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Abstract: We show that Hořava-Lifshitz gravity theory can be employed as a covariant

framework to build an effective field theory for the fractional quantum Hall effect that

respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance

and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism

is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-

Lifshitz gravity theory to external background (source) fields among others in the effective

action of the quantum Hall effect, according to their symmetry transformation properties.

We originally derive the map as a holographic dictionary, but its form is independent of

the existence of holographic duality. This paves the way for the application of Hořava-

Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic

Chern-Simons model, we compute the low energy effective action at leading orders and

show that it captures universal electromagnetic and geometric properties of quantum Hall

states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their

relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of

guiding center velocity and conjugate to guiding center momentum. This enables us to

distinguish guiding center angular momentum density from the internal one, which is the

sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our

effective action shows that Hall viscosity is minus half of the internal angular momentum

density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding

center angular momentum density.
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1 Introduction

1.1 Aspects of the fractional quantum Hall effect

The fractional quantum Hall effect (FQHE) [1] has been a fascinating subject that attracts

physicists from many different areas of both experimental and theoretical physics over

the last three decades. The crucial role played by interactions between electrons poses a

huge challenge to theorists and prevents the problem from being solved exactly till these

days. Despite this difficulty, many different theoretical approaches to the problem has been

developed since Laughlin’s ground-breaking work on the trial wave function [2]. These

approaches employ many different concepts and theoretical tools from various fields of

modern physics and even mathematics, to reveal diverse aspects of rich physics encoded in

this simple phenomenon.

One class of these approaches is based on field theories [3–7], particularly the Chern-

Simons gauge theory in 2+1 dimensions. However, such approaches have shortages and

limitations. One of the problems is the difficulty to deal with the massless limit. In the

massless limit, the cyclotron frequency goes to infinity and the inter-Landau level gap

becomes much larger than the Coulomb energy gap, which only depends on the magnetic

field. This corresponds to the projection to the lowest Landau level (LLL). In many

field theoretical approaches, such as the composite boson [3] and composite fermion [4]

theories, the inter-Landau level mixing causes the LLL projection to be unnatural and

many quantities which should depend only on Coulomb energy scale are also sensitive to

cyclotron frequency. The smoothness of the massless limit is a requirement for a field

theory formalism to be an adequate description of the quantum Hall effect.

At the low energy (much lower compared to the Coulomb gap) effective theory level,

Chern-Simons field theory is believed to encode all the universal properties of quantum Hall

states [5]. However, in addition to the gauge degrees of freedom related to electromagnetic

properties such as the quantized Hall conductivity [8–10], fractionally charged (anyonic)

excitations [2, 11, 12] and chiral edge states [13–15] that are well described by gauge Chern-

Simons theory [16, 17], the fractional quantum Hall states also possesses another sets of

degrees of freedom, which is called the “geometric degrees of freedom” by Haldane [18].
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This is another hallmark of the fractional quantum Hall effect that makes it fundamentally

different from and more complicated than the integer quantum Hall effect [19]. The origin

of these two sets of degree of freedom can be traced back to the structure of Hilbert

space of charged particles in magnetic field [20, 21] and the underlying symmetry of W∞
algebra [22]. Early study related to the geometric degrees of freedom dated back to the

magneto-roton theory of collective neutral excitations [23]. A new quantum number, the

shift S, was introduced in [24] as the coefficient of a new Chern-Simons-type term, the

Wen-Zee term
S
4π

∫
ω ∧ dA

where A is the U(1) gauge field and ω is the Abelian spin connection associated with the 2-

dimensional spatial manifold. The shift is topological in nature and its role to characterize

gravitational response of fractional quantum Hall states is similar to that of the quantized

Hall conductivity to the electromagnetic response. The topological phases of fractional

quantum Hall states are determined by Hall conductivity and the shift together, not the

former alone. Although the shift is originally introduced to describe quantum Hall states

on curved manifolds with non-trivial topology, it also manifests itself in states on flat man-

ifolds as a parity-odd dissipationless transport coefficient known as Hall viscosity [25–36],1

which in turn is related to the angular momentum density in gapped systems [30, 47–49].

Recently, Haldane proposed a geometric point of view [18] to renew the understanding of

fractional quantum Hall dynamics, in which the Hall viscosity [50–52] and neutral collec-

tive excitations [53] are related to the fluctuations of guiding center metric defined in the

2-dimensional phase space of the non-commutative guiding center coordinates. A closely re-

lated topic is the study of the nematic degrees of freedom, whose dynamics is also governed

by the Wen-Zee term. Inspired by early works of [54, 55], [56, 57] propose field theoretical

descriptions of the quantum Hall nematic transition in which an isotropic Laughlin liquid

undergoes phase transition to a nematic state with the same filling factor but spontaneously

breaks rotational symmetry, and identify the order parameter as unimodular spatial metric

components.

1.2 Symmetries and quantum Hall effective field theory

In field theoretical approaches, symmetries play an important role in building phenomeno-

logical models as well as solving and subtracting physical information. Gauge invariance

and Galilean symmetry, particularly the former one, have been well known to be crucial to

the understanding of quantum Hall effects [58]. However, these are not the only symmetries

that are relevant and can be utilized in the study. Non-relativistic systems possess a larger

set of symmetries than the aforementioned two. In [59] the notion of non-relativistic diffeo-

morphism invariance is introduced, and further enlarged to its maximal in [60] for quantum

Hall systems to accommodate arbitrary spacetime diffeomorphism, a general gyromagnetic

1A closely related situation is Hall viscosity in chiral superfluids [37–40] (in addition to [29, 30]). Hall

viscosity in relativistic systems has also been studied in [41–44] and [45, 46]. The latter is related to

quantum Hall effects in graphene. But since the spacetime symmetry is different in these cases, they are

not considered here.
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factor and intrinsic spin. It is first used to construct an effective action for quantum Hall ef-

fects in [31] to explain the relation between Hall viscosity and the inhomogeneous magnetic

field correction to the Hall conductivity. [61] introduces the Newton-Cartan geometry as a

mathematical machinery that manifests the non-relativistic diffeomorphism invariance in a

covariant way, and constructs an effective action that resolves the unnaturalness problem

of LLL projection and encodes most of the universal properties of fractional quantum Hall

states in a natural and unified way. The Newton-Cartan formalism is further used to study

spectral density sum rules [62], conservation laws and Ward identities [60], hydrodynam-

ics [63] of quantum Hall fluids and extended to include torsion [60, 64]. Recently, [65] offers

an extensive formal discussion on algebraic aspects of Newton-Cartan geometry as a formal-

ism of Galilean-invariant field theories. Non-relativistic diffeomorphism invariant effective

actions can also be constructed without using Newton-Cartan formalism [66–69]. Some re-

cent general discussions on non-relativistic spacetime symmetries can be found in [70–72],

and similar ideas are applied to construct low energy effective action for non-relativistic

gapped systems in [73].

The idea behind the approach of [31, 61] is that, a single gauge Chern-Simons term∫
A ∧ dA alone as the leading order term of the low energy effective theory does not

respect the full spacetime symmetries of the underlying microscopic field theory. The non-

relativistic diffeomorphism invariance, along with other constraints such as the naturalness

of LLL projection, requires a series of additional terms and fixes the relative coefficients

between them. This is how other universal properties of fractional quantum Hall states

mentioned earlier are embedded into the Chern-Simons theory. Strictly speaking, the local

non-relativistic diffeomorphism invariance is just a spurionic symmetry of the system. It

does not induce a conservation law per Noether’s theorem. It is not even uniquely de-

termined because to read it off the underlying microscopic field theory has to be coupled

to curved spacetime first and this coupling is not unique. Only a subgroup of the full

diffeomorphism invariance that preserves a certain background (usually flat) is the true

symmetry (the Galilean or Schrodinger algebra). However, the full diffeomorphism in-

variance is a powerful tool to constrain the form of the effective action and to subtract

physical information such as Ward identities higher correlation functions and relations

between transport coefficients at the low energy level.

Another point to note is that, given a specific form of non-relativistic diffeomorphism

invariance (i.e. the coordinate transformation rules for all fields and parameters in the

theory that keep the action and effective action invariant), there may exist more than one

covariant formalisms of the geometry one can use as the machinery to build up the effective

theory. Depending on the purpose, one may be more convenient than another or vice versa.

The Newton-Cartan formalism introduced in [61], with its non-relativistic nature [74] and

rich structure, becomes a popular one to describe quantum Hall effects. In this paper,

however, we will employ a different covariant formalism — the Hořava-Lifshitz gravity

theory, and show that it is an equally powerful framework for quantum Hall effective theory.

It has one notable advantage over the Newton-Cartan formalism. It is closely associated

to relativistic gravity theories (for example, through the khronon formalism [75, 76]), thus

provides a natural connection to the holographic approach, which has been developed so

far mostly within the frameworks of relativistic gravity and string theories.
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The idea of using Hořava-Lifshitz gravity theory to construct effective actions with

non-relativistic diffeomorphism invariance (non-holographically) has already been intro-

duced in [66] (followed by [77]), but their formalism is limited in several aspects. Their

non-relativistic diffeomorphism is not the most general one for quantum Hall effect. Their

construction relies on taking the non-relativistic limit c → ∞ of some relativistic theory,

which will usually not give the most general results as to directly consider the diffeomor-

phism itself, thus is over-constrained. Last but not least, in their metric ansatz they identify

the U(1) field directly as the subleading order metric components in 1/c expansion. We

think the last part is the major limitation and we will introduce the U(1) field separately

in our formalism, independent of the graviton sector, and will identify the shift function in

the metric as something different in the context of quantum Hall effects.

1.3 Holography: relativistic vs. non-relativistic symmetries

Holography, or the gauge/gravity duality [78–80], has been a powerful tool to study

strongly-correlated quantum systems observed or theoretically proposed in many different

areas of modern physics. Its higher dimensional geometric approach gives dual descriptions

of quantum field theories at strong coupling regime, which is complementary to the tradi-

tional perturbative methods. An early triumph of holography in high energy physics is the

prediction of the lower bound of shear viscosity to entropy density ratio of strongly coupled

quark-gluon plasma [81–84]. Holography has also been applied to many condensed matter

systems and sheds new light on many age old problems, offering new perspectives and

efficient computational methods (for an incomplete list of reviews of some most popular

topics, we refer to [85–91]). A topic related to the current discussion is Lifshitz holography,

the holographic dual to field theories with Lifshitz scaling, starting from [92]. It typically

employs relativistic gravity coupled to various types of matter fields, among which the most

popular version is introduced in [93]. Of particular interest are the recent work of [94, 95]

where the boundary geometry of z = 2 Lifshitz holography under certain conditions for the

time-like vielbein is identified with Newton-Cartan geometry with or without torsion, and

of [96, 97] where a systematic approach for constructing holographic dictionary for Lifshitz

holography is presented. Instead of using relativistic gravity coupled to matters, we will

use Hořava-Lifshitz gravity to realize the Lifshitz holography. It has Lifshitz geometry as

a vacuum gravity solution without coupling to matters.

The fractional quantum Hall effect, a state of quantum fluids largely due to the strong

correlations of electrons through Coulomb interaction in high magnetic field, is another nat-

ural playground for holography. Early researches based on either bottom-up phenomenolog-

ical approaches or top-down string/brane settings turn out to be fruitful [98–111]. However,

one of the limitations of most of these studies is that they focus primarily on electromag-

netic properties of the quantum Hall phenomena, particularly the conductivity. Most of

the geometric properties that also characterize quantum Hall states, such as the Wen-Zee

shift and Hall viscosity, are overlooked, thus the holographic approach to quantum Hall

effects so far is still incomplete. One purpose of this paper is to fill in this gap. The

origin of this problem can be traced back to the spacetime symmetry of these holographic

models. Since they are all built in within the framework of string theory or relativistic
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gravity theory, their spacetime symmetry is relativistic by nature. This does not match

the non-relativistic diffeomorphism invariance of [59–61], which is more appropriate for the

description of quantum Hall effects and is crucial to the encoding of geometric properties

into the effective description. For example, as the (2+1)-dimensional gauge Chern-Simons

term A∧dA can easily find its dual description in (3+1)-dimensional holographic model as

the bulk Chern-Simons term dA∧ dA, the Wen-Zee term ω ∧ dA can not because the spin

connection in relativistic (3+1)-dimensional bulk is naturally non-Abelian and a term like

dω∧dA is forbidden by symmetry. Our solution to this problem is to use a non-relativistic

gravity theory — the Hořava-Lifshitz gravity — as the bulk description where a Wen-Zee

term is not forbidden by symmetry at least at the boundary and thus can be induced by

the holographic dictionary.

A guiding principle to construct a dual holographic model for a certain quantum field

theory is the matching of all symmetries on both sides. This is especially important for the

bottom-up approach where means of constraining the form of the action are limited. In clas-

sic examples of AdS/CFT correspondence [112], the full conformal and flavor symmetries of

the field theories are completely realized by the background isometries of the dual gravity

theories. This is necessary for the top-down approach, but for the bottom-up approach

which we will follow here, especially for the applications to condensed matter physics, this

requirement that the full global symmetries are realized by background isometries might

be too strong and not necessary. A weaker condition that the holographic on-shell action

encodes all the field theory symmetries is sufficient in practice. This means that the bulk

background isometry does not have to incarnate the full symmetry algebra [113]. This

weak requirement is particularly useful for building up bottom-up models for systems with

non-relativistic symmetries to avoid certain complications such as excessive extra dimen-

sions. The difference between the strong and weak requirements is that in the latter the

holographic dictionary will be more complicated and play a more vivid role to realize the

rest of the symmetry that is not realized by the isometry. In fact, according to the standard

holographic dictionary,

Igrav[φ̄] =WQFT [J ] , φ̄ = J , (1.1)

where Igrav is the on-shell action of the (weakly coupled or classical) gravity theory and

WQFT the effective action2 of the dual (strongly-coupled) quantum field theory. φ̄ denotes

a collection of normalizable mode coefficients of the bulk fields, which are usually called

the boundary fields and identified as the source field J to some operator Ô in the quantum

field theory. The form of WQFT [J ] is highly constrained by the symmetries of the quan-

tum field theory, then so is that of Igrav[φ̄] according to the dictionary. Thus the necessary

and sufficient condition for the matching of symmetries is that the on-shell action Igrav[φ̄]

respects symmetries of the field theory. This is a combined result of the bulk background

isometry (particularly near the boundary) and the holographic dictionary, not only the

former one alone. In the classic AdS/CFT correspondence [112] where the holographic

2Throughout this paper, by “effective action” W, we simply mean the logarithm of the generating

functional Z of the quantum field theory, as a functional of the source J : W [J ] = −i logZ [J ].
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dictionary takes a simple and trivial form (for example, the boundary gauge field maps

exactly to the source of the conserved current of the same gauge group in the field the-

ory), the requirement of fulfilling the symmetries falls upon completely on the background

isometry. In non-relativistic holography, this is not always true, or at least certainly not as

cheap as that for the relativistic. In early works of [114, 115],3 for example, the spacetime

symmetry group for unitary fermions, the Schrodinger group, is fully realized by the back-

ground isometry, but at the price of introducing two extra dimensions rather than one in

relativistic cases. Furthermore, this type of models suffer problems such as zero modes and

infinite Kaluza-Klein towers in the mass spectrum resulting from the discrete light-cone

quantization (DLCQ). They can hardly be the holographic duals of generic non-relativistic

field theories. A first step toward a more generic setup by getting rid of the second extra

dimension and giving up the strong requirement on bulk isometry is made by [113], where

an extra gauge field has to be introduced and the holographic dictionary becomes less triv-

ial by mixing the metric and the gauge field. [117, 118] makes a further step by directly

employing a non-relativistic bulk gravity theory — Hořava-Lifshitz gravity, and building

the holographic dictionary by matching to the non-relativistic diffeomorphism invariance

of [59]. In this paper, we will follow closely the philosophy of [117, 118] and extend their

approach to the parity-violating case by building a holographic dictionary that matches the

non-relativistic local spacetime and gauge symmetries of [60]. This offers a general plat-

form for building more detailed holographic models dual to strongly-coupled spin-polarized

charged particle systems in magnetic field, particularly the quantum Hall effects.

1.4 Hořava-Lifshitz gravity theory

In the above when we are talking about matching the symmetries of a field theory and its

holographic dual, we mean the full local symmetries, including the “spurionic” diffeomor-

phism invariance and local gauge invariance, not just the global symmetries. A detailed

explanation of this point and its connection with building non-relativistic holographic dic-

tionary is presented in [118]. In non-relativistic systems, there is a preferred notion of

time — the global time, which defines simultaneity and is a consequence of non-relativistic

causality. The general coordinate transformations that preserve the global time foliation on

the manifold involve an arbitrary time-dependent time reparametrization and an arbitrary

time- and space-dependent spatial diffeomorphism:

δt = −ξt(t) , δxi = −ξi
(
t, xj

)
, (1.2)

which is usually called foliation preserving diffeomorphism (FPD). Here i and j run through

all spatial directions. Non-relativistic diffeomorphism invariance is a statement that physics

is invariant under these FPD. To build up the holographic dual, it is natural to seek a

gravity theory with the same causal structure, notion of global time and diffeomorphism

invariance. The candidate is Hořava-Lifshitz gravity theory [119, 120], a gravity theory

that is constructed to be invariant under the above FPD. The gravity sector includes the

lapse function N , shift function Ni and spatial metric gij , which can be viewed as the

3For a review from algebraic point of view, we refer to [116].
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Arnowitt-Deser-Misner (ADM) decomposition of the full spacetime metric [121]:

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
. (1.3)

Their transformation under FPD will be listed later when we talk about the bulk theory

of the holography. Time derivative appears only in the extrinsic curvature

Kij =
1

2N

(
∂tgij −∇iNj −∇jNi

)
, (1.4)

where ∇i is the covariant derivative associated with the spatial metric gij . We define

K = gijKij .

Hořava-Lifshitz gravity is originally proposed as a ultraviolet-complete quantum grav-

ity theory to describe the real world. For this purpose, there are many phenomenological

and cosmological issues under debates where there exists an extensive literature (for some

early reviews and references, see [122, 123]). But these are mostly irrelevant to us, since

we are only interested in using the theory as a framework to build up effective theories or

holographic duals for non-relativistic field theories. We do not need to assume projectabil-

ity or detailed balance as introduced in [120]. We are mostly interested in the classical low

energy limit (analog to the large Nc limit of the relativistic AdS/CFT correspondence) of

the theory where the lowest derivative terms dominate. The general form of the leading

order graviton action up to two-derivative terms is [75, 124, 125]:

Sgrav =
1

16πGN

∫
dtdd~x

√
gN

{
KijK

ij−
(

1+λ̃
)
K2+β (R−2Λ)+α

(∇iN)
(
∇iN

)
N2

}
. (1.5)

where R is the Ricci scalar associated with gij and Λ cosmological constant and spatial

indices i and j are raised and lowered by gij and gij . GN is Newton’s constant, but as part

of effective theory for condensed matter systems, it will be mapped to some parameters

in the problem under consideration. When α = λ̃ = 0 and β = 1 the action goes back

to Einstein-Hilbert form. This low energy form of Hořava-Lifshitz gravity is a limiting

case [126, 127] of the Einstein-aether theory [128–130] with hypersurface orthogonal aether

field. We will also need a U(1) gauge field Vµ = (Vt, Vi), whose low energy action up to

two derivatives has the general form [131]

Sgauge =
1

4g2
e

∫
dtdd~x

√
gN

{
2

N2
gij
(
Vti −NkVki

)(
Vtj −N lVlj

)
+ f [V1, V2]

}
, (1.6)

where Vµν = ∂µVν−∂νVµ, ge is the gauge coupling and f is an arbitrary scalar functional of

its arguments. For d = 3, V1 = gijBiBj , V2 = ∇iBj∇iBj and Bi = 1
2ε

jk
i Vjk. For d = 2,

V1 = B, V2 = ∇iB∇iB and B = 1
2ε
ijVij . Here ε with indices is the Levi-Civita tensor

associated with the metric gij in specific dimensions. The form of a scalar action is also

discussed in [131], but we will not need them explicitly in this paper. The Chern-Simons

terms can be added in a similar way as in relativistic theories. We will discuss this in great

details in late sections. In 2+1 dimensions, a FPD invariant Wen-Zee term can be added as

SWZ =
S
4π

∫
ω′ ∧ dV . (1.7)
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where ω′ = ω + . . . is a covariant Abelian spin connection defined on the 2-dimensional

spatial manifold. The ω′ is different from the Abelian spin connection ω in the classic Wen-

Zee term introduced in [24] by the “. . .” part, because ω is not a FPD covariant 1-form.

