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1 Introduction

A variety of strongly correlated electron systems at quantum critical points or phases in

two spatial dimensions are believed to be described by (interacting) conformal field theories

in 2+1 dimensions (CFT3’s). The workhorse is the Wilson-Fisher CFT3, also known as

the O(N)-model of a real-valued vector field with N components [1–3], which describes,

among other things, the Ising model for N = 1 [4, 5], superfluid-to-insulator transitions for

N = 2 [6, 7], and quantum magnetic transitions for N = 3 [8, 9]. Especially intriguing are

gauge theoretical descriptions of condensed matter systems (e.g.: [10] and references therein

for an overview) such as of quantum Hall systems (e.g.: [11, 12] and references therein),

fractionalized magnets and deconfined critical points in strongly correlated Mott insula-

tors [13–15], and effective theories for the cuprates [16–19]. There, the relevant dynamics

is often provided by emergent or effective degrees of freedom not necessarily present in the

bare Hamiltonian. These conformal phases of quantum matter in 2+1 dimensions provide

a unique interpolation between the better understood CFT’s in 1+1 dimensions [20] and

much studied gauge theories for high energy vacua in 3+1 dimensions [21, 22].

A common feature of CFT3’s is the absence of quasi-particles and for condensed matter

systems it is of particular interest to understand response properties of interacting CFT3’s

to externally applied perturbations such as electromagnetic fields or mechanical forces

without invoking a quasi-particle picture.

– 1 –
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1.1 Model: NF Dirac fermions coupled to U(1) gauge field

In this paper, we consider NF Dirac fermions minimally coupled to a U(1) gauge field.

This theory arises in a variety of condensed matter contexts [10, 12, 16, 17, 19]. The

Euclidean action,

S =

∫
d2rdτψ̄α

[
iγµ

(
∂µ − i

Aµ√
NF

)]
ψα + . . . , (1.1)

contains Grassmannian two-component fermion fields ψ̄α and ψα, where α is the fermion

flavor index, and µ is the spatial and (imaginary) temporal index in 2 + 1 dimensions.

Repeated indices are summed over. γµ’s are the Dirac matrices that satisfy {γµ, γν} = 2δµν .

We use the same conventions as Kaul and Sachdev for their fermion sector [10]. The dots

stand for additional terms which may play a role in the UV and away from the conformally

invariant fixed-point considered in this paper.

The gauge field Aµ, a conventional spin-1 boson often dubbed as “emergent photon”

in the condensed matter context, ensures fulfillment of a local U(1) gauge symmetry at

every point (τ, r) in (Euclidean) space-time. A potential, bare Maxwell term 1
2e2
FµνF

µν

is not written in eq. (1.1) and is unimportant for the universal constants at the infrared

fixed point of interest in this paper [46]. The gauge field gets dynamical by integrating

the fermion fields in the large NF limit. In Landau gauge, the gauge field propagator at

NF →∞ is purely transverse and takes the characteristic overdamped form (with p = |p|)

D(0)
µν (p) =

16

p

(
δµν −

pµpν
p2

)
. (1.2)

Model eq. (1.1) with a bare Maxwell term is also known as QED3 and flows to strong

coupling in the infrared and shares its propensity to form fermion bound states “mesons”

with QCD in 3+1 dimensions [23–25]. Deforming QED3 toward graphene-type models

with instantaneous Coulomb interactions are also interesting [26–30]. It is believed that

for sufficiently large NF , eq. (1.1) flows to a strongly coupled conformal phase in the

infrared, preserving scale invariance [31] (and references therein).

