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ABSTRACT: In this article, we shall develop and formulate two novel viewpoints and prop-
erties concerning the three-point functions at weak coupling in the SU(2) sector of the
N = 4 super Yang-Mills theory. One is a double spin-chain formulation of the spin-chain
and the associated new interpretation of the operation of Wick contraction. It will be re-
garded as a skew symmetric pairing which acts as a projection onto a singlet in the entire
SO(4) sector, instead of an inner product in the spin-chain Hilbert space. This formalism
allows us to study a class of three-point functions of operators built upon more general
spin-chain vacua than the special configuration discussed so far in the literature. Fur-
thermore, this new viewpoint has the significant advantage over the conventional method:
In the usual “tailoring” operation, the Wick contraction produces inner products between
off-shell Bethe states, which cannot be in general converted into simple expressions. In con-
trast, our procedure directly produces the so-called partial domain wall partition functions,
which can be expressed as determinants. Using this property, we derive simple determinan-
tal representation for a broader class of three-point functions. The second new property
uncovered in this work is the non-trivial identity satisfied by the three-point functions with
monodromy operators inserted. Generically this relation connects three-point functions of
different operators and can be regarded as a kind of Schwinger-Dyson equation. In partic-
ular, this identity reduces in the semiclassical limit to the triviality of the product of local
monodromies 21§93 = 1 around the vertex operators, which played a crucial role in pro-
viding all important global information on the three-point function in the strong coupling
regime arXiv:1312.3727. This structure may provide a key to the understanding of the
notion of “integrability” beyond the spectral level.
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1 Introduction

Among the multitude of quantities investigated for the understanding of the AdS/CFT
duality [1-3], the three-point functions of the gauge-invariant composite operators in the
N = 4 super Yang-Mills theory in the weak and the strong coupling regimes are perhaps
the most basic objects that directly probe the correspondence of dynamical interactions in
the prototypical setting. In particular, in the simplest sector called the “SU(2) sector” [4, 5],
there have been substantial progress in both the weak and the strong coupling regimes in
the past few years.

For the weak coupling perturbative computation,' a systematic procedure called “tai-
loring” has been developed [9-13], and with a useful technical improvement [14], a special

1For earlier pioneering investigations, see [6-8].



class of three-point functions for non-BPS operators have been expressed explicitly in
terms of Slavnov determinants [15]. Furthermore, the semi-classical limit of such three
point functions with large charges were successfully evaluated in a remarkably compact
form [11, 16-18].

On the other hand, the strong coupling computation was performed using the string
theory in AdSs x S3 spacetime [20], with the vertex operators possessing the same global
quantum numbers as the operators in the “SU(2) sector” considered at weak coupling.
Since the canonical quantization of the string in such a curved space is not available at
present, the saddle point approximation was used, which is valid for the case of vertex
operators carrying large charges. Although the precise form of the vertex operators nor the
exact saddle point configuration were not known, the judicious use of classical integrability,
with a certain natural assumption, was powerful enough to produce explicit answers for
the desired three-point functions. Surprisingly, even before taking any limits, the results
exhibited structures rather similar to those at weak coupling. On the other hand, upon
taking the so-called Frolov-Tseytlin limit, in which the strong and the weak coupling results
were expected to agree, small discrepancies were observed, the understanding of which is
left as a future problem.

Evidently, besides making the comparison of the results, the principal goal of these
investigations is to uncover common concepts and structures threading the both sides of the
duality and understand how they are realized to make the duality work. For this purpose,
it is desirable to be able to treat the both sides in as much the same way as possible and
try to extract the key principle. In this article, we shall present two new significant results
in the weak coupling analysis for such a purpose, which are actually hinted by the strong
coupling investigation of [20-23]. Let us now briefly describe them one by one.

The first result concerns the computation of the three-point functions much more
general than those treated so far in the existing literature. As is customary, let ®; (i =
1,2,3,4) be the four of the six adjoint scalar fields forming the SU(2) sector and denote
their complex combinations as

Z =® +idy, Z == —id,y, -
X = ®3+iDy, X =&y —id,. (L)
In the systematic investigation initiated in [9], two of the three operators interpretable
as XXX/ spin chains were taken to be built upon the pseudo-vacuum Tr (Z"), and the
remaining one was built upon Tr(Z%). As long as one identifies Z and Z as “ground
state” up-spins and X and X as down-spins representing the excitations, such a choice of
operators were essentially unique in order to produce non-extremal correlators.

In the work of [20], however, a detailed analysis has been made of the operators built
upon more general “vacuum” states where an arbitrary linear combination of ®; is re-
garded as the “up-spin”. This study revealed that the natural way to characterize the
general operators so constructed is by a pair of two-component vectors n and 7, termed
“polarization spinors”, associated to each of the SU(2) factors of the global symmetry group
SO(4) =2 SU(2),xSU(2)g. By applying this characterization to the string vertex operators,



three-point functions of operators carrying general polarization spinors were computed at
strong coupling.

Since the analysis of the general operators mentioned above was inspired in the spin-
chain picture of the operators, one would expect that similar generalization can and should
be done at weak coupling. Clearly this would be important in the comparison with the
strong coupling results. Unfortunately, however, there are apparent problems to overcome.
One is that when the three operators are built on different “rotated vacua”, it is non-trivial
to perform the Wick contractions keeping the spin-chain interpretation intact. Another
difficulty is that, for the general configurations under consideration, (off-shell|off-shell) inner
products produced through the usual tailoring procedure cannot in general be converted
into (on-shell|off-shell) form by the known trick [14]. This hampers the expressions in terms
of tractable determinants.

As will be explained fully in sections 2 and 3, these problems will be neatly solved by
(i) the “double spin-chain” formulation of the conventional spin-chain and (ii) the novel
interpretation of the Wick contraction as skew-symmetric singlet paring acting on the dou-
ble spin-chain Hilbert space. These ideas allow us to characterize the general operators by
a pair of polarization spinors and moreover naturally factorize the three-point functions
into the product of SU(2); and SU(2)p factors, just as it happened for the wave function
part of the strong coupling computation [20]. The most important advantage, however,
is the fact that under the new singlet pairing interpretation, the Wick contraction pro-
cedure produces only the matrix elements of the B(u;) components of the monodromy
matrix, without the appearance of C(u;) components. Therefore the building blocks of
the three-point functions take the form of the so-called partial domain wall partition func-
tion (pDWPF) [16, 17, 19, 24-26] and immediately possess determinant expressions. In
particular, for certain class of correlators the expression in terms of the sum of pPDWPF’s
collapses into a single term and yields a remarkably simple result.

Now let us move on to the second new result, which again is motivated by the structure
of the strong coupling computations [20-23]. One of the crucial difficulties in the strong
coupling computation is that one does not know the exact three-pronged saddle point so-
lution with which to evaluate the three-point function. In the framework of the classical
integrable system, the most important available information is the form of the solution of
the auxiliary linear problem (ALP) in the vicinity of the vertex operator insertion point z;,
which can be approximated? by the saddle point configuration for the two-point solution.
Differently put, the local monodromy operator €2; and its linearly independent eigenfunc-
tions i+ of ALP around z; are the only available secure yet local data. It is clear that
in addition one definitely needs some global information to capture the properties of the
three-point function. As was demonstrated in the previous works [20-23], such a global
information was provided by the triviality of the total monodromy, namely ;€53 = 1.
This seemingly weak constraint turned out to be surprisingly powerful and played a key role
in computing the Wronskians of the eigenfunctions (i, j+), etc. with which the three-point
functions are constructed.

2Actually, as far as the evaluation of the wave function for the three-point function is concerned, the
slight deviation from the two-point function near the puncture contains a crucial information [20].



This experience strongly suggests that one should formulate a similar monodromy
relations for the three-point functions at weak coupling as well. The corresponding quan-
tities are the three-point functions with three local monodromy operators inserted. As
will be explained in section 5, non-trivial relations, which contain certain constant shifts
of the spectral parameter, can be obtained through the use of the so-called “unitarity”
and “crossing” relations for the Lax operator. Generically such monodromy identity re-
lates three-point functions composed of different operators and hence may be regarded as
a kind of Schwinger-Dyson equation. As a simple application, one can obtain the coun-
terpart of the total trivial monodromy relation 215823 = 1 in the semi-classical limit of
the large spectral parameter, where the constant shifts can be ignored. Just as in the case
of strong coupling, such a relation provides vital information in the computation of the
three-point functions, the details of which will be fully described in a separate communi-
cation [27]. In any event, this structure may provide a key to the understanding of the
notion of “integrability” beyond the spectral level, especially if it can be generalized to
higher loop correlators.

