, 41] and a ‘near’-field tail reaching out to infinity [4, 22].
4Another interesting use of light rays in the holographic description of quarks appeared in the beaming

proposal of [38, 39] to determine the gravitational backreaction of the string (see also [40]). A relation

between light rays and the string worldsheet was also postulated in [48] in the finite temperature context,

but it was not shown whether the ansatz in question satisfies the equation of motion.

– 7 –
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3 Branes of light

Having understood the purely geometric origin of the Mikhailov solution for the string, it is

natural to wonder whether it might be possible to construct other brane embeddings by sim-

ilarly shooting light from the AdS boundary. In this section we will examine this question

for the specific case of a D3-brane with k units of electric flux, which is known to be dual to a

k-quark in the totally symmetric representation of the SU(N) group [26, 32, 33, 50–52]. As

explained in the Introduction, this case is of particular interest because up to now the ap-

propriate D3-brane embeddings are only known for a couple of specific k-quark worldlines,

in contrast with the case of the totally antisymmetric representation. The latter is dual [25–

27, 53] to a D5-brane wrapped on a S4 ⊂ S5 [28, 54], whose embedding in AdS turns out to

exactly coincide [29], for arbitrary k-quark trajectory, with the string solution (2.4) dual to

a quark with the same trajectory. We will come back to that case at the end of the section.

3.1 D3-brane

Let us begin by considering the case of a static k-quark, ~x(t) = constant. Our goal is to

generate the 4-dimensional worldvolume of the dual D3-brane by shooting light rays into the

bulk as we move along this worldline at the AdS boundary. In Poincaré coordinates, each

light ray is a straight line, and will correspond to a fixed retarded time tr. By symmetry,

it is clear that identical light rays must be shot along all directions (θ, φ) of the S2 that

surrounds the location of the k-quark. We thus obtain an ansatz for the D3 embedding

that is closely analogous to (2.5):

~X(tr, z, θ, φ) = ~x(tr) + κz~n , (3.1)

t(tr, z, θ, φ) = tr +
√

1 + κ2 z ,

where ~n for now denotes the unit vector (cos θ, sin θ cosφ, sin θ sinφ), κ is a number express-

ing the common slope of all of the straight lines, and the κ-dependence of the last equation

has been fixed with the requirement that these lines be null. To be able to represent a

bound state of k quarks, we expect this putative D3-brane to carry k units of fundamental

string charge along the AdS radial direction. In other words, the embedding should be sus-

tained by k units of the worldvolume electric flux associated with Ftrz (this will be made

more explicit in (3.10) below, after we write down the D3-brane action). The slope κ must

depend on k, because for k = 1 (and N →∞) all lines must come together as the D3-brane

embedding closes up into the fundamental string (2.5) known to be dual to a static quark.

The D3-brane solution for the static case was obtained in [33, 55], and indeed happens

to agree with our ansatz (3.1), with

κ =
k
√
λ

4N
,

and

Ftrz =

√
λ

2π

1

z2
. (3.2)

This serves then as a first successful test of our approach.
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Figure 1. Successive snapshots (at t = −4, 0, 4) of the D3-brane solution dual to a k-quark moving

at constant velocity along the x1 direction (color online), with v = 0.9 and κ = 1/2. The embedding

is symmetric under rotations in the x2-x3 plane, and the boosted conical surfaces shown here are

just the sections at fixed azimuthal angle φ = 0. The dashed blue lines are light rays emitted into

AdS from the boundary at t = −4. The entire worldvolume is generated by such ingoing rays,

emitted from all points along the trajectory of the k-quark.

Notice that (3.1) can be rewritten as

Xµ(τ, z, θ, φ) = xµ(τ) +
[√

1 + κ2 vµ + κnµ(θ, φ)
]
z , (3.3)

with vµ = (1, 0, 0, 0) the 4-velocity of the static k-quark and nµ ≡ (0, ~n). By Lorentz

covariance, we are assured then that this same equation gives the correct D3-brane embed-

ding dual to a k-quark translating uniformly, as long as we take vµ to be the corresponding

velocity and nµ the appropriately boosted 4-vector. Note that the latter automatically

satisfies the two constraints n2 = 1 and n · v = 0, and so has two independent components,

which we are choosing to parametrize with the original rest frame angles (θ, φ). The result-

ing embedding is shown at various times in figure 1, along with some of the null geodesics

that generate the D3-brane worldvolume. The corresponding field strength is

Fτz =

√
λ

2π

1

z2
, (3.4)

i.e., Ftrz =
√
λ/2πγz2. Thanks to our choice of worldvolume coordinates, no magnetic

components are turned on in spite of the boost.

In Mikhailov’s solution (2.4), the string embedding depends only on the quark’s posi-

tion and velocity. It is natural to suspect that the same is true for our case, and we are

led then to conjecture that allowing for a time-dependent velocity in (3.3),

Xµ(τ, z, θ, φ) = xµ(τ) +
[√

1 + κ2 vµ(τ) + κnµ(τ, θ, φ)
]
z , (3.5)

yields the correct D3-brane embedding dual to a k-quark with an arbitrary trajectory. The

τ -dependence in nµ is due to the fact that this 4-vector has to be suitably transported

– 9 –
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along the worldline. To avoid confusion, we will henceforth denote the rest frame unit

3-vector by ~nR, and let ~n stand for the spatial part of the Lorentz-transformed 4-vector

nµ. Notice that, due to the properties of this 4-vector stated in the previous paragraph,

the proposed embedding (3.5) satisfies (X − x)2 = −z2, which is a restatement of the fact

that light fronts are being emitted from z = 0 at each xµ(τ). This equation is also satisfied

by Mikhailov’s string embedding, (2.4).