1.2 Key results: central charge CT and CJ up to next-to-leading order in

1/NF

The main result of this paper is an explicit formula and numerical value of the central

charge CT of eq. (1.1), defined below as the universal constant appearing in the stress

tensor correlator at the interacting conformal fixed point, up to next-to-leading order in

the 1/NF expansion:

CT
NF

=
1

256

(
1 +

1

NF

(
C̃T

(1)
+ 4 +

104

15π2

))
=

1

256

(
1 +

4.2870118590002470406

NF

)
. (1.3)
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C̃T
(1)

comes from one out of nine Feynman graphs in momentum space computed below

in figure 5

C̃T
(1)

= − 4

45π2

(
180Li2

(
3−2
√

2
)
−720Li2

(
−1+

√
2
)
−398+90π2+45 log2

(
3− 2

√
2
)

+ 1146
√

2 log
(

3− 2
√

2
)

+12
(

191
√

2+15 log
(

3− 2
√

2
))

sinh−1(1)

)
= −0.41548168091996150803 , (1.4)

where Lin(z) =
∑∞

k=1
zk

kn is the polylogarithm or Jonquiére’s function for n = 2. The sum of

other eight diagrams evaluate to the remaining term in the innermost bracket, 4 + 104
15π2 , in

the first line of eq. (1.3). We observe from eq. (1.3) that 1/NF corrections to the NF →∞
value remain as large as ≈ 50% down to NF ≈ 8. Similarly large corrections were also

observed (for current correlators) in the CPN−1 model and attributed in particular to

vertices directly involving the gauge field [32].

It is interesting to note that here in eq. (1.3) the 1/NF corrections are positive whereas

in certain theories with bosonic field content [3, 15, 32, 41, 42] the 1/NB corrections to

CT as well as CJ (see below) typically turn out to be negative. Given this information,

the sign of the correction could be attributed to the quantum statistics of the charged

fields but further analysis (see also conclusions for an outlook ondual Chern-Simons +

matter theories) and potentially higher-order computations are needed to uncover further

the structure of these corrections.

It is hard to overestimate the fundamental importance of the central charge in confor-

mal field theory with applications ranging from thermodynamics, quantum critical trans-

port, to quantum information theory [33]. An interesting recent application are explicit

formulae for the Rényi entropy for d-dimensional flat space CFT’s and we quote here the

formula from Perlmutter [34]:

S′q=1 = −Vol
(
Hd−1

) πd/2+1Γ(d/2)(d− 1)

(d+ 1)!
CT . (1.5)

The prime denotes a derivative with respect to q of the Rényi entropy Sq = 1
1−q log Tr [ρq],

ρ a reduced density matrix, and Hd−1 the hyperboloid entangling surface. Moreover, pre-

cision values of CT may be useful for conformal bootstrap approaches for the 3D-Ising and

other models [4] as well as serving as a benchmark for numerical simulations of frustrated

quantum magnets [35].

In the present paper, we compute CT by direct evaluation of Feynman graphs in

momentum space fulfilling and using the relation [44, 52],

〈Tµν(−p)Tλρ(p)〉 = CT |p|3
(
δµλδνρ + δµρδνλ − δµνδλρ + δµν

pλpρ
p2

+ δλρ
pµpν
p2

− δµλ
pνpρ
p2
− δνλ

pµpρ
p2
− δµρ

pνpλ
p2
− δνρ

pµpλ
p2

+
pµpνpλpρ

p4

)
(1.6)

– 3 –
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generalizing our recently developed technology [15, 32] to Dirac fermions and contractions

over stress tensor vertices. We discuss this further in section 4.

Computations of stress tensor correlators in interacting CFT’s (at least without an

excessive amount of symmetry such as supersymmetries) in effective dimensionality greater

than 2 are extremely scarce and we are not aware of a previous computation of CT for

eq. (1.1) in 2+1 dimensions. We quote here related works across the quantum field theory

universe we are aware of to date: two papers by Hathrell using loop expansions from 1982,

one on scalar fields up to 5-loops [36] and one on QED up to 3 loops [37], a two-loop

analysis for general gauge theories coupled to fermions and scalars in curved space by Jack

and Osborn in 1984 and 1985 [38, 39], an ε-expansion around four dimensions for scalar

and gauge theories by Cappelli, Friedan and LaTorre in 1991 [40], and a series of papers on

the O(N) vector model from 1994-1996 by Petkou and Osborn [3, 41, 42], and a three-loop

OPE computation in massless QCD by Zoller and Chetyrkin in 2012 [43].