The precise definition of ω′ can be found in (3.36) and (3.37).

In [132, 133] the Hořava-Lifshitz gravity described above are extended. A local

U(1) symmetry called U(1)Σ is introduced and the FPD invariance is upgraded to “non-

relativistic general covariance”. Along with these is the introduction of some additional

fields into the theory, such as the “Newton potential” A and “Newton prepotential” ν.

They are related to the subleading terms in the metric in the non-relativistic limit where

the speed of light c→∞. [117] discusses their roles in holographic model building. Since

our theories have only FPD symmetry, not the non-relativistic general covariance, we will

not introduce these fields in our model. This agrees with the spirit of [117].

Related to applications on holography, Hořava-Lifshitz gravity theory admits Lifshitz

solution [117, 134], hyperscaling violating solutions [135] and asymptotic AdS or Lifshitz

black hole solutions [136–138].

We have a few more simplifications compared to [117]. They introduce a field Pi, the

O
(
c2
)

order of the shift function. This is related to the field Ci introduced in [60] to source

the energy flux when ∂iξ
t 6= 0. Since we are always staying in the global time coordinates,

they can be consistently set to zero. [117] also introduces a second U(1) field called bµ,

the O
(
c2
)

order of the gauge field in the parent relativistic theory. Its main function is

to provide a chemical potential related to the mass m and it enters the holographic model

mainly through the combination bt/N , which is a scalar. Thus we will not introduce this

additional U(1) field, but instead just a scalar field φ functioning as their bt/N . The

meaning of φ will be discussed once its holographic map is built. Throughout this paper,

we will not introduce the speed of light c in our construction, nor the non-relativistic limit

c → ∞. In other words, we have already set c = ∞. The FPD of fields and form of the

effective action are not obtained by taking non-relativistic limit of some relativistic parent

theory, such as in [66] and part of [117]. This allows maximal generality in the construction.

1.5 Outline and notations

In this paper we show that Hořava-Lifshitz gravity can be used as an effective theory

framework to describe the fractional quantum Hall effect, particularly at the low energy

(hydrodynamic) regime. (2+1)-dimensional Hořava-Lifshitz gravity can be directly used

to write down some FPD invariant effective actions, similar to what is done in [31, 61, 66],

while (3+1)-dimensional Hořava-Lifshitz gravity can serve as a holographic dual descrip-

tion. Although both Hořava-Lifshitz gravity and the non-relativistic quantum field theory

for quantum Hall effects [60] (section 2) are FPD invariant, their field contents and the

FPD of the fields are different. The foundation of the Hořava-Lifshitz formalism for quan-

tum Hall effects is the map between the field contents and a matching of their FPD on

both sides. This is one of the main results of this paper, given in (3.38)–(3.45). We orig-

inally derive this map as a holographic dictionary (section 3), the key component in any

holographic duality. But it is worthy to emphasize that it can also exist independently

from holography, since it is entirely written in (2+1)-dimensional field language. Thus it
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can be equally applies to (2+1)-dimensional Hořava-Lifshitz gravity as an non-holographic

effective theory (more in the traditional sense) for quantum Hall effects.

We further derive a non-relativistic FPD invariant Chern-Simons low energy effective

action for the fractional quantum Hall effect using Hořava-Lifshitz Holography with non-

dynamical Chern-Simons terms (section 4). It produces physical results in agreement

with previous results obtained via other methods, for example, through Newton-Cartan

formalism [61]. It encodes many universal geometric properties such as the shift and Hall

viscosity. Using our results, we further clarify a mystery about the relation between Hall

viscosity ηH and angular momentum density `:

ηH = −1

2
` . (1.8)

This relation has been well established in the context of quantum Hall effects using other

methods [29, 30, 47, 49], but not confirmed from the Chern-Simons effective theory as

far as we know, including in holography [139–147].4 We distinguish two types of angular

momentum densities from the Chern-Simons effective theory and show that how the above

relation arises (section 5). This inspires us to interpret the velocity field vi commonly

appearing in quantum Hall effective field theory (vi is related to torsion in the Newton-

Cartan formalism [61, 94, 95] and to the shift function N i in our Hořava-Lifshitz formalism)

as guiding center velocity field whose conjugate quantity is the guiding center momentum

density, in conjecture with Haldane’s geometric formalism [18, 50–52] of the fractional

quantum Hall effect.

Notations: the field theory lives in a (2+1)-dimensional spacetime, with coordinates

labeled by time t and two spatial directions ~x = (x, y). The bulk radial coordinate is labeled

by r, with the boundary located at r = 0. Volume elements are d3x = dtd2~x and d4x =

d3xdr. Indices i, j, k and l run through x and y (boundary spatial coordinates); I, J and K

run through x, y and r (bulk spatial coordinates); µ and ν run through t, x and y (boundary

spacetime coordinates); M , N and P run thought all four bulk coordinates. We use ε with

upper or lower indices to denote Levi-Civita tensors (with the corresponding determinant

of the metric built in) and ε with indices Levi-Civita symbol (whose components are ±1

or 0); while ε appears with no index is the infinitesimal book-keeping parameter for the

derivative expansion in late sections. We use a and b as the vielbein frame indices on the

2-dimensional manifold spanned by xi, i.e. labeling the directions in the tangent space of

x and y, while A and B are the 3-dimensional counterpart in the tangent space of x, y and

r. A “¯” on a bulk field indicates it is the near-boundary (r → 0) independent leading

order term of the corresponding bulk field. We will use the symbol “⇒” to denote the near

boundary behavior, i.e. the r → 0 limit, where we keep the finite and possibly singular

terms and drop the sub-leading terms that are vanishing in this limit.

4So far as we know, most holographic studies on Hall viscosity [139–141, 143, 144] assume no background

magnetic field but finite temperature. Thus the results are for thermal Hall viscosity, not in the context of

quantum Hall effects. An exception is [148], where vorticity is present.
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2 A non-relativistic field theory in 2+1 dimensions

2.1 Microscopic action and local symmetries

The microscopic action that defines the quantum field theory for the quantum Hall effect

in flat spacetime that we will study in this paper is given by

SNR =

∫
d3x

{
i

2

[
ψ† (Dtψ)−(Dtψ)† ψ

]
− δ

ij

2m
(Diψ)† (Djψ)+

gB

4m
ψ†ψ + interactions

}
,

(2.1)

with Dµ = ∂µ − iAµ and the magnetic field B = εij∂iAj . g is the gyromagnetic factor. To

analyze local spacetime symmetries, we need to couple it to curved spacetime.

First, let us define the vielbein eai associated with the 2-dimensional spatial metric gij :

gij = δabe
a
i e
b
j , gij = δabe

aiebj , (2.2)

where a, b = 1, 2 are vielbein indices and δab = (+,+) is the flat 2-dimensional Euclidean

metric. εab is the totally anti-symmetric Levi-Civita symbol and εij = εij/
√
g is the Levi-

Civita tensor associated with the metric gij , and g = det (gij). The U(1) spin connection

vector ωµ = (ωt, ωi) is defined as

ωt =
1

2
εabe

ak∂te
b
k , (2.3)

ωi =
1

2

(
εabe

ak∂ie
b
k − εjk∂jgki

)
. (2.4)

It transforms under diffeomorphism and Weyl transformation (to be introduced below) as

δωt = ξµ∂µωt + ωµ∂tξ
µ +

1

2
εjk∂j

(
gkl∂tξ

l
)
, (2.5)

δωi = ξµ∂µωi + ωk∂iξ
k − εjkgki∂jσ , (2.6)

The scalar curvature of the 2-dimensional Euclidean space is R(2) = εij∂iωj and transforms

as a scalar under diffeomorphism. The magnetic field is now defined as B = εij∂iAj in

curved spacetime.

We choose microscopic action of the non-relativistic field theory in curved spacetime

to be SNR = S0 + Sint with

S0 =

∫
d3x
√
ge−Φ

{
i

2
eΦ
(
ψ†(Dtψ)− ψ(Dtψ)†

)
− 1

2m

(
gij + iεij

)
(Diψ)† (Djψ)

}
, (2.7)

where the covariant derivative is

Dt = ∂t − iAt + isωt − i
(g − 2)e−Φ

4m

[
B + (1− s)R(2)

]
, (2.8)

Di = ∂i − iAi + isωi , (2.9)

where s is intrinsic spin of ψ (for spin-polarized electrons, i.e. components of Dirac spinor

in vacuum, s = 1/2). It is easy to see that S0 goes back to the flat-spacetime action

introduced at the beginning of this section. Possible choices for the interaction action

Sint include 4-fermion interaction and Coulomb interaction. Our choice of Dt such that
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(g − 2)B/4m appears together with At and gij + iεij appears in a combination in the

standard Pauli form has been employed, for example, in [149]. This is different from [60],

where gij + ig
2ε
ij appears together.

Under diffeomorphism δt = −ξt(t), δxi = −ξi(t, ~x), the action (2.7) is invariant up to

boundary terms if the fields transform as following:

δξψ = ξµ∂µψ , (2.10)

δξAt = ξµ∂µAt +Aµ∂tξ
µ − g − 2s

4
εjk∂j

(
gkl∂tξ

l
)
− g − 2

4
εij
[
∂i log

(
meΦ

)]
gjk∂tξ

k, (2.11)

δξAi = ξµ∂µAi +Ak∂iξ
k +meΦgik∂tξ

k , (2.12)

δξΦ = ξµ∂µΦ− ∂tξt , (2.13)

δξe
a
i = ξµ∂µe

a
i + eak∂iξ

k , (2.14)

δξgij = ξµ∂µgij + gik∂jξ
k + gjk∂iξ

k , (2.15)

δξm = ξµ∂µm , (2.16)

δξg = ξµ∂µg , (2.17)

δξs = ξµ∂µs , (2.18)

Here we have assumed that the parameter m, g and s can also be external scalar fields

whose values can vary at different spacetime points. This is usually true in the materials

due to the presence of the medium. For example, elections’ interaction with the lattice

and medium around can not only shift the values of these parameter from their vacuum

values, but also make them vary by positions. In this sense, the action shall be viewed as

a renormalized effective action with effective mass m etc [150].

So far we have not specified the precise meaning of ψ, or whether it is bosonic or

fermionic. We want to keep it as general as possible. It just represents an underlying micro-

scopic field degree of freedom which is to be path-integrated out when computing the effec-

tive action. It can be the electrons as well as other composite particles. Recently, [151] uses

a similar action with the same coupling to gravity via spin connection for both composite

fermion [4] and boson [3] theories to modify the conventional flux attachment procedure and

derive the Wen-Zee shift and Hall viscosity. Our ψ can be viewed in the same way, to denote

the composite bosons or fermions, with corresponding interaction term Sint. In this case s

will be the topological spin of the composite particles, rather than the intrinsic or renor-

malized spin of the electrons. We will compare our results with those of [151] in section 5.4.

Under local anisotropic Weyl transformation σ = σ(t, ~x), the action (2.7) is invariant

if the fields transform as

δσψ = −σψ , (2.19)

δσΦ = −zσ , (2.20)

δσe
a
i = σeai , (2.21)

δσgij = 2σgij , (2.22)

δσAt = 0 , (2.23)

δσAi = (1− s) εjkgki∂jσ , (2.24)

δσm = (z − 2)σm , (2.25)
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The form of Sint will be chosen to respect the above symmetries as well. [73] contains

a brief discussion on Sint in curved space. The form of Sint for quantum Hall effects is

typically bi-local:

Sint = −1

2

∫∫
d3x1d

3x2

√
g(x1)g(x2)e−Φ(x1)−Φ(x2)ψ†(x1)ψ(x1)V (x1, x2)ψ†(x2)ψ(x2) .

The form of V (x1, x2) shall be chosen to respect the above symmetries. We will not discuss

how to do this. One point we want to highlight is that, choosing different V (x1, x2) may or

may not introduce additional scales into the problem through its coupling coefficients. For

example, if V (x1, x2) ∼ λ4Fδ
(3)(x1−x2) up to an inverse measure, the interaction becomes

the contact 4-Fermi interaction [60, 114]:

Sint = −λ4F

2

∫
d3x
√
ge−Φ

(
ψ†ψ

)2
.

Under Weyl transformation,

δλ4F = −(z − 2)σλ4F . (2.26)

For z = 2 it preserves the scale invariance, same as m does. Another way to look at it

is, λ4F does not have a length scale associated with it when z = 2 (i.e. dimensionless and

marginal).5 In this case, λ4F can still run logarithmically through quantum renormaliza-

tion [152], but at the LLL projection (m→ 0 limit) which is the most interesting case for

us, this running will disappear. The interactions can also be introduced through auxiliary

fields, such as that illustrated in [59] for Yukawa interaction. Other interactions, such as

Coulomb and Yukawa interactions, usually have some dimensionful couplings. Once being

included, these couplings will introduce additional length scales into the theory. Their

Weyl transformations can be dealt in a similar fashion as for m and λ4F, although their

forms will be very different.

Without the interaction Sint, m and Φ only appear together as a combination meΦ in

S0, which scales under Weyl transformation by −2σ. In this case, talking the Weyl scaling

of m and Φ separately does not make much sense since one can always shift part of the

scaling from one to the other, or equivalently, define z = 2 and δσm = 0. In other words,

for free non-relativistic fields, z always equals to 2, and there is no Lifshitz scaling. This

changes when the interactions such as that in Sint is turned on, because now Φ appears

separately in the interactions (for example, as part of the measure e−Φ), thus the Weyl

scaling of m and Φ can no longer be shifted between each other. In this case we can have

z 6= 2 Lifshitz scaling physically. The fact that meΦ appears as a combination in S0 is an

accident of the free theory. Since we are considering interacting theories in general, we will

always think that m and Φ appear separately

We notice that g = 2 and s = 1 are special values when the symmetry transformations

are particularly simple and all the parity-violating terms are gone. This is also noticed

in [60] and it corresponds to the parity-preserving case considered in early works of [59,

114, 115, 117]. Hence the holographic dictionary we are going to build will inherit this

feature and goes back to that of [117] in this special case.

5ψ ∼ [length]−1, t ∼ [length]z. Then
∫
d3x
√
ge−Φ

(
ψ†ψ

)2 ∼ [length]z−2. Thus λ4F ∼ [length]2−z.
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The action is also invariant under arbitrary shifts of parameters g and s if the gauge

field is shifted in the following way as well:

∆At = ωt∆s−
e−Φ

4m

{[
B + (1− s)R(2)

]
∆g −R(2)(g − 2 + ∆g)∆s

}
, (2.27)

∆Ai = ωi∆s . (2.28)

This is essentially a field redefinition of Aµ. It reflects the fact that in the microscopic

action (2.7), g and s only appear in the combination

Ãt = At − sωt +
(g − 2)e−Φ

4m

[
B + (1− s)R(2)

]
, (2.29)

Ãi = Ai − sωi . (2.30)

Thus after path-integrating out the microscopic field ψ, in the effective action, g and

s will still only appear in the above combination of Ãµ, not separately. This imposes

another useful constraint on the possible forms of the effective action. The combination

Ãµ transforms under diffeomorphism and Weyl transformation as

δÃt = ξµ∂µÃt + Ãµ∂tξ
µ − 1

2
εij∂i

(
gjk∂tξ

k
)
, (2.31)

δÃi = ξµ∂µÃi + Ãk∂iξ
k +meΦgik∂tξ

k + εjkgki∂jσ . (2.32)

The covariant derivative can be written as Dµ = ∂µ − iÃµ.

There are two local U(1) symmetry transformations under which the action is invariant.

One is the local gauge transformation for the gauge field Aµ, Λ = Λ(t, ~x):

δAµ = δÃµ = −∂µΛ , (2.33)

with a shift of the phase factor ψ → e−iΛψ. The other is a local rotation of the vielbein

frame, δeai = Λabe
b
i , Λab = θ(t, ~x)εab:

δωµ = −∂µθ , δÃµ = s∂µθ . (2.34)

This rotation corresponds to a spin rotation of the field ψ → eisθψ.

The effective action (strictly speaking the logarithm of the generating functional) W
is a functional of Φ, gij , Aµ, m, g, s among other external fields and parameters, defined

after the path integral over ψ:

W
[
Φ, gij , Aµ, . . . ;m, g, s, . . .

]
= −i log

∫
DψDψ†ei(S0+Sint) . (2.35)

The expectation values of conserved current Jµ, stress tensor T ij and energy density E0

can then be obtained as the following:

δW =

∫
dtd2~x

√
ge−Φ

{
〈Jµ〉δAµ +

1

2
〈T ij〉δgij + 〈E0〉δΦ

}
. (2.36)

The first goal of this paper is to find a holographic dictionary that will lead to the gravity

dual description of the effective action W [Φ, gij , Aµ, . . . ;m, g, s, . . .].
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2.2 Comments on coupling to curved spacetime

It is necessary to note here that the way to couple a flat-spacetime action to curved space-

time is not unique. The curved-spacetime action (2.7) we choose here is slightly different

from that in [60], where a minimal coupling is chosen. The differences are the form of

Dt and the position of g. There are two reasons that motivate us to choose the present

form. We choose gB term to appear side-by-side with At in Dt to reflect the same fact in

flat-spacetime action, where this is not manifest in [60] and complicated field redefinitions

are needed if one wants to shift g. Consequently, the diffeomorphism of At, (2.11) is a

little different than [60], and the relationship between momentum density pi and conserved

current are modified as well. Following the same procedure as in [60], we can derive the

relation for our current case:

〈pi〉 = m〈J i〉 − εij∂j
(

g − 2s

4
e−Φ〈J t〉

)
+

g − 2

4
e−Φ〈J t〉εij∂j log

(
meΦ

)
. (2.37)

We also add R(2) to Dt to simplify the Weyl transformation of At, (2.23) so that it is

identically zero. This simplifies the conformal Ward identity:

〈E0〉 =
1

2
gij〈T ij〉 −

1− s
2

eΦεij∇i
(
e−Φ〈Jj〉

)
(2.38)

when z = 2. Here ∇i is the covariant derivative compatible with metric gij : ∇kgij = 0.

Thus our version of the curved spacetime action is more toward the conformal coupling

rather than the minimal coupling in [60]. Following the procedures in [60], one can derive

all Ward identities for energy density, stress tensor and conserved current using the local

symmetries discussed in the previous subsection.