To visualize our ansatz more explicitly, we can spell it out when the motion is purely

along direction x ≡ x1:

t = tr + γz(
√

1 + κ2 + κv cos θ) ,

X1 = x+ γz(
√

1 + κ2v + κ cos θ) ,

X2 = κz sin θ cosφ , (3.6)

X3 = κz sin θ sinφ .

For the specific case of uniform proper acceleration A, x(t) =
√
A−2 + t2, this can be

compared against the solution obtained in [30, 33], which was found to be described by(
−t2 + ~X2 + z2 −A−2

)2
+ 4A−2

(
X2

2 +X2
3

)
− 4κ2A−2z2 = 0 . (3.7)

And indeed, the ansatz (3.6) can be verified to satisfy this equation, which constitutes a sec-

ond successful test of our construction. The embedding at various times is shown in figure 2,

together with some of the corresponding light rays. In parallel with the quark/string case

examined in [56, 57], the retarded D3-brane solution (3.6) associated with a uniformly ac-

celerated k-quark terminates at a finite radial position, and can only be smoothly completed

by a suitable advanced k-antiquark solution. More details on this are given in appendix A.

The worldvolume U(1) gauge field should still encode k units of the electric flux asso-

ciated with Ftrz. But for this we get no guidance from Mikhailov’s solution, so it is a priori

unclear whether (3.4) continues to be the only nonvanishing component of the field strength,

or if other components are turned on, due to some acceleration-dependent contributions.

To settle this point, we must work out and enforce the relevant equations of motion.

Let us turn then to the D3-brane action, which includes both the Dirac-Born-Infeld

(DBI) and Wess-Zumino (WZ) terms,

SD3 = TD3

∫
d4ξ

(
−
√
−det(gαβ + 2πl2sFαβ) + c0123

)
, (3.8)

where TD3 = 1/(2π)3gsl
4
s = N/2π2L4 is the tension of the D3-brane, gαβ = ∂αX

m∂βX
nGmn

is the induced metric, and c is likewise the pullback of the 4-form C onto the worldvolume,

cαβγδ = ∂αX
m∂βX

n∂γX
p∂δX

qCmnpq. The worldvolume coordinates are denoted collec-

tively by ξα, and, based on the preceding analysis, will be chosen by us to be tr, z, θ, and φ.

From this action we can work out the momentum density conjugate to each of the

embedding fields, Pαm ≡ ∂LD3/∂(∂αX
m), and to each of the gauge field components, Παβ ≡

∂LD3/∂(∂αAβ) = ∂LD3/∂Fαβ. The generic expressions are long and unenlightening, so we
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x2
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z
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Figure 2. Successive snapshots (at t = 0, 2, 4) of the D3-brane solution dual to a k-quark and

k-antiquark undergoing back-to-back uniform acceleration along x1, with A = 1 and κ = 1/2. The

embedding is invariant under azimuthal rotations, and the banana-shaped surfaces shown here are

just the φ = 0 sections. The dashed blue (red) lines are light rays emitted into AdS from (absorbed

from AdS into) the k-quark (k-antiquark) tip of the brane, at t = 2. The full worldvolume is

generated by all such ingoing (outgoing) rays. The black circle marks the locus where the retarded

quark and advanced antiquark embeddings smoothly join together, which is seen to move at the

speed of light in the negative x1 direction (see appendix A).

will not write them here. Since the fields Xµ and Aα do not appear undifferentiated in

SD3, their equations of motion are just the statement that these momenta are conserved:

∂αP
α
µ = 0 , ∂αΠαβ = 0 . (3.9)

Consider first the case of motion purely along one dimension. Using our ansatz (3.6)

for the embedding, and assuming for the time being that (3.4) is the only nonvanishing

field strength component, we obtain

Πtrz =
k sin θ

4π
. (3.10)

Upon angular integration, this gives the desired integer value for the fundamental string

charge (along the radial AdS direction) carried by the D3,
∫
dθdφΠtrz = k, thereby val-

idating (3.6) and (3.4). In fact, using (3.6) one finds that in order for (3.10) to hold, all

magnetic components of the field strength must be set to zero, Fzθ = Fzφ = Fθφ = 0, but

the electric components Ftrθ and Ftrφ can be arbitrary. Independently of the values of the

latter, we find that Πtrθ and Πtrφ vanish, just as they should.

Allowing for these electric components of F to be arbitrary, and continuing to use (3.6)

and (3.4), we can then notice that Πθφ = 0 automatically, but

Πzθ =
4N
√

1 + κ2γ2 sin θ

4πλκ

[
2π

γ2
Ftrθ −

√
λκa sin θ

]
,
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Πzφ =
2N
√

1 + κ2 csc θ

λκ
Ftrφ , (3.11)

with a the acceleration of the k-quark. These momenta must be set to zero, because they

would represent unwanted D1-brane charge densities on the D3, and more importantly,

because if they do not vanish then the gauge field equations of motion (3.9) are not satisfied.

Notice that this forces us to turn on Ftrθ, with a value proportional to the acceleration,

which is consistent with the fact that this component was not found to be excited when

the k-quark moves with constant velocity.

Altogether, we have deduced then that, in the case of one-dimensional motion, the

worldvolume field strength must take the form

Ftrz =

√
λ

2π

1

γz2
,

Ftrθ =

√
λ

2π
κγ2a sin θ , (3.12)

Ftrφ = 0 ,

Fzθ = Fzφ = Fθφ = 0 .

