
J
H
E
P
0
1
(
2
0
1
5
)
0
7
5

Published for SISSA by Springer

Received: October 22, 2014

Accepted: December 17, 2014

Published: January 15, 2015

Hot attractors

Kevin Goldstein, Vishnu Jejjala and Suresh Nampuri

Mandelstam Institute for Theoretical Physics, School of Physics and

National Institute for Theoretical Physics, University of the Witwatersrand,

1 Jan Smuts Avenue, Johannesburg, WITS 2050, South Africa

E-mail: kevin.goldstein@wits.ac.za, vishnu@neo.phys.wits.ac.za,

suresh.nampuri@wits.ac.za

Abstract: The product of the areas of the event horizon and the Cauchy horizon of a

non-extremal black hole equals the square of the area of the horizon of the black hole

obtained from taking the smooth extremal limit. We establish this result for a large class

of black holes using the second order equations of motion, black hole thermodynamics,

and the attractor mechanism for extremal black holes. This happens even though the area

of each horizon generically depends on the moduli, which are asymptotic values of scalar

fields. The conformal field theory dual to the BTZ black hole facilitates a microscopic

interpretation of the result. In addition, we demonstrate that certain quantities which

vanish in the extremal case are zero when integrated over the region between the two

horizons. We corroborate these conclusions through an analysis of known solutions.

Keywords: Black Holes in String Theory, Black Holes

ArXiv ePrint: 1410.3478

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2015)075

mailto:kevin.goldstein@wits.ac.za
mailto:vishnu@neo.phys.wits.ac.za
mailto:suresh.nampuri@wits.ac.za
http://arxiv.org/abs/1410.3478
http://dx.doi.org/10.1007/JHEP01(2015)075


J
H
E
P
0
1
(
2
0
1
5
)
0
7
5

Contents

1 Introduction 1

2 Equations of motion 3

3 Hot attractor equations 5

3.1 A small generalization: the scalar potential 7

4 Moduli space mysteries 8

5 CFT interpretation 11

6 Discussion and conclusions 13

A Exact solution 14

A.1 Case 1 14

A.2 Case 1′ 15

A.3 Case 2 16

B Perturbation 18

C Hamiltonian formulation for conservation laws 19

1 Introduction

Black holes obey the familiar laws of thermodynamics [1, 2]. In particular they have an

entropy, which scales like one quarter of the area of the event horizon. Four decades after

this realization, the underlying theory of statistical physics that explains the microscopic

origin of entropy remains elusive. While significant progress has been made in cataloging

microstates of maximally supersymmetric, extremal black holes within string theory [3–6],

a similar understanding of black holes with a lower amount of symmetry is substantially

less developed. Identifying the microstates relies crucially on holography [7, 8] whose best

studied avatar is the AdS/CFT correspondence [9–11]. The presence of the AdS3 factor

in the near-horizon limit of extremal systems at least enables the application of the Cardy

formula [12–14] in the dual CFT2 to enumerate the microstates that account for the entropy.

Surprisingly, this formula correctly reproduces the entropy even when the temperature in

the CFT is of order one [15–17].

Charged non-extremal black holes have a least two horizons. They are not protected

by supersymmetry. The first law relates the differential change in entropy of these black

holes to the differential changes in ADM quantities such as mass, charge, and angular
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momentum. The surface gravity at the outer horizon determines the temperature at which

the non-extremal black hole radiates Hawking particles to infinity. In an asymptotically

flat space, this supplies a mechanism for black hole evaporation via thermal emission. In

suitable coordinates, the temperature is proportional to the distance between the inner

and outer horizons.

The application of thermodynamical principles to the inner horizon remains a work

in progress [18–21]. Assigning a statistical meaning to the inner horizon is difficult for

many reasons, not least because the inner horizon is classically unstable [22–27]. A hint at

the importance of the inner horizon for improving our conception of black hole statistical

mechanics is nevertheless conveyed by the observation that the product of the areas of

the inner and outer Killing horizons is a function only of the quantized charges and is

independent of the mass of the black hole [28]. Moreover, the geometric mean of the areas

of the inner and outer horizon yields the area of the black hole obtained from taking the

smooth extremal limit [29]: √
A+A− = Aext . (1.1)

This is an empirical statement for which a geometric proof is so far lacking.