2.3 Global time and relationship to Newton-Cartan geometry

Here we briefly address the issue related to global time, which is a hall-mark of non-

relativistic theories. A more comprehensive discussion has already been presented in [60].

We outline some of the key points here for self-containedness of later discussions. In the

above discussion, energy flux E i and its source (let us call it Ci) are missing. [60] shows

that Ci can be introduced to the formalism by modifying spatial quantities like ∂i and Di

to ∂̃i = ∂i + Ci∂t and D̃i = Di + CiDt. The diffeomorphism of Ci is

δCi = ξµ∂µCi + Ck∂̃iξ
k − ∂̃iξt , (2.39)

and nµ =
(
e−Φ,−e−ΦCi

)
transforms as a Lorentz vector. Ci is invariant under local Weyl

transformation. When

εij(∂i + Ci∂t)Cj = 0 , i.e. n ∧ dn = 0 , (2.40)

there exist sets of global time coordinates (GTCs) in which Ci = 0. This is generally

required by the causality of non-relativistic theories. Diffeomorphisms that satisfy ∂iξ
t = 0

(which keeps Ci = 0) are the transformations between different GTCs. This also implies

that in GTCs energy is globally conserved as time evolves and there is no notion of energy
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flux needed. In our discussion of the field theory, we have set Ci = 0 and ∂iξ
t = 0

throughout. This means that we have been assuming the existence of GTCs and work only

in them. Since we are interested in non-relativistic field theories, this is reasonable and

economical, and we will work in this way throughout the rest of the paper. We will leave

the study of holographic dual to the case when Ci 6= 0 or even n ∧ dn 6= 0 to the future.

[94, 95] and [60] show that for the case n ∧ dn = 0 (of which Ci = 0 is a special case),

the geometry can be covariantly described by Newton-Cartan geometry, with or without

torsion. However, we want to emphasize that it is not always necessary to introduce such a

formalism. One could just work with the spacetime symmetries (2.10)–(2.15) and (2.19)–

(2.25) directly with all those anomalous terms in the transformation rules. This is tabbed

as “non-covariant” approach in [60]. The maths is usually cumbersome and laborious, but

direct, and one gets all the physical results at the end. The Newton-Cartan geometry is

a convenient way to covariantize the formalism, while other equivalent ways exist as well,

with different notions of covariance and different structures in the formalisms. Since we

assume the existence of GTCs, another convenient covariant formalism is Hořava-Lifshitz

gravity. It has already been employed in [66]. The notion of covariance and metric and

connection structures of Hořava-Lifshitz gravity are closer to those of relativistic gravity

theories than to Newton-Cartan geometry, with additional assumption of the existence of

global time that breaks the Lorentz symmetry between time and space. Since relativistic

holography has been very well studied, given its similarity to relativistic gravity theory,

Hořava-Lifshitz gravity is a natural choice as the covariant formalism we will use to covari-

antize the geometry of the non-relativistic field theory discussed in this section, because

the generalization to the holographic bulk is ready [117, 118]. The holographic dual we are

studying here is an extension of [117]’s to parity violating cases, and its map to the bound-

ary, which is the main results of our paper, can be viewed as another covariant description

of the geometry of the non-relativistic field theory using Hořava-Lifshitz gravity, parallel

to the popular Newton-Cartan formalism.

3 Dual gravity theory in 3+1 dimensional bulk

3.1 Bulk fields and their diffeomorphism

The bulk theory, Hořava-Lifshitz gravity, assumes the existence of global time coordinates.

The foliation of global time is preserved under diffeomorphism xM = −ξ̂M with the con-

straint

∂I ξ̂
t = 0 , i.e. ξ̂M =

(
ξ̂t(t), ξ̂I

(
t, xI

))
. (3.1)

This is the bulk counterpart of the condition ∂iξ
t = 0 in the non-relativistic field theory

discussed in the previous section, now extended to include the bulk radial direction as well.

The graviton sector of the bulk theory consists of a lapse function N , a shift function

NI = (Ni, Nr) and a spatial metric GIJ . We define GIJ is the matrix inverse of GIJ
and the index of the shift function NI is raised and lowered using GIJ and GIJ . The

bulk vielbein associated with GIJ is EAI , with GIJ = δABE
A
I E

B
J . They transform under
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diffeomorphism as

δN = ξ̂M∂MN +N∂tξ̂
t , (3.2)

δNI = ξ̂M∂MNI +NI∂tξ̂
t +NK∂I ξ̂

K +GIK∂tξ̂
K , (3.3)

δGIJ = ξ̂M∂MGIJ +GIK∂J ξ̂
K +GJK∂I ξ̂

K , (3.4)

δEAI = ξ̂M∂ME
A
I + EAK∂I ξ̂

K . (3.5)

There is a bulk U(1) gauge field VM which transforms as

δVt = ξ̂M∂MVt + VM∂tξ̂
M , (3.6)

δVI = ξ̂M∂MVI + VK∂I ξ̂
K . (3.7)

and a scalar φ which transforms as

δφ = ξ̂M∂Mφ . (3.8)

The rotations of the vielbein frame is

δEAI = Λ̂ABE
B
I , Λ̂AB = −Λ̂BA , (3.9)

where the anti-symmetric Λ̂AB are the generators of rotations. The above transformations

are all infinitesimal transformations. The gauge transformation for VM is

δVM = −∂M Λ̂ . (3.10)

We put a “ˆ” on every bulk gauge parameter to distinguish it from the corresponding one

in the field theory. The bulk action shall be invariant under all the above transformations.

3.2 Gauge conditions and residual gauge transformations

Next, we choose gauge conditions for fields in the bulk. The time-like boundary is located

at r = 0 and breaks the translational invariance along the spatial direction (denoted by

the Poincaré radial coordinate r here) perpendicular to the boundary. In the bulk, the

isometry of the AdS-type geometry also naturally splits the 3-dimensional spatial manifold

with metric GIJ into the radial direction labeled by r and the transverse directions (labeled

by x and y) with translational and SO(2) rotational symmetries. These introduce a co-

dimension one foliation in the bulk labeled by r = constant. We choose gauge conditions

for the bulk fields that manifest this foliation:

E3
r = Υ(r) , (3.11)

E3
x = E3

y = 0 , (3.12)

E1
r = E2

r = 0 , (3.13)

Here we also fix the orientation of the vielbein frame in the tangent space such that 3-

direction is along r-direction and 1- and 2-directions are perpendicular to it. These give

rise to the usual gauge conditions for the bulk metric: Gir = 0 and Grr = Υ(r)2. Given an
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arbitrary choice of coordinates and frame to start with, these five gauge equations can be

achieved by a combination of diffeomorphism and vielbein frame rotations within 1-3 and

2-3 planes, which fix ξI and two of the three Euler angles of the rotations, related to Λ1
3

and Λ2
3, up to some residual gauge transformations to be discussed later. Similar gauge

conditions have been used in [153]. In relativistic holography, another gauge condition Nr =

0 is usually imposed, but here it can not be achieved, because this requires a diffeomorphism

of r-dependent ξt, which is forbidden by (3.1). Thus we will not impose a gauge condition

for Nr in the bulk. For the bulk U(1) field, we choose the usual radial gauge condition

Vr = 0 . (3.14)

The above gauge conditions do not completely fix the gauge degrees of freedom. There

are residual gauge transformations that leave these gauge conditions unchanged. The

residual diffeomorphism that respect the gauge condition for metric Gir = 0 and Grr =

Υ(r)2 is 

ξ̂t = ξ̄t(t)

ξ̂i = ξ̄i(x) + L

∫
drΥ(r)Gij(x, r)∂j σ̄(x)

ξ̂r = − L

Υ(r)
σ̄(x)

, (3.15)

where x = (t, ~x) and Gij(x, r) is matrix inverse of Gij(x, r). L is a length scale which will be

set to the AdS radius later. However, the above diffeomorphism does not respect the gauge

conditions for vielbein. It leaves E3
r invariant, but changes the others: δE3

i = −L∂iσ̄ and

δEar = LΥ(r)Eai∂iσ̄. To compensate these shifts, we need to perform a residual rotation

of the vielbein frame at the same time, with the following rotation parameters:

Λ̂a3 = −LEai(x, r)∂iσ̄(x) . (3.16)

Meanwhile, the rotation within 1-2 plane is still arbitrary: Λ̂1
2 = Λ̂1

2(x, r). The residual

diffeomorphism also changes Vr by δVr = LΥ(r)GijVi∂j σ̄. To compensate this shift, the

residual gauge transformation for the U(1) field is

Λ̂ = Λ̄(x) + L

∫
drΥ(r)Gij(x, r)Vi(x, r)∂j σ̄(x) . (3.17)

We shall note here that one is entitled to choose different gauge conditions in the bulk

other than the ones we specify above. But we need that at least near the boundary the

gauge conditions agree with the form specified here, because the near-boundary residual

symmetry transformations and hence the holographic dictionary are built on the choice

of the above gauge conditions near the boundary, and these gauge conditions do reflect

the fact that the existence of the time-like boundary at r = 0 breaks the isometry along

r-direction. The consequences of this set of gauge conditions near the boundary is what

we will explore next.
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3.3 Near-boundary behaviors of fields and transformations

Near the boundary r = 0, we choose the background metric to have the asymptotic Lifshitz

form [117, 134, 153, 154] in Poincaré coordinates:6

ds2 ⇒ −
(
L

r

)2z

dt2 +

(
L

r

)2 (
d~x2 + dr2

)
, (3.18)

where L is AdS radius. This implies Υ(r) = L/r in the gauge conditions. The near-

boundary behaviors of the bulk graviton fields take the following form:

N ⇒
(
L

r

)z [
N̄(x) +O (r)

]
, (3.19)

NI ⇒
(
L

r

)2 [
N̄I(x) +O (r)

]
, (3.20)

Gij ⇒
(
L

r

)2 [
Ḡij(x) +O (r)

]
, (3.21)

Eai ⇒
(
L

r

)[
Ēai (x) +O (r)

]
. (3.22)

The asymptotic indices z and 2 of N and Gij are determined by the above background

Lifshitz metric. The index of NI is in general not fully determined by the background

metric, but also by other free parameters of Hořava-Lifshitz gravity, and thus can be tuned

for a desired value. We choose the value to be 2, for reasons to be explained later. The

near-boundary behavior of the U(1) field is

Vµ ⇒ V̄µ(x) +O (r) , (3.23)

i.e. the asymptotic r index is 0 for Vµ. The reason for that is this index corresponds to

the coefficient of Weyl parameter σ in the global Weyl transformation in the dual field

theory. For the U(1) field in the field theory, it does not transform under global Weyl

transformation, i.e. the coefficient is 0, thus we choose the r index to be 0 in the bulk dual.

This can always be achieved by tuning the parameters of the bulk theory. We choose the

scalar to have the following asymptotic behavior:

φ⇒
(
L

r

)∆φ [
φ̄(x) +O(r)

]
, (3.24)

where ∆φ is related to the conformal dimension of the dual operator and can be tuned by

the mass of the scalar in the bulk theory.

6This metric form shall be understood as the following asymptotic conditions for the background func-

tions:

N ⇒
(
L

r

)z
, NI ⇒ 0 , GIJ =

(
L

r

)2

δIJ .

[117] has a more general setup that N ⇒ (L/r)γ with γ 6= z. For simplicity, we will assume γ = z

to keep our holographic map neat. γ 6= z can always be achieved by tuning the asymptotic indices of

scalar fields/components in the holographic map, at the price of making it appear more complicated, as

shown in [117].
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Then near the boundary, the bulk residual diffeomorphism becomes
ξ̂t ⇒ ξ̄t(t)

ξ̂i ⇒ ξ̄i(x) +
1

2
r2Ḡij(x)∂j σ̄(x) +O

(
r3
)

ξ̂r ⇒ −rσ̄(x)

, (3.25)

and the residual vielbein rotation and U(1) gauge transformation become

Λ̂a3 ⇒ −rĒai(x)∂iσ̄(x) , (3.26)

Λ̂ ⇒ Λ̄(x) +
1

2
r2Ḡij(x)V̄i(x)∂j σ̄(x) +O

(
r3
)
, (3.27)

where Ḡij is the matrix inverse of Ḡij . To maintain the near-boundary asymptotic behavior

of the bulk vielbein in (3.22), we need

Λ̂ab ⇒ Λ̄ab(x) +O (r) . (3.28)

We will call fields with “¯” boundary fields. i, j, k and l indices of the boundary fields are

raised and lowered by Ḡij and Ḡij , e.g. Ēai = ḠijĒaj .

From the near-boundary asymptotic behaviors of the bulk fields and the bulk diffeo-

morphism, we can work out the residual symmetry transformations of the boundary fields

at the boundary r = 0:

δN̄ = ξ̄µ∂µN̄ + N̄∂tξ
t + zσ̄N̄ , (3.29)

δN̄i = ξ̄µ∂µN̄i + N̄i∂tξ̄
t + N̄k∂iξ̄

k + Ḡik∂tξ̄
k + 2σ̄N̄i , (3.30)

δN̄r = ξ̄µ∂µN̄r + N̄r∂tξ̄
t + σ̄N̄r , (3.31)

δḠij = ξ̄µ∂µḠij + Ḡik∂j ξ̄
k + Ḡjk∂iξ̄

k + 2σ̄Ḡij . (3.32)

δĒai = ξ̄µ∂µĒ
a
i + Ēak∂iξ̄

k + σ̄Ēai + Λ̄abĒ
b
i , (3.33)

δV̄µ = ξ̄ν∂ν V̄µ + V̄ν∂µξ̄
ν − ∂µΛ̄ , (3.34)

δφ̄ = ξ̄µ∂µφ̄+ ∆φσ̄φ̄ . (3.35)

We define ε̄ij is the Levi-Civita tensor associated with the boundary metric Ḡij . There

are additional vectorial structures we can make up using the above boundary fields, whose

near-boundary diffeomorphism transformations are collected in appendix B.

3.4 Holographic dictionary

Now we are in a position to map the boundary fields of the bulk gravity theory to the source

fields of the field theory. The guiding principle is the matching of symmetry transforma-

tions of the fields on both sides. First, we map the symmetry transformation parameters,

following the idea of [118]. The near-boundary residual diffeomorphism parameters ξ̄µ and

σ̄ of the bulk theory are mapped to the diffeomorphism and Weyl parameters ξµ and σ in

the field theory, while the residual gauge parameter Λ̄ is mapped to the gauge parameter Λ.

It immediately follows that Ḡij and Ēai are mapped to gij and eai in the field theory,

since their diffeomorphism and Weyl transformations match perfectly. The vielbein frame
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rotation Λ̄ab(x) is mapped to that in the field theory which rotates the frame of eai . The

near-boundary diffeomorphism of N̄ matches to e−Φ perfectly as well. There is no obvious

field theory dual for N̄r. In fact, in relativistic holography, its counterpart the bulk field

Gtr is usually set identically to zero by a gauge condition thus its boundary field Ḡtr is

automatically vanishing. Here we do not gauge away the bulk field Nr because of the non-

relativistic nature of the bulk gravity theory: ∂I ξ̂
t = 0 which forbids this action. However,

we are still allowed to set its boundary value N̄r to zero as a boundary condition and this

is indeed consistent (invariant) with respect to the residual diffeomorphism (3.31).

Now the only remaining part is to map N̄i and V̄µ to Ãµ in the field theory. None

of their diffeomorphism (3.30) and (3.34) matches directly with the transformations (2.31)

and (2.32) of Ãµ. Since both V̄µ and Ãµ are U(1) gauge fields, and the residual gauge

transformation Λ̄(x) in (3.27) is already mapped to the gauge transformation of Ãµ, it is

natural to primarily map V̄µ to Ãµ, i.e. V̄µ = Ãµ + . . ., with some additional structures

“. . .” in the map so that their diffeomorphism and Weyl transformation match perfectly.

We have collected these additional structures and their diffeomorphism transformations

in appendix B. For example, one of the structures we add to Ãi is the field theory dual

of the near-boundary term φ̄N̄i/N̄ , whose diffeomorphism is given in (B.5). By requiring

Ḡik∂tξ̄
k term to cancel the meΦgik∂tξ

k term in (2.32) and the Weyl index to be zero, we

can identify the map for the scalar: φ̄ = m with conformal dimension ∆φ = z − 2, which

also matches that of m’s in (2.25). The physical meaning of the bulk scalar φ is clear now:

it is the bulk dual of the mass m. When z = 2, it is consistent to set it to a constant

in the bulk theory, i.e. just a parameter with no dynamics. When z 6= 2, we know in the

field theory that m is not scale-invariant (from its Weyl transformation) and it will have

a non-trivial renormalization group (RG) flow from its UV value (or function) in (2.7) to

some other value (function) in the IR. In this case, the dual bulk field φ can be dynamical

and develop some non-trivial profile in the bulk, which is a geometrization of the RG flow

of m in the field theory. The other structures involving εij in appendix B are used to cancel

the other anomalous terms −1
2ε
ij∂i

(
gjk∂tξ

k
)

in (2.31) and εjkgki∂jσ in (2.32).

The last question remaining is what N̄i maps to in the field theory? So far every

source field in the field theory action (2.7) has been mapped from the near-boundary

fields of the dual gravity theory, and it seems there is no target image left for N̄i. Even

though N̄i appears as additional vectorial structures in the map between V̄µ and Ãµ, we

can view this as primarily a one-to-one and onto map between V̄µ and Ãµ, so N̄i itself

is still unmapped. Alternatively, we can think the spatial components of this map maps

a combination of V̄i and N̄i to Ãi, which is a two-to-one map, thus we still need to map

the other independent combination of V̄i and N̄i to something in the field theory. At

this time, let us just assume that N̄i maps to some field, called −vi, in the field the-

ory, whose transformation is exactly the same as N̄i’s given in (3.30). We will discuss

the consequence of this and the meaning of vi in detail in the next subsection and late

sections. Here for the construction of holographic map, the presence of N̄i is crucial, be-

cause without it we would not be able to add additional structures, as those shown in

appendix B, to the map between V̄µ and Aµ to match their symmetry transformations on

both sides.
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Before presenting the holographic map, we notice that the following modified definition

for spin connection

ω′t = ωt +
1

2
εij∂ivj −

1

2
εijvi∂j log

(
meΦ

)
(3.36)

ω′i = ωi +
1

2
εjkgij∂k log

(
meΦ

)
(3.37)

transforms as an exact Lorentz vector under diffeomorphism and invariantly under local

Weyl transformation, i.e. same as V̄µ in (3.34). Thus we can always add ω′µ to the map of V̄µ
with an arbitrary coefficient (we call s′) while still preserve the transformation properties

of the map.

We now present the holographic dictionary. The maps for the fields are

N̄ = e−Φ , (3.38)

Ḡij = gij , (3.39)

Ēai = eai , (3.40)

N̄i = −vi , (3.41)

N̄r = 0 , (3.42)

V̄t = Ãt − s′ω′t −
1

2
meΦv2 − 1

2
εij∂ivj +

1

2
εijvi∂j log

(
meΦ

)
, (3.43)

V̄i = Ãi − s′ω′i +meΦvi −
1

2
εjkgij∂k log

(
meΦ

)
, (3.44)

φ̄ = m , (3.45)

and the near-boundary index of φ to be

∆φ = z − 2 . (3.46)

Here v2 = gijvivj . Since in the field theory we allow g and s to be scalar functions which

are Weyl invariant, they, and the new s′, can also be dual to some bulk scalar fields with

r0 asymptotic behavior near the boundary. So far s′ is just a parameter appearing in the

map which is allowed by the symmetries. Its physical meaning in the context of fractional

quantum Hall effect will be explained in section 5.4 when we compare our results with the

composite fermion and boson theories.