And as a definitive, highly nontrivial test of our overall ansatz, one can verify that all of

the equations of motion (3.9) are correctly satisfied upon assuming (3.6) and (3.12).

It will prove useful to note that the field strength (3.12) is closely related to the induced

metric on the D3-brane,

2πl2sFαβ = −
gαβ√
1 + κ2

∀ α < β . (3.13)

This relation, the fact that gzz = 0 (which is nothing but the requirement that each line

at constant tr, θ, φ be null), and the vanishing of all off-diagonal space-space components

of the induced metric are crucial features of the solution. Together, they imply the drastic

simplifications √
−det(gαβ + 2πl2sFαβ) =

κ√
1 + κ2

√
−det gαβ (3.14)

and √
−det gαβ = −gtrzL2κ2vol(S2) , (3.15)

where vol(S2) = sin θ.

Let us now move on to the case of arbitrary 3-dimensional motion. To give meaning

to (3.5), we need a precise specification of the unit vector nµ(τ, θ, φ), or in other words, a

choice of labels (θ, φ) for the light rays shot along the different directions of the S2 that

surrounds ~x(τ). The timelike vector at rest vµR = (1, 0, 0, 0) is converted into an arbitrary

4-velocity vµ by the Lorentz transformation

Λµν =


γ γv1 γv2 γv3

γv1 1 +
γ2v21
1+γ

γ2v1v2
1+γ

γ2v1v3
1+γ

γv2
γ2v1v2

1+γ 1 +
γ2v22
1+γ

γ2v2v3
1+γ

γv3
γ2v1v3

1+γ
γ2v2v3

1+γ 1 +
γ2v23
1+γ

 , (3.16)
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where vi denotes the components of the 3-velocity. A subtlety in the case of accelerated

motion along more than one dimension, however, is that if we use this canonical boost

based on vµ(τ) to define nµ(τ, θ, φ) at each point along the worldline of the k-quark, the

outcomes at successive points would not be related purely by a boost, but would also

include a rotation (this fact is at the root of the Thomas precession). The most natural

choice, then, is to avoid this spurious rotation on the S2, by demanding that n(τ, θ, φ) be

transported along the worldline as dictated by the Fermi-Walker equation (see, e.g., [58])

∂τn
µ = (n · ∂τv)vµ − (n · v)∂τv

µ , (3.17)

from which the second term drops out because n · v = 0. In more detail, at some initial

time τ0 we apply the boost (3.16) to define nµ(τ0, θ, φ) = Λµνn
µ
R(θ, φ), and then evolve

from there using (3.17) to obtain nµ at arbitrary times. Note that the result generally

depends on the probe’s velocity and acceleration.

For use below, it is useful to notice that for each τ , the 4 vectors vµ, nµ1 ≡ nµ, nµ2 ≡ ∂θnµ

and nµ3 ≡ ∂φnµ/ sin θ form an orthonormal tetrad,

v2 = −1 , v · nI = 0 , nI · nJ = δIJ , (3.18)

with each nI transported according to (3.17), and with the additional property

εµνλρ v
µnν1n

λ
2n

ρ
3 = 1 . (3.19)

Physically, the implication is that these four vectors define a nonrotating reference frame.

It is easy to check that (3.18) and (3.19) hold in the rest frame, and they then follow in

general from the fact that the angular derivatives commute both with the boost (3.16) and

with the transport (3.17). Finally, it follows from the definition (3.17) of Fermi-Walker

transport that

∂trnI · nJ = 0 = ∂trv · ∂trnI , (3.20)

and we will make repeated use of these relations in what follows.

The calculation of the induced metric on the embedding (3.5) is presented in ap-

pendix B. Upon examining the momentum densities conjugate to the gauge field, the situ-

ation is found to be exactly the same as in the 1-dimensional case: all magnetic components

of the worldvolume field strength must be set to zero in order to reproduce the expected k

units of string charge (3.10), and all other components of Παβ vanish automatically except

for Πzθ and Πzφ. Setting these to zero we thus obtain again two equations for the two

unknown electric components of F . Just as for 1-dimensional motion, the solution takes

the form (3.13). More explicitly, we must set

Ftrz =

√
λ

2π

1

γz2
,

Ftrθ = −
√
λ

2π
κ∂trv · n2 , (3.21)

Ftrφ = −
√
λ

2π
κ sin θ∂trv · n3 ,

Fzθ = Fzφ = Fθφ = 0 .
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Again it is true that the zz and off-diagonal space-space components of the induced

metric vanish, so (3.14) and (3.15) still hold (see appendix B). And again, the ultimate

test is to verify whether (3.5) and (3.13) (or (3.21)) correctly satisfy the equations of

motion (3.9). For this purpose, let us start by defining the DBI matrix

Mαβ ≡ gαβ + 2πl2sFαβ . (3.22)

We then have Παβ = TD3(2πl2s)
√
−detMM [αβ], where M [αβ] stands for the antisymmetric

part of the inverse matrix of Mαβ. The equation for motion for the DBI gauge field Aβ
thus reads

∂α

(√
−detMM [αβ]

)
= 0 . (3.23)

Plugging in our ansatz (3.5) and (3.13), we find that the only non-zero element of M [αβ] is

M trz, and we arrive at the same Πtrz as in the one-dimensional case, eq. (3.10). This Πtrz

is independent of tr and z, so (3.23) is trivially satisfied.