The organization of the rest of the article is as follows: in section 2, we will begin
by explaining the double spin-chain formalism for the SU(2) sector and introduce the
general rotated vacua and construct the non-BPS operators built upon such vacua. Then
in section 3, we will formulate the new group-theoretical view of the Wick contractions of
constituent fields and the composite operators made out of them, which is natural for the
double spin-chain formulation. With theses preparations, we will describe in section 4 how
one can compute the three-point functions which are much more general than the ones
considered so far in the literature. The advantage of our new formalism becomes apparent
in this computation in that the correlators factorize into the SU(2)z- and the SU(2)p-
pieces and will be naturally expressed in terms of the determinants which describe the
partial domain wall partition functions. The new global monodromy relations for the
three-point functions will be derived in section 5. In the double spin-chain formalism,
this relation will also enjoy the factorized properties. Finally in section 6, we will discuss
future directions and briefly comment on a direct computation of the semi-classical three-
point functions without the use of the determinant formulas, being prepared as a separate
treatise [27]. Two short appendices are provided to explain the kinematical dependence of
the three-point functions and the general form of the monodromy relation.

Note added. We acknowledge that a part of the subjects discussed in this paper is also
investigated independently in the recent paper by Y. Jiang, I. Kostov, A. Petrovskii and
D. Serban [28].

2 Double spin-chain formalism for the SU(2) sector

As described in the introduction, one of the two major aims of this paper is to develop a
scheme in which the three-point functions of a more general class in the SU(2) sector can be
computed systematically. This is of value since such a computation has already been done
in the strong coupling regime [20] and it is important to be able to make a comparison of



their general structures. In this section, we shall explain the basic idea of this formalism,
to be called the “double spin-chain formalism”.

2.1 Scalar fields as tensor products of two spins

Let us begin with the description of a new way of mapping each of the basic fields
Z,7Z,X,X of the “SU(2)” sector to a tensor product of two spin-chain states. In the
previous approach [9], one makes the identifications of the basic up- and down- spin pair
as (Z,X) = (110,14), (2, X) = (I1),]4)) and (Z,X) = (|1),]4))* Thus, although the
content of these three pairs are obviously different, the spin chains composed of them are
regarded as the same type of SU(2) spin chain. This somewhat redundant characterization
of the constituents of the spin chains makes it difficult to construct the correlators of three
operators forming spin chains where their relevant SU(2) groups are embedded in more
general ways in the total symmetry group SO(4).

A natural and simple solution to this problem is to make use of the fact that the basic
fields (Z,Z, X, X) carry distinct charges with respect to SU(2);,xSU(2)g (22S0O(4)). This
is best expressed by assembling them into the 2 X 2 matrix

Z X
Dz = (—X Z>a , (2.1)

a

which transforms as
d - U dUR, (2.2)

where Uy, € SU(2)r and Ugr € SU(2)g. This means that these fields carry left and the
right charges (L, R) of the form

Z: (+1/2,+1/2), X (+1/2,-1/2), 03
Z:(-1/2,-1/2), —X:(-1/2,4+1/2). '

Thus, from the representation-theoretic point of view, it is natural to map each of these
fields to a tensor product of two spin-states in the following way:

Z= M@ Mr» Xe=Mreldg,
Z=1relbg, X =@ Mg,

This evidently leads to the double spin-chain formalism, which will be much more versatile

(2.4)

than the conventional single spin-chain treatment. As an example, consider a general linear
combination of the four fields, which can be written as

P-®=) Py, (2.5)

a,a

where P is a 2 x 2 matrix. Then, clearly this quantity maps to the double spin-chain
state as

P& P, @D p+ P21, @0 p+ PP L), @ N e+ P2, @1 0s.  (26)

3In the “tailoring” formulation [9], the pair (Z, X) is not needed for the construction of three distinct

spin-chains making up the three-point functions.



2.2 General rotated vacua

Next let us turn to the construction and the description of the general spin-chains. To do
this, we must first prepare a general vacuum state upon which the SU(2) magnon excitations
are created. The most transparent way to construct such a general vacuum state is to
make an arbitrary SU(2); x SU(2) transformation to the conventional BPS vacuum state
Tr (Z"), where ¢ is the length of the spin-chain. Under the transformation (2.2), Z itself
turns into

Z = (®)11 — (U®Ugr)11 = (UL)1°®aa(Ur)™1 (2.7)

Comparing this with the general linear combination P*®.;, we learn that P%® can be
written as a product

Pad —

o (2.8)
n® = (Up)®, at = (Ur)™

Hereafter, we use the notations where the indices a and a are lowered and raised by the €
tensors €qp, €45, €% ¢4 with the convention €1 = 1, €2 = 1. This means e,,e’® = —045 and
eape® = 2, etc. For instance, Py is defined as Poz = eabe&BPbi’. Then it is easy to see that
P9 is nilpotent in the sense that P%“P,; = naﬁaeabeagnbﬁi’ =0.

Now because of the structure (2.8), the combination P - ® is mapped to the spin state

P-®—n),®n)g, (2.9)
where
|n>LEn1|T>L+n2|¢)L, ’ﬁ>REﬁl|T>R+ﬁ2|¢>R- (2.10)

This makes it clear that the two dimensional vectors n® and i characterize the scalar fields

completely. Such vectors were introduced in [20] and were termed “polarization spinors”.*

It is now easy to see that the rotated BPS vacuum
Tr ((P : @)@) (2.11)
is mapped to the spin-chain state of the form
Tr ((P : @)4) — nf), ® %), (2.12)
where [nf); and |n%) are given by

’n£>L =)@ @), |ﬁ€>R =Nr®@ - ®[0)g . (2.13)
¢ ¢

“Note that the notation for the polarizations is slightly different from the one in [20]: in [20], we denoted
the SU(2)1 polarization spinor by n and SU(2)r polarization spinor by n.



For later convenience, we impose the following normalization conditions on the polarization
spinors:

nm, =1, a%ng=1, (2.14)
where the “conjugate spinors” 1 and a are defined by
i, = ()", #= (/%" (2.15)

The condition (2.14) determines the normalization of the operator (2.11) up to a phase.
The phases of the operators only affect the overall phase of the structure constant, which
we will not discuss in this paper.

2.3 Non-BPS operators as excitations on rotated vacua

We will now express non-BPS operators as excited states on the general rotated vacua
constructed in the previous subsection.

The strategy is straightforward. We will first consider the excited states built upon
the conventional vacuum | 1¢) in both the left and the right sectors by the algebraic Bethe
ansatz procedure. Explicitly, the states obtained are

w;t), = B(u1) -+ Blun)|1Y) . a1 g = B(i) - Blig) |1 g, (2.16)

where the sets of rapidities u and @ are assumed to satisfy the Bethe equation. As is
customary, the magnon creation operator B(u) is defined through the monodromy matrix as

Qu) = Ly(u— 01)Lo(u — 63) - - Ly(u — 6;) = (A(U) B(“)) :

C(u) D(u)
u+iSE Sk
Li(u) = ( isig u—iS§> !

where S¥ denotes the SU(2) spin operator acting on the k-th site of the spin chain and

(2.17)

Lx(u) is the Lax operator associated to site k. The extra parameters 6’s introduced here
are called the inhomogeneities. To compute the tree-level correlation functions, we do
not need such parameters and they should be simply set to zero. However, as discussed
in [12, 13, 18, 29|, the inhomogeneities are known to be useful for discussing the loop
corrections to the three-point functions. Therefore, we will keep them in the following
discussions.

Now in order to obtain the state which can be interpreted as an SU(2) spin-chain, we
may excite either the left sector or the right sector, but not both. If we excite both, such
a state cannot be obtained by any embedding of SU(2) in SO(4). Therefore, we have the
following two types of excited states, which we call type I and type II:

Type I: |u;1), @ (1),  TypeIl: |1, @ |@;1) . (2.18)

It is important to note that they cannot be related by an SO(4) rotation since there is no
transformation within SO(4) which interchanges SU(2);, and SU(2)g.