There can be additional parameters in the field theory, particularly the couplings of

interactions in Sint. They can be dual to additional bulk scalars, whose near-boundary

behavior (conformal dimension or bulk mass) shall match the corresponding Weyl trans-

formation in the field theory. For example, the 4-Fermi interaction coupling λ4F in (2.26)

shall dual to a bulk scalar with asymptotic rz−2 leading order behavior near the boundary.

When z = 2, both m and λ4F are marginal by dimensional counting. If they are truly

constant in a conformal field theory (i.e. no running through renormalization), then their

bulk dual scalars can also be set to the same constants without dynamics. However, if they

are renormalized [152], their bulk dual shall still be some dynamic fields that can develop

some non-trivial profiles in the bulk to reflect this running of couplings.
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3.5 Additional constraints

Now let us discuss what vi (i.e. −N̄i) means and how we can deal with it. These are actu-

ally two separate questions. In relativistic holography, from the perspective of bottom-up

approaches, because the full relativistic Poincaré symmetry is very powerful to limit the

allowed bulk action terms that one can start with, the bulk dynamics is very restrictive.

Typically, N̄i is an independent boundary field and appears in the on-shell boundary ac-

tion. On contrary, for a non-relativistic gravity theory, such as Hořava-Lifshitz gravity, the

symmetry is less restrictive. Thus one has more freedom to add additional terms to the

action with arbitrary coefficients. These coefficients act as external tunable parameters

that one can use to fine-tune the bulk dynamics to the desired form that is appropriate for

the problem in consideration. In this large landscape of bulk dynamics and possible forms

of on-shell boundary action, N̄i can behave quite differently, thus gives rises to different

interpretations and treatments of its field theory dual vi. There exist many different sce-

narios. There are certain scenarios in which the question of how to deal with N̄i becomes

trivial. Two examples are as following.

1. For some tactically constructed model bulk actions (possibly in the help of addi-

tional symmetries such as the U(1)Σ symmetry of [132, 133]) with certain choices of

parameters, N̄i (i.e. −vi) may completely disappear after the holographic dictionary

is applied. This possibility is considered first in [117].

2. For certain choices of the parameters of the bulk action the bulk equations of motion

near the boundary may constrain N̄i to be either vanishing or (local or non-local)

functional of the other boundary fields, thus it is not independent. Similar phenomena

are not unfamiliar in relativistic Lifshitz holography [155, 156], especially for z > 2.

Consequently, vi is a functional of other source fields such as gij and Φ. In these

cases, we only need to find out what this functional is by solving the equations of

motion. N̄i is essentially mapped to other source fields by this functional. There is

no additional independent source field vi appearing in the field theory through the

holographic dictionary. In these cases, there is no puzzle of how to deal with vi,

although the question of how to interpret it still exists.

In the rest of this paper, we will focus on another possible scenario similar to the relativistic

case, that is, when N̄i is independent of the other boundary fields in the bulk theory, and

after the holographic dictionary is applied, it still appears (as −vi) in the effective action.

We then need to find a way to interpret the meaning of vi and the operator Ôi it sources

(if it does), and to find a way to determine it. We think this is the case most relevant to

quantum Hall effects and later we will show that it does yield results in nice agreement

with the quantum Hall literature.

3.5.1 How not to interpret vi

First let us try to find out what could not be the possible interpretation of vi. A reasonable

speculation is that since it comes from N̄i, which is essentially the ti-component of the
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full bulk spacetime metric near the boundary, by analogy to the relativistic holographic

dictionary, it sources energy flux E i and/or momentum density pi of the field theory.

For energy flux E i, we have discussed in the previous section that it is sourced by the

field Ci in the field theory. But the diffeomorphism of Ci, (2.39) is different from N̄i’s

in (3.30). Thus vi can not be identified with the source field for energy flux. Furthermore,

we have worked in GTCs throughout, in which Ci = 0. In GTCs energy is globally

conserved and there is no need for the notion of energy flux in the field theory we are

considering. Even we want to match vi to Ci, it must be zero in GTCs. But vi = 0

is not invariant under residual diffeomorphism (3.30), thus can not be a valid map or

constraint. On the other hand, from the holographic point of view, [117] has conjectured

that the energy flux source Ci (what is called Bi there) is dual to what they call the field

Pi in the bulk, the O
(
c2
)

order of ti-component of the full spacetime Lorentz metric if

the dependence on speed of light c is restored: GtI = c2PI + NI . Diffeomorphism of PI
involves explicitly ∂I ξ̂

t. The non-relativistic theory can be viewed as a limit of c → ∞.

For us, since we have restricted ourselves to GTCs for both field theory and its bulk dual,

in which ∂I ξ̂
t = 0 and PI vanishes identically, vi can not be related to energy flux.

How about momentum density pi? The answer is again negative. As we discussed

in the previous section, in the non-relativistic field theory, the momentum density is not

an independent quantity, but rather expressed in terms of the conserved current as given

in (2.37). Thus there is no need for a separate field in the field theory to source the

momentum density 〈pi〉. The only thing one need to do is to compute 〈Jµ〉, then use (2.37)

to calculate 〈pi〉. Thus it is not necessary to have a separate source field vi to source

momentum density.

3.5.2 How not to deal with vi

In fact, an object similar to vi has appeared in the literature. In both [61] and [60] it is the

so called “velocity vector” (also denoted by vi there) in the Newton-Cartan geometry which

is employed to aid to construct the effective action of the field theory based on symmetries.

This velocity vector essentially acts like a dual shift function for Newton-Cartan geometry,

similar to the role of N I in our bulk theory. In fact if we raise vi’s index by gij , the resulting

transformation for vi is

δvi = ξµ∂µv
i + vi∂tξ

t − vk∂kξi − ∂tξi . (3.47)

This is the same as the transformation rule for vi in [60, 61]. The second term vi∂tξ
t is

absent in [61], because Φ = 0 and ∂tξ
t = 0 there. Thus, we can say that our vi is essentially

the same as that appears in [60, 61]. (The same object appears in Lifshitz holography as

well [94, 95].) In neither [61] nor [60] does vi act like a fundamental external source field.

In [60] the introduction of vi to the field theory is to modify the seemingly non-covariant

vector potential Aµ to be a Newton-Cartan covariant vector and thus to reformulate the

effective action and Ward identities in a covariant manner. This is similar to what we are

doing here: we can view the map (3.43) and (3.44) is a modification from the non-covariant

Aµ (in aid of vi) to the covariant vector V̄µ, and the on-shell action calculated from the
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bulk dynamics automatically offers a covariant way to organize the effective action as a

functional of the covariant sources V̄µ, N̄ , N̄i, Ḡij among others. The difference between our

case and [60]’s is the notion of covariance — Lorentzian for us (strictly speaking Hořava,

which is Lorentzian with ∂iξ
t = 0) while Newton-Cartan for [60], but other than these

technical details, the philosophy is the same. Thus we can identify our vi as the same

vi appearing in [60, 61]. Based on the fact that vi is only introduced formally and shall

not affect the physics, [60] assumes that the effective action shall be independent of vi

once it is written out explicitly in terms of the physical sources Φ, gij , Aµ etc. However,

effective action obtained from holography can rarely satisfy such a stringent constraint, so

we assume our effective action will depend on vi in general, unless we impose an additional

constraint besides the holographic map (3.38)–(3.45). This additional constraint is precisely

the subject under discussion here.

On the other hand, [61] views vi as a dynamical field with respect to which the effective

action is extremized. From the field theoretical point of view, W in (2.35) is the extremum

of another quasi-effective action I
[
vi, Aµ, gij ,Φ, . . .

]
with respect to vi. In other words, vi

has been path-integrated out in I which can be classically done by imposing Euler-Lagrange

equation for vi. What is the origin of vi in field theory? It is possibly an auxiliary field

introduced to facilitate path-integral for the microscopic field ψ. For example, in [61] it

is shown to arise from the Hubbard-Stratonovich transformation for Diϕ, where ϕ is the

phase of ψ. After such a transformation, one can integrate out ψ and ψ† (i.e. |ψ| and ϕ),

leaving an quasi-effective action I which depends explicitly on vi. The path-integral of vi

remains to be carried out to yield the final answer to the effective action W. This can be

formally written as

eiW[Aµ,gij ,Φ,...] =

∫
DvieiI[vi,Aµ,gij ,Φ,...] ,

where

eiI[v
i,Aµ,gij ,Φ,...] =

∫
DψDψ†eiS′[ψ,vi,Aµ,gij ,Φ,...]

and S′
[
ψ, vi, . . .

]
is related to the original microscopic action S [ψ, . . .] by a Hubbard-

Stratonovich transformation. The path-integral over vi can be done classically by imposing

the Euler-Lagrange equation for vi

δ

δvi
I
[
vi, Aµ, gij ,Φ, . . .

]
= 0 (3.48)

and finding the extremum of I.

In holographic approach, after calculating the bulk dynamics, we will end up with an

on-shell action as a functional of the boundary fields: Ī
[
N̄i, V̄µ, · · ·

]
. Here every thing is

written in terms of the bulk theory language, and the near-boundary field N̄i, V̄µ and others

are viewed as independent variables of the functional Ī. We denote the other boundary

fields such as N̄ , Ḡij etc as “· · · ”. Next we use our holographic dictionary (3.38)–(3.45) to

write the action explicitly in terms of the physical sources Φ, gij , Aµ and the extra field vi,

and identify this functional as I
[
vi, Aµ, gij ,Φ, . . .

]
introduced before, whose independent

variables are now vi and Aµ, gij and Φ:

Ī
[
N̄i [vi] , V̄µ [vi, Aµ . . .] , · · ·

]
= I

[
vi, Aµ, gij ,Φ, . . .

]
.
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Now if we naively apply the philosophy of [61], we can impose (3.48) as a constraint, find

its solution vi?, then the effective action

W [Aµ, gij ,Φ, . . .] = I
[
vi?, Aµ, gij ,Φ, . . .

]
.

From the holographic point of view, this approach seems fine, and we do get a result

for W, which is an effective action of a certain quantum field theory with the same non-

relativistic spacetime symmetries discussed in the previous section. But from the field

theoretical point of view, is it the one for the field theory we discussed in the previous

section which describes the quantum Hall effect? Not quite! A subtlety is that in [61]

the path integral is not only carried out for vi, but also for other auxiliary fields ρ, ϕ and

aµ. Thus even we are doing the same integral for vi, we are not completely in parallel

with [61]. A consequence is that our results obtained from this way will not have a well-

defined projection to the lowest Landau level (LLL). This can be shown by a straightforward

calculation which we will not present here. The projection to LLL is defined as the limit

g = 2 and m → 0, and the effective action W shall be regular in this limit. [60] has

shown that field theories defined by microscopic actions such as (2.7) do have a smooth

LLL projection. However, if we impose (3.48) as the additional constraint in holography,

the resulting effective action is either singular or over-constrained in LLL projection. Thus

it can not be a valid constraint. This choice is ruled out not by holographic considerations,

but by a field theoretical consideration — the LLL projection, which is very special to the

quantum Hall problem we are considering here. Had one considered a holographic dual for

another quantum system, this constraint might be a viable one.

3.5.3 Choice (I): a path integral constraint

We have just argued that the path integral over vi does not work, but the idea of integrating

out the extra fields still work. The key point is that we need to find out the right fields

to integrate out. In addition to the requirement that it reproduces the right features of

the quantum Hall problem, such as the LLL projection, a more fundamental criterion is

that the path integral over these fields shall also be gauge and diffeomorphism invariant.

More specifically, path integral over some fields is classically equivalent to imposing the

Euler-Lagrange equations for those fields, similar to the extremum condition (3.48) for vi,

and these equations shall be invariant under gauge transformation and diffeomorphism.

Instead of looking for such constraints for the field theory action I
[
vi, Aµ, gij ,Φ, . . .

]
, it is

much easier to find ones for the holographic action Ī
[
N̄i, V̄µ, · · ·

]
. Since the problem we are

facing is the two-to-one map from N̄i and V̄i to Ai, and the map (3.44) contains one linear

combination of N̄i and V̄i, we will seek to find another independent linear combination of

N̄i and V̄i — let us call it X̄i — to integrate out. We want the equation of motion for X̄i —

let us call it Ȳi = 0, where Ȳi ∼ δĪ/δX̄i up to a volume measure — to be diffeomorphism

invariant. If Ȳi transforms exactly like spatial components of a Lorentz 1-form, similar to

that of V̄i:

δȲi = ξ̄µ∂µȲi + Ȳk∂iξ̄
k ,
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then Ȳi = 0 is diffeomorphism invariant. Since Ȳi is a functional derivative with respect to

X̄i, this requires X̄i to transform exactly as spatial components of Lorentz vector X̄µ:

δX̄µ = ξ̄ν∂νX̄
µ − X̄ν∂ν ξ̄

µ .

From holography we have already had a good Lorentz 1-form V̄µ, it is not hard to construct

a Lorentz vector from it — just by raising the index µ with the full spacetime metric in

ADM form. The result is

X̄µ =

(
− 1

N̄2

[
V̄t − N̄kV̄k

]
, Ḡij V̄j +

1

N̄2
N̄ i
[
V̄t − N̄ j V̄j

])
, (3.49)

V̄µ =
([
−N̄2 + N̄kN̄k

]
X̄t + N̄kX̄

k , N̄iX̄
t + ḠijX̄

j
)
, (3.50)

where the second line is the inverse of the first line. It is straightforward to check X̄µ

defined in this way satisfies the above diffeomorphism transformation using (3.29)–(3.34).

Then using the second line of the above equations, the condition δĪ/δX̄i = 0 can be written

explicitly as

N̄i
δĪ
δV̄t

+ Ḡij
δĪ
δV̄j

= 0 , (3.51)

where the holographic on-shell action Ī = Ī
[
V̄µ, N̄ , N̄i, Ḡij , φ̄

]
. This constraint equation

means that we are integrating out X̄i in Ī while holding X̄t, N̄i, N̄ , Ḡij and φ̄ fixed.

It is diffeomorphism invariant as advertised, Weyl invariant (this is trivial, since its right

hand side is zero) as well as gauge invariant (by analog to the definition of conserved

current). In practice, it can be viewed as an equation for N̄i, which allows one to solve

N̄i (i.e. vi) in terms of other fields. Thus it shall be viewed as part of the holographic

dictionary. Together with (3.38)–(3.45), they completely determine the holographic map

from the boundary fields of the bulk theory to the source fields of the non-relativistic field

theory, allowing one to obtain a unique field theory effective actionW from the holographic

on-shell action Ī. In the next section, we will show that the effective action obtained this

way is a good description of the quantum Hall effect, in agreement with previous results

obtained from non-holographic approaches, and has a good LLL projection. From that

we will further uncover the true physical interpretation of vi in the context of fractional

quantum Hall effect.

3.5.4 Choice (II): a field constraint

(3.51) is not the only choice for constraint equation that is diffeomorphism and gauge

invariant. Other than this type of constraint written in terms of functional derivatives

of the action, which acquires a natural interpretation in term of path integral, we can

write down another type of constraint using only the fields, without the action. It it

straightforward to check that the following equation

V̄ti + V̄ijḠ
jkN̄k = 0 (3.52)

is also diffeomorphism, Weyl and gauge invariant. Here V̄µν = ∂µV̄ν − ∂ν V̄µ. Even though

the possible interpretation of this equation is different from (3.51)’s, it functions in the
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same way as the latter does: it is an equation for N̄i and together with the rest of the

holographic dictionary (3.38)–(3.45) completely and uniquely determines the field theory

effective actionW in terms of the sources Φ, gij and Aµ. From holographic point of view, it

can not be ruled out in favor of (3.51). Nor can it be from field theoretical considerations

for quantum Hall problems, at least at the primitive level regarding only the universal

transport properties, which we will discuss in detail in the next section. For example,

it also has a good LLL projection. Actually, despite the seemingly different appearances

of (3.51) and (3.52), for the quantum Hall effect at leading orders in derivative expansion

where the action Ī is dominated by gauge Chern-Simons term, the major part of the leading

order of (3.51) and (3.52) are the same and the correlation functions they produce are also

the same at leading orders. Thus unless one goes to a more detailed calculation involving

higher order corrections or comes up with other physical considerations for the quantum

Hall effect which favor one over the other, at the current level of discussion, we will view

both constraints (3.51) and (3.52) are viable.

It is interesting to note that the left hand side of the above constraint (3.52) takes

the same form as the combination appearing in the first term of the low energy gauge

action (1.6) in Hořava-Lifshitz gravity theory. This part is roughly the energy density

stored in the uniform electric field, and it depends on the shift function N̄i. The rest

of the action is roughly minus of the energy density stored in the magnetic field, and is

independent of N̄i. The former, the electric energy density, is a square of the “electric

field”, i.e. the left hand side of (3.52), thus is always non-negative. It only minimizes the

action when it is zero, which implies the above constraint.

4 Low energy Chern-Simons effective action of FQHE

In this section we study a simple holographic model with non-dynamical Chern-Simons

terms to show how the holographic dictionary we have just built can be used to derive an

effective action for quantum Hall fluids, from which many universal properties inaccessible

before can be extracted now. A similar holographic model with non-dynamical gauge

Chern-Simons term is used in [98]. The infrared physics of quantum Hall effect at scale

much larger than the magnetic length 1/
√
B is dominated by the Chern-Simons term from

the point of view of effective theory [5]. This give rise to many universal properties which

are insensitive to local dynamics (at least at this scale). We will focus on extracting these

universal properties at leading and, in some occasions, sub-leading orders, and they are

always dominated by the Chern-Simons term. Terms in the effective action generated from

the local dynamics — the contributions from non-Chern-Simons terms in effective theory or

in holography, like those from (1.5) and (1.6) — are in general non-local. But for quantum

Hall effects where B field is large and system is gapped, these terms can be written as

an series of derivative expansions and every term is local now.7 Almost every such term

is sub-leading in the derivative expansion, except for one term which we will denote by

7In the following we will refer to this type of terms as “local terms”, sometimes with a subscript “loc”, on

contrary to terms obtained from non-dynamical Chern-Simons terms, which are topological and non-local

by nature.
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a general functional f [B]. The non-dynamical Chern-Simons terms in 3+1 dimensional

holography are essentially all boundary terms. This gives us several advantages. Since they

are boundary terms, they are insensitive to the bulk dynamics which can not be uniquely

determined from bottom-up approaches, but preserve the universality that we are mostly

interested in. This allows us not to specify the local bulk dynamics, or specify it in a way

as general as possible (for example, we assume only a general functional f [B] later on

to denote some possible leading order contributions from local terms without knowing or

solving its explicit form). This grants maximum flexibility for later model-building when

the universal properties we find here can still be valid. Last but not least, it simplifies

the calculation and makes simple analytic results possible. More complicated models such

as those involving dynamical Chern-Simons terms coupled to axion fields are beyond the

scope of this paper and we will leave them to future research.