Next, consider the equation of motion for the embedding fields Xµ,

∂α

(√
−detMM (αβ)∂βX

νGνµ

)
=

1

3!
εαβγδ∂α

(
L4

z4
εµνλρ∂βX

ν∂γX
λ∂δX

ρ

)
, (3.24)

where now M (αβ) stands for the symmetric part of the inverse matrix of Mαβ. For the

left-hand side (arising from the DBI term in the action), a long but straightforward com-

putation yields

l.h.s. = −4
L2κ2 sin2 θ

z2

[
(∂trv · n)(

√
1 + κ2vν + κnν) +

γ−1

z
nν

]
.

For the right-hand side (originating from the WZ term), most contributions cancel among

themselves in pairs, and only the ∂α = ∂z piece survives, giving

r.h.s. = −4
L2κ2 sin2 θ

z2

[
(∂trv · n)(

√
1 + κ2vν + κnν) +

γ−1

z
nν

]
.

The two sides are seen to coincide exactly, proving that (3.24) is indeed fulfilled. This

concludes the proof that (3.5) and (3.13) satisfy all of the equations of motion (3.9). We

have thus succeeded in constructing our desired D3-brane embeddings by shooting light in

from the AdS boundary.

As an example, consider the case of motion with constant angular velocity ω on a

circle of radius R on the x2-x3 plane: vµ = γ(1, 0,−ωR sinωt, ωR cosωt). Solving the

Fermi-Walker equation (3.17) one finds [58]

n0 = γωR sin θ sin(φ− γωt) ,
n1 = cos θ , (3.25)

n2 = sin θ [cosωt cos(φ− γωt)− γ sinωt sin(φ− γωt)] ,
n3 = sin θ [sinωt cos(φ− γωt) + γ cosωt sin(φ− γωt)] .

The resulting embedding (3.5) is depicted in figure 3.
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Figure 3. Snapshot at t = 0 of the D3-brane solution dual to a k-quark undergoing uniform

circular motion on the x2-x3 plane, with radius R = 1, angular frequency ω = 7/8 and κ = 0.1.

The plot omits x1 and shows only the section of the embedding at polar angle θ = π/3, over the

full range of the azimuthal angle φ. The dashed blue lines are light rays emitted into AdS from the

k-quark at t = 0. The full worldvolume is generated by all such ingoing rays.

3.2 D5-brane

Encouraged by our success with the D3-brane, it is natural to suspect that the essential idea

of the method, tracing out the embedding of interest using null spacetime geodesics, should

be equally useful to construct branes of various types in diverse dimensions, probably even

on backgrounds other than pure AdS. As a first step in this direction, we now show that

the D5-brane solutions dual to a k-quark in the totally antisymmetric representation of

SU(N) do in fact fit naturally within the same framework.

For the static case, the embeddings we have in mind were deduced in [28, 54], and then

understood in [53] to be a special case of the larger family of solutions constructed earlier

in [27]. Their generalization for arbitrary k-quark motion was obtained in [29]. They are

characterized by the fact that the D5-brane wraps an S4 ⊂ S5 at fixed polar angle ϑ ≡ ϑ1,

in the usual coordinatization where the 5-sphere metric reads

GMNdx
MdxN = L2(dϑ2

1 + sin2 ϑ1dϑ
2
2 + . . .+ sin2 ϑ1 sin2 ϑ2 sin2 ϑ3 sin2 ϑ4dϑ

2
5) . (3.26)

If we are given a k-quark trajectory xµ(τ) and set out to construct a D5-brane of this

type using our light ray method, by analogy with the D3-brane story we are led to pick

ξα = (tr, z, ϑ2, ϑ3, ϑ4, ϑ5) as a convenient choice of worldvolume coordinates. We are then

required to shoot light inward from the AdS boundary, from each worldline point xµ(tr),

along each of the directions on the S4, thereby tracing out null geodesics parametrized by

z. Since we are specifically looking for embeddings with ϑ =constant, these geodesics lie

purely within AdS, and have no motion whatsoever along the S5. But then they have no
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choice but to coincide with the by now familiar straight lines (2.5), meaning that the AdS

part of the D5-brane embedding is identical to the fundamental string embedding dual to

a quark with the same trajectory. And indeed, this is precisely the form of the embeddings

deduced in [29].

To have a complete solution, we still need to determine the profile of the gauge field.

Taking the hint from (3.13), we propose a proportionality relation with the induced metric,

2πl2sFαβ = fgαβ ∀ α < β , (3.27)

with f to be determined. Using (2.5), this says that only the electric component Ftrz
is nonvanishing, and it takes a value proportional to gtrz = −L2/γz2. (Analogs of the

simplifications (3.14) and (3.15) are then in play.) This proposal indeed can be seen to

satisfy the equation of motion for ϑ, but only if the proportionality constant is fixed to

f = − cosϑ. We thus learn that

2πl2sFtrz =
L2 cosϑ

γz2
. (3.28)

All that remains is to enforce the condition that the fundamental string charge carried by

the D5-brane be integer and equal to the required value,
∫
d4ϑΠtrz = k. In other words,

the solution must satisfy

Πtrz =
k vol(S4)

8π2/3
, (3.29)

with vol(S4) = sin3 ϑ2 sin2 ϑ3 sinϑ4. (This is the direct analog of (3.10), and all other Πab

are found to correctly vanish.) This condition determines ϑ in terms of k,

sinϑ cosϑ− ϑ =
πk

N
. (3.30)

Remarkably, (2.5), (3.28) and (3.30) precisely agree with the solutions of [28, 29, 54].