Once we have these basic states, we can now rotate them by an arbitrary SU(2); x
SU(2)  transformation to produce general excited states. A very useful way to parametrize
the SU(2)r, and SU(2) g transformations is as follows. As shown previously the polarization
spinors characterize the rotated fields precisely. Therefore one can specify, for example, an
element g, € SU(2);, by the equation

Oal D) =), (2.19)

up to a phase coming from the U(1) rotation h which leaves |1) invariant. Since we shall
ignore such a phase in this work, what is relevant is actually the parametrization of the
coset SU(2)/U(1), the element of which will be denoted by gn, where

On = Gnh, gn € SU(2), ¢n€SU(2)/U(1), heU(1). (2.20)

Among the various parametrizations of SU(2)/U(1), the one which will be most useful
is the so-called the coherent state parametrization. In the spin 1/2 highest weight repre-
sentation we are adopting, the useful expression for the coset element g, is obtained by the

SU(2) Baker-Campbell-Hausdorff formula in the form [30]
gn — e—§S++C57 — ezS,e— ln(1+\z|2)336—25+ , (221)

_ 6_5,5‘+eln(1+|z\2)53€2’57 (2.22)

where z = (¢/|¢|) tan |¢| and S;’s are the generators of the global SU(2), with the convention
Sy =51 £iS,. Since |1); corresponds to n® = (1,0)!, applying (2.21) we get

woa (1) - (1) (2.23)
In 0 T |Z’2 . . .
Similarly, coset elements corresponding to | 1)z, |1),|{)z are characterized by
wlp =Mz,  &Nr=Mg  Glg=IMz, (2.24)

and the corresponding polarization spinors can be computed similarly, using (2.21) or (2.22)

where appropriate, as®

a a
1 1 1 -z
a __ =a __
t 1+ 2] <Z> T L+ [2]? ( 1 ) 7 (225)

=

a a
. 1 1 . 1 —Z
ﬁa — N , a _ . 2.26

\/1+|2|2<z> \/1+|2|2< 1 ) (2.26)
With this preparation, it is now straightforward to write down the general excited states
of type I and II built upon the rotated vacuum |[n) ® |af) as

Type I: [u;n’), @ i),  Type Il: [n°), @ |a;7%) g, (2.27)

5We redisplay the result for n® as well for convenience.



where |u;n®); and |@;n), are obtained by the SU(2), and SU(2)g rotations dis-
cussed above:
jusn®) ) = galust’), |ai’) p = Galat) g - (2.28)

Now it is well-known that, when the rapidities w and @ are all finite, the on-shell Bethe
states constructed upon the up-spin vacuum (2.16) satisfy the highest weight condition

Sylustfy, =0,  Sylasth), =0. (2.29)

Upon such states, the actions of g, and gz simplify because the last factor in (2.21) becomes

unity. As a result, we obtain the following expressions:®

) . oM )
lu;n®), = <1+|Z|2> e lwtt)

, 1 0/2—M o ,
~ . ZS_ | ~.
|u,n>R—<1+|2|2> et g

(2.30)

We shall see that the representations (2.30) will be quite useful when we evaluate the
three-point functions in section 4.

3 Wick contraction as skew-symmetric singlet pairing

Having prepared the operators interpretable as general classes of spin-chains built upon
rotated vacua, we now discuss how to perform the Wick contractions of such objects in an
efficient manner based on a group-theoretical point of view.

3.1 Wick contraction for general constituent fields

To begin, let us discuss the Wick contraction of the constituent fields. At the tree level,
the contraction rules for the basic complex scalar fields are given by

772=0, ZX=0, ZX=0, ZZ=1, etc. (3.1)

It will be most useful to regard these rules as those for the elements of the matrix @4
given in (2.1). It is easy to check that the above rules are neatly summarized as

Pua Py = €aveyp - (3.2)

 EN—

Now recall that the general linear combination of these fields can be written as
PY®,; = n*n?d,; (3.3)

where we used the factorized expression of P% in terms of the polarization spinors (2.8).
Then, using (3.2) and (3.3), the contraction of two general combinations denoted as F; =
P, - ® and F; = Py - ® can be immediately computed as

ng = (l’l(fl‘lza) (ﬁ?ﬁga) . (3.4)

5The idea to characterize the rotated state in a similar way was proposed previously in [31].
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Figure 1. The wick contraction and the singlet pairing (3.9). The white blob denotes the singlet
state (1|. Here we only depicted SU(2)r sector.

This formula reveals that in terms of the polarization spinors the Wick contraction is
nothing but the operation of forming singlets in both the SU(2)z, and the SU(2)g sectors.

We now would like to transplant this structure in the spin-chain language. For this
purpose, it is convenient to write the up and the down spin state collectively as |a) with
the definition”

a): |1)= ,  12) = ,
@: =11, 2=y .
(alb) = Ogp -
Then, from the definition of |n) given in (2.10) we have
w)=nla), w0 = (aln). (3.6)
Let us now introduce the singlet projection operator (1| in the following way:
(1] = easlal © 0] (3.7)

When acted on the state of the form |n;) ® |na), it projects out the singlet in the manner
(1] (In1) @ [n2)) = eapfalni) (bIn2) = eapning = ningq . (3-8)

Therefore the contraction F} Fs given in (3.4) is reproduced as

By Fy = (A (In)p @ [n2) ) (A (I01) p @ [02) ) (3.9)

This relation is expressed pictorially in figure 1. Note that each factor on the right hand
side of (3.9) is anti-symmetric under the interchange of two spin states, unlike the ordinary
inner product used in the previous works [9-11, 13, 14, 18].

It should be remarked that the appearance of the singlet state in the expression (3.9)
is quite natural from a physical point of view: every Feynman diagram, including the ones
with vertices, can be viewed, from an appropriate direction, as a virtual process in which the
fields annihilate into the vacuum. Since the vacuum is not charged under any symmetry, it
belongs to the singlet representation for all the symmetry groups. Thus, different Feynman
diagrams account for different ways of producing the singlet representation starting from
a given field-configuration. The simplest way to achieve this is to take a pair of fields and

7Of course we do this for both the left and the right sectors. Here for simplicity we suppress the subscripts
L and R, as the structure is common.

~10 -



project it to the singlet representation, which is exactly what (3.9) does. This argument
suggests that the singlet state will play an important role also in other sectors® and at
higher-loop order, although the expression will certainly be more complicated than (3.9).

3.2 Wick contraction for two composite operators

Let us next express the Wick contraction between two composite operators O; and Os
using the skew-symmetric inner product defined above. In what follows, we denote the
spin-chain states corresponding to the operators ©; and Oy abstractly as”

01— |01);, ®|01) g, O3 [02); ®|02) .- (3.10)

As we are working in the large IV, limit, the unsuppressed Wick contractions between two
composite operators are of a special type, an example of which is given by

tr(---XZ)  tr(ZX---). (3.11)
i —

The structure should be clear: the allowed contractions are between the rightmost field in
01 with the leftmost field in O and so on, as indicated. Obviously the two spin chains
must be of the same length to be non-vanishing under the contractions.

This type of contraction rule is expressed in the spin-chain language by using the fol-
lowing skew-symmetric inner product between two states of the same length, |¥;) and |¥s):

L

<|‘I’1> ; “I’2>> = <H <1k;£+1k’> |U1) @ |Pq) . (3.12)

k=1

Here ( is the length of the spin chain and (1,41—k| is the state which projects out the
singlet part made out of the spin state at k-th site of |¥;) and the one at the (¢ + 1 — k)-th
site of |Wg). The operation should be quite clear from figure 2. In terms of the bracket
defined in (3.12), the contraction between O; and Oz can be expressed as

01 02 = (|01),,102))(|O1) g, O2) ) (3.13)

As is manifest in (3.13), the Wick contraction between two operators factorizes into the
part coming from the SU(2); chain and the part coming from the SU(2)gr chain. This
factorization property continues to hold for the tree-level three-point functions, since they
are computed through the contractions between the composite operators in the manner
described above.

8 Although our motivation was to provide a new interpretation for the Wick contraction of the fields
forming a spin chain, a very similar idea of invariant pairing was introduced in a different context, namely
the mapping from CFTy4 to TFT5 in [32]. Thieir description is likely to be quite useful for the construction
of three-point functions for the non-compact sectors of the PSU(2,2|4) spin chain.

90, and Oz can be either of type I or type II in (2.27).
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{(|O1)r,|02)1)

O1)1 1O02) 1,

Figure 2. A pictorial definition of the skew-symmetric inner product for two spin-chain states: we
first compute an overlap between the singlet state (1| and a tensor product of two spins connected
to a single blob (o), and then, take a product of such overlaps. Here we only described the SU(2),
chain. The definition for the SU(2)g chain is basically the same.