To start, let us consider black holes in three dimensions. Using the analysis of Brown

and Henneaux that the asymptotic symmetry group of AdS3 is generated by two copies of

the Virasoro algebra, the level matching condition in the dual theory ensures that

A+A−
(8πG3)2

= nR − nL , (1.2)

where the right hand side expresses the difference in the number of right-moving and

left-moving excitations in the CFT2 [15, 30].near-horizon This is, of course, an integer

independent of the mass. The central charges on the left and the right are

cL = cR =
3L

2G3
, (1.3)

where L is the radius of anti-de Sitter space, and the gravity description applies in the

limit where these charges are large [30].

While it remains unclear what quantum mechanical degrees of freedom the area of the

inner horizon counts, a first law of thermodynamics applies to this surface [31–38]. For

comparison, we write

dM = T+dS+ − Ω+dJ (outer) , dM = T−dS− − Ω−dJ (inner) , (1.4)

where we use [39] to cast the thermodynamic quantities as

S± =
A±
4G3

=
πr±
2G3

, T± = ±
r2

+ − r2
−

2πr±L2
, J =

r+r−
4G3L

, Ω± =
r∓
r±L

. (1.5)

In CFT language, we may equally express

TR,L =
r+ ± r−

2πL2
, T−1

± =
1

2

(
T−1
R ± T−1

L

)
, S± =

π2L

3
(cRTR ± cLTL) . (1.6)
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To preserve the form of the first law at the two horizons, in our notation, we take the

temperature of the inner horizon to be negative. In gravity, this is a choice that we have the

freedom to make [40]. Crucially, the temperatures of the left movers and the right movers

in the CFT are both positive. These relations apply to the BTZ black hole [41, 42] and have

been discussed in the literature [31–38]. To briefly summarize a few of the other known

results, let us note that (1.1) encapsulates a statement about the thermodynamic entropy:

S+ S− = S2
ext . (1.7)

This equality, which is true for the BTZ solution, also holds in d = 4, 5 for black hole ge-

ometries in Einstein-Maxwell theory that have flat, de Sitter, or anti-de Sitter asymptopia.

It also applies to certain examples in higher derivative gravity where the Wald entropy

is proportional to the area. The product of the entropies S+ S− 6= S2
ext when the Wald

entropy is not proportional to area. In such examples, the Smarr relations fail. (In grav-

itational thermodynamics, the Smarr relations are statements of the Euler equation and

the Gibbs-Duhem relation.) Nevertheless, we have

A+A− = A2
ext (1.8)

in these cases as well.

The black hole attractor mechanism, in which the extremal horizon area, Aext (or more

generally the Wald entropy), is independent of the asymptotic moduli, is a well known

phenomenon [45–54]. The mechanism ensures that moduli are drawn to fixed values on the

horizon independent of their asymptotic starting points (unless the moduli correspond to

flat directions which do not effect the entropy). However, the attractor mechanism fails once

the temperature is non-zero — generically A± are moduli dependent. We find, from rather

simple considerations, that for a large class of black holes (1.8) holds. This means that the

product of areas is independent of the moduli, which suggests a non-local generalization of

the attractor mechanism to the non-extremal case involving both horizons. In the extremal

case the values of the moduli are determined by attractor equations evaluated on the horizon

(or equivalently in the near-horizon geometry for the entropy function formalism [50]). We

find a non-extremal generalization where the attractor equations still hold once we average

them over the region between the horizons.

The organization of the paper is as follows. In section 2 we review some relevant black

hole mechanics, thermodynamics and the attractor equations. In section 3 we present

generalized non-extremal attractor equations and a proof of (1.7). In section 4 we discuss

features of the moduli flow between the horizons for certain known solutions. In section 5

we discuss a CFT interpretation of a our results. In section 6 we discuss our conclusions

and possible future directions, and finally, in the appendices we present some technical

details and additional plots.