Now that we have obtained with our method both the D3-brane and D5-brane solutions

respectively dual to the totally symmetric and antisymmetric representations of SU(N),

the same procedure is guaranteed to cover the case of k-quarks in arbitrary irreducible

representations. Indeed, it was shown in [26] that the dual of a source labelled by an

arbitrary Young diagram can be understood as a collection of either D3-branes (if the

diagram is decomposed into rows) or D5-branes (if it is decomposed into columns). At

leading order in the large N expansion, these branes do not interact with one another, and

are therefore exactly as we have described in this section.

The fact that the D5-brane turns out to have the same structure as the D3-brane

strengthens the hope that our light ray method will have more general applicability. For

instance, we would expect it to also account successfully for the more general antisymmet-

ric k-quark embeddings obtained in [27], of which the solutions described in this subsection

are a special case. The situation there is more interesting because ϑ becomes a function

of z, meaning that the relevant null geodesics will necessarily differ from (2.5). We could

similarly consider cases where ϑ depends in addition (or alternatively) on tr. The super-

symmetric loops of [49–52] are other notable examples associated with a variable direction
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on the S5. It is also interesting to note that the connection established in [29] between

D5-brane and string embeddings does not require that the spacetime be pure AdS, which

again suggests that the null geodesic construction could hold in more general backgrounds.

We leave an exploration of these and other extensions to future work.

4 Intrinsic and radiative energy

As an application of our newly found D3-brane solutions, in this section we will compute

their total energy and show that, similarly to [12, 13], it cleanly splits into 2 contributions

that represent the intrinsic energy of the k-quark and the energy that has already been

carried away by gluonic (and scalar) radiation. This exercise will thus lead in particular

to a holographic prediction for the rate of radiation of a(n infinitely massive) symmetric

k-quark at strong coupling.

4.1 D3-brane energy density

We wish to compute the energy E of the D3-brane at a fixed observation time t. For this

purpose, unlike what we did in the previous section, it is convenient to choose as worldvol-

ume coordinates (t, z, θ, φ). As before, we use indices µ, ν for the Minkowski directions of

the target AdS space, α, β for worldvolume coordinates, and a, b for spatial worldvolume

indices (a, b = z, θ, φ). Starting from the D3-brane action (3.8), the energy density in our

chosen parametrization is found to be [30]

E = TD3

(
L2

z2

det(gab + 2πl2sFab)√
−det(gαβ + 2πl2sFαβ)

− L4

z4

∂Xµ

∂z

∂Xν

∂θ

∂Xλ

∂φ
ε0µνλ

)
. (4.1)

To be clear, the numerator in the first term is a 3×3 determinant, with spatial indices only.

The full Born-Infeld determinant that appears in the denominator is available to us

from appendix B, albeit in the (tr, z, θ, φ) parametrization. Applying to (B.6) a change of

variables to our desired set (t, z, θ, φ) yields

det(gαβ + 2πl2sFαβ) = −L
8

z4

(
∂tr
∂t

)2

κ6γ−2 sin2 θ . (4.2)

Let us now compute the spatial determinant in the numerator of (4.1). To do so,

define M = g + 2πl2sF and notice that detMab = M00 detMαβ, where M with indices

above denotes the inverse matrix. Our strategy is to compute the matrix inverse to M in

the coordinates (tr, z, θ, φ), since in these coordinates the calculation is simpler, and then

obtain M00 in the (t, z, θ, φ) coordinates by a change of variables. This gives(
∂t

∂tr

)2

det(gab + 2πl2sFab) = gθθgφφ∂zt (gtrtr∂zt− 2gtrz∂tr t) (4.3)

− κ2

1 + κ2
gθθ (gtrφ∂zt− gtrz∂φt)

2

− κ2

1 + κ2
gφφ (gtrθ∂zt− gtrz∂θt)

2 .
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A rather long computation then leads to5

(
∂t

∂tr

)2

det(gab + 2πl2sFab) =
L6κ4 sin2 θ

z2

[
(1 + κ2)− κ2γ−2

(
(n0

1)2 + (n0
2)2 + (n0

3)2
)

+2z∂ztγ
−1

((
∂trv

0 +
κ√

1 + κ2
∂trn

0

)
+ γ

κ√
1 + κ2

∂trn · v
)

+ z2(∂zt)
2 (∂trv)2

]
. (4.4)

Note that the first line above contains terms independent of the acceleration, while the

second line contains terms linear and quadratic in the acceleration.

The last piece in (4.1) is the contribution from the Wess-Zumino term. We start by

noticing that

ε0νλρ∂zX
ν∂θX

λ∂φX
ρ = κ2z2

(
∂tr
∂t

)
sin θ εµνλρ∂trX

µ∂zX
νnλ2n

ρ
3 . (4.5)

Then we make use of property (3.19) to arrive at

∂Xµ

∂z

∂Xν

∂θ

∂Xλ

∂φ
ε0µνλ = κ2z2

(
∂tr
∂t

)
sin θ (κγ−1 + z∂trn1 · v) . (4.6)

Plugging (4.2), (4.4) and (4.6) into the expression for the energy density (4.1), we find

E =
Nκ

2π2z2

(
∂tr
∂t

)
sin θ

[
γ + κ2γ−1

(
γ2 − 1− (n0

1)2 − (n0
2)2 − (n0

3)2
)

+2z∂zt

((
∂trv

0 +
κ√

1 + κ2
∂trn

0

)
+

κ√
1 + κ2

γ∂trn · v
)
− κz∂trn · v

+γz2(∂zt)
2 (∂trv)2

]
. (4.7)

The first, second and third line correspond respectively to terms whose explicit dependence

on the acceleration is nonexistent, linear and quadratic (there is also implicit dependence

in the nI). In the first line there appears the combination γ2 − 1− (n0
1)2 − (n0

2)2 − (n0
3)2,

which can be seen to vanish due to (3.17): differentiate with respect to τ to show that it

is constant; then by boundary conditions it is zero.