4 Construction and evaluation of three-point functions

Up to this point, we have developed a new way of performing the Wick contractions between
the composite operators in the spin-chain language suitable for dealing with a certain
general class of operators in the SU(2) sector. We now use this technology to assemble the
three-point functions and show that they will possess determinant expressions.

4.1 Three-point function as factorized spin-chain products

To perform the actual calculations, let us first clarify the basic structure of the three-point
functions, in particular their characteristic feature of the factorization into the left and the
right sector.

As explained in [9], the three-point function can be computed by first mapping the
operators to the spin-chain states, then splitting each spin chain into the left and the right
sub-chains (the cutting procedure) and finally computing the Wick contractions between
the right sub-chain of O; and the left sub-chain of Qs etc., using a suitably-chosen inner
product for the spin chains (the sewing procedure).

In our formulation, the situation might at first sight appear more involved, since each
operator O; is expressed as a tensor product of two spin-chain states, |O;); and \@J R
and then we need to split each of them into two sub-chains. However, it is actually more
transparent since, as already emphasized, the contributions from the SU(2).- and SU(2)g-
chains completely factorize and hence the SU(2).- and SU(2)g-chains can be discussed
separately. Thus, below let us first focus only on the SU(2)-chain.

After the cutting, each spin-chain state is expressed as an entangled state of two states
defined on the sub-chains in the following manner:

01, =S 01) @0,
‘02>L:Z‘02b>l®’02b>r7 (4.1)
b

03), = > |0s,) @10s,)".
C

- 12 —



(|01)1,102)1,|03)1,) =

’Ol>L |OQ>L ’O3>L

Figure 3. A pictorial definition of the three-spin-chain product. As in figure 2, at each white blob,
we compute the overlap with the singlet state (1|. The number of curves connecting the state |0;)
and |O;), is determined solely by the length of the operators to be (£; + £; — £3)/2.

Here the superscripts [ and r denote the left and the right sub-chain. The length of each
sub-chain is determined from the Wick contraction rule and is given by

0+ by — U3

Length of ‘01a>r and |02b>l : 5 = {19,
l b3 — ¢

Length of [0y,)" and |03,)" : % = lo3, (4.2)
l b — £

Length of |030>T and ’01a>l : % = 631,

where ¢; is the length of the spin chain |0;); .

Once the cutting is performed, the rest is to compute the Wick contractions between
various sub-chains using the inner product (3.12). As a result, we get the “three-spin-chain
product” defined in the following way (see also figure 3):

(101) 1, 102) . 103) 1) = > (|01, 102,)){|02,)" 105)){|03.)" |O1,)') . (4.3)

a,b,c

Multiplying the contribution from the SU(2)g sector, which is entirely similar to (4.3), the
final formal expression for the structure constant is given by
NIAE

Cla3 = M—W<|01>L 102) 1, 103) Y {01 7, 102) i, 1O3) ) (4.4)

where NV}, denotes a factor coming from the normalization of the operator 0. As advertised
several times already, the expression (4.4) of the structure constant completely factorizes
into the contributions from the SU(2); and the SU(2)r parts. This phenomenon was
already observed in [9, 14] for a restricted class of three-point functions but (4.4) tells us
that it is a much more general property as long as three SU(2)-operators can be embedded
in a single SO(4). In any case, the expression of the structure constant above is as yet
formal, and in the rest of this section we shall perform the cutting and sewing explicitly
in our new formalism and that will naturally lead to the determinantal formula for the
three-point functions.

4.2 “Cutting and sewing” in the new formulation

Let us begin with the explanation of the cutting procedure in our formalism. Due to the
factorization property we only need to focus on the SU(2)y part. Below we only consider

~13 -



the operators satisfying the highest weight conditions. As shown in (2.30), such operators

z2S_

can be expressed as Bethe states multiplied by the operator e*”~. The cutting procedure of

Bethe states is already studied in [9] using the method called “generalized two-component
model” and the result in our notation takes the form

ity = Y Hi(ay, 00]0)|ouit) @ |oeit) . (4.5)

oUor=u

The sum is over all possible ways of splitting the rapidities v into two groups «; and «,.,
the symbols ¢; and ¢, denote respectively the length of the left and the right sub-chains'®
and the coefficient function Hy(qy , c,|@) reads'!

Hy(er,enl0) = I T1 ﬁ ﬁ(%) <u—0a—;) (u—9b+;> . (46)

ueoy vear a=~£+1 b=1

On the other hand, the splitting of the prefactor e**~ is simple since the global SU(2)
generator S_ for the full chain is just a sum of the generators for the sub-chains: S_ =
S! ®141®S". Therefore, after the cutting procedure, the rotated excited state (2.30)
is expressed as

Slutt), = > Hilar, ) (¢ ot ) @ (5 ait)) . (4T)

oUor=u

Although the cutting procedure described above is quite similar to the one developed
in [9], except for the SU(2);-SU(2)g factorization property, the sewing procedure in our
formalism is substantially different, with a definite advantage. To describe this, we use an
important property, which we call the “crossing” relation, of the Lax operator

L(u): (u—i—ng 1S_ > ' (4.8)

iS+ u — 7,53

Let |s1) and |s2) be two arbitrary spin 1/2 states and consider the overlap with the singlet
state with the Lax-operator insertion: (1| (L(u — 0)|s1) ® |s2)). Using the definition of the
singlet state, one can show the following relation by direct computation:

(1 (L(u = 0)[s1) ® |s2)) = (1] (|s1) @ C o L(u — )]s2)) , (4.9)

where C o L(u) is the “crossed Lax operator”, which is given by

— 1S3 —iS_
L(u) = ool (u)oy = | . 27° . 4.1
CoL(u) = o2l (u)os < i8S, utiSs (4.10)

ONote that ¢; and £, satisfy £ = 0; + £,.

"Just as in [9], this coefficient is obtained by re-expressing B(u) of the original chain in terms the
elements of the monodromy matrices €2; and €2, of the left and the right sub-chains through the relation
B(u) = Q(u)12 = (u(w)r(u))12 and then pushing the operators A; and D, to the right using the Yang-
Baxter algebra.
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(a) (b)

Figure 4. The identification of the inhomogeneities for the two-point functions and the three-point
functions. In both cases, we identify the inhomogeneities connected by a propagator (connected to
the same blob). (a) For the two-point functions, the identification is given by (4.13). (b) For the
three-point functions, the sets of the inhomogeneities are related as (4.27).

In (4.10), o2 acts on the auxiliary space and the superscript ¢ denotes the transposition in
the auxiliary space. This relation, if we regard oo as the charge conjugation matrix, can
be viewed as a sort of the crossing relation of the factorized S-matrices'? and we therefore
call (4.10) the “crossing” relation.

The relation (4.10) leads to a useful nontrivial identity of the monodromy matrix. Let
|11) and [12) to be arbitrary spin-chain states of the same length. They can be either on-
shell Bethe states describing each operator or off-shell Bethe states which appear after the
cutting procedure. Then, from the fundamental relation (4.10), the following important
relation can be obtained, as we shall prove shortly:

(Qu(u)|r), [h2)) = (JU1) , 00 Q(u) oaltha) ) - (4.11)

Here, again t and o9 act on the auxiliary space and 2, is the monodromy matrix acting

on |1, ) defined by
O (u) =Ly(u—0") - Lo(u—6"), Qo(uw) =Ly(u—62) - Lo(u—62).  (4.12)

The parameters #(™)’s are the inhomogeneities for [1,). In order for (4.11) to be satisfied,
we need to make the following identification between the inhomogeneities (see figure 4):

o =0, . (4.13)

In terms of the Wick contraction in the gauge theory, this amounts to assigning the same
inhomogeneity parameter to each two spin sites contracted by a propagator. This is pre-
cisely the identification we need when we study the one-loop correction using the inhomo-
geneities [13, 16-18] and we impose such relation throughout this paper.