For essentially free field theories, stress tensor amplitudes [44, 45] and Rényi en-

tropies [46] have also been computed. (Multi-point) correlators of the stress tensor are

also instrumental for the relation between scale and conformal invariance (e.g.: [47, 48]).

It would be interesting to consider generalizations of eq. (1.1) with conformally invariant

UV fixed points to be able to compare CIRT and CUVT for a given number of flavors in the

context of generalized c-theorems for CFT’s in general dimensions [49–51]. It is known that

QED3, including a Maxwell term 1
2e2
F 2, flows toward a weakly interacting UV fixed-point.

Against this backdrop, an assessment of the full conformal symmetry (free photons are not

necessarily conformally invariant in the UV), and a systematic investigation of possible UV

fixed points and their relevant operators is an interesting extension of our work.

The second result of this paper is an (somewhat simpler) computation of the universal

constant CJ of the two-point correlator of the conserved flavor current of eq. (1.1):

J `µ = ψ̄αT
`
αβγµψβ , (1.7)

where T `’s are generators of the SU(NF ) group normalized to satisfy Tr(T `Tm) = δ`m. As

the stress tensor Tµν , this flavor current is conserved and its two-point correlator depends

on one universal constant CJ

〈J `µ(−p)Jmν (p)〉 = −CJ |p|
(
δµν −

pµpν
p2

)
δ`m . (1.8)

For single fermion QED3, CJ describes the universal electrical conductivity in the colli-

sionless regime ω � T , with T being the temperature. Depending on the physical context,

however, it may also be related to magnetic or other response functions [16]. Our result

for CJ to next-to-leading order in 1/NF is (derived in section 2)

CJ =
1

16

(
1 +

1

NF

(
C̃J

(1) − 40

9π2

))
=

1

16

(
1 +

1

NF
0.14291062004225554348

)
(1.9)
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with the analytical expression corresponding to one of the graphs being

C̃J
(1)

=− 4

3π2

(
− 34 + 6π2 + sinh−1(1)

(
52
√

2 + 6 log
(

17− 12
√

2
))

+ 26
√

2 log
(

3−2
√

2
)

+3 log2
(

3−2
√

2
)

+24Li2

(
1−
√

2
)
−24Li2

(
−1 +

√
2
))

= 0.59322699178597897212 . (1.10)

As for CT , we again find the 1/NF corrections to CJ to be positive in contrast to the bosonic

field theories analyzed in ref. [15, 32]. Our numerical value of the correction is seemingly

in disagreement with the value computed in the appendix of ref. [12] and we compare to

their value in detail in section 2. As a (positive) cross-check, we have repeated a different

calculation of the (non-conserved) staggered spin susceptibility in the appendix of Rantner

and Wen [16] using our approach and found the same logarithmically divergent coefficients.

Note that eq. (1.1) has a further conserved “topological” current related to the curl of

the gauge field [44] but we do not consider it further here.

1.3 Organization of paper

The remainder of the paper is organized as follows: in section 2, we define the Feynman rules

for eq. (1.1) and the current vertex, and evaluate the 3 graphs renormalizing the current-

current correlator. In section 3, we briefly recapitulate the main elements of the Tensoria

technology for the momentum integrals. In section 4, we define the stress tensor vertex

and evaluate the 9 graphs renormalizing the stress tensor correlator. In the conclusions,

we summarize and point toward potential future directions where our technology could be

applied to.