4.2 Total energy and rate of radiation

We consider first the integral for terms that are independent of or linear in the acceleration,

E1 =
Nκ

2π2

∫
dzdΩ

∂ttr
z2

[
γ + 2z∂zt

((
∂trv

0 +
κ√

1 + κ2
∂trn

0

)
(4.8)

+
κ√

1 + κ2
γ∂trn · v

)
− κz∂trn · v

]
,

5To arrive at the simplified expression (4.4) we have used the fact that any 4-vector can be decomposed in

terms of the tetrad (3.18), which implies for instance that ∂trv
µ = (∂trv ·n1)nµ1 +(∂trv ·n2)nµ2 +(∂trv ·n3)nµ3 .
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with dΩ = sin θdθdφ. It is convenient to change the integration variable z → tr, using

∂z

∂tr
= − 1

(∂ttr)(∂zt)
. (4.9)

This cancels the ∂ttr prefactor in (4.8). We must also use (3.5) to substitute z in terms of

tr in the integrand, but for compactness we keep it as a shorthand.

In the string analysis of [12], at this stage a total derivative, d(γz−1)/dtr, was dis-

carded from the integrand, which was later reinstated in [13] and shown to have physical

significance: upon integration, it yields the intrinsic energy of the quark at time t. Inspired

by this, we observe that in our D3 context too the derivative

∂(γz−1)

∂tr
=

γ

z2∂zt
+
∂trγ

z
+

√
1 + κ2

z∂zt
γ

(
∂trv

0 +
κ√

1 + κ2
∂trn

0

)
, (4.10)

is similar to the integrand we have, but differs by terms proportional to nµ:

E1 =
Nκ

2π2

∫
dtrdΩ

[
∂(γz−1)

∂tr
+

κ

t− tr
(
n0∂trγ − (γ2 − 1)n · ∂trv

)]
. (4.11)

Remembering that nµ is obtained from its rest frame counterpart nµR by a boost followed

by Fermi-Walker transport (3.17), we see that each of its components is linear in the

components of nµR (with coefficients that depend on the 4-velocity and 4-acceleration), so

their angular integral at fixed tr vanishes,∫
dΩ nµR = 0 =⇒

∫
dΩ nµ = 0 . (4.12)

For the remaining, total derivative term, it is evidently convenient to carry out the tr
integral first, to be left with just a surface term at tr = t. The result is in fact divergent,

and we choose to regularize it by cutting off the D3-brane at a fixed radial position zmin

(so the cutoff in tr depends on θ, φ).6 The leading contribution as the cutoff is removed is

then just γ(t)/zmin, which is spherically symmetric, so the angular integral is trivial. We

are thus left with

E1 = lim
zmin→0

2Nκγ(t)

πzmin
= kmγ(t) , (4.13)

where m =
√
λ/2πzmin denotes the rest mass of a quark (k = 1) with the same UV cutoff.

Consider now the integral of the terms quadratic in the acceleration. After the change

of variable z → tr it can be rewritten as

E2 =
Nκ

2π2

∫
dtrdΩ γ∂zt (∂trv)2 . (4.14)

Performing the integral over θ, φ and using (4.12) again, we finally obtain

E2 =
2N

π
κ
√

1 + κ2

∫
dtr γ

2 (∂trv)2 =
2N

π
κ
√

1 + κ2

∫
dtr γ

6(~a2 − |~v × ~a|2) . (4.15)

6Alternatively, one can choose to cut off the integral at tr = t − ε, with ε constant, in which case the

corresponding zmin would depend on θ, φ. The results of the two regularizations agree in the limit where

the cutoff is removed.
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As promised, we have thus found by explicit computation that, much as in [12, 13],

the total energy of the D3-brane can be understood as the sum of 2 contributions, (4.13)

and (4.15), that admit a pleasant and direct gauge-theoretic interpretation. E1, which

depends only on the state of motion of the probe at the observation time t, is the energy

attributable to the k-quark itself, while E2, which depends on the entire previous history,

is the total energy that has been radiated away. The fact that these quantities can be

determined analytically in the strong coupling regime constitutes yet another illustration

of the power of the AdS/CFT correspondence.

From (4.13), which agrees with the result (1.13) that we had advertised in the Introduc-

tion, we see that the k-quark has an intrinsic energy that, even for arbitrary motion, equals

that of k individual quarks, i.e., it is a threshold bound state. This is a direct consequence

of its pointlike nature, Lorentz invariance, and the fact that it must obey the BPS bound.7

Expression (4.15), which we had advertised in (1.14), amounts to a prediction for the

rate of radiation of a totally symmetric color source in the strongly-coupled gauge theory: it

is given by the usual Liénard formula, with a numerical coefficient that matches the findings

of [3, 30] in the context of a more indirect calculation which examined only the specific case

of uniform acceleration. Now that we have access to the D3-brane dual to a symmetric

k-quark undergoing arbitrary motion, we are able to verify that the functional form of

the rate of energy loss is unmodified, and the corresponding Bremsstrahlung function is

indeed given by (1.12) in the supergravity limit. For k = 1, and at leading order in the

1/N expansion, (4.15) reproduces Mikhailov’s result (1.6) for the rate of radiation of a

quark. And, since the former coincides with the result of [3, 30], it shares the remarkable

property that the entire series of corrections in powers of κ ∝
√
λ/N matches onto the

exact result obtained in [2, 4] for a probe in the fundamental representation, in the limit

where N,λ→∞ with
√
λ/N fixed.
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A Completing the embedding for uniform acceleration

For the case of a source in the fundamental representation undergoing uniform acceleration

A, it was found in [24, 56] that the embedding provided by Mikhailov is in fact incomplete.