2 Equations of motion

We are interested in non-extremal black holes whose extremal limit displays attractor

behavior. In this section, we review some results from [51, 55] and mention some minor
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generalizations to the non-extremal case. We consider four dimensional gravity coupled to

U(1) gauge fields and moduli,

S =
1

κ2

∫
d4x
√
−G(R− 2gij(φ)∂µφ

i∂µφj − fab(φ)F aµνF
b µν − 1

2 f̃ab(φ)F aµνF
b
ρσε

µνρσ) . (2.1)

Assuming a spherically symmetric space-time metric ansatz of the form,

ds2 = −a(r)2dt2 + a(r)−2dr2 + b(r)2dΩ2 , (2.2)

the gauge field equations are solved by

F a = fab(Qeb − f̃bcQcm)
1

b2
dt ∧ dr +Qam sin θdθ ∧ dφ , (2.3)

where Qam, Qea are constants that determine the magnetic and electric charges carried by

the gauge field F a, and fab is the inverse of fab. Defining an effective potential Veff by,

Veff(φi) = fab(Qea − f̃acQcm)(Qeb − f̃bdQdm) + fabQ
a
mQ

b
m , (2.4)

the equations of motion can be written

(a2b2)′′ = 2 , (2.5)

b′′

b
= −φ′2 , (2.6)

(a2b2gijφ
j ′)′ =

∂iVeff

2b2
, (2.7)

−1 + a2b′2 +
1

2
(a2)′(b2)′ = −Veff

b2
+ a2b2φ′2 , (2.8)

where φ′2 is short hand for gijφ
i′φj

′
. Equation (2.8) is the Hamiltonian constraint that must

be imposed on the field configurations that satisfy the equations of motion. Using (2.6),

we express the constraint (2.8) in a form that will be useful for our purposes:

− (a2(b2)′)′

2
=
Veff

b2
− 1 . (2.9)

It is easy to solve (2.5) to obtain

a2b2 = (r − r+)(r − r−) . (2.10)

The non-extremal solutions we are interested in have distinct inner and outer horizons at

r+ and r−, respectively. Temperatures are obtained from the periodicity of the Euclidean

time direction at the two horizons to be

T± =
(a2)′±

4π
, (2.11)

where + and − subscripts denote the outer and inner horizons respectively. We then

employ (2.10) to obtain the following expressions for the temperatures:

4πT± = (a2)′± = ±(r+ − r−)

b2±
. (2.12)
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This allows us to deduce the relation

b2+T+ = −b2−T− =
r+ − r−

4π
=

∆

2π
, (2.13)

where ∆ = 1
2(r+ − r−) is a non-extremality parameter, which, as can be seen from (2.12)

and (2.13), goes to zero in the extremal case and is directly proportional to the tempera-

tures, T±. Evaluating (2.8) at the horizons, we obtain,

− b2± ±∆(b2±)′ = −V± , (2.14)

where V± denote the effective potential evaluated on the inner and outer horizon. Another

useful relation is obtained by evaluating (2.8) at infinity giving [49]:

∆2 = M2 + gij(φ∞)ΣiΣj − Veff(φ∞) , (2.15)

where we have used 2M = (r+ + r−)1 and Σi is the tail of the scalar field: φi = φi∞ +

Σi/r + . . . .

Taking the extremal limit of (2.14), i.e., ∆ → 0, we recover the relationship between

the extremal entropy, Sext, the extremal horizon radius, bext and the effective potential

evaluated at the horizon Veff [49, 51]:

Sext =
1

4
Aext = πb2ext = πVeff |Horizon . (2.16)

Furthermore, evaluating (2.7) at the double horizon of an extremal black hole, we find the

values of the moduli are fixed at the horizon by the attractor equation [49, 51]

∂φVeff |Horizon = 0 , (2.17)

which states that the effective potential at the horizon is independent of the asymptotic

values of the moduli. We see immediately from (2.16) that this in turn ensures the moduli

independence of the entropy. Now, (2.16), (2.17), which as discussed, essentially encode

the attractor mechanism, can be written:[
Veff(φ)

b2
− 1

]
Horizon

= 0 , (2.18)

∂φVeff(φ)

b2

∣∣∣∣
Horizon

= 0 . (2.19)

This form will be useful in the next section where we will see that they can be generalized

to the non-extremal case by averaging between the inner and outer horizons.