4.1 Holographic gauge Chern-Simons term

The bulk gauge Chern-Simons term [157, 158] is

ÎCS =
ν

16π

∫
d4xεMNPQVMNVPQ , (4.1)

where VMN = ∂MVN − ∂NVM . For simplicity, we choose the coupling to be a constant ν,

rather than a dynamical axion. Then this term is essentially a boundary term:

ĪCS =
ν

4π

∫
r=0

d3xεij
{
V̄t∂iV̄j + V̄i

(
∂j V̄t − ∂tV̄j

)}
. (4.2)

We denote the total on-shell action of the bulk theory to be

Ī
[
V̄µ, N̄ , N̄i, Ḡij , φ̄

]
= ĪCS

[
V̄µ
]

+ Īloc

[
V̄µ, N̄ , N̄i, Ḡij , φ̄

]
, (4.3)

where Īloc is the collection of all the other terms in the action, e.g. those involving local

dynamics of the graviton and gauge field.

We will solve the model perturbatively by a derivative expansion. First, we adopt the

power counting scheme commonly used in the context of quantum Hall effective theories

(e.g. in [31]). Let ε be an infinitesimal book-keeping parameter that labels the orders of

the derivative expansion (not to be confused with Levi-Civita symbol). We assume

∂i ∼ O (ε) , ∂t ∼ O
(
ε2
)
, Ai ∼ O

(
ε−1
)
, At, gij ,Φ ∼ O (1) .

Then B ∼ O (1), Ei ≡ ∂iAt − ∂tAi ∼ O (ε), ωµ ∼ O (ε), R(2) ∼ O
(
ε2
)
. Thus according to

the holographic dictionary, V̄i ∼ O
(
ε−1
)
, V̄t ∼ O (1), V̄ij ∼ O (1), V̄ti ∼ O (ε). We further

assume

vi ∼ O (ε) , i.e. N̄i ∼ O (ε) .

We will later need to check that this assumption is self-consistent. Even though at this time

we do not know the specific form of Īloc, we know at least their basic structures allowed
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by symmetries. The leading orders in derivative expansion will have forms given in (1.5)

and (1.6) [131]. This implies the following order estimation:

δĪloc

δV̄i
∼ O (ε) ,

δĪloc

δV̄t
∼ O

(
ε2
)
,

δĪloc

δN̄i
∼ O (ε) .

We further single out one particular term in Īloc, denoted by f
[

1
2 ε̄
ij V̄ij

]
:

Īloc ⊃
∫
d3xN̄

√
Ḡf

[
1

2
ε̄ij V̄ij

]
(4.4)

where f is an arbitrary scalar functional of 1
2 ε̄
ij V̄ij . The function −f [B] is related to

the energy density 〈E0〉 as a function of the magnetic field.8 This is the only term that

contribute to O (ε) order from δĪloc/δV̄i:

δĪloc

δV̄i
= N̄f ′′

[
1

2
ε̄k
′l′ V̄k′l′

]
εij∂j

(
1

2
ε̄klV̄kl

)
+ f ′

[
1

2
ε̄k
′l′ V̄k′l′

]
εij∂jN̄ +O

(
ε2
)
.

Here one “′” is one derivative of f with respect to its argument.

Using the holographic dictionary (3.38)–(3.45), the Chern-Simons term can be ex-

panded as

ĪCS =

∫
d3x

{
ν

4π
ερµνAρ∂µAν −

ν

2π
(s+ s′)ερµνωρ∂µAν +

ν

4π
(s+ s′)2ερµνωρ∂µων

}
+

ν

4π

∫
d3x
√
ge−Φ

{[
me2Φ

(
−2εijEivj −Bv2

)
+
(
s′ + 1

)
eΦEi∂i log

(
meΦ

) ]
+

(g − 2)

2m
B

[
B +

(
1− 2s− s′

)
R(2) + εijωi∂j

(
s+ s′

)
−εij∂i

(
s′ + 1

2
εklgjk∂l log

(
meΦ

))]
−
(

2− g

2
+ s′

)
eΦBεij

[
∂ivj + vj∂i log

(
meΦ

)]}
+O

(
ε3
)
. (4.6)

By our power counting scheme, the third terms in the first line is of order O
(
ε4
)
, but

since it takes the form of gravitational Chern-Simons form and its structure is unique

compare to other possible terms at the same order, we write it down explicitly. (4.4) can

be expanded as

Īloc ⊃
∫
d3xe−Φ√g

{
f [B] + f ′ [B]

[
− εij∂i

((
s+ s′

)
ωj
)

+ εij∂i
(
meΦvj

)
+∇2

(
s′ + 1

2
log
(
meΦ

))]
+O

(
ε3
)}

. (4.7)

8Our notation f [B] emphasize that it has no dependence on mass m and other source fields other

than the metric-dependence through B. It can, however, depend on other couplings introduced through

the interactions, such as the dimensionless λ4F in (2.26) or other dimensionful couplings like that of the

Coulomb interaction. For the 4-Fermi interaction which is scale invariant at z = 2, just by dimensional

analysis f [B] must take the form

f [B] ∼ λ4FB
2 . (4.5)
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4.2 Under the path integral constraint

In this subsection, we use the path integral constraint (3.51) to calculate the effective

action. Using (4.3) it can be written as

− ν

2π
εij V̄tj +

δĪloc

δV̄i
+ N̄ i

(
ν

4π
εklV̄kl +

δĪloc

δV̄t

)
= 0 . (4.8)

At O (ε) order, this gives

N̄ i =
ε̄ij V̄tj

1
2 ε̄
klV̄kl

− 2π

ν
N̄f ′′

[
1

2
ε̄k
′l′ V̄k′l′

]
ε̄ij∂j log

(
1

2
ε̄klV̄kl

)
−2π

ν

1
1
2 ε̄
klV̄kl

f ′
[

1

2
ε̄k
′l′ V̄k′l′

]
ε̄ij∂jN̄ +O

(
ε2
)
.

Applying the holographic dictionary, we can translate it into field theory language:

vi =
εijEj
B

+
(g − 2)e−Φ

4m
εij∂j log

(
B

m
e−Φ

)
+
e−Φ

4m
εij∂jg

+
2π

ν
e−Φ

(
f ′′ [B] εij∂j logB − 1

B
f ′ [B] ε̄ij∂jΦ

)
+O

(
ε2
)
. (4.9)

Plugging this into (4.6) and (4.7) we will get the final results for the effective action. The

full expressions are very lengthy so we will not record it here. But when Φ = 0 and m, g,

s and s′ are all constants, the expressions simplify to

WCS =

∫
d3x
{ ν

4π
ερµνAρ∂µAν −

ν

2π
(s+ s′)ερµνωρ∂µAν +

ν

4π
(s+ s′)2ερµνωρ∂µων

}
+

ν

4π

∫
dtd2~x

√
g

{
m
E2

B
−
(

2− g

2
+s′
)
Ei∂i logB+

(g−2)

2m
B
[
B+

(
1−2s−s′

)
R(2)

]
−

[
g − 2

4

(
3

2
− g

4
+ s′

)
B

m
+
(
1+s′

) 2π

ν
Bf ′′ [B] +

m

B

(
2π

ν
Bf ′′ [B]

)2
]

(∂i logB)2

}
+O

(
ε3
)
. (4.10)

and

Wloc ⊃
∫
dtd2~x

√
g

{
f [B]−

(
s+ s′

)
f ′ [B]R(2) +mf ′′ [B]Ei∂i logB

+

(
g − 2

4
Bf ′′ [B] +

2π

ν
mBf ′′ [B]2

)
(∂i logB)2 +O

(
ε3
)}

. (4.11)

For simplicity, for now we assume the above terms are the only contributions to the

effective action, i.e. Wloc contains only (4.4). It is not hard to compute additional terms if

there are some, so we temporarily ignore them here. Then the total action takes the form

W =

∫
d3x

{
ν

4π
ερµνAρ∂µAν −

ν

2π
(s+ s′)ερµνAρ∂µων +

ν

4π
(s+ s′)2ερµνωρ∂µων

}
+

∫
d3x
√
g

{
α
[
B,E2

]
+f0

[
B,R(2)

]
+f1 [B]Ei∂i logB+f2 [B] (∂i logB)2+O

(
ε3
)}

,

(4.12)
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where

α =
νmE2

4πB
, (4.13)

f0 = f [B] +
ν(g − 2)

8πm
B
[
B +

(
1− 2s− s′

)
R(2)

]
−
(
s+ s′

)
f ′ [B]R(2) , (4.14)

f1 = − ν

2π

(
1− g

4
+
s′

2

)
+mf ′′ [B] , (4.15)

f2 = −ν(g − 2)

16π

(
3

2
− g

4
+ s′

)
B

m
−
(

1− g

4
+
s′

2

)
Bf ′′ [B] +

πm

ν
Bf ′′ [B]2 . (4.16)

The three terms in the first line can be combined into a single “complete square” term of

A− (s+ s′)ω, the same structure appearing in [24, 67].

4.3 Correlation functions of electromagnetic response

Using formulae given in appendix A, it is straightforward to compute the correlation func-

tions. The 1-point functions of the conserved current is

〈J t〉 =
ν

2π

[
B −

(
s+ s′

)
R(2) −m∇i

(
Ei

B

)]
−∇i

(
f1∇i logB

)
+O

(
ε3
)
, (4.17)

〈J i〉 =
ν

2π
εij
[
Ej −

(
s+ s′

)
(∂jωt − ∂tωj)

]
+

1
√
g
∂t

[
√
g

(
νmEi

2πB
+ f1∇i logB

)]
+εij∇j

[
−νmE

2

4πB2
+ f ′0 −

f1

B
∇kEk − f ′2 (∇k logB)2 − 2

f2

B
∇2 logB

]
+O

(
ε4
)
.

(4.18)

For flat background with constant B and Ei fields, the 2-point functions have the following

structures governed by Ward Identities

〈J t(x)J t(0)〉 = iΠ0
~∂2δ(x) , (4.19)

〈J t(x)J i(0)〉 = −iΠ0∂
i∂tδ(x) + iΠ1ε

ij∂jδ(x)− iΠ3ε
ijEk∂k∂jδ(x) , (4.20)

〈J i(x)J t(0)〉 = −iΠ0∂
i∂tδ(x)− iΠ1ε

ij∂jδ(x)− iΠ3ε
ijEk∂k∂jδ(x) , (4.21)

〈J i(x)J j(0)〉 = iΠ0δ
ij∂2

t δ(x) + iΠ1ε
ij∂tδ(x) + iΠ2

(
δij~∂2 − ∂i∂j

)
δ(x)

+iΠ3

(
εjkEi + εikEj

)
∂k∂tδ(x) , (4.22)

with

Π0 =
νm

2πB
+O (ε) , (4.23)

Π1 =
ν

2π
+

ν

2πB

[(
1− g

4
+
s′

2

)
− 2πm

ν
f ′′ [B]

]
~∂2 +O

(
ε3
)
, (4.24)

Π2 = f ′′ [B] +
ν(g − 2)

4πm

+

{
ν(g − 2)

4πmB

(
3

4
− g

8
+
s′

2

)
+ 2

f ′′ [B]

B

[(
1− g

4
+
s′

2

)
− πm

ν
f ′′ [B]

]}
~∂2

+
νmE2

2πB3
+O

(
ε3
)
, (4.25)

Π3 = − νm

2πB2
+O (ε) . (4.26)
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Here ~∂2 ≡ δij∂i∂j . These are the same as those derived in [61].9 Notice that Π1 is actually

the Hall conductivity σH defined in the usual way. Here we largely ignore the response to

curvature by setting the background to be flat, but they can also be calculated explicitly

and compared with the literature, for example [68, 159].

4.4 Under the field constraint

In parallel to the previous subsection, in this subsection we switch to the field con-

straint (3.52). It can be solved as

N̄ i =
ε̄ij V̄tj

1
2 ε̄
klV̄kl

.

Applying the holographic dictionary, we can translate it into field theory language as

vi =
εijEj
B

+
(g − 2)e−Φ

4m
εij∂j log

(
B

m
e−Φ

)
+
e−Φ

4m
εij∂jg +O

(
ε2
)
. (4.27)

Again plugging this into (4.6) and (4.7) we will get lengthy expressions for the effective

action. When Φ = 0 and m, g, s and s′ are all constants, the results are

WCS =

∫
d3x
{ ν

4π
ερµνAρ∂µAν −

ν

2π
(s+ s′)ερµνωρ∂µAν +

ν

4π
(s+ s′)2ερµνωρ∂µων

}
+

ν

4π

∫
d3x
√
g

{
m
E2

B
−
(

2− g

2
+s′
)
Ei∂i logB+

(g−2)

2m
B
[
B+

(
1− 2s− s′

)
R(2)

]
−
[

g − 2

4

(
3

2
− g

4
+ s′

)
B

m

]
(∂i logB)2

}
+O

(
ε3
)
. (4.28)

and

Wloc ⊃
∫
d3x
√
g

{
f [B]−

(
s+ s′

)
f ′ [B]R(2) +mf ′′ [B]Ei∂i logB

+
g − 2

4
Bf ′′ [B] (∂i logB)2 +O

(
ε3
)}

. (4.29)

Comparing with the corresponding results in the previous subsection using path integral

constraint (3.51), we see the only difference is that contributions from the local terms of the

action (those involving f [B] and its derivatives) are absent in the constraint equation, and

consequently in the expressions of vi and Chern-Simons action. The field constraint (3.52)

is equivalent to the path integral constraint (3.51) when only the Chern-Simons action

is considered in the latter. This is the reason that for the quantum Hall effect, these

two constraints are equivalent at the leading order when magnetic field is big and Chern-

Simons term dominates. If one considers other problems where Chern-Simons term is not

important, these two constraints will give quite different results. Then one has to weigh

which constraint is more appropriate under other physical considerations.

9To compare with [61], we need s′ ⇒ s, Ei ⇒ 0, f [B]⇒ −ε [ρ] with ν
2π
B ⇒ ρ, where on the right hand

side of each “⇒” are the notations of [61].
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Now same as in the previous subsection, let us assume these are the only contributions

to the effective action. The effective action still takes the same form as in (4.12), so do

the functions α
[
B,E2

]
, f0

[
B,R(2)

]
and f1 [B]. The only difference is the form of f2 [B],

which is now

f2 = −ν(g − 2)

16π

(
3

2
− g

4
+ s′

)
B

m
+

g − 2

4
Bf ′′ [B] . (4.30)

For 1-point functions, 〈J t〉 remains the same as before, so do most of the 2-point functions

in (4.19)–(4.22). The only differences are O
(
ε3
)

order of 〈J i〉 and O
(
ε2
)

order of Π2 in

〈J i(x)J j(0)〉, which is now

Π2 = f ′′ [B] +
ν(g − 2)

4πm
+

[
ν(g − 2)

4πmB

(
3

4
− g

8
+
s′

2

)
−
(

g − 2

2

)
f ′′ [B]

B

]
~∂2

+
νmE2

2πB3
+O

(
ε3
)
. (4.31)

The functional expression of 〈J i〉 in terms of f2 and others are the same as (4.18).

To the orders of perturbative expansion we have computed, the two different con-

straints, the path integral one (3.51) and the field one (3.52) yield different results only at

O
(
m0
)

and higher order of m for f2, thus for 〈J i〉 and Π2 at the corresponding orders.

However, these differences are non-universal parts of the correlation functions as discussed

in [61]. For the universal parts, for example, the O
(
m−1

)
order terms, the two constraints

always produce the same results. Thus at the level of our current discussion, we do not

favor one constraint over the other. We view both of them are viable. One of them may

be a better choice when a specific problem is studied using a more detailed model, but we

will leave this to the future.

4.5 Holographic gravitational Chern-Simons term for z > 1

We can also add the gravitational Chern-Simons term [160] to our holographic model:

ÎPY =
cg

384π

∫
d4xεPQRSRMN

RSRNMPQ , (4.32)

where RMNPQ is the Riemann tensor constructed from the full 4-dimensional spacetime

metric and indices M , N , P , Q, R and S run through t, x, y and r. The subscript “PY”

stands for “Pontryagin”. Here for simplicity, we also assume the coupling is a constant cg,

rather than a dynamical axion scalar. Then it is a boundary term as well:

ĪPY =
cg

96π

∫
r=0

d3x
√
Ḡε̄ijP̄ij , (4.33)

where ε̄ijP̄ij is computed explicitly in appendix C. Unlike the boundary form of the gauge

Chern-Simons term, which involves only ∂t and ∂i derivatives, P̄ij contains ∂r derivative

terms as well. However, all and only these ∂r terms will be removed by adding a Gibbons-

Hawking type boundary term [161]:

Ī∂PY =
cg

48π

∫
r=0

d3x
√
−γ
(
nMε

MNPQK R
N ∇PKQR

)
, (4.34)
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where γMN is the induced full spacetime metric at the boundary, nM the out-going unit

normal vector of the boundary and KMN = γ P
M γ Q

N ∇PnQ the extrinsic curvature of the

boundary. This term is added such that the Dirichlet boundary value problem is well posed,

in a similar fashion as Gibbons-Hawking term is added to the Einstein-Hilbert action. Un-

der the gauge conditions (3.11)–(3.13), KMN = −L
r ΓrMN contains only ∂r derivative terms,

thus it will only remove ∂r terms from the Chern-Simons action, and it is straightforward

to check that it does remove all such terms.

From now on for the discussion of gravitational Chern-Simons term we assume

z > 1 .

In appendix C we have computed

ε̄ijP̄ij = −2ε̄ij [ωt∂iωj + ωi (∂jωt − ∂tωj)] + ε̄ij
[(
ε̄kl∂kN̄l

)
∂iωj + ωi∂j

(
ε̄kl∂kN̄l

)]
+2ε̄ij

[(
∇j∇kN̄

)
K̄k
i −

(
∇kN̄

)
∇jK̄k

i

]
+O (∂r) ,

where

K̄ij =
1

2N̄

(
∂tḠij −∇iN̄j −∇jN̄i

)
is the extrinsic curvature of the global time foliation at the boundary. Then the gravita-

tional Chern-Simons term, including the contribution from the boundary term (4.34), is

ĪPY = − cg
48π

∫
d3x
√
Ḡε̄ij [ωt∂iωj + ωi (∂jωt − ∂tωj)]

+
cg

24π

∫
d3x
√
Ḡ

{
ε̄ijK̄ik

(
∇j∇kN̄

)
+

1

2
R(2)

(
ε̄ij∂iN̄j

)}
.

Applying the holographic map, we have

WPY = − cg
48π

∫
d3xερµνωρ∂µων +

cg
24π

∫
d3x
√
g

{
εijKik

(
∇j∇ke−Φ

)
− 1

2
R(2)

(
εij∂ivj

)}
,

(4.35)

where

Kij =
1

2
eΦ (∂tgij +∇ivj +∇jvi) . (4.36)

This term (4.35) shall now be added to the total effective action (4.3). By our power

counting scheme, every term in (4.35) is of order O
(
ε4
)
. The gravitational Chern-Simons

term only gives subleading order contributions to 〈Jµ〉 when the spacetime is not flat, and

does not alter the flat-spacetime current 2-point functions we compute earlier, but they

will give non-trivial contributions to energy-stress correlation functions.