Instead of extending all the way up to the Poincaré horizon at z → ∞, it terminates at

the radial position zh = A−1, which marks the location of a worldsheet horizon. This can

be seen directly from the first equation in (2.5): if we consider the embedding at fixed t,

that equation would normally imply that z → ∞ as tr → −∞. But precisely for uniform

acceleration, the factor of γ diverges linearly in tr in that limit, so z remains finite. This

is not a mistake: the resulting portion of the string truly codifies the gluonic field sourced

by the quark since the beginning of time. But the string evidently cannot end in midair,

so it ought to be continued somehow. Its continuation encodes the initial conditions of the

gluonic field at tr → −∞.

There are three options for this continuation.8 If one insists on achieving a smooth

worldsheet and preserving the purely retarded structure of the field sourced by the quark,

then one is forced to include a mirror antiquark [56, 59, 60], i.e., the string must be

continued back to the AdS boundary, by pasting it together with an appropriate purely

advanced solution. This yields the semicircular quark-antiquark embedding found indepen-

dently in [23] (see also [61]). (In fact, this same pasting method can be used to construct

an infinite family of smooth solutions where the quark and antiquark are only required to

approach uniform acceleration in the remote past and, respectively, future [57].) If one

preserves the retarded structure and insists on having no antiquark, then the embedding

cannot be smooth, and the missing portion of the string is found to be a purely radial

segment moving at the speed of light [56], which codifies a gluonic shock wave that is

present already in the asymptotic past and is progressively shed by the quark. Finally, if

one insists on a smooth embedding and on having an isolated quark, then one must give

up the retarded structure and allow incoming waves from infinity [59, 60].

When we move on to the totally symmetric k-quark case, the situation is entirely

analogous. From the first equation in (3.6) we see that the D3-brane embedding also ter-

minates at a finite radial location zh in AdS, which depends on the polar angle θ according

to zh = A−1/(
√

1 + κ2 − κ cos θ). It is easy to check that at this location gtrtr = 0, i.e., we

again have a worldvolume horizon. The second equation in (3.6) implies that this termi-

nation locus is given by x1 = −tr, and thus translates in the negative x1 direction at the

speed of light. The banana-shaped embedding obtained in [30, 33] and displayed in figure 2

is then understood to be analogous to the quark-antiquark solution of [23]: it is obtained

8We thank Veronika Hubeny for extensive discussions on this point.
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by pasting together the retarded solution (3.6) for a k-quark with an advanced solution

(i.e., a time-inverted copy of (3.6)) for a k-antiquark with the same acceleration. (Again, as

in [57], more general solutions can be obtained where the sources are only asymptotically

uniformly accelerated.) If we insist on having a purely retarded solution describing just a

quark and no antiquark, we would need to complete the embedding differently, with a ver-

tical portion moving at the speed of light, as in [56]. Or if we prefer to stick with smooth

embeddings for the case of an isolated quark, then we must forego the purely retarded

(advanced) structure, as in [59, 60].

As explained in section 3.2, the case of a totally antisymmetric color source is described

by a D5-brane whose AdS dynamics exactly coincide with those of a string with the same

trajectory at the boundary [29], and will therefore also allow only these same 3 types of

completions.

B Induced metric and Born-Infeld determinant

In this appendix we will work out the induced metric and Born-Infeld determinant for

the D3-brane embedding (3.5), with (tr, z, θ, φ) as worldvolume coordinates. The resulting

expressions are needed at a couple of places in the main text.

Start by noticing that

∂zX
µ|tr,θ,φ =

√
1 + κ2 vµ + κnµ , (B.1)

so using v2 = −1, v · n = 0, n2 = 1 it follows that ∂zX
µ∂zXµ = −1, and therefore

gzz = 0 . (B.2)

As stated in section 3.1, this embodies the requirement that the lines at fixed tr, θ, φ be

null. The properties of vµ and nµ additionally imply that

v · ∂θn = v · ∂φn = n · ∂θn = n · ∂φn = 0 ,

and from this and (3.5) it follows that

gzθ = gzφ = 0 . (B.3)

For the remaining spatial components, we will use the fact that the initial boost (3.16)

and subsequent Fermi-Walker transport (3.17) that relates nµ to the rest frame vector nµR do

not depend themselves on θ, φ. Consequently, the relations ∂θnR·∂φnR = 0, ∂θnR·∂θnR = 1,

∂φnR · ∂φnR = sin2 θ imply the corresponding properties

∂θn · ∂φn = 0 , ∂θn · ∂θn = 1 , ∂φn · ∂φn = sin2 θ ,

which combined with (3.5) lead in turn to

gθφ = 0 , gθθ = L2κ2 , gφφ = L2κ2 sin2 θ . (B.4)
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For the metric components with a tr index, we find

gtrtr =
L2

z2

(
−γ−2 + 2κzγ−1v · ∂trn1 + z2

(√
1 + κ2∂trv + κ∂trn1

)2
)
,

gtrz = −L
2

z2

√
1 + κ2γ−1 , (B.5)

gtrθ = L2κ
√

1 + κ2∂trv · n2 ,

gtrφ = L2κ sin θ
√

1 + κ2∂trv · n3 .

In the last 2 equations, we used the definition of the nI given above (3.18).

With these results, it is easy to verify that the determinant of the metric indeed

simplifies to (3.15).