3 Hot attractor equations

We consider non-extremal black hole solutions arising as solutions of (2.1). They are

characterized by gauge charges, temperature and the asymptotic values of the moduli.

1The equality 2M = (r+ + r−) follows from (2.10) if we take b2 → r2 asymptotically.
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For fixed temperature and charges there is a family of solutions with different asymptotic

moduli. It turns out that by studying the inner and outer horizons, we can generalize the

attractor mechanism to the finite temperature case.

We consider (2.13) which, using the usual area-entropy relation, can be written

S+T+ + S−T− = 0 . (3.1)

Assuming that in general the first law holds at both horizons, keeping angular momentum

and gauge charges fixed, we have:

dM = T±dS± , (3.2)

so that

T−1
± =

∂S±
∂M

∣∣∣∣
J,Q

. (3.3)

Now, consider the product of the entropies S+S−. Varying the mass subject to (3.2) and

using (3.1) gives
∂

∂M
(S+S−)

∣∣∣∣
J,Q

=
S+T+ + S−T−

T+T−
= 0 . (3.4)

In particular, since the product is independent of mass along the trajectory we have de-

scribed, taking the extremal limit, ∆→ 0, yields

S+S− = S2
ext . (3.5)

Now by the attractor mechanism the extremal entropy, Sext is independent of the asymp-

totic moduli so S+S− is as well.2

One possible flaw in this proof could be for the case where the extremal limit is singular

— for example, a null singularity — so that we cannot invoke the attractor mechanism.

Moreover, (3.5) applies only when the Smarr relations are satisfied [35]. In appendix C,

we show that in general

T+dS+ = T−dS− (3.6)

from which the invariance of A+A− follows.

Given a2b2 = (r − r+)(r − r−) from (2.10), we can define a Killing vector ∂τ = a2b2∂r
and write ∫ τ

c
dτ =

∫ r

r0

dr

(r − r+)(r − r−)
=

1

r+ − r−

∫ r

r0

dr

(
1

r − r+
− 1

r − r−

)
. (3.7)

As there are poles, we express the coordinates in terms of three patches, which we define

as follows

Region 1: r ∈ [0, r−] , τ ∈ [0,∞] , τ =
1

r+ − r−
log

(
1− r

r+

1− r
r−

)
,

Region 2: r ∈ [r−, r+] , τ ∈ [∞,−∞] , τ =
1

r+ − r−
log

(
r+ − r
r− − r

)
,

Region 3: r ∈ [r+,∞] , τ ∈ [−∞, 0] , τ =
1

r+ − r−
log

(
r − r+

r − r−

)
.

(3.8)

2We are grateful to A. Castro for discussing this derivation with us.
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Integrating (2.7) and (2.9) over Region 2, the region between the two horizons, and

using the fact that a± = 0 to evaluate the boundary terms, we find averaged versions of

the extremal attractor equations (2.18), (2.19):∫ r+

r−

dr

(
Veff

b2
− 1

)
=

[
−a

2(b2)′

2

]r+
r−

= 0 , (3.9)∫ r+

r−

dr

(
∂jVeff

b2

)
=
[
2a2b2gijφ

j ′
]r+
r−

= 0 . (3.10)

3.1 A small generalization: the scalar potential

We consider a generalization of (2.1) with an additional scalar potential (−2Vg(φ)). Such

a term would appear if we where to consider gauged supergravities for example. We also

take a slightly more general ansatz:

ds2 = −a(r)2dt2 + a(r)−2dr2 + b(r)2dΩ2
k , (3.11)

where the label k in (3.11) denotes the assumed metric of the transverse spacial foliation

with:

dΩ2
k =


dθ2 + sin2 θdφ2 k = 1

dx2 + dy2 k = 0

dθ2 + sinh2 θdφ2 k = −1

. (3.12)

The equations of motion (2.5), (2.7), (2.8) become

(a2b2)′′ = 2( k − 2Vgb
2 ) , (3.13)

(a2b2gijφ
j ′)′ =

1

2

(
∂iVeff

b2
+ ∂iVgb

2

)
, (3.14)