The gravitational Chern-Simons term describes the thermal Hall (Leduc-Righi) ef-

fect [162] and other parity-violating thermal transport phenomena [63, 64, 163]. The ther-

mal Hall conductivity is proportional to the coefficient cg, which in turn is related to the

gravitational anomaly and corresponds to the central charge of the chiral CFT on the

boundary [164–168]. The first term of (4.35) has appeared in the effective action of [67, 68]

and the whole action appeared in a different form written in Lorentzian notations with

Christoffel symbol in [73], in addition to some of the aforementioned references. In the rest

of this paper, we will not go further in this direction to pursue the thermal Hall effect.
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5 Gravitational response and geometric properties of FQHE

In this section, we will use the effective actions and correlation functions derived in the

last section to analyze geometric properties and gravitational response of the fractional

quantum Hall fluids they describe, focusing on Hall viscosity, angular momentum density,

momentum density and their relations. The following discussions on viscosities and angular

momentum density are carried out only for constant B. The results do not depend on f2,

thus the choice of the two constraints (3.51) or (3.52) does not matter in this section. We

will work in flat space with gij = δij , Φ = 0 and m, g, s and s′ are all constants, unless

otherwise stated.

5.1 Wen-Zee shift and Hall viscosity

The first line of the effective action (4.12) includes the three well known topological terms

which do not depend on metric, and is in agreement with [24] and many subsequent works.

Of particular interest to us is the second term ω ∧ dA, the so-called Wen-Zee term, whose

coefficient we can identify as the shift S:

S = −2
(
s+ s′

)
. (5.1)

Thus the physical meaning of the constant s′ arising from our holographic dictionary (3.43)

and (3.44) is clear: it is related to the shift S by the above equation, while s is the intrinsic

spin of the microscopic field ψ in the action (2.7). A similar relation and the relation

between the shift and the conformal field theory construction [169] of fractional quantum

Hall effect can be found in [29, 30]. The shift is the offset between the total charge

Q =
∫
d2~x
√
g〈J t〉 and the total magnetic flux Nφ = 1

2π

∫
d2~x
√
gB if the manifold where

the quantum Hall fluid lives on has a non-trivial topology [24, 61, 170]:

Q = ν

(
Nφ +

S
2
χ

)
, (5.2)

where χ = 1
2π

∫
d2~x
√
gR(2) is the Euler characteristic of the spatial manifold.

Another important aspect of the shift is that even the manifold’s topology is trivial and

the system lives in flat space, it is still related to Hall viscosity [29–31, 61]. Hall viscosity is

one of the parity-odd dissipationless first order transport coefficients appearing in (2+1)-

dimensional parity violating hydrodynamics [171–175]. Using ωt = 1
2δ
ijεkl (δgik) ∂t (δgjl)

and W = 2
∫
d3xηHωt + . . ., the Hall viscosity ηH can be read off from the ω ∧ dA term in

the effective action:

ηH = − ν

4π

(
s+ s′

)
B =

1

4
S〈J t〉 . (5.3)

Here we have assumed flat space with constant B field and vanishing Ei field.

5.2 Magnetization and momentum density

From (4.18), we can identify the long expression inside εij∇j [. . .] as the magnetization

defined in [176]:

〈M〉 = f ′0 −
νmE2

4πB2
− f1

B
∇kEk − f ′2 (∇k logB)2 − 2

f2

B
∇2 logB . (5.4)
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For constant B and Ei = 0, this reduces to

〈M〉 = f ′0 = f ′ [B] +
ν(g − 2)

4πm
B . (5.5)

The first half of the above result 〈M〉 = f ′0 is in agreement with the recent result of [73].10

Using (4.17), (4.18) and (2.37) we can compute the momentum density

〈pi〉 =
νm

2π
εijEj + ∂t

(
νm2Ei

2πB
+mf1∂

i logB

)
+ εij∂j

[
mf ′0 −

g − 2s

4

ν

2π
B

−νm
2E2

4πB2
− g − 2s

4

νm

2πB
Ek∂k logB +

(
g − 2s

4

ν

2π
− f1

)
m

B
∂kE

k (5.6)

+

(
g − 2s

4
Bf ′1 −mf ′2

)
(∂k logB)2 +

(
g − 2s

4
f1 − 2

mf2

B

)
∂2
k logB

]
+O

(
ε4
)
.

The total angular momentum 〈Ltot〉 and its density `tot(x) are defined as

〈Ltot〉 =

∫
d2~xεijx

i〈pj(x)〉 =

∫
d2~x`tot(x) + . . . . (5.7)

where the . . . denotes the contribution to total angular momentum that is not translational

invariant, thus can not be attribute to angular momentum density. In the above expression

of 〈pi〉, the quantity inside εij∇j [. . .] is half of the total angular momentum density `tot, as

can be seen by plugging the expression into the definition of angular momentum and inte-

grating by parts. For constant B field and Ei = 0, the total angular momentum density is

`tot = 2

(
mf ′0 −

g − 2s

4

ν

2π
B

)
= −ν

π

(
1− g

4
− s

2

)
B + 2mf ′ [B] . (5.8)

Its relation to magnetization is

`tot = 2m〈M〉+
(
s− g

2

)
〈J t〉 . (5.9)

5.3 Vorticity and guiding center angular momentum density

Next, let us look at the vorticity. From (4.9) and (4.27) we can see that vi has a form of the

drift velocity (εijEj/B, plus corrections for inhomogeneous B field). Having the velocity,

the vorticity associated with this motion is usually defined as curl of the velocity:

Ω = εij∂ivj . (5.10)

Using (4.9) or (4.27) this can be rewritten as Ω = −∇i
(
Ei/B

)
+ . . .. Thus the vorticity

is proportional to divergence of electric field in a constant magnetic field. One possible

source of this divergence could be the impurity, i.e. ∇iEi equals to the density of impurity

ρimp. Such identification has been made, for example, in [177]. Integrating by parts the

f1 [B] term in (4.12), this term can be written as

W =

∫
d3x
√
g

{(∫
f1 [B] dB

)
Ω + . . .

}
. (5.11)

10Our f0 plays the role of f in [73], which is minus of the unperturbed energy density.
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This is the effective action W’s dependence on Ω. We can see that in the effective action,

terms involving divergence of the the electric field ∇iEi are related to vorticity. In hologra-

phy, the Euclidean on-shell action ĪEucl with t integrated from 0 to 1/T is −T multiplying

the grand potential Ωgrand (not to confused with the vorticity Ω). Here T is temperature

and Ωgrand = −T logZgrand where Zgrand is the partition function of the grand canonical

ensemble. After going through this procedure, we see that the integrand (Lagrangian den-

sity) of W is the thermodynamical pressure P = −δΩgrand/δV where V =
∫
d2~x
√
g is the

volume. The same identification is used in [178] to study the classical Hall effect. [171] has

given the relation between the partition function, angular momentum Lorb and vorticity:

Zgrand = exp (LgcΩ/2T + . . .), then we have

P =
1

2
`gcΩ + . . . , where W =

∫
d3x
√
gP . (5.12)

A similar relation has been derived in [49]. Now we have the angular momentum density

conjugate to vorticity:

`gc = 2

∫
f1 [B] dB = − ν

2π

(
2− g

2
+ s′

)
B + 2mf ′ [B] . (5.13)

Notice that we have added a subscript “gc” (stands for “guiding center”, whose meaning will

be explained later) for Lgc and `gc to distinguish them from the total angular momentum

Ltot and its density `tot discussed earlier. The explicit expressions of `tot and `gc also show

that they are different. In [49] it has been shown that Ltot defined from 〈pi〉 is the corrected

total kinetic angular momentum, and the authors also notice that the quantity 2δP/δΩ as

what we call `gc here does not have a direct interpretation as the total angular momentum

density `tot. To keep our focus on the derivations, we will postpone the explanation of the

physical meaning of this so-called guiding center angular momentum density in the context

of the quantum Hall effect to the end of the section. At this moment, from theoretical

mechanics’s point of view, vorticity Ω can be viewed as a temporal derivative of some

generalized coordinate (some angle) and `gc is the generalized momentum conjugate to it,

which does not equal to the total angular momentum density. In terms of magnetization

and charge density, `gc can be expressed as

`gc = 2m〈M〉+
(
−s′ − g

2

)
〈J t〉 . (5.14)

It is worthy to note that the identification of Ω = εij∂ivj and `gc = 2
∫
f1 [B] dB does

not depend on the explicit expression (4.9) or (4.27). It can be directly made from (4.6)

and (4.7), thus depends only on the holographic dictionary (3.38)–(3.45). Hence our re-

sults for guiding center angular momentum densities equally apply to the case when N̄i is

constrained by the bulk dynamics to be a functional of other boundary fields and vi takes

some other form other than the drift velocity given in (4.9) or (4.27).

5.4 Internal angular momentum density

Since the guiding center angular momentum density is different from the total angular mo-

mentum density, we can define their difference as the internal angular momentum density:
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`int = `tot − `gc. Thus we have

`int =
ν

2π

(
s+ s′

)
B = −S

2
〈J t〉 , (5.15)

where the subscript “int” stands for “internal”. This agrees with the results found in [29, 30],

where −S/2 is interpreted as conformal spin or mean orbital spin per particle. Here to

clarify some potential confusion about terminology, we note that the quantity `int has

different names in the literature. In [29] it is called “conformal spin density”, in [24, 30]

“mean orbital spin density”, in [47] “intrinsic angular momentum density” and recently

in [52] related to “Landau orbit spin”. We will call it “internal angular momentum density”

and avoid using the terms “intrinsic” and “spin” so as not to confuse with the intrinsic

spin of particles in the usual sense in high energy physics. In this paper, the quantity s will

be called the intrinsic spin of the microscopic field ψ, which can be either a fundamental

particle like the electron or a composite particle like composite boson or fermion. For

example, if ψ denotes an Dirac electron in vacuum, s = 1/2. For Laughlin states with

filling factor ν = 1/(2n+ 1) where n ∈ N, S = 2n+ 1 [24]. Then the mean internal angular

momentum per particle −S/2 = −n − 1/2. [151] derives the same result using both

composite fermion and boson theories. Comparing our action (2.7) with those in [151],

ψ can denote composite fermions with intrinsic spin11 s = −n for the former theory and

composite bosons with s = −n − 1/2 for the latter. Hence the parameter s′ arising from

the map (3.43) and (3.44) takes value s′ = −1/2 for composite fermions and s′ = 0 for

composite bosons. The former corresponds to orbital spin of composite fermions at filling

factor ν = 1. The intrinsic spin s and the orbital spin s′ of the composite particles together

give the total internal angular momentum given by (5.15).

Now we can immediately recognize the simple relation between Hall viscosity and the

internal angular momentum density:

ηH = −1

2
`int . (5.16)

This is the well-known relation of [30, 47, 48]. The key point of reproducing this relation

is to correctly identify the internal angular momentum density. Only the internal part

satisfies this relation, as pointed out in [30, 47, 48], but not the total angular momentum

density, unless the guiding center part vanishes.12,13 The Chern-Simons model generally has

non-vanishing guiding center angular momentum density, as is shown here. So it is crucial

11The quantity we call s here is called topological spin in [151]. We also notice there are different sign

conventions in the literature, thus some of our expressions like those for spins have different signs compared

with other references. This is due to various normalization choices for the charge, spin, Hall viscosity,

alignment of the angular momentum, or combinations of them. For example, in [151] the charge is set to

1 while we set to −1, hence our conventions for the intrinsic (topological) spin s will also differ by a sign.

They have s = n and n + 1/2 for composite fermions and bosons, respectively. Equivalently, the sign of

Wen-Zee shift can be flipped.
12[47] ensures this by assuming total angular momentum density is proportional to particle density (〈Jt〉

here), which could be in general violated by f ′ [B] term in `gc.
13For a more detailed discussion on the shift and angular momentum of paired states, see [30]

and [179–181].
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to identify and distinguish the internal part from the guiding center part. Total angular

momentum density generally does not satisfy this simple 1/2 relation with Hall viscosity.

5.5 Bulk and total Hall viscosities

There is a further generalization of the above relation between Hall viscosity and internal

angular momentum density. In [49, 171, 172, 174] a parity-odd thermodynamic transport

coefficient χ̃Ω is defined as T ij = −χ̃ΩΩgij + . . . and it has been shown that

χ̃Ω =
δP

δΩ
. (5.17)

χ̃Ω is called “Hall bulk viscosity” in [49] and “curl viscosity” in [172] (denoted by ζA there).

Then we have

χ̃Ω =
1

2
`gc . (5.18)

As the Hall viscosity is (minus) half of the internal angular momentum density, this relation

tells us that the Hall bulk viscosity is half the guiding center angular momentum density

for fractional quantum Hall fluids. We can combine these two relations to find a relation

with the total angular momentum density:

χ̃Ω − ηH =
1

2
`tot . (5.19)

We can view this as a statement that the “total” parity-odd viscosity is half of the total

angular momentum density in fractional quantum Hall fluids. The minus sign is just an

accident of the definitions.

5.6 Relations to Hall conductivity

From (A.18) where Π1 is just the Hall conductivity σH defined in the usual way, `gc (χ̃Ω)

enters as O
(
~∂2
)

order coefficient:

σH =
ν

2π
− 1

2B

δ`gc

δB
~∂2 +O

(
ε3
)

=
ν

2π
− 1

B

δχ̃Ω

δB
~∂2 +O

(
ε3
)
. (5.20)

The same numeric result is derived in [61], without explicit identification of `gc. We can

further compute the energy density 〈E0〉, internal pressure Pint = 1
2gij〈T

ij〉 and inverse

internal compressibility κ−1
int = −δPint/δ log V , as defined in [48] (where 〈E0〉 is denoted

by ε). They are computed directly from (2.36). For flat space with constant B field and

vanishing Ei field, the results are

〈E0〉 = −f0 [B] = −f [B]− ν(g − 2)

8πm
B2 , (5.21)

Pint = f0 [B]−Bf ′0 [B] = f [B]−Bf ′ [B]− ν(g − 2)

8πm
B2 , (5.22)

κ−1
int = −B2f ′′0 [B] = −B2f ′′ [B]− ν(g − 2)

4πm
B2 . (5.23)
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The central column agrees with the relations given in [48]. For the scale-invariant cases such

as that in (4.5), Bf ′ [B] = 2f [B], the conformal Ward identity (2.38) is indeed satisfied.

Using the right column, we get the following relation:

1

2

δ`gc

δ logB
= ηH −

g − 2s

4
〈J t〉 − m

B
κ−1

int . (5.24)

Then

σH =
ν

2π
− 1

B2

(
ηH −

g − 2s

4
〈J t〉 − m

B
κ−1

int

)
~∂2 +O

(
ε3
)
. (5.25)

This is exactly the relation derived in [48] when g = s = 0, because there these parameters

are not considered.

5.7 Interpretation of two types of angular momentum density

Now we present the overdue explanation of why there are two types of angular momentum

density that we have identified from the total angular momentum density. For simplicity,

in this subsection we will ignore the gyromagnetic factor g and intrinsic spin s, unless

otherwise stated. Their existence do not change the physical interpretation the angular

momentum densities, but add additional parts to their expressions, as can be see from the

above results. Since the guiding center angular momentum density `gc and vorticity Ω are

closely related to the drift velocity vi, which is a classical concept for particle moving in

electromagnetic field, it is intuitive to start with classical mechanics, and then proceed to

its quantum version.

5.7.1 Classical charged particles in electromagnetic field

Let us consider the classical motion of a charged particle moving in mutually parallel

magnetic and electric fields. The Newtonian equation of motion is

m
d~v

dt
= q

(
~E + ~v × ~B

)
.

By the following substitution:

~v = ~vdrift + ~vcycl , where ~vdrift =
~E × ~B

B2
,

the total kinetic motion described by velocity ~v is decomposed into two parts: a cyclotron

motion ~vcycl (with frequency ω = qB/m) around a point center and a linear motion of the

cyclotron center described by the drift velocity ~vdrift. Similarly, the position vector of the

particle can also be decomposed into these two parts

~x = ~xdrift + ~xcycl .

To be in agreement with the quantum Hall literature, we will call the cyclotron center

the “guiding center”. Thus ~xdrift and ~vdrift are the position and velocity of the guiding

center and ~xcycl and ~vcycl describe the relative motion of the charged particle as seen in

the guiding center frame. Furthermore, if we view the particle in cyclotron motion plus
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the magnetic flux enclosed by the circular orbit as a “composite particle” (in analog to

the composite fermion theory [182] of fractional quantum Hall effect, but of course here

is no quantization), then ~xdrift and ~vdrift describe the trajectorial motion of the center of

mass of the composite particle. Meanwhile, ~xcycl and ~vcycl are no longer directly visible to

an external observer, but they will manifest themselves as some internal properties of the

composite particle. For example, the orbital angular momentum of the cyclotron motion

in the guiding center frame, i.e. m~vcycl×~xcycl, will now looks like the “intrinsic” spin of the

composite particle (in addition to the actual intrinsic spin of the charged particle). This

is the origin of our terminology “internal”, which in classical sense means the “intrinsic to

the composite particle”, or “viewed in the guiding center frame”. Thus the total angular

momentum of the charged particle is the sum of the angular momentum of the guiding

center and the internal angular momentum of the composite particle. Of course, here

we have only been talking about a single particle. The generalization to fluid case is

straightforward, and this explains the split between `gc and `int in `tot in classical sense.

Particularly, if the velocity field of the composite particle fluid ~vdrift(~x) has a non-vanishing

curl ~Ω = ∇× ~vdrift 6= 0 at some point, then this means the guiding centers are circulating

around this point and the fluid will have some non-zero angular momentum density at this

point. This is the guiding center angular momentum density `gc.

5.7.2 Quantum mechanics: two Hilbert spaces

The fractional quantum Hall effect is a complicated quantum many body problem with

interactions between charged particles playing a huge role. The quantum picture is quite

different from the classical one we have just discussed. However, there are structural

similarities, and one of them is the split of the total Hilbert space into the guiding center

part and cyclotron part, which is in direct analog to the classical case. A discussion on

angular momentum and Hall viscosity from this perspective can be found first in [30] and

later more systematically in [18, 50–52]. Other related works and references can be found

in the thesis review [183].

To discuss the structure of Hilbert space, let us first focus on 2-dimensional single-

particle quantum mechanics in the presence of perpendicular magnetic field. The coordi-

nates xi and momentum pi = −i∂i form the 4-dimensional phase space. The covariant

momentum is πi = pi − qAi with [πi, πj ] = iqBεij . Similar to the example in classical

mechanics, xi can be split into the two parts

xi = Ri + R̃i , where R̃i = −ε
ijπj
qB

, (5.26)

where Ri are the guiding center coordinates and R̃i the Landau orbit coordinates, the

quantum version of our ~xdrift and ~xcycl. They satisfy commutation relations[
Ri, Rj

]
= − i

qB
εij , (5.27)[

R̃i, R̃j
]

=
i

qB
εij , (5.28)[

Ri, R̃j
]

= 0 . (5.29)
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The 4-dimensional Hilbert space is now mapped into a tensor product of two copies of

2-dimensional Hilbert spaces whose phase space coordinates are Ri and R̃i respectively.

A notable feature of the two sub-Hilbert spaces is that within each one the two spatial

coordinates are non-commutative [20, 21, 184, 185]. As {Ri, Rj} and {R̃i, R̃j} form two

sets of SL(2,R) algebra, the guiding center angular momentum Lgc and Landau orbit

angular momentum L̃ can be defined as14

Lgc =
1

2
qBggc

ij R
iRj , L̃ = −1

2
qBg̃ijR̃

iR̃j , (5.30)

where according to [52] ggc
ij and g̃ij are the guiding center and Landau orbit metrics. For

us we always assume Galilean and rotational invariance, thus ggc
ij = g̃ij = gij . It is straight-

forward to check that the total angular momentum defined in the usual way is the sum of

the above two angular momenta:

Ltot = εijxipj = Lgc + L̃ . (5.31)

L̃ is the angular momentum associated with the cyclotron motion and Lgc associated with

the drift motion of the guiding center. In term of the more familiar language of creation

and annihilation operators in symmetric gauge [20, 21], we have

Ltot = b†b− a†a ,

Lgc = b†b+
1

2
,

L̃ = −
(
a†a+

1

2

)
,

Here our definitions of a, a†, b and b† follow those in [21]: a and a† shift the Landau level

quantum number by one and b and b† shift the angular quantum number by one within

each Landau level. It is very clear from these expressions that L̃ is associated with the

cyclotron motion and Lgc is the rest part of the motion. In fact, L̃ is proportional to the

free Hamiltonian H0 = qB
m

(
a†a+ 1

2

)
.