Next, we compute the Born-Infeld determinant. From the form of the induced metric

and the fact that in these coordinates the Born-Infeld field is purely electric, it follows

immediately that

det(gαβ + 2πl2sFαβ) = −
(
g2
trz − (2πl2sFtrz)

2
)
gθθgφφ = − κ2

1 + κ2
g2
trzgθθgφφ ,

where in the last step we used (for the first time in this argument) the relation (3.13)

between F and g. Therefore we arrive at

det(gαβ + 2πl2sFαβ) = −L
8

z4
κ6γ−2 sin2 θ . (B.6)

Comparing with (3.15), we see that the relation (3.14) between the Dirac and Born-Infeld

determinants indeed holds.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[18] C.G. Callan Jr. and A. Güijosa, Undulating strings and gauge theory waves, Nucl. Phys. B

565 (2000) 157 [hep-th/9906153] [INSPIRE].
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[24] E. Cáceres, M. Chernicoff, A. Güijosa and J.F. Pedraza, Quantum fluctuations and the

Unruh effect in strongly-coupled conformal field theories, JHEP 06 (2010) 078

[arXiv:1003.5332] [INSPIRE].

[25] S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05

(2006) 037 [hep-th/0603208] [INSPIRE].

– 24 –

http://dx.doi.org/10.1063/1.1372177
http://arxiv.org/abs/hep-th/0010274
http://inspirehep.net/search?p=find+EPRINT+hep-th/0010274
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://arxiv.org/abs/hep-th/0305196
http://inspirehep.net/search?p=find+EPRINT+hep-th/0305196
http://dx.doi.org/10.1088/1126-6708/2008/06/005
http://arxiv.org/abs/0803.3070
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3070
http://dx.doi.org/10.1088/1126-6708/2002/12/024
http://arxiv.org/abs/hep-th/0210115
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210115
http://dx.doi.org/10.1103/PhysRevD.59.105023
http://arxiv.org/abs/hep-th/9809188
http://inspirehep.net/search?p=find+EPRINT+hep-th/9809188
http://dx.doi.org/10.1103/PhysRevD.60.125006
http://dx.doi.org/10.1103/PhysRevD.60.125006
http://arxiv.org/abs/hep-th/9904191
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904191
http://dx.doi.org/10.1088/1126-6708/1999/01/002
http://arxiv.org/abs/hep-th/9812007
http://inspirehep.net/search?p=find+EPRINT+hep-th/9812007
http://dx.doi.org/10.1016/S0550-3213(99)00630-6
http://dx.doi.org/10.1016/S0550-3213(99)00630-6
http://arxiv.org/abs/hep-th/9906153
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906153
http://dx.doi.org/10.1007/JHEP10(2011)041
http://arxiv.org/abs/1106.4059
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4059
http://dx.doi.org/10.1103/PhysRevD.81.126001
http://arxiv.org/abs/1001.3880
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.3880
http://dx.doi.org/10.1016/j.nuclphysb.2011.04.011
http://arxiv.org/abs/1102.0232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0232
http://dx.doi.org/10.1007/JHEP06(2014)043
http://arxiv.org/abs/1402.5961
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5961
http://dx.doi.org/10.1016/j.physletb.2008.06.017
http://dx.doi.org/10.1016/j.physletb.2008.06.017
http://arxiv.org/abs/0804.1343
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1343
http://dx.doi.org/10.1007/JHEP06(2010)078
http://arxiv.org/abs/1003.5332
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5332
http://dx.doi.org/10.1088/1126-6708/2006/05/037
http://dx.doi.org/10.1088/1126-6708/2006/05/037
http://arxiv.org/abs/hep-th/0603208
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603208


J
H
E
P
0
1
(
2
0
1
5
)
1
4
9

[26] J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007]

[INSPIRE].

[27] C.G. Callan Jr., A. Güijosa and K.G. Savvidy, Baryons and string creation from the

five-brane world volume action, Nucl. Phys. B 547 (1999) 127 [hep-th/9810092] [INSPIRE].

[28] J. Pawe lczyk and S.-J. Rey, Ramond-Ramond flux stabilization of D-branes, Phys. Lett. B

493 (2000) 395 [hep-th/0007154] [INSPIRE].

[29] S.A. Hartnoll, Two universal results for Wilson loops at strong coupling, Phys. Rev. D 74

(2006) 066006 [hep-th/0606178] [INSPIRE].

[30] B. Fiol and B. Garolera, Energy loss of an infinitely massive

half-Bogomol’nyi-Prasad-Sommerfeld particle by radiation to all orders in 1/N , Phys. Rev.

Lett. 107 (2011) 151601 [arXiv:1106.5418] [INSPIRE].

[31] B. Fiol and G. Torrents, Exact results for Wilson loops in arbitrary representations, JHEP

01 (2014) 020 [arXiv:1311.2058] [INSPIRE].

[32] J. Gomis and F. Passerini, Wilson loops as D3-branes, JHEP 01 (2007) 097

[hep-th/0612022] [INSPIRE].

[33] N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02

(2005) 010 [hep-th/0501109] [INSPIRE].

[34] S. Giombi, R. Ricci and D. Trancanelli, Operator product expansion of higher rank Wilson

loops from D-branes and matrix models, JHEP 10 (2006) 045 [hep-th/0608077] [INSPIRE].

[35] A. Faraggi, J.T. Liu, L.A. Pando Zayas and G. Zhang, One-loop structure of higher rank

Wilson loops in AdS/CFT, Phys. Lett. B 740 (2014) 218 [arXiv:1409.3187] [INSPIRE].
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