Let us now prove the relation (4.11). From the definition of Q (4.12), we can express
the Lh.s. of (4.11) as

(Li=o"),  (Law—03") o (Lew—0") ) le)).  (414)

%041

12For the relation between the crossing symmetry and the scattering with the singlet state, see, for
example, [33, 34]. See also the footnote 20.
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where, for definiteness, we wrote down the indices for the auxiliary space. Since the k-th
site of |¢1) is contracted with the (¢ — k + 1)-th site of |¢)2) as shown in figure 4 and the
inhomogeneities are identified as (4.13), the Lax operator transforms as follows under the
application of the crossing relation (4.10):

(Lk(u - 9,@”)) = (ang_k w—0P, +1)az) L (4.15)
hikt1

Then, moving the Lax operators one by one, we obtain

(1), (oaLh(u—0)os) (ool (w67 )o2) o (oalf(w—0F)on) o)

1112 1213 2ete41
= (), (o2(La(w = 0) - Lo = 6))'0) i)
i1ig11
= (l1), (0225 (uw)a2), ,  [¥2))-

Iklk41

119041

(4.16)

In terms of components, 020 (u)o is given by

O ()0 — 0 ( A® (4) B(2)(u)> b ( _D(2>(u) _ B(a)@)) | (417)

Here and throughout this subsection we put superscripts (1) or (2) in order to distinguish
the components of ; from those of Q. The formula (4.11) in particular contains the

crucial relation

(BU@ln), [2)) = =(r), B (w)[ya)) (4.18)
which only involves B(u) operators. In the u — oo limit, the relation (4.18) produces
(SWhin) s la)) = —(n) , SPwa)) (4.19)

Then, by a repeated use of (4.18) and (4.19), we can collect all B(u)’s and S_’s on one side
and transform the skew-symmetric inner product which appear in the sewing procedure,
such as

(1) (2)
(@ BO(w) - BO (a1, 57 BO () - BO(mag) 1), (4.20)
into the following expression:
(DM (119 @ D5 B () - B (uy) B () - BP(og,)| 1) . (421)

From the definition of the skew-symmetric inner product (3.12), this expression can
be readily evaluated'® as a matrix element in the spin-chain Hilbert space as follows:

M1<|Tf (y—2)s? g2 )(uy) - - B® (upg, ) B (vy) - "B(2)(UM2)|TZ>>

o (4.22)
= (—1)M1 (115 BB (uy) - - B (upg,) B (v1) -+ B (vag,) [ 1) .

13Essentially, due to the skew-symmetry, each time the singlet projector acts on a pair of spins, the
up-spin is converted to the down-spin and this produces (ig\.
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It is important to recognize that a matrix element of the form (4.22) can be identified with
the so-called partial domain wall partition function. More precisely, we can show

(1”5 B(a1) - Blaw)[1) = 2 Z,(2(0), (4.23)
where Z,(x|0) is the partial domain wall partition function (pDWPF), which is given
by [16, 17]:

2,(016) = =gy W18V Bla) -+ Blaw) 1) (4.24)

M 11 ‘ ¢ .
TG (e — 0, —i/2 _
_ | bl H]_1($ i — i/ )det (az“l 7 H xp — 0. + Z/Z(xb B i)“_1> .
a,b

HK]'(ZBi—ij) b Ty — 0 — /2

The indices a and b run from 1 to M and 0’s are the inhomogeneity parameters for the

c=1

)

chain. To understand (4.23), we just need to expand the exponential e*~ on the Lh.s.
of (4.23). Upon doing so, (4.23) yields infinitely many terms, each of which has a different
number of S_’s. However, among such terms, only one term

ZE—M

m@g\ (S-)Y B(w1) - Blwar)| 1) (4.25)

is non-vanishing because of the conservation of the SU(2) spin and it can be readily iden-
tified with the pDWPF.

Let us stress that the discussion above is valid both for the on-shell and the off-
shell Bethe states. In [26], it was shown that the scalar product between the on-shell
Bethe state and the off-shell Bethe state can be transformed into the pDWPF.'* However,
such an argument cannot be applied to the scalar products between two off-shell Bethe
states and this was considered to be the main obstacle in studying more general SU(2)
three-point functions. In this respect, the argument above clearly shows the advantage
of our formulation based on the skew-symmetric inner product as it allows us to use the
determinant expression irrespective of whether the Bethe states are on-shell or not.

4.3 Representation in terms of the partial domain wall partition function

Let us now combine the results in the previous subsections to write down an explicit
expression for general three-point functions. As in the previous subsections, we focus on
the contribution from the SU(2), sector (|O1); ,[O02); ,|Os) ).

First, using the coset parametrization (2.30), each spin-chain state can be expressed as

1 0 /2— My
Oh = (15mE) e,

1+ |2’1’2
1 63/2—M> ,
02 = (1 n |z2|2) 5 [ul 1) (4.26)
1 B2 Ms S (3) ot
00 () O,

141n fact, using our formulation, one can prove the equivalence between the pPDWPF and the on-shell-off-
shell scalar product (the so-called Kostov-Matsuo trick) by a simple calculation.
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where u(®) denotes the set of rapidities for the operator @, and its number of elements
is denoted by Mj. Then, we can apply the formula (4.5) to split each chain into two
and compute the skew-symmetric inner product using (4.23). When computing the inner
product, it is important that we assign the same inhomogeneity parameter to any two spin
sites contracted by a propagator as discussed in the previous subsection. In the current
setup, this leads to the following relation among the sets of inhomogeneities (see figure 4):

o) = 9Bl 4912 g = 9(12) yg3) = gB) = 9(23) 4 e(31) (4.27)

where 8™ is the set of inhomogeneities for |0,); and 8™ denote the set of the inho-
mogeneities common to |Op); and |O,,);. As a result of these operations, we obtain the
following final form expressed in terms of the sum-over-partitions

<|01>L ) |O2>L ) ‘O3>L>

1 01/2— My 1 £2/2—M> 1 03/2—Ms3
() () ) (129
1+|2:1’ l—i-‘Zz’ 1+’23|
tiz—lalV |~ |al? | tas—|alP |- |alP| 31—l |a“>|
X Z 291 bz Loz ! {a”, )09}

al(k> Ual®) =y ()

(k)

In this expression, |al(’i)| stands for the number of elements of «; " and z,,, denotes the

difference z,, —z,,. The last factor D o) 0@ (3)

)y which is independent of the polarizations,
l r? l T

is given in terms of the pDWPF as

3
TN i
D) o) = = (—1)ler e e T Hy, (o), o™ 16®) (4.29)
1"7 T k=1

X Z, (a£1> U al(2)|0(12)> Z, (a£2> U al(3>,9<23)) Z, (a&%) U al(1)|6(31)) .

Let us emphasize that our final expression (4.28) has a number of advantages. Firstly,
the result is valid for the three-point functions built upon more general spin-chain vacua
than the ones studied in the literature. Secondly, the result already demonstrates certain
separation into the kinematical factor and the dynamical factor. Thirdly , the dynamical

factor D a® a®a® is given essentially by a product of the pDWPF, each of which pos-
i,

r? l r& }
sesses determlnant representation. One apparently unsatisfactory feature of (4.28) is that

it still involves the sums over partitions, which become quite nontrivial especially when the
number of magnons is large. As we shall show in the next subsection, however, for certain
class of correlators the sum can be reduced to just a single term, by exploiting the SU(2)
symmetry.'® This leads to a remarkably simple expression for which the semi-classical limit
can be easily taken.

4.4 Determinant expressions for a large class of three-point functions

Let us now show that for certain correlators the expression (4.28) can be drastically sim-
plified. The correlators we consider are those for which two of the operators belong to one

15 A similar idea was utilized to simplify the three-point functions in the SL(2) sector in [41].
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type (type I or type II) and the third to the other type. We call such three-point functions
“mixed correlators”. In what follows, we study the case in which O and Oy are of type I
and O3 is of type II since the generalization to other cases is simply a matter of renaming.

The crucial observation for the simplification is the fact that the dependence on the
parameters z; characterizing the operators forming the three-point functions is completely
dictated by the SU(2) symmetry. This is shown in appendix A and is quite analogous to the
determination of the position dependence for the three-point functions in two-dimensional
conformal field theory. Now as O3 is of type II and therefore |O3); contains no magnons
in the present case, we can set Ms in the formula (A.7) to zero and obtain

~

3

1 F-M 1 2 M 1 >
<|01>L7|02>L7|O3> > <1+|Zl|2) <1+|Z2|2> <1+|23|2) (4.30)

Lia—M1—Ms lo3—Ma+My f31—Mi+M>
Z21 %32 <13 g,

where the factor G stands for the term independent of z;’s. As can be easily seen, the first
line of (4.30) coincides with the second line of (4.28). On the other hand, the structure
given in the second line of (4.30) is not visible in the sum-over-partition expression (4.28).
In order to compare them more closely, let us expand both sides in powers of z3. Upon this
expansion, the second line of (4.30) yields the following term as the highest-order term:

(_1)531—M1+Mzz§3 <Z§i2*M1*Mzg) ) (4'31)

On the other hand, if we expand each term in the sum in (4.28), we obtain the following

expression as the highest-order term:'6

1, ¢ (1) (2) Y, (1) (2)
(_1)@31 \a ‘ 3 |a | |a | 212 ‘a ‘ |al | D (@ (432)

{O‘l T 2}’

This shows that only a single term in the sum, for which |al )\ = | | = 0 holds, can
produce the highest power z§ . Therefore, comparing the coefficients in front of z§3, we
can determine G to be of the form

G = (_1)—M1+M2D

{a)) of?) 2}

lr> a;l) agz)f@
Mo (4.33)
- 2
- M2 H Q0<31) | | Q6(23) (ul(2 ))Zp <u(1) U u(2)‘9(12)) ,

where the function Qg(x) is defined by

Qo(z) = [J(x—0), (4.34)

0co

and the superscripts & denote the shift of the argument by +i/2.