−k + a2b′2 +
1

2
(a2)′(b2)′ = −Veff

b2
− b2Vg + a2b2φ′2 , (3.15)

while (2.6) remains the same. Using (3.13) and (2.6), the constraint (3.15) can once again

be written in terms of a total derivative:

− (a2(b2)′)′

2
=
Veff

b2
+ b2Vg − k . (3.16)

In a similar fashion to the preceding section integration of (3.14) and (3.16) over Region 2

leads to the following averaged attractor equations:∫ r+

r−

dr

(
Veff

b2
+ b2Vg − k

)
=

[
−a

2(b2)′

2

]r+
r−

= 0 , (3.17)∫ r+

r−

dr

(
∂iVeff

b2
+ b2∂iVg

)
=
[
2a2b2gijφ

j ′
]r+
r−

= 0 . (3.18)

Unfortunately our results for the invariance of horizon area products do not carry over

to this case since the right hand side of (3.13) is not constant in general. For interesting

results regarding area product formulas in gauged supergravity see for example [29, 56].
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Case Veff φ± V± λ2 ν

1 α1 = −α2 = 2 φ0 = 1
2(φ+ + φ−) V+ = V− 2 1

1′ α1α2 = −4 φ0 = 1
2(φ+ + φ−) V+ 6= V− generically 2 1

2 α1 = −α2 = 2
√

3 φ− = φ+ V+ = V− 6 2

Table 1. Summary of features of moduli flow between the horizons for exact solutions. All the

examples considered have an effective potential of the form Veff = eα1(Q1)2 + eα2(Q2)2. Here, φ0

is the attractor value of the scalar which minimizes Veff . The two parameters λ2 =
∂2
φVeff |φ=φ0

2Veff |φ=φ0
and

ν = 1
2 (
√

1 + 4λ2 − 1) arise in the perturbation analysis as discussed in appendix B.

4 Moduli space mysteries

For extremal black holes, the attractor mechanism ensures that the moduli take on fixed val-

ues on the horizon such that the effective potential is minimized ensuring that entropy does

not depend on the asymptotic moduli. As we have seen from the preceding sections, some

simple geometric properties (2.5), (2.11) and the first law ensure that, for non-extremal

black holes, the product of entropies is independent of the asymptotic moduli. However,

the entropies on their own do generically depend on these values [51, 57]. Somehow the

nature of the flow between the inner and outer horizons ensures that there is a cancellation.

While we have found averaged versions of the attractor equations, it is not clear how they

explicitly relate to the collective invariance of the entropies and the behavior of the flow.

We have examined some explicit solutions to try gain some insight to this question. Our

observations, based on an examination of the solutions, are summarized in table 1 with fur-

ther details in appendix A. Scanning table 1, there does not seem to be any clear universal

features when we compare the values of the moduli or the effective potential on the two hori-

zons. We will see below that some suggestive results emerge from a perturbation analysis.

We have plotted various flows in figures 1–4, to illustrate the features of the solutions.

In the plots we have kept M and Qi constant while varying φ∞. Figure 1 shows Case 1,

in which, as shown in table 1, the modulus averaged over the horizons give the attractor

value. We see that the non-constant flows intersect the attractor value once. Figure 2

shows Case 2, in which the modulus has the same value on both horizons. We see that

the flows intersect the attractor value twice. The plots do not intersect the attractor value

at a common point. Plots of the effective potential, figures 3–4 do not unfortunately seem

to yield any additional insight — we simply verify the effective potentials attain their

minimum when the modulus passes through the attractor value as expected.

We also tried to extend the perturbation strategy of [51, 57] to the non-extremal case

now considering both horizons. Even in the non-extremal case, we can solve the scalar

equation of motion (2.7) by fixing them to their attractor value, φ = φ0, i.e., such that

∂φVeff = 0. This leaves us simply with a Reissner-Nordström black hole metric. We observe

from (2.15) that with constant scalars,

r+r− = M2 −∆2 = Veff(φ0) . (4.1)

– 8 –
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Figure 1. Modulus flow for Case 1 (Veff = e2φ(Q1)2 + e−2φ(Q2)2) between the horizons for various

asymptotic values φ∞ with Q1 = 1, Q2 = 2 and M = 3. For these parameters, φ0 = 1
2 ln |Q2/Q1| ≈