So far we have only talked about single-particle quantum mechanics, for simplicity of

the definitions. In the discussion of [18, 50–52] they are all generalized to many-particle

case with interactions. The eigenvalue of (many-particle) Landau orbit angular momentum

L̃ is extensive, while that of guiding center Lgc (thus Ltot as well) has both super-extensive

and extensive parts.15 The notion of angular momentum density can be defined from the

extensive part of the angular momentum. Then the coefficients of extensive part of Lgc,

L̃ and Ltot define the guiding center, Landau orbit and total angular momentum density

`gc, ˜̀ and `tot, respectively. Divided by 〈J t〉, `gc and ˜̀ are minus the “guiding center spin”

(denoted by s in [52], not to be confused with our s) and “Landau orbit spin” s̃n defined

in [52]. `gc is exactly the quantity we defined and computed earlier, and ˜̀ only differs

14Our definition of Lgc differs by a sign from that in [52] such that its positive direction aligns in the

same direction as L̃’s. In [52] they align in opposite directions because their two sets of SL(2,R) algebra,

eq. (6a) and eq. (6b), differ by a sign.
15“Extensive” means proportional to the total electron number N , and “super-extensive” quadratic in N .
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from our `int by the intrinsic spin s, which we have ignored here. This is the quantum

interpretation of the meaning of what we called guiding center angular momentum density

`gc and internal angular momentum density `int.

In additional to deriving the analog of the relation (5.16) for ˜̀ , [52] defines a guiding

center Hall viscosity and shows that it is proportional to the guiding center spin. This is

the analog of our (5.18). By comparison, the guiding center Hall viscosity is essentially the

bulk Hall viscosity χ̃Ω. [52] also has an equation that the sum of the two Hall viscosities

equals to the sum16 of the guiding center and Landau orbit spins. This is the analog

of our relation (5.19). Our results can be viewed as a derivation of these results from

Chern-Simons effective theory.

5.8 Guiding center momentum density

Since vi has been identified with drift velocity, i.e. the guiding center velocity field, its

natural to identify the “charge density” conjugate to it as the guiding center momentum

density pigc, similar to the relation between `gc and Ω:

〈pigc〉 =
eΦ

√
g

δI
δvi

∣∣∣∣∣
Aµ,gij ,Φ

. (5.32)

Notice that this equation shall be computed before the path-integral constraint or field con-

straint is implemented, otherwise there would be no vi at all and the quasi-effective action

I
[
vi, Aµ, gij ,Φ, . . .

]
would become the effective action W [Aµ, gij ,Φ, . . .]. In other words,

〈pigc〉 is computed from the quasi-effective potential I, not the actual effective potentialW.

In this sense, we can not say that vi is a source field that sources certain momentum den-

sity, because source fields are the independent functional variables appearing in W. This

is a consequence that there is no vi in the microscopic action (2.7). The above equation

can be viewed as a definition for 〈pigc〉, and there is no conservation law associated with it.

This is different from the total momentum density (2.37), which enters the conservation

of stress-tensor [60]. On contrary, quantity like vi does enter effective action (and even

the microscopic action) as a source field to momentum density pi in some formalisms in

the literature, for example in [60, 64, 72]. This is case, the definition of Ai is also shifted

(usually by mvi), then the current J i obtained through functional derivative with respect

to Ai has not exactly the same meaning as ours defined in (2.36). It is related to our

current by some redefinition, as illustrated in [60]. Thus a relation like pi = mJ i usually

given in this case (where pi is obtained from functional derivative with respect to vi) is in

no contradiction with any relation presented in this paper.

Using (4.6) and (4.7), we have

〈pigc〉 =
ν

2π

{
me2Φ

(
εijEj −Bvi

)
− εij∂j

[(
1− g

4
+
s′

2

)
B

]
+

(
1− g

4
+
s′

2

)
eΦBεij∂j log

(
meΦ

)}
+me2Φεij∂j

(
e−Φf ′ [B]

)
(5.33)

+O
(
ε2
)
.

16“Minus” in [52] again because their definitions of the two angular momenta differ by a sign.
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For Φ = 0 and m, g, s and s′ constant, it becomes

〈pigc〉 = εij∂j

{
− ν

2π

(
1− g

4
+
s′

2

)
B +mf ′ [B]

}
+O

(
ε2
)
.

It has no “transport” part17 and the only non-vanishing part is a curl which accounts

exactly for the guiding center angular momentum density (5.13). Subtracting it from the

total momentum density (5.6), we obtain the rest, the internal momentum density:

〈piint〉 =
νm

2π
εijEj + εij∂j

[ ν
4π

(
s+ s′

)
B
]

+O
(
ε2
)
. (5.34)

The second term is the curl part which accounts for all the internal angular momentum

density (5.15), as expected. The first term is the transport part, which is a product of

number density 〈J t〉, mass m and the drift velocity εijEj/B. This form is exactly what

one would expect from classical mechanics. Notably, this accounts for all the transport

part of the total momentum density in the homogeneous case.

6 Summary and comments

In this paper we have shown that Hořava-Lifshitz gravity theory can be used as a covariant

formalism for the effective field theory of the fractional quantum Hall effect in 2+1 dimen-

sions. It guarantees the non-relativistic spacetime symmetries possessed by the quantum

Hall system. Lying in the heart of this formalism is the map between the field degrees of

freedom of the two theories, (3.38)–(3.45). We originally derive this map as a holographic

dictionary, but its existence and form are independent of the holographic duality. It can

be directly applied on (2+1)-dimensional Hořava-Lifshitz gravity theory to construct the

low energy effective action for the fractional quantum Hall effect in a phenomenological

way. It also serves as the holographic dictionary for (3+1)-dimensional Hořava-Lifshitz

gravity theory with asymptotic Lifshitz background (3.18). The latter paves the way for a

systematic study on the fractional quantum Hall effect using the approach of gauge/gravity

duality (AdS/CMT), that has been well-developed over the last decade. Of particular in-

terest is that this formalism naturally produces the Wen-Zee term at the boundary, which is

otherwise hard to obtain using the conventional relativistic (3+1)-dimensional holography.

We have shown that the universal electromagnetic and geometric properties of the

fractional quantum Hall effect that are previously studied over decades in various contexts

using different methods can be encoded in a simple Chern-Simons model using the Hořava-

Lifshitz gravity formalism. The effective action we obtain in this paper is by no means

a complete one. Additional terms can be added phenomenologically based on symmetry

considerations, but the connection of Hořava-Lifshitz formalism to holography allows them

to be computed systematically using gauge/gravity duality. The shift function in Hořava-

Lifshitz gravity is identified with (minus) the guiding center velocity field (drift velocity)

of the quantum Hall fluid, whose conjugate momentum density is also that of the guiding

center. Through this identification, we can further identify the guiding center angular

17According to the terminology of [176], this is the part that can not be written as a curl.
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momentum density conjugate to the guiding center vorticity is half of the Hall bulk viscosity

defined in the context of parity-violating first order hydrodynamics [49, 171, 174]. The

rest of the total angular momentum density is the internal angular momentum density

of the composite particles, which includes the Landau orbit spin and the intrinsic spin

of the composite particles. It is proportional to the Wen-Zee shift and is minus twice of

the Hall viscosity. These relations are well-known in the literature and are derived using

various methods [30, 47, 48]. Here we show that they can be produced via non-relativistic

diffeomorphism invariant Chern-Simons effective field theory.

We close our paper with some concluding remarks and comments:

1. Various versions of Hořava-Lifshitz gravity : there exist different versions of Hořava-

Lifshitz gravity theory in the literature. What we employ here is a minimal version of

the non-projectable Hořava-Lifshitz gravity, where the graviton sector includes only

the lapse function N , shift function Ni (or Ni) and spatial metric gij (or GIJ), all

being functions of both spatial coordinates and time, and the spacetime symmetries

contain primarily only the foliation preserving diffeomorphism (FPD) and Weyl scal-

ing. There are extended versions of the theory, notably that in [132, 133]. There an

additional U(1)Σ gauge symmetry associated with the co-dimension one foliation of

constant time Σ(t) is introduced. This is not to be confused with the electromag-

netic U(1) symmetry represented by the vector field Vµ or VM in this paper. But

sometimes they are identified in the literature, for example in [59, 66]. Consequently

additional fields are needed to construct a manifest U(1)Σ gauge-invariant theory.

This kind of extended version of Hořava-Lifshitz gravity can also be used as a bulk

theory for holography [117] as well as covariant formalism for quantum Hall effects.

The covariant map can be built in a similar way as we have done in this paper to

incorporate the additional fields. But what are the field theory dual of this additional

symmetry and fields is a question that usually has no obvious answer, at least in the

context of quantum Hall effects. [117] gives two possible holographic scenarios for

the extended version with U(1)Σ symmetry. We choose to use the minimal version

without U(1)Σ symmetry symmetry and additional fields. A fundamental reason be-

hind these different choices is how the shift function is interpreted in the field theory,

because the U(1)Σ is an Abelian gauge symmetry of the shift function. If the shift

function is treated like a gauge field in the dual field theory, such as in [59, 66], it is

natural to include this symmetry and employ the U(1)Σ extended version of Hořava-

Lifshitz gravity as bulk theory, following [117]’s prescription regarding the role of this

symmetry and additional fields in the holographic correspondence. However, if the

shift function is interpreted as a velocity field, as in [61] and this paper, it is more of

the nature of a current18 which does not transform under a U(1) symmetry. In this

case, the U(1)Σ extended version will not help much in building the effective theory

based on symmetries. Thus we choose the minimal version.

18We recall in non-relativistic theories, current ~j is proportional to velocity ~v, with coefficient being the

density ρ: ~j = ρ~v.
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2. Behavior of the shift function: different versions of Hořava-Lifshitz gravity may have

different dynamics and numbers of degrees of freedom, depending on the numbers of

fields and numbers of first-class and second-class constraints (for example, see [186–

189]). Even in the low-energy minimal version we use here, there are still free tunable

parameters α, β and λ̂ in the action (1.5), which can give rise to different dynamics

and solutions. Thus the shift function (or the boundary field of the shift function in

the case of holography) can have different behaviors depending on what the model

action one start with. This feature is particularly relevant for holography. This does

not affect the the holographic dictionary since the symmetries are the same, but

gives different physical results. In some versions of Hořava-Lifshitz gravity, the shift

function (to be precise, its boundary field in holography) may totally drop off after

the holographic dictionary is applied. This is suggested as one scenario in [117]. In

some other versions, it may be constrained to be just a functional of other fields.

In either case, the question of how to deal with it is trivial. We do not focus on

these cases in this paper, but are aware of these possibilities. What we are mostly

interested in is the case that the boundary shift function is independent of the other

boundary fields. This is similar to that of the relativistic holography. From the

computation we have done, it also seems to be the most relevant case for application

to quantum Hall effects. It gives rise to the non-trivial questions of how to interpret

and determine the shift function. This leads to the next comment. We hope to give

some case-by-case study in the future to show some examples of what model actions

can give what possible cases among these three possibilities for the shift function.

3. The two constraints: we identify the shift function arising in Hořava-Lifshitz formal-

ism as minus the guiding center velocity field, but how to determine it is a different

question. Similar problem exists in the Newton-Cartan formalism as well. There

is no clear answer to this question in recent studies of the quantum Hall effective

action, among which many do not provide an answer at all. In this paper, we pro-

vide two slightly different answers, the path-integral constraint (3.51) and the field

constraint (3.52), both satisfying the requirements from symmetries and LLL projec-

tion. They are both meaningful and applicable in (2+1)-dimensional effective field

theory and (3+1)-dimensional holography. The former is more in the spirit of ef-

fective theory, similar to what is done in [61], while the latter is more commonly

seen in holography as a Dirichlet boundary condition imposed at the boundary. For

the fractional quantum Hall effect where at low energy scale the Chern-Simons term

dominates, the two constraints are equivalent in producing the universal features, but

can give different results for non-universal features related to local dynamics. The

question that which one is more favorable has to be answered by computing more

non-universal features and comparing with other approaches and the experimental

results. It is beyond the reach of this paper. It is worthy to note that in the absence

of gauge Chern-Simons term and strong background magnetic field, i.e. out of the

context of quantum Hall effects (e.g. in the context of [117]), these two constraints

will yield quite different results.
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4. (2+1)-dimensional Chern-Simons effective theory : the fractional quantum Hall ef-

fective action we obtain in this paper is through holographic non-dynamical Chern-

Simons model in 3+1 dimensions. This is the simplest holographic model one can

write down for the fractional quantum Hall effect. But the same results can be

equally obtained without holography, by just starting with a (2+1)-dimensional

Chern-Simons model, as is typically done in the traditional effective field theory

approach. The reason is that the non-dynamical Chern-Simons terms are boundary

terms in holography. From this point of view, it seems holography does not make a

difference. This is only true so far as only the non-dynamical Chern-Simons terms

and the universal features of certain fixed fractional quantum Hall states are con-

cerned, and the universality of quantum Hall physics at low energy guarantees that

all methods converge at this point. The true power of holography really lies in the

analysis of local dynamics which governs the non-universal properties, and of quan-

tum phase transitions such as the transitions between different Hall plateaus. This

leads to the next two remarks.

5. Local dynamics: the majority of the quantum Hall research focuses on the universal

properties that is related to topology and Chern-Simons field theory, so is the Chern-

Simons model studied in this paper. Properties related to local dynamics such as the

Coulomb interaction are much harder to study for such a strongly correlated quantum

system and the methods available are quite limited. Holography offers a strong

and efficient toolkit to deal with such a difficulty, and the holographic dictionary

we build in this paper opens the doorway to it. It will be interesting to solve a

specific holographic Hořava-Lifshitz model with local dynamics, for example, specified

by (1.5) and (1.6), maybe with additional scalar fields, to see what local dynamics

and non-universal properties it can generate for the fractional quantum Hall effect.

We will leave this in a forthcoming study.

6. Holographic dynamical Chern-Simons and axion-dilaton models: in the non-

dynamical Chern-Simons model we have studied in this paper, the coefficient of the

gauge Chern-Simons term is a constant. It can be turned into a dynamical axion field

and thus enters the bulk dynamics. So is the coefficient of the Maxwell action (1.6)

that can be turned into a dynamical dilaton. The relativistic version of this model

and its variations have been studied in [104, 107]. The additional SL(2,Z) symme-

try of the axion-dilation system captures the transport features of the Hall plateau

transitions. This is another example of Holography as a powerful tool for studying

quantum phase transitions. A similar study can be carried out using Hořava-Lifshitz

holography using our holographic dictionary. We expect it will give more information

and features, both universal and non-universal, than the simple Chern-Simons model

we have studied here.

7. Global time and energy flux : in this paper, we work exclusively in the global time

coordinates and prohibit the foliation mixing diffeomorphism ∂iξ
t 6= 0. This keeps

our formalism simple and convenient. But a major drawback is the lack of the source

field for energy flux, thus our current formalism can not compute energy flux. The
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source can be restored in non-relativistic field theory [60] and dealt with in non-

relativistic holography by introducing additional vector field in the bulk as shown

in [117]. A closely related question is about the existence of global time. Clearly

it is needed for any genuine non-relativistic theory as part of the causal structure.

But for holography, this does not necessarily imply the existence of global time in

the whole bulk, as long as there is another mechanism that provides the global time

structure on the boundary. In this paper, we assume global time for the whole

bulk and thus employ the Hořava-Lifshitz gravity theory as the holographic dual.

This is a simple and convenient choice conceptually, and practically is enough for

many purposes as long as the energy flux is not concerned. But there can be other

choices. For example, [94, 95] has shown that certain z = 2 Lifshitz holography

with relativistic bulk theory can have a boundary whose geometry can be identified

with various versions of non-relativistic Newton-Cartan geometry, depending on the

boundary condition for the time-like vielbein. In a forthcoming paper we will discuss

the possibility of giving up bulk global time and restoring the energy flux source and

try to generalize our formalism to a relativistic bulk.