16Note that, since |O3); does not have any magnons, there is no sum over the partitions coming from

Os.
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Let us now study the semi-classical limit of our three-point function. For this purpose,

it is more convenient to introduce the “rescaled” partial domain wall partition function'”

defined by

Z, (um Uu® |0<12>>
[Tocu Qgan () [Tyeue Qpaxn (v)
Then, (|O1),,|O2);,|O03) ) takes the form

z, (u“) U u(2)|0(12)> = (4.35)

L3

O, ,02), |0 LoNEM L IR L
(101)1,102)1,105) )= <1+|21|2> <1+,22|2> <1+|23,2>

% (Zl 7Z2)€12—M1—M2( )Zzg—M2+M1 (23 721)331—M1+M2 (4.36)

<H Qe(l) H Qe(z) ub Z, (U(I) U u(2)|9(12))> ,

where we have neglected the factor (—1)™2 as it only changes the overall sign. Performing

zZ9—Z3

a similar analysis, we can also determine the contribution from the SU(2)g spin chain and
the result is given by

o o e
O0n100n100 = (v=e) () (retae)
10010010000 =155 ) \ivigr) \Tv7ap
X (% — % )312+M3(22 _ 23)523—M3(53 _ 21)531—M3 (4.37)

(Hcrs smos™)

Note that, since the result is completely factorized into the SU(2)y, and the SU(2)r parts,
we can introduce independent sets of the inhomogeneities for the SU(2)r sector denoted
by 6’s. The tree-level structure constant can then be obtained by setting 6’s and 6’s to
zero. Now the semi-classical limit of the three-point coupling constant can also be easily
studied using the results of [11, 16, 17] and we obtain, up to a phase,

Vol

Cloz = N kr krciaz,
C
d o d ipg i
log c123 N}{ 27UL1 (61p1+1p2+w3/2u) +j{ Qu.LiZ (62P3+2(42—51)/2“) (4.38)
C,)UC, (2) < Comy =T

B 1% du . (ezim)_lj{ s (e 2zp2)_17{ sy ()
2 3 2m 2 ¢, 27 2 C.s) 2m
Here k; and kg are kinematical factors given by the first two lines on the left hand side
of (4.36) and (4.37) respectively, p,(u) and p,(u) are the quasi-momenta given by
1 Ly _ 1 ln
pa(w) = Y — 5o Balu) = > — o (4.39)

u—v u—v
veun) veam)

"Note that it is the rescaled partial domain wall partition function, which has a simple semi-classical
limit. In [11], it is called A-functional.
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and the integration contours C, ) and Cgm) encircle'® the Bethe roots u(™ and @™ re-
spectively.

So far, we have seen that the mixed correlators have simple expressions, which allow
us to study the semi-classical limit with ease. The remaining class of three-point functions
are the ones for which all the three operators are of the same type. We call such three-
point functions “unmixed”. It turns out that, in the case of the unmixed correlators, several
different terms in the sum in (4.28) contribute to the the highest power of z;’s, and therefore
the result cannot be simplified by the straightforward application of the aforementioned
logic. In addition, the prediction from the semi-classical computation based on the coherent
states (to be reported in [27]) does not take a form which can be readily obtained from
the pDWPF'. These two observations indicate that the unmixed correlators are much more
complicated objects. Nevertheless, studying such three-point functions is important for the
following reason: the pDWPF is the quantity which describes the skew-symmetric product
of two spin-chain state. Therefore, the fact that the mixed correlators can be reduced
to the pDWPF suggests that such three-point functions are characterized essentially by
the integrability governing the two-point function, which is already fairly well-understood.
This in turn means that, in order to reveal the genuine “integrability for the three-point
functions”, we do need to study the unmixed correlators, which cannot be simplified into
the pPDWPF.

5 Monodromy relation

Based on the framework developed so far, we now derive the second main result of this
paper, namely the nontrivial identities, to be called the monodromy relations, satisfied by
the two-point and the three-point functions with the monodromy operators inserted. This
identity is a direct consequence of the two fundamental properties of the Lax operator,
i.e. the “unitarity” and the “crossing”, and might provide a hint for the essence of the
integrability of the correlation functions that we are eager to capture.

5.1 Monodromy relation for two-point functions

First, let us derive the monodromy relation for the two-point functions using the afore-
mentioned two basic properties of the Lax operator.

The first is the “unitarity” relation.!® From the definition of the Lax operator (4.8),
one can straightforwardly check the following identity:

L0 —u+i/2)L(u—0-+i/2) = —f(u) 1. (5.1)

Here the symbol 1 denotes the identity operator both for the spin and the auxiliary spaces
and f(u) is given by

fu)=(u—0)2+1. (5.2)

18 As briefly discussed in [17], the contours are in general complicated and the case-by-case analysis is
necessary.
1914 is also called the inversion identity.
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“Unitarity” relation.
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6 6 0 )

“Crossing” relation.

Figure 5. The “unitarity” and the “crossing” relation of the Lax operator for the XXX spin chain.
In both figures, the black line refers to the spin space and the red line to the auxiliary space. Upper
figure: a product of two Lax operators acting on the same spin space equals to the identity as
shown in (5.1). Lower figure: a skew-symmetric product with a Lax operator insertion on one side
is equivalent to the skew-symmetric product with a crossed Lax operator insertion on the other side
as shown in (5.6).

The relation (5.1) is an analogue of the unitarity condition for the factorized S-matrices
and can be understood pictorially as shown in the upper figure of figure 5.

The second property is the “crossing” relation (4.9). What is important for the follow-

ing discussions is that the crossed Lax operator C o L(u) can be written alternatively as®"

CoL(u) =—-L(-u). (5.5)
With this relation, the crossing relation (4.9) takes the following form:
(1 (L(u = 0)[s1) ® |s2)) = =(1[ (Is1) @ L(6 — u)]s2)) - (5.6)

A pictorial representation of this relation is given in the lower figure of figure 5.

20Written in terms of the R-matrix

(R(U))zfﬁ = U(S@(SJ:Q + Z6]26J1 (ih i27j17j2 = 17 2) ) (53)

1771 1 T2

which is related to the Lax operator by R(u) = L(u+1/2), the equation (5.5) takes the form of the crossing
relation for the factorizable S-matrices,

D (02),, 4 (R(W);27? (02)42 = (R(i — )22 . (5.4)
i, it

This is the reason why we call C o L(u) the crossed Lax operator.
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Figure 6. The derivation of the monodromy relation for the two-point function. The figure (a)
describes the skew-symmetric product with the usual monodromy and the reverse-ordered mon-
odromy, given in (5.7). By applying the unitarity relations, one can show that it is proportional
to the skew-symmetric product without any monodromy insertions, which is given in (5.10) and
depicted in the figure (b). On the other hand, if we apply the crossing relations repeatedly to (5.7),
we reach the right hand side of (5.13), which is shown in the figure (¢). In the figure (c), the solid
red line denotes the monodromy matrix whose argument is shifted by +i/2 whereas the dashed red
line denotes the monodromy matrix whose argument is shifted by —i/2. The equivalence between
the figures (b) and (c) is the monodromy relation for the two-point function given in (5.14).