2 Flavor current correlator 〈JJ〉

In this section, we compute the SU(NF ) flavor current-current correlator and compare it

to the previous computation also using the 1/NF expansion that we are aware of [12]. We

begin by stating the Feynman rules, compute the leading NF → ∞ graph in some detail,

and then the more complicated self-energy and vertex corrections at order 1/NF . We will

separate the contributions into longitudinal and transverse projections and show that all

longitudinal and logarithmically singular corrections mutually cancel as they should for a

conserved, transverse quantity.

2.1 Feynman rules and graphs in momentum space

The Feynman rules for NF Dirac fermions coupled to U(1) gauge field in eq. (1.1) contain

the relativistic fermion propagator

Gψ(k) =
kaγa
k2

, (2.1)

the gauge field propagator in eq. (1.2), and the photon-fermion vertex drawn in figure 1.

The current vertex in figure 2 involves one generator of the SU(NF ) but the traces over

them in the actual diagrams are innocuous and just give δ-functions in the flavor indices.

– 5 –
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Gψ

A

k

k

`

D(0)
µν

γµ√
NF

Figure 1. Feyman rules for NF Dirac fermions coupled to U(1) gauge field in eq. (1.1).

Figure 2. Feyman rule for the current vertex. T ` is a generator of the SU(NF ).

Figure 3. Feyman diagrams contributing to the current current correlator to order 1/NF . Diagram

(0) is the leading order contribution and the only one that survives the NF →∞ limit. Diagram (1)

is the vertex correction, diagram (2) the self-energy correction that comes with a factor of a2 = 2.

Using the Feynman rules explained above, figure 3 exhibits the 3 contractions to the

current correlator to order 1/NF . Each of the expressions in eq. (2.2) contain a minus

sign due to the trace over fermions, a (trivial) trace over flavor indices, a trace over the

Dirac matrices, and one (1-loop graph) or two (the two 2-loop graphs) 2 + 1 dimensional

momentum integrals
∫
k ≡

∫
d3k
8π3 . We get:

J `mµν (p)(0) = −Tr

[∫
k
γνT

mkaγa
k2

γµT
` (p + k)bγb

(p + k)2

]
(2.2)

J `mµν (p)(1) = −Tr

[ ∫
k,q

γνT
m (k + p)aγa

(k + p)2

γλ√
NF

(k + p + q)bγb
(k + p + q)2

γµ× (2.3)

× T ` (k + q)cγc
(k + q)2

γρ√
NF

kdγd
k2

16

q

(
δλρ −

qλqρ
q2

)]
J `mµν (p)(2) = −Tr

[ ∫
k,q

γνT
m (k + p)aγa

(k + p)2
γµ× (2.4)

× T `kbγb
k2

γρ√
NF

(k + q)cγc
(k + q)2

γλ√
NF

kdγd
k2

16

q

(
δλρ −

qλqρ
q2

)]
.

These expressions are now evaluated in the following way using our “Tensoria” technol-

– 6 –
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ogy [32]: we first perform the trace over the Dirac indices, collecting the contracted ex-

pressions in the numerator. Especially for the more complicated expressions it is helpful to

automate it and use the Feyncalc MATHEMATICA package for this [53]. Then we replace

the integrals of momentum written in components as described in the next section and in

the appendix of ref. [32]. Finally, we separate out the transverse I
(i)
T and longitudinal I

(i)
T

momentum projections in the following form:

〈J `µ(−p)Jmν (p)〉 = δ`m
2∑
i=0

aiJ
(i)
µν (p) ≡

2∑
i=0

ai

[
I

(i)
T (p)

(
δµν −

pµpν
p2

)
+ I

(i)
L (p)

pµpν
p2

]
. (2.5)

2.2 Free fermion limit, NF → ∞ graph, for CJ

To illustrate the procedure with a simple example, let us evaluate the leading order graph

that also corresponds to the free fermion limit:

J `mµν (p)(0) = −Tr

[∫
k
γνT

mkaγa
k2

γµT
` (p + k)bγb

(p + k)2

]
= δ`m

∫
d3k

8π3

2k2δµν + 2δµνkαpα − 4kµkν − 2kνpµ − 2kµpν

k2 (p + k)2 . (2.6)

The integral over the first term in the numerator 2k2δµν is a power-law divergence in the

UV and can be dropped. The second, third, fourth and firth term in the numerator can

be integrated using the identities∫
d3k

8π3

kµ

k2 (p + k)2 = − pµ
16p∫

d3k

8π3

kµkν

k2 (p + k)2 =

(
3
pµpν
p2
− δµν

)
p

64
(2.7)

with the abbreviation for the modulus p = |p| and interchangebly p2 = p2. The result

J `mµν (p)(0) = − p

16

(
δµν −

pµpν
p2

)
δ`m (2.8)

comes out purely transverse, leading to C
Nf→∞
J = 1/16. Note that in order to compute

〈TT 〉 (in the next section), Tensoria performs momentum integrals of the type eq. (2.7)

containing up to six different momentum indices in the numerator and four propagators in

the denominator.

2.3 1/NF corrections to CJ and discussion

We evaluate the vertex correction and self-energy correction graphs (1) and (2) in eq. (2.2)

algorithmically and the results are in table 1. As expected for a conserved quantity, the log-

singularities of each individual graph cancel when taking the sum, so does the longitudinal

part. As announced in the Introduction, our result eq. (1.9) seems to disagree with Chen

et al.[12] who computed CJ for QED3 to order 1/NF . The relevant 1/NF correction is

– 7 –
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Diagram I
(i)
T (p) I

(i)
L (p) Log-Singularity (transverse) Factor ai

0 − 1
16p 0 0 1

1 − p
NF

0.0370767 p
NF

1
3π2

p
NF

2
3π2 log Λ

p 1

2 p
NF

5
36π2 − p

NF
1

6π2 − p
NF

1
3π2 log Λ

p 2

Table 1. Evaluated contributions to the current-current correlator. The sum of longitudinal

components off all the graphs add to 0 and the transverse parts add up to eq. (1.9). The analytic

expression for I
(1)
T (p) (multiplied by -16) is in eq. (1.10) The log-singularities mutually cancel. The

self-energy correction graph (2) comes with a factor of a2 = 2.

given in eq. (A17) in the appendix of their paper. Mapping to our conventions we take

g = 1 and A = 16 and an overall minus sign. These authors obtained

CChen, et al.
J =

1

16

(
1 +

16

NF

3

(2π)2

)
≈ 1

16

(
1 +

1

NF
1.216

)
, (2.9)

The sign of their 1/NF correction match but the value seem to be different from eq. (1.9).

As another, this time positive, cross-check, we have repeated the calculation of appendix B

in the paper by Rantner and Wen [16] and compared the coefficients of the logarithmically

diverging terms in their eq. (B10) to what we get. Both values agree to be

− 1

NF

16

3π2
|p| ln Λ

|p| . (2.10)

The presence of (non-cancelling) log-singularities indicates that the quantity (staggered

spin susceptibility in algebraic spin liquids) in their case is not conserved. We have also

computed the fermion anomalous dimension and self energy correction to order 1/NF and

found agreement to results from direct calculation using textbook methods (See ref. [17]).

3 Tensoria technology: mini-recap

Before proceeding, let us briefly recapitulate our algorithm to evaluate the tensor-valued

momentum integrals as described in more detail in the appendices of [32, 54]. At the heart

of the algorithm are Davydychev permutation [55, 56] relations to perform integrals of

the form:

Jµ1...µM (p1,p2,p3;n; νi) =

∫
dnk

kµ1 . . . kµM
(k + p1)2ν1 (k + p2)2ν2 (k + p3)2ν3

. (3.1)

After the Dirac traces, the integrals can all be brought into this form. After the first

momentum integration, we temporarily introduce a UV-momentum cutoff that formally

breaks symmetries such as conformal invariance. Using this cutoff as a sorter, all power-

law divergences are discarded as they would be absent in a gauge-invariant regularization

schemes such as dimensional regularization. The remaining finite and logarithmically di-

vergent terms can be integrated analytically graph-by-graph and the log-singularities are

seen to cancel exactly.