8. Generalization to multiple species / hierarchical states: our formalism, starting from

the microscopic field theory action (2.7), describes a single species of spin-polarized

particles carrying mass m, Abelian charge e (which has been set to unity in this

paper), gyromagnetic factor g and intrinsic spin s. It thus mostly naturally describe

the Laughlin states of fractional quantum Hall fluids with inverse filling factor equal

to an odd integer. A large number of other quantum Hall states can be described by

Abelian hierarchical states [11, 170, 182] where different types of quantum Hall fluids

of quasiholes/quasiparticles coexist. A field theoretical framework, the K-matrix

formulation, is introduced in [5]. In this formulation, the Abelian gauge fields carry

additional flavor index; the charges becomes a flavor space vector and Chern-Simons

couplings a matrix — the K-matrix. Such a formulation is employed recently in the

construction of low energy effective action in [67, 68]. To accommodate this picture,

our formalism need to be extended to include multiple species of particles carrying

different characteristics such as mass and charge. Since the non-relativistic spacetime

symmetries (2.10)–(2.15) and (2.19)–(2.25) depend on parameters such as mass and

charge, they may need modifications first. Thus this generalization is quite non-

trivial. Generalization to multi-species in non-relativistic holography is a non-trivial

question as well. A first trial is given in [113], but this construction involves adding

more extra dimensions to the bulk, which is not a method suitable to the approach

we employ in this paper. We will leave this task to a forthcoming study.
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A General formulae for correlation functions

If the effective action takes the following form:

W =

∫
dtd2~x

{ ν

4π
ερµνAρ∂µAν −

ν

2π
(s+ s′)ερµνAρ∂µων +

ν

4π
(s+ s′)2ερµνωρ∂µων

}
+

∫
dtd2~x

√
g

{
α
[
B,E2

]
+ f0

[
B,R(2)

]
+ f1 [B]Ei∇i logB

+ f2 [B] (∇i logB)2 +O
(
ε3
)}

. (A.1)

with Φ = 0 and m, g, s and s′ are all constants, then the correlation functions defined

by (2.36) can be computed as following. The non-equilibrium 1-point function of the

conserved current is

〈J t〉 =
ν

2π

[
B −

(
s+ s′

)
R(2)

]
−∇i

(
2Ei

δα

δE2
+ f1∇i logB

)
+O

(
ε3
)
, (A.2)

〈J i〉 =
ν

2π
εij
[
Ej −

(
s+ s′

)
(∂jωt − ∂tωj)

]
+

1
√
g
∂t

[
√
g

(
2Ei

δα

δE2
+ f1∇i logB

)]
+εij∇j

[
α′ − f1

B
∇kEk + f ′0 − f ′2 (∇i logB)2 − 2

f2

B
∇2 logB

]
+O

(
ε4
)
, (A.3)

=
ν

2π
εij
[
Ej −

(
s+ s′

)
(∂jωt − ∂tωj)

]
+

1
√
g
∂t

[
√
g

(
2Ei

δα

δE2
+ f1∇i logB

)]
+
{
α′′ + f ′′0 −

(
f1

B

)′
∇kEk − 2

(
f2

B2

)′
∇2B −

[
f ′′2 − 2

(
f2

B

)′]
(∇k logB)2

}
εij∇jB

−2
f2

B
εij∇j∇2B −

(
f ′2 − 2

f2

B

)
εij∇j

[
(∇k logB)2

]
+
δα′

δE2
εij∇jE2 − f1

B
εij∇j∇kEk +O

(
ε4
)
, (A.4)

where “′” is derivative with respect to B. The 2-point functions are

〈J t(x)J t(0)〉 = i∇i
[
2
δα

δE2
∂iδ(x)

]
+O

(
ε3
)
, (A.5)

〈J t(x)J i(0)〉 = i
ν

2π
εij∂jδ(x)− 2i∇i

[
δα

δE2
∂tδ(x)

]
(A.6)

−iεij∇k
[(

2Ek
δα′

δE2
+ f ′1∇k logB

)
∂jδ(x) + f1∇k

(
∂jδ(x)

B

)]
+O

(
ε4
)
,

〈J i(x)J t(0)〉 = −i ν
2π
εij∂jδ(x)− 2i

√
g
∂t

[
√
g
δα

δE2
∂iδ(x)

]
−iεij∇j

[
2Ek

δα′

δE2
∂kδ(x)− f1

B
∇2δ(x)

]
+O

(
ε4
)
, (A.7)
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〈J i(x)J j(0)〉 = i
ν

2π
εij∂tδ(x) +

i
√
g
∂t

[
2
√
g
δα

δE2
gij∂tδ(x)

]
+

i
√
g
∂t

{
√
gεjk

[(
2Ei

δα′

δE2
+ f ′1∇i logB

)
∂kδ(x) + f1∇i

(
∂kδ(x)

B

)]}
+iεik∇k

[
2Ej

δα′

δE2
∂tδ(x)− f1

B
∂j∂tδ(x)

]
+iεikεjl∇k

{[
α′′ −

(
f1

B

)′
∇ · ~E + f ′′0 − f ′′2 (∇ logB)2

−2

(
f2

B

)′
∇2 logB

]
∂lδ(x)

}

−iεikεjl∇k
[
2f ′2 (∇n logB)∇n

(
∂lδ(x)

B

)
+ 2

f2

B
∇2

(
∂lδ(x)

B

)]
+O

(
ε5
)
,

(A.8)

where we have assumed δ2α/
(
δE2

)2
= 0. For flat background with constant B and Ei

fields, the 2-point functions simplify to

〈J t(x)J t(0)〉 = 2i
δα

δE2
~∂2δ(x) +O

(
ε3
)
, (A.9)

〈J t(x)J i(0)〉 = i
ν

2π
εij∂jδ(x)− 2i

δα

δE2
∂i∂tδ(x)

−iεij
[
2
δα′

δE2
Ek∂k∂jδ(x) +

f1

B
~∂2∂jδ(x)

]
+O

(
ε4
)
, (A.10)

〈J i(x)J t(0)〉 = −i ν
2π
εij∂jδ(x)− 2i

δα

δE2
∂i∂tδ(x)

−iεij
[
2
δα′

δE2
Ek∂k∂jδ(x)− f1

B
~∂2∂jδ(x)

]
+O

(
ε4
)
, (A.11)

〈J i(x)J j(0)〉 = i
ν

2π
εij∂tδ(x) + 2iδij

δα

δE2
∂2
t δ(x)− iεij f1

B
~∂2∂tδ(x)

+2i
(
εjkEi + εikEj

) δα′

δE2
∂k∂tδ(x)

+i

(
α′′ + f ′′0 − 2

f2

B2
~∂2

)(
δij~∂2 − ∂i∂j

)
δ(x) +O

(
ε5
)
. (A.12)

They have the following structures:

〈J t(x)J t(0)〉 = iΠ0
~∂2δ(x) , (A.13)

〈J t(x)J i(0)〉 = −iΠ0∂
i∂tδ(x) + iΠ1ε

ij∂jδ(x)− iΠ3ε
ijEk∂k∂jδ(x) , (A.14)

〈J i(x)J t(0)〉 = −iΠ0∂
i∂tδ(x)− iΠ1ε

ij∂jδ(x)− iΠ3ε
ijEk∂k∂jδ(x) , (A.15)

〈J i(x)J j(0)〉 = iΠ0δ
ij∂2

t δ(x) + iΠ1ε
ij∂tδ(x) + iΠ2

(
δij~∂2 − ∂i∂j

)
δ(x)

+iΠ3

(
εjkEi + εikEj

)
∂k∂tδ(x) , (A.16)
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with

Π0 = 2
δα

δE2
+O (ε) , (A.17)

Π1 =
ν

2π
− f1

B
~∂2 +O

(
ε3
)
, (A.18)

Π2 = α′′ + f ′′0 − 2
f2

B2
~∂2 +O

(
ε3
)
, (A.19)

Π3 = 2
δα′

δE2
+O (ε) . (A.20)

Notice that Π1 is actually the Hall conductivity σH defined in the usual way. The above

expressions of 2-point functions are usually written in momentum space, where ∂t → −iω,

∂i → iki and δ(x)→ 1.

B Near-boundary vectorial structures and diffeomorphism

There are additional vectorial structures we can make up using the boundary fields N̄ , N̄i,

Ḡij and φ̄. Their diffeomorphism transformations at the boundary are

δ
(
ε̄jk∂jN̄k

)
= ξ̄µ∂µ

(
ε̄jk∂jN̄k

)
+
(
ε̄jk∂jN̄k

)
∂tξ̄

t

+ε̄jk∂j

(
Ḡkl∂tξ̄

l
)

+ 2ε̄jkN̄k∂j σ̄ , (B.1)

δ

(
ε̄jkN̄k∂j log

N̄

φ̄

)
= ξ̄µ∂µ

(
ε̄jkN̄k∂j log

N̄

φ̄

)
+

(
ε̄jkN̄k∂j log

N̄

φ̄

)
∂tξ̄

t

+

(
ε̄jkḠkl∂j log

N̄

φ̄

)
∂tξ̄

l + (z −∆φ)ε̄jkN̄k∂j σ̄ , (B.2)

δ

(
ε̄jkḠki∂j log

N̄

φ̄

)
= ξ̄µ∂µ

(
ε̄jkḠki∂j log

N̄

φ̄

)
+

(
ε̄jkḠkl∂j log

N̄

φ̄

)
∂iξ̄

l

+(z −∆φ)ε̄jkḠki∂j σ̄ . (B.3)

δ

(
φ̄
ḠjkN̄jN̄k

2N̄

)
= ξ̄µ∂µ

(
φ̄
ḠjkN̄jN̄k

2N̄

)
+

(
φ̄
ḠjkN̄jN̄k

2N̄

)
∂tξ̄

t

+

(
φ̄
N̄k

N̄

)
∂tξ̄

k + (2− z + ∆φ)σ̄

(
φ̄
ḠjkN̄jN̄k

2N̄

)
, (B.4)

δ

(
φ̄
N̄i

N̄

)
= ξ̄µ∂µ

(
φ̄
N̄i

N̄

)
+

(
φ̄
N̄k

N̄

)
∂iξ̄

k

+
φ̄

N̄
Ḡik∂tξ̄

k + (2− z + ∆φ)σ̄

(
φ̄
N̄i

N̄

)
. (B.5)

Here ε̄ij is the Levi-Civita tensor associated with the boundary metric Ḡij .

C Calculating the gravitational Chern-Simons term

In this appendix, we add a “¯” to an index to denote the corresponding tangent space (viel-

bein frame) index. We extend the tangent space to 4 dimensions to include the temporal

direction as well.
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C.1 Bulk spin connection

We define the vielbein 1-form in the bulk as:

E t̄ = Ndt , (C.1)

E ī =
L

r
eīi
(
N idt+ dxi

)
, (C.2)

E r̄ =
L

r
(N rdt+ dr) , (C.3)

where H̄ij ≡ δīj̄e
ī
ie
j̄
j and H̄ ij is the matrix inverse of H̄ij . This is compatible with the

gauge condition (3.11)–(3.13), with Υ(r) = L/r. So far we have no identified eīi with the

boundary vielbein eai . It is a bulk quantity and a function of r in general. ε̄ij is the Levi-

Civita tensor defined via H̄ij . In this section we defined the spatial covariant derivative ∇i
is the one compatible with the spatial metric H̄ij : ∇kH̄ij = 0 and the indices involved in

∇i only run through x and y. The spin connection 1-form ΩM̄N̄ = ΩM̄N̄
M dxM is defined as

dEM̄ + ΩM̄
N̄ ∧ E

N̄ = 0 , ΩM̄N̄ = −ΩN̄M̄ . (C.4)

Components of the spin connection can be computed using these two equations. The

results are

Ωt̄̄i
t = − 1

2N

(
L

r

)[
eīiN

j∇jN i + H̄jkN
keīi∇iN j +N reīi∂r

(
H̄ijN

j
)

+N reīi∂iN
r

−eīiN j∂tH̄ij −
2

r
N reīiN

i

]
+
r

L
eīi∂iN , (C.5)

Ωt̄̄i
j = − 1

2N

(
L

r

)[
eīi∇jN i + eīi∇i

(
H̄jkN

k
)

+N reīi∂rH̄ij − eīi∂tH̄ij −
2

r
N reīj

]
, (C.6)

Ωt̄̄i
r = − 1

2N

(
L

r

)[
eīi∂rN

i + eīi∂iN
r
]
, (C.7)

Ωt̄r̄
t = − 1

2N

(
L

r

)[
H̄ijN

i∂rN
j +N i∂iN

r + 2N r∂rN
r − 2

r
(N r)2

]
+
r

L
∂rN , (C.8)

Ωt̄r̄
i = − 1

2N

(
L

r

)[
H̄ij∂rN

j + ∂iN
r
]
, (C.9)

Ωt̄r̄
r = − 1

N
∂r

(
L

r
N r

)
, (C.10)

Ωīj̄
t = eīk∂te

j̄
k −

1

2
eīiej̄j∂tH̄ij +

1

2
eīiej̄j

(
H̄ik∇jNk − H̄jk∇iNk

)
, (C.11)

Ωīj̄
k = eīl∇kej̄l , (C.12)

Ωīj̄
r = eīk∂re

j̄
k −

1

2
eīiej̄j∂rH̄ij = −ej̄k∂reīk +

1

2
eīiej̄j∂rH̄ij , (C.13)

Ωīr̄
t =

1

2
eīi∂rN

i − 1

2
eīi∂iN

r +
1

2
eīiN j∂rH̄ij −

1

r
eīiN

i , (C.14)

Ωīr̄
j =

1

2
eīi∂rH̄ij −

1

r
eīj , (C.15)

Ωīr̄
r = 0 . (C.16)
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Using Ωīj̄
M = 1

2ε
īj̄
(
εk̄l̄Ω

k̄l̄
M

)
, Ωīj̄

M can also be written as

Ωīj̄
t = εīj̄

(
1

2
εk̄l̄e

k̄j∂te
l̄
j −

1

2
ε̄klH̄jl∇kN j

)
, (C.17)

Ωīj̄
k = εīj̄

(
1

2
εk̄l̄e

k̄j∇kel̄j
)

= εīj̄
(

1

2
εk̄l̄e

k̄j∂ke
l̄
j −

1

2
ε̄jl∂jH̄lk

)
, (C.18)

Ωīj̄
r = εīj̄

(
1

2
εk̄l̄e

k̄j∂re
l̄
j

)
. (C.19)

C.2 Pontryagin density in the bulk

The gravitational Chern-Simons term:

SPY =
cg

192π

∫
d4x
√
−G(4) (∗RR) , (C.20)

where the Pontryagin density is

∗RR = ∗RMNPQRNMPQ ,
∗RMNPQ =

1

2
εPQRSRMN

RS . (C.21)

Here RMNPQ and G(4) are the Riemann tensor and determinant constructed from the full

4-dimensional metric. The curvature 2-form is defined as

RM̄N̄ = dΩM̄
N̄ + ΩM̄

P̄ ∧ ΩP̄
N̄ . (C.22)

The Pontryagin current 3-form is defined as

P = ΩM̄
N̄ ∧ dΩN̄

M̄ +
2

3
ΩM̄

N̄ ∧ ΩN̄
P̄ ∧ ΩP̄

M̄ = Pijdt ∧ dxi ∧ dxj + . . . ∧ dr , (C.23)

where the part denoted by . . . is not relevant to our calculation, so we will keep denoting

it as . . . in the following. Taking exterior derivative on this equation, we have

dP =
{
−∂r

(
εijPij

)
+ ∂µ (. . .)

}
dt ∧ dx ∧ dy ∧ dr .

On the other hand the Pontryagin density can be expressed as

dP =
1

2

√
−G(4) (∗RR) dt ∧ dx ∧ dy ∧ dr .

Thus we arrive at √
−G(4)∗RR = −2∂r

(
εijPij

)
+ ∂µ (. . .) . (C.24)

This shows that the gravitational Chern-Simons term is a boundary term as well:

SgCS =
cg

96π

∫
r=0

d3x
√
H̄ε̄ijP̄ij , (C.25)

where P̄ij is the boundary limit of Pij and it will be computed explicitly in the next

subsection.
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C.3 Pontryagin current at the boundary

We now compute P̄ij at the boundary. Using the near-boundary behaviors of the bulk fields:

N ⇒
(
L

r

)z
N̄ , N I ⇒

(
L

r

)0

N̄ I , H̄ij ⇒ Ḡij ,

the condition N̄r = 0, and identify eīi at the boundary with the boundary vielbein, the

near-boundary behavior of the spin connection is

Ωt̄̄i ⇒
(
L

r

)1−z
αīi
(
dxi + N̄ idt

)
+

(
L

r

)z−1 (
eīi∂iN̄

)
dt+ . . . dr , (C.26)

Ωt̄r̄ ⇒
(
L

r

)1−z
βi
(
dxi + N̄ idt

)
+

(
L

r

)z−1 (
∂rN̄

)
dt , (C.27)

Ωīr̄ ⇒ γ īi
(
dxi + N̄ idt

)
+

(
1

2
eīi∂rN̄

i

)
dt , (C.28)

Ωīj̄ ⇒ 1

2
εīj̄
(

Ωtdt+ Ωkdx
k
)

+ . . . dr , (C.29)

where

αīi = − 1

2N̄
eīj
(
∇iN̄j +∇jN̄i − ∂tḠij

)
,

βi = − 1

2N̄
Ḡij∂rN̄

j ,

γ īi =
1

2
eīj∂rḠij −

1

r
eīi ,

Ωt = ε̄ij̄e
īl∂te

j̄
l − ε̄

ij∂iN̄j ,

Ωk = ε̄ij̄e
īl∇kej̄l = ε̄ij̄e

īl∂ke
j̄
l − ε̄

ij∂iḠjk ,

and now the spatial covariant derivative ∇i is the one compatible with the spatial metric

Ḡij : ∇kḠij = 0 and the indices involved in ∇i only run through x and y. Then the relevant

term in the Pontryagin current is given by

Pij ⇒
( r
L

)2(z−1)
P̄sig
ij + P̄reg

ij , (C.30)

where

P̄sig
ij = −αīi

(
∂tα

ī
j

)
+ αīi∂j

(
αīkN̄

k
)
− αīkN̄k

(
∂jα

ī
i

)
− 1

2
ε̄ij̄α

ī
iα
j̄
jΩt + ε̄ij̄α

ī
iα
j̄
kN̄

kΩj

−βi (∂tβj) + βi∂j

(
βkN̄

k
)
− βkN̄k (∂jβi)− 2αīiβj

(
γ īkN̄

k +
1

2
eīk∂rN̄

k

)
+2αīkN̄

kβjγ
ī
i + 2βkN̄

kαīiγ
ī
j − (i↔ j) , (C.31)
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P̄reg
ij =

[
αīi

(
∂je

īk
)
− eīk

(
∂jα

ī
i

)
+ ε̄ij̄α

ī
ie
j̄kΩj + 2eīkβjγ

ī
i

] (
∂kN̄

)
+ αīie

īk
(
∂j∂kN̄

)
+
[
−γ īi

(
∂jγ

ī
k

)
+ γ īk

(
∂jγ

ī
i

)
− ε̄ij̄γ īiγ

j̄
kΩj

]
N̄k − γ īiγ īk

(
∂jN̄

k
)

+ γ īi

(
∂tγ

ī
j

)
+

1

2
ε̄ij̄γ

ī
iγ
j̄
jΩt −

1

4
[Ωt (∂iΩj) + Ωi (∂jΩt − ∂tΩj)] + βi

(
∂j∂rN̄

)
−1

2
γ īie

ī
k

(
∂j∂rN̄

k
)

+
1

2

[
−γ īi

(
∂je

ī
k

)
+ eīk

(
∂jγ

ī
i

)
− ε̄ij̄γ īie

j̄
kΩj

] (
∂rN̄

k
)

+
(

2αīiγ
ī
j − ∂jβi

) (
∂rN̄

)
− (i↔ j) , (C.32)

and ī index in terms such as αīi

(
∂tα

ī
j

)
are understood to be summed over, which is the

same as δīj̄α
ī
i

(
∂tα

j̄
j

)
.

There are simplifications that can dramatically reduce the number of terms in the above

expressions. First, we assume z > 1, then P̄sig
ij completely drops off near the boundary

r → 0. This can also be understood by thinking of the non-relativistic limit c → ∞. We

can restore the dependence of speed of light c by just replacing N by cN , hence N̄ by cN̄ in

the above expressions. Both αīi and βi are proportional to N̄−1, thus are of order O(c−1).

Every term in P̄sig
ij is either quadratic in αīi or βi, or proportional to a product of them.

Thus we have

P̄sig
ij ∼ O

(
1

c2

)
, P̄ij = P̄reg

ij +O

(
1

c2

)
.

Of course when z = 1, corresponding to the Lorentzian case, it gives a finite contribution,

but for simplicity, we will not consider this case here. The second simplification comes

from adding the Gibbons-Hawking term (4.34). As we have argued before, it completely

removes all ∂r terms without changing any other term. Thus all ∂r terms in P̄reg
ij , including

all terms containing βi and γ īi , drop off.19 By using the identity

ε̄ij̄e
īl∇kej̄l = −ε̄jleīj∇keīl

the first line in the expression of P̄reg
ij can also be simplified. At the end, we have

ε̄ijP̄ij = ε̄ijḠkl
{(
∇kN̄

)
∇j
[

1

N̄

(
∇iN̄l +∇lN̄i − ∂tḠil

)]
−
(
∇j∇kN̄

) 1

N̄

(
∇iN̄l +∇lN̄i − ∂tḠil

)}
− 1

2
ε̄ij [Ωt∂iΩj + Ωi (∂jΩt − ∂tΩj)] +O (∂r) , (C.33)

for z > 1.

19The 1
r
eīi term in γ īi is a consequence of ∂r hitting L

r
, thus is part of the ∂r terms that are removed by

the Gibbons-Hawking term.
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and Their Holographic Hořava Gravity Duals, Phys. Rev. Lett. 110 (2013) 081601

[arXiv:1211.0010] [INSPIRE].
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Lett. 104 (2010) 181302 [arXiv:0909.3525] [INSPIRE].
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[186] J. Belloŕın and A. Restuccia, On the consistency of the Hořava theory, Int. J. Mod. Phys.
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