Making use of these two properties,?! let us now derive the monodromy relation for
the two-point functions . First, consider the following quantity, which is depicted in the
figure (a) of figure 6:

(101 (Ra-utif2)) (Qeu+i/2) [02),), (5.7)

i

<_
where 7, j and k are the indices for the auxiliary space, and €),, and 2,, are the monodromy
and the “reverse-ordered” monodromy?? for the operator O,,, defined by

Q(u+i/2) = L (u— 0 +i/2) - LY (u — 0" +i/2) (5.8)
Qu(—u+i/2) = L0 —uti/2) - L0 —utif2). (5.9)

Here Lgcn) and Hl(cn) respectively denote the Lax operator and the inhomogeneity parameter

for the k-th site of the spin-chain state |Oy,), and ¢, is the length of the operator O,,. Here

again the inhomogeneities are identified as 9,&1) = 9é2_);€ 41, as discussed already in section 4.2.

21For the moment, we only consider the SU(2);, sector since the generalization to the SU(2)r sector is
straightforward.

22Note that, owing to the relation (5.5), the reverse-ordered monodromy is equivalent to the monodromy
which appeared in (4.11): ﬁn(—u) = (=1)"C 0 Qn(u).
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Using the unitarity relation (5.1) repeatedly, we can show that (5.7) is proportional to the
skew-symmetric product without monodromy insertions, which is depicted in the figure (b)
of figure 6:

(5.7) = 6k (—1)" fr2(u){|O1) , . |O02) ), (5.10)
where the prefactor fi2(u) is given by
¢ ¢
fro(w) = I ((u — o2 4 1) - 11 ((u —0P)2 4 1) . (5.11)
k=1 k=1

<_
Let us next apply the crossing relation to each Lax operator constituting Q9 in (5.7). Since
the k-th site of the operator O is contracted with the (¢ — k + 1)-th site of the operator
01, the Lax operator transforms under the application of the crossing relation as

2 2 1 1
Lff )(—u + 9,& )) — —Lé_)kﬂ(u — 9§_)k+1) , (5.12)

where we used the identifications of the inhomogeneity parameters (4.13). Thus, after the
successive application of the crossing relation, we arrive at the following expression, which
is depicted in the figure of figure 6:

(5.7 = (02 @) 01, (U W) 102),). (5.13)
ij jk
The superscripts £ on the monodromy operator denotes the shift of the argument 0+ (u) =
Qu+1i/2).

Then, by equating the right hand sides of (5.10) and (5.13), we obtain the monodromy
relation for the two-point function:

(@), 100, (%) [02)1) = b a0 102)). (5.14)
One can write down a similar relation also for the SU(2)g chain as

(), 100 R, (%) 102)5) = bis Fro(|On) . [O2p),  (5.15)

where Q,(u) are the monodromy matrices for the SU(2)z chain and fi2(u) is given in terms
of the inhomogeneity for the SU(2)p chain 9,(;1) by

( 24 1) ]j ( 24 1) (5.16)

The monodromy relations (5.14) and (5.15) are the embodiment of the integrability

fra(u) =

||:jm

for the two-point function. As the two-point function is determined by the spectrum of the
operators, they should be essentially equivalent to the integrable structures already known
in the spectral problem. However, it might be interesting to clarify the relation with the
conventional formalism and ask if these new formalism helps to deepen the understanding
of the spectral problem.
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5.2 Monodromy relation for three-point functions

Let us now turn to the three-point functions. As explained in section 4.1, the three-point
functions are given by a product of two factors coming from the SU(2); and the SU(2)g
respectively and each factor is expressed in terms of the skew-symmetric products between
sub-chains. Therefore, one can apply the unitarity (5.1) and the crossing relation (5.6) to
each sub-chain and derive a nontrivial monodromy relation for the three-point functions.
Although the essence of the derivation is entirely similar to the one for the two-point func-
tion, for the three-point function there is a certain freedom in the form of the monodromy
relation which comes from the choice of the shifts of the spectral parameter for the three
monodromy matrices. To give an intuitive picture of the monodromy relation, however,
below we shall exhibit a specific example which can be easily understood from a figure
figure 7 and relegate the discussion of how the more general forms of the relation arise to
appendix B.
Now for the SU(2), sector a simple monodromy relation can be given in the form

(25 @) 100, (%1 w) 102, (25 @w) 105),)

(5.17)
= ilf123(u)<|01>[, ) |(92>L ) |O3>L> )
where fio3(u) is defined by?
031 l12 l23
fras(u) =[] ((u ) H ( 6%y + 1) 11 ((u — )2 4+ 1) : (5.18)
i=1 j=1 k=1

and Q; |_(u) denotes a product of the monodromy matrices on the left and the right sub-
chains of Oy whose arguments are shifted by +i/2 and —i/2 respectively. More specifically,
the relevant monodromy matrices are given by

1 1 _ 1 1
Qp (u) =Ly (u—60) - Ly (w— 0Ly (w—65 )Ly (w6,
Q7 (w) = Lf (u—67) - Lt (w00, (w—60, ) Ly (u—60),  (5.19)
Of () =L (u—0) - L (w— 08T (=02, )L (w0,

For the SU(2)g chain, the corresponding form of the monodromy relation can be written as

(07 @) 1005 (5 @) 1025 (%), 1On)5)

i ) ) : (5.20)
= bif123(u)(|O01) g, |O2) g, 1O3) &)
where fio3(u) is defined by
431 512 523
fras(w) =T ((u — g2 4 1) I1 ((u — 02 4 1) I] ((u — g2 4 1) . (521
i=1 j=1 k=1

As in the SU(2)p sector, Q;‘_(u) denotes a product of the monodromy matrices on the
left and the right sub-chains whose arguments are shifted by +i/2 and —i/2 respectively.

ZTFor a definition of £;;, see (4.2).
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|01) 1 |O2) 1, 1031, O)1 1O92)1, |Oa) 1,

Figure 7. The monodromy relation for the three-point function (5.17). The thick red line denotes
a part of the monodromy matrix with a +i/2 shift of the spectral parameter and the dashed red
line denotes a part of the monodromy matrix with a —i/2 shift of the spectral parameter.

Let us now discuss the implications of the typical monodromy relations of the
form (5.17) and (5.20). Firstly, the monodromy relations in general relate three-point func-
tions of different spin-chain states and therefore can be regarded as a kind of Schwinger-
Dyson equation. It would be extremely interesting if we could compute the three-point
functions by directly solving these relations. Secondly, the relations imply the existence of
infinite number of conserved charges together with the existence of the associated Ward
identities. For instance, by expanding (5.17) around u = oo, at the leading order we obtain
the usual Ward identities for the global SU(2)z-symmetry of the form

<S*‘01>L ) ’O2>L ) ’O3>L>+<|OI>L ) S*|02>L ’ |O3>L>+<’01>L ) ’O2>L ) S*|O3>L> =0, (5'22)

where S, are the global SU(2) generators and * stands for 1, 2 or 3. These global Ward
identities are quite useful in fixing the kinematical dependence of the three-point functions,
as described in the appendix A. Naturally it would be quite interesting and important to
study the non-trivial relations obtained at the sub-leading levels and see if we can exploit
them to understand the structure of the three-point functions.?*

As for the importance of the monodromy relation, we already have a supporting evi-
dence from the strong coupling computation performed in [20]. In that analysis the three-
point function in the SU(2) sector was determined from the following relation for the

monodromy matrices defined on the classical string world-sheet:
Ql (x)QQ (1‘)93(1‘) =1. (5.23)

This relation, which is a direct consequence of the classical integrability of the string
sigma model, is a clear manifestation of the integrability for the three-point function at
strong coupling and was indeed an essential ingriedient in the computation of the three-
point functions. The relations we derived here, (5.17) and (5.20), can be regarded as
the weak coupling counter-part of (5.23) and its generalization. The similarity becomes
more apparent if we take the so-called semi-classical limit of the spin chain, in which the

24 At the sub-leading order, (5.17) produces a set of non-trivial identities involving operators which act
non-locally on the spin chains. These identities can be regarded as a sort of Yangian invariance for the
three-point functions. Simlar relations are discussed in the context of the scattering amplitudes in [35-40]
and it would be interesting to clarify the connection.
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length of the chain and the number of the magnons are both large. To study the low
energy excitation in this limit, we need to use the rescaled spectral parameter u = fu/,
and send / to oo keeping v’ finite. In terms of this rescaled parameter, the shifts of
the spectral parameter in QF, Q;‘f and so on become negligible. Furthermore, in this
limit, the three-point function will be well-approximated by coherent states. Then the
monodromy matrices, which are originally quantum operators acting on the spin chains,
become classical. Therefore, in such a limit the relations (5.17) and (5.20) exactly take
the same form as (5.23). As will be discussed in the forthcoming publication [27], we
can use (5.17) and (5.20) to directly study the semi-classical behavior of the three-point
functions at weak coupling without relying on the explicit determinantal expressions for
the scalar products of the XXX spin chain.