– 8 –
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Aν Aµ

k1

k2

` Tµν

γν

2
√
NF

γµ

2
√
NF

1

4
(γµ(k1 + k2)ν

+γν(k1 + k2)µ)

Figure 4. Feyman rules for the stress tensor vertices.

We close this recap by noting that despite the exact cancellations of the log-singularities

as a strong consistency check, and the many additionally performed checks of all sub-

routines in Tensoria, at the moment we have no proof that of the exactness to O(1/NF )

of our results for the theory eq. (1.1). Note that the Tensoria technique was also ap-

plied in refs. [15, 32], for different theories. There, we found agreement with a number of

computations using other methods.

4 Stress energy tensor correlator 〈TT 〉

In this section, we extend our technology to compute the stress tensor correlator of eq. (1.1)

to next-to-leading order in 1/NF . We first define the stress tensor itself and write down

the Feynman rules for the stress tensor vertices. Then, we first illustrate in some detail

the calculation of the leading NF → ∞ graph before evaluating the remaining 8 graphs

with Tensoria. The two major complications here are: (i) the gauge field can connect

directly to the stress tensor vertex leading to a vertex involving 3 lines, and (ii) four 3-loop

graphs, including those of the Azlamasov-Larkin type, appear. As in the 〈JJ〉 computation,

we explicitly show that all log-singularities cancel when summing all graphs to ensure to

conserved nature of Tµν in accordance with symmetries.

4.1 Feynman rules and graphs in momentum space

The stress tensor operator for eq. (1.1) depends on both the fermions and the gauge fields

via the gauge covariant derivative Dµ = ∂µ − iAµ/
√
NF [44]

Tµν =

NF∑
α=1

i

4

(
ψ̄αγµ (Dνψα) + ψ̄αγν (Dµψα)−

(
D∗µψ̄α

)
γνψα −

(
D∗νψ̄α

)
γµψα

)
. (4.1)

leading to the stress tensor vertices shown in figure 4. The eight graphs and their analytical

expressions shown in figures 5, 6 contribute to order 1/NF and we again denote their sum by

〈Tµν(−p)Tλρ(p)〉 =

7∑
i=0

aiT
(i)
µνλρ(p) . (4.2)

– 9 –
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Figure 5. Feynman diagrams contributing to the stress energy tensor correlator to next-to-leading

order in 1/NF . Only diagram (0) survives in the NF →∞ limit. Diagrams (2) and (4) come with

a factor of a2 = 2, a4 = 2, respectively. The factors for the other graphs are unity ai = 1. The

numerical values and logarithmic singularities for each of these graphs are exhibited in table 2.

In order to compute the “central charge” CT , we will project it out from the evaluated

graphs using the relation eq. (1.6):

CT =
1

4|p|3 δµλδνρ〈Tµν(−p)Tλρ(p)〉 . (4.3)

We note here that a number of previous analyses [3, 41, 42] have been conducted in real

space, where the invariance of correlators under the full set of conformal transformations

are transparent but the analysis to work out the constants for an interacting CFT is

quite involved.
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T
(0)
µνλρ(p) = −NFTr

[∫
k

1

4
γλ(2k + p)ρ

(k + p)aγa
(k + p)2

1

4
γµ(2k + p)ν

kbγb
k2

]
+ (perm1)

T
(1)
µνλρ(p) = −NFTr

[∫
k,q

1

4
γλ(2k + p)ρ

(k + p)aγa
(k + p)2

γε√
NF

(k + p+ q)bγb
(k + p+ q)2

1

4
γµ(2k + 2q + p)ν

(k + q)cγc
(k + q)2

γκ√
NF

kdγd
k2

16

q

(
δκε −

qκqε
q2

)]
+ (perm1)

T
(2)
µνλρ(p) = −NFTr

[ ∫
k,q

1

4
γλ(2k + p)ρ

(k + p)aγa
(k + p)2

1

4
γµ(2k + p)ν

kbγb
k2

γε√
NF

(k + q)cγc
(k + q)2

γκ√
NF

kdγd
k2

16

q

(
δκε −

qκqε
q2

)]
+ (perm1)

T
(3)
µνλρ(p) = −NFTr

[ ∫
k,q

γλ

2
√
NF

(k + p+ q)aγa
(k + p+ q)2

γµ

2
√
NF

kbγb
k2

16

q

(
δρν −

qρqν
q2

)]
+ (perm1)

T
(4)
µνλρ(p) = −NFTr

[ ∫
k,q

1

4
γλ(2k + p)ρ

(k + p)aγa
(k + p)2

γε√
NF

(k + p+ q)bγb
(k + p+ q)2

γµ

2
√
NF

kcγc
k2

16

q

(
δνε −

qνqε
q2

)]
+ (perm2)

T
(5)
µνλρ(p) =

∫
q

NFTr

[∫
k

γρ

2
√
NF

kaγa
k2

γε√
NF

(k + q)bγb
(k + q)2

]
16

q

(
δκε −

qκqε
q2

)
16

|p+ q|(
δλµ −

(p+ q)λ(p+ q)µ
(p+ q)2

)
NTr

[∫
l

γν

2
√
NF

(l+ q)cγc
(l+ q)2

γκ√
NF

ldγd
l2

]
+ (perm1)

T
(6)
µνλρ(p) =

∫
q

NFTr

[∫
k

γρ

2
√
NF

kaγa
k2

γκ√
NF

(k + q)bγb
(k + q)2

]
16

q

(
δκε−

qκqε
q2

)
16

|p+ q|

(
δλα−

(p+ q)λ(p+ q)α
(p+ q)2

)
(
NFTr

[∫
l

1

4
γµ(p+ 2l)ν

lcγc
l2

γα√
NF

(p+ q + l)dγd
(p+ q + l)2

γε√
NF

(p+ l)eγe
(p+ l)2

]

+NFTr

[∫
l

1

4
γµ(p+ 2q + 2l)ν

(q + l)cγc
(q + l)2

γε√
NF

ldγd
l2

γα√
NF

(p+ q + l)eγe
(p+ q + l)2

])
+ (perm2)

T
(7)
µνλρ(p) =

∫
q

NFTr

[∫
k

γρ

2
√
NF

(k + p+ q)aγa
(k + p+ q)2

γε√
NF

kbγb
k2

]
16

q

(
δλκ −

qλqκ
q2

)
16

|p+ q|(
δεν −

(p+ q)ε(p+ q)ν
(p+ q)2

)
NFTr

[∫
l

γµ

2
√
NF

(l+ q)cγc
(l+ q)2

γκ√
NF

ldγd
l2

]
+ (perm1)

T
(8)
µνλρ(p) =

∫
q

NFTr

[∫
k

1

4
γλ(2k + p)ρ

(k + p)aγa
(k + p)2

γα√
NF

(k + p+ q)bγb
(k + p+ q)2

γκ√
NF

kcγc
k2

]
16

q

(
δαβ −

qαqβ
q2

)
16

|p+ q|

(
δκε −

(p+ q)κ(p+ q)ε
(p+ q)2

)
(
NFTr

[∫
l

1

4
γµ(2l+ p)ν

ldγd
l2

γβ√
NF

(l− q)eγe
(l− q)2

γε√
NF

(l+ p)fγf
(l+ p)2

]