6 Discussions

In this paper, we proposed a novel way of understanding the tree-level three-point functions
in the SU(2) sector. In the previous approaches, each operator was mapped to a single
spin-chain state and the Wick contraction was interpreted as the scalar product of the
spin chain. However, in order to study more general three-point functions, it is much more
advantageous to associate a tensor product of two spin-chain states to each operator and ex-
press the Wick contraction as the overlap with the singlet state. Using this new formalism,
we showed that a broader class of three-point functions, which we call mixed correlators,
have simple determinant representation. Moreover, we derived nontrivial identities satis-
fied by the three-point functions with monodromy operators inserted. The identities can
be regarded as the weak-coupling counterpart of the relation ;{23 = 1, which played
an important role in the computation at strong coupling.

There are several future directions worth exploring. One is to understand the loop
corrections in this formalism. It was shown in [13, 18] that the loop corrections in the
SU(2) sector can be neatly accounted for by the ingenious use of the inhomogeneities. It
would be interesting if we can combine our formalism with the method in [13, 18], and
simplify and extend the computation at loop level. Another future direction is to study
the “unmixed” correlators more in detail, for which we could not derive a simple expression.
This is quite important since studying such correlators may help in revealing the genuine
characteristics of the three-point functions as discussed at the end of section 4.4. It is
also of importance to generalize this new formalism to other sectors, in particular to the
non-compact sectors [41] and the sectors with fermions [42]. For the SL(2)-sector, one
can indeed apply the idea developed in this paper and obtain useful results [43] for the
three-point functions which are more general®® than the ones studied in [41].

It would also be interesting if we can compute the three-point functions directly from
the monodromy relations. Although it is currently not clear how to do it in the general

25 A different representation based on the separation of variables was obtained recently by [44]. In addition,
the three-point functions for operators with spin were studied in detail in [45-47] by using the operator
product expansion of the four-point functions. It would be interesting to understand the relation with
these works.
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setup, we can actually carry it out in the so-called semi-classical limit, in which the length
of the operator and the number of the excitations are both large. As briefly mentioned
at the end of section 5.2, the monodromy relations in this limit take exactly the same
form as the one at strong coupling ;€203 = 1. Then, one can study the semi-classical
limit directly by generalizing the techniques developed in [20] as will be discussed in the
forthcoming publication [27]. Since such a method of computation does not rely on the
explicit determinant expressions for the scalar products, it might be important for the
higher-rank sectors, for which no useful determinant expressions are available except for
special cases.

Finally, it would be important to understand more conceptual aspects of our new
formalism. As can be seen from figure 2 and figure 3, the way we computed the three-point
functions is analogous to the description of the interaction in the string field theory. If our
formalism proves to be powerful also at the loop level, it may provide a useful framework to
understand how the string field theory in the AdS background emerges from perturbative
gauge theory.?
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A Kinematical dependence of the three-point function

In this appendix, we show that the kinematical dependence (i.e. the dependence on the
parameters z;) of the three-point functions can be completely determined by the invariance
of the correlator under the symmetry group SO(4) = SU(2);,xSU(2)r and the highest
weight condition for the operators. This knowledge significantly simplifies the calculation,
as elaborated in subsection 4.4.

As usual, we concentrate on the SU(2)y, sector. The key is the Ward identity (5.22)
expressed using the the coherent state parametrization (4.26). It is convenient to remove
the trivial overall factor from the states in (2.30) and consider

101 = (1+ |2i*)"|03) . = €25 Ju®;1%) (A1)

26Regarding this direction, there are several quite interesting works [32, 50], which discuss the connection
between the perturbative computation in the field theory and the string-field-theoretic formalism from a
slightly different point of view.
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where L; = ¢;/2 — M;. Such a redefinition does not affect the Ward identity since \@Z) 1 is
related to |O;),; simply by a multiplication of the scalar factor. It is important to note that
the state |@l) 1 is independent of z; as we have already implemented the highest weight
condition. Hence, the remaining task is to determine the dependence on z;.

As is rather well-known, on such a coherent state representation, the SU(2), generators
have representations as differential operators. We can easily show

S0 LY = ps,(S:)Oi)r (A.2)
d 22 d d
pzi(53) =L, - Zidizi ) pZi(S+) Liz — 2 dzz ) IOZ'L(S*) - dizz : (A3)

For instance, the action on S3 on the state |(’§Z>L can be computed as
S3|0i) 1, = Sse* S [ul; 1) [ = €55 (775 G3e75- ) [uD; 14,

d\ -
= ezis_(53 — 25 )|U 4 )L = < szzz) [ (A.4)

where L; is the eigenvalue of S3 on |u(®;14) .
Using this representation, Ward identity (5.22) can be expressed as

szz )(101)1,102) L, 103) 1) = 0. (A.5)

It is evident that this has exactly the same form as the global conformal Ward identity for
three-point functions in 2d CFT if we identify —L; with the conformal dimensions. Thus,
the z; dependence can be uniquely fixed [48] as

(|01)L,102) L, |03) ) ox 232255 215" (A.6)

where 2;; = z; — zj and L;; = L; + Lj — Lj. Therefore, the kinematical dependence of the

three point function for the SU(2)y sector is given by the simple form

(101)L:102) L, |03) 1) o <1 +1|z1|2>L1 <1 4_1|,22|2>L2 <1 +1|z3|2>L3 (A.7)

Lya Loz L31
X Z91"%33" %13 -

Similarly, for the SU(2) g sector the result is

(161} 10391, |Os) ) o <1+1,1|2>R (@)R (+3p >R3 (A3)

sR12 s Ra3 zR31
X Z91 "R33" %13

where R; is given by £;/2 — M;. It is important to note that the relations (A.7) and (A.8)
take the following form in terms of the polarization spinors,
{|O1) L, |02) 1, |03) L) o< (n1, n2) 12 (ng, 3) 2% (ng, ny ) o |

- - B o o o (A.9)
{|01) ks |O02) R, |O3) ) o (A1, Bi2) 12 (Mo, fig) 123 (g, 11y ) 51 |
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where (n,m) = det (n,m). This is precisely the structures observed in the computation at
strong coupling [20].

It should be useful to make a small remark on the uniqueness of the kinematical de-
pendence as determined by the symmetry argument. Although the results (A.7) and (A.8)
above for the “SU(2) sector” are unique, this is not true in the case of higher rank sectors.
For instance, in the SO(6) sector, the symmetry argument alone cannot fix the dependence
completely and there exist several possible R-symmetry tensorial structures. In such cases,
the three-point function is given by a linear combination of such allowed structures, whose
coefficients depend on dynamics, for instance on 't Hooft coupling. Indeed, for the SO(2,4)
sector, the existence of a large number of tensorial structures was found in [49].

B General form of the monodromy relation for three-point functions

In this appendix we briefly discuss how more general forms of the monodromy relations
can be constructed. Below, for simplicity we shall suppress the inhomogeneity parameters
and consider the SU(2)y, sector.

The freedom in the form of the monodromy relation stems from the simple fact that by
making an arbitrary shift of u the fundamental unitarity relation (5.1) can be rewritten as

L(—u+a)L(u+b) =—f(ut+(b—a)/2)-1, (B.1)
a+b=1. (B.2)

Now suppose we split each monodromy operator into left and the right parts, similarly to
the case of Q;‘f in (5.19), in the form

Qn(u) = QL (u+ a) (u+al). (B.3)

Then, by computing the three-point function <<§1(u)>ij\(’)1>L, <§2(u)>jk\(’)2)L,

(ﬁg(u)>kl |O3) ), using the crossing relations and Wick contractions, we easily find that

the conditions for the coefficients a!, and a?, for which the unitarity relation (B.1) works to
yield the result proportional to 6;;(|O1);,|O1),|O01);) are given by

ay —al =dy —al=ay—al =i. (B.4)

For the simple example we discussed in section 5.2, these relations are satisfied with a! =
al = —i/2,dy = i/2,a} = —i/2,a} = a} = i/2. In general, disregarding a common shift
for all the a;;’l, there exist different monodromy relations which can be parametrized by
two complex numbers. At the moment, the meaning of this freedom is unclear to us. It
might be a special feature of the tree-level relation. In any case, deeper understanding of
the monodromy relation is an important future problem.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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