+NFTr

[∫
l

1

4
γµ(2l+ p)ν

ldγd
l2

γε√
NF

(l+ p+ q)eγe
(l+ p+ q)2

γβ√
NF

(l+ p)fγf
(l+ p)2

])
+ (perm1)

Figure 6. Analytical expressions for the 8 graphs in figure 5. Here, “perm1” indicate permutations

(µ ↔ ν), (λ ↔ ρ), and (µ ↔ ν, λ ↔ ρ) and “perm2” indicate (µ ↔ λ, ν ↔ ρ), switched as a pair,

in addition to permutations indicated by “perm1”. “perm2” will increase the number of terms by

a factor of 8.
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Diagram C
(i)
T Log-Singularity Factor ai

0 NF
256 0 1

1 −0.00162 − 7
120π2 p

3 log Λ
p 1

2 1
576π2

1
48π2 p

3 log Λ
p 2

3 0 0 1

4 19
288π2

1
24π2 p

3 log Λ
p 2

5 0 0 1

6 1
128 − 19

144π2 − 1
12π2 p

3 log Λ
p 1

7 1
256 0 1

8 1
256 + 17

720π2
1

60π2 p
3 log Λ

p 1

Table 2. Evaluated contributions to the stress tensor correlator and the log-singularities. The log-

singularities cancel exactly after summing all graphs. The analytic expression for C
(1)
T (multiplied

by 256) is given in eq. (1.4).

4.2 Free fermion limit, NF → ∞ graph, for CT

Let us evaluate the leading order graph, the first line in figure 6 that also corresponds to

the free fermion limit. Including the index permutations described in the caption of the

figure, we have

CNF→∞T

NF
=

1

4|p|3 δµλδνρT
(0)
µνλρ(p)

=
1

4|p|3
1

2

∫
d3k

8π3

kαpαkβpβ − k2p2

k2 (k + p)2

=
1

4|p|3
1

2
pαpβ

(
3
pαpβ
p2
− δαβ

)
p

64

=
1

256
(4.4)

where we dropped the second term in the numerator in the second line because it is a

power-law divergence in the UV, absent in dimensional regularization. We can also check

that without immediately contracting the graph, the uncontracted terms fulfill the index

structure of eq. (1.6).

4.3 1/NF corrections for CT and discussion

Tensoria computes the 1/NF corrections algorithmically and table 2 collects the results.

As before, we observe an exact cancellation of the logarithmic singularities of each graph

in accordance with symmetry requirements. Summing the graphs leads to eq. (1.3) in the

Introduction. Note that the contributions of 1/NF correction graphs 1 - 8 to CT do not

have definite sign: 1 and 6 are negative while the others are positive. As already touched

upon in the Introduction, it will be interesting to understand the signs and structure of the

interaction corrections to CT for more general IR and UV fixed points especially against

the backdrop of “CT measuring the number of degrees of freedom” of a given field theory.
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5 Conclusions

The aim of this paper was to provide precision computations of the “central charge” CT
and universal conductivity CJ of interacting conformal field theories in 2 + 1 dimensions.

We considered NF Dirac fermions coupled to an “emergent photon” motivated by frequent

occurrence of this field theory in a variety of condensed matter systems. The low-energy

sector is also equivalent to many-flavor QED3 in the conformal phase.

Our hope is that our results could become a useful diagnostic for numerical evalua-

tions of entanglement properties of CFT3’s, conformal bootstrap approaches, or applica-

tion of the AdS-CFT correspondence. Going forward, our technology may also comple-

ment explicit computations of conformal correlators in the context of dualities of Large N

Chern-Simons Matter Theories [57–59]. In particular, one may be able to directly compute

higher-order current and stress tensor correlators from “both sides of the duality”, taking

for example fermionic matter fields coupled U(NF )kF Chern-Simons on one side and the

U(Nb)kb critical-bosonic Chern-Simons vector model on the other side, and checking the

parameter space for the conjectured duality.
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