0.35. We use a scaled radial coordinate ρ defined by r = (r+ − r−)ρ + r− so that outer and inner

horizons are at ρ = 1 and 0 respectively.
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Figure 2. Modulus flow for Case 2 (Veff = e2
√

3φ(Q1)2 + e−2
√

3φ(Q2)2) between the horizons

for various asymptotic values φ∞ with Q1 = 1, Q2 = 2 and M = 3. For these parameters,

φ0 = 1
2
√

3
ln |Q2/Q1| ≈ 0.20. Once again we use the scaled radial coordinate ρ so that outer and

inner horizons are at ρ = 1 and 0 respectively.
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Figure 3. Behavior of Veff for Case 1 between the horizons.
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Figure 4. Behavior of Veff for Case 2 between the horizons.
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Perturbing about the constant scalar solutions (see appendix B) we found that unless

ν =
1

2


√√√√1 + 4

(
∂2
φVeff |φ=φ0

2Veff |φ=φ0

)2

− 1

 ,

is an integer, the first order scalar perturbation blows up on at least one of the horizons.

It is not clear whether this divergence relates to the instability of the inner horizon or the

possibility that we can only find non-trivial flows when ν ∈ Z. The exact solutions we

considered correspond to ν = 1, 2. We found that the first order perturbation goes like the

Legendre polynomial Pν , so that for the limited sample of exact solutions considered, the

number of zeros of the perturbation correlates with the number of times the flow passes

through the attractor value between the horizons. We speculate that

• for single scalar field flows in general, ν corresponds to the number of times a non-

constant flow passes through the attractor point,

• δφ+ = (−)νδφ− (where φ = φ0 + δφ),

which is consistent with table 1 and the first order perturbation analysis. On the other

hand, it may be that the averaged attractor equations (2.18), (2.19) are the most general

statements we can make.

5 CFT interpretation

The microscopic interpretation of general extremal black hole thermodynamics relies on the

fact that an extremal solution admits a near-horizon AdS2 geometry with the scalars fixed

at their attractor values. If, at a certain point in moduli space, this can be lifted to a BTZ

black hole with an AdS3 factor, one can then think of this as a state in the holographically

dual CFT2 and relate the relevant bulk thermodynamic quantities to excitation numbers

and central charges in the CFT and thereby acquire a microscopic perspective. In order to

attain a CFT interpretation, we therefore attempt to use the symmetries of the equations

of motion to transform any given asymptotically flat fixed scalar black hole background

to an asymptotically AdS2 × S2 background with the near-horizon geometry remaining

unchanged. This implies that any thermodynamic interpretation we may wish to impose

upon black hole quantities at the horizons remain unaffected.

We find inspiration in the work of [58–61], which maps black hole spacetimes with

flat asymptopia to black hole spacetimes with AdS asymptopia by a judicious modification

of the warp factor. Such subtracted geometries, which are the consequence of a Harrison

transformation, transplant the black hole from one geometry to another while leaving the

thermodynamic properties of the solution unchanged. The conformal symmetry of the

wave equation motivates the choice of warp factor.

Consider the transformation

a→ Λ(r) a , b→ b

Λ(r)
. (5.1)
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We can show that this transformation is a symmetry of the equations of motion for a fixed

scalar background if and only if Λ(r) = r√
r+r−

. Hence, one can design a new black hole

background with fixed scalar fields under this transformation. The resulting background

has a metric given by

ds2 = −(r − r−)(r − r+)

`2
dt2 +

`2

(r − r+)(r − r−)
dr2 + `2dΩ2

2 , (5.2)

which is an asymptotically AdS2 × S2 space with the AdS radius given by `2 = Veff(φ0).

We can then uplift an axion-free solution of this form to a BTZ black hole in AdS3 × S2

with the metric

ds2 = −(r − r−)(r − r+)

`2
dt2 +

`2

(r − r+)(r − r−)
dr2 + r2(dy +

r+r−
`r

dt)2 + `2dΩ2
2 . (5.3)

We observe that the horizon coordinates of the BTZ black hole are the same as the original

black hole in four dimensions.3 We can express the mass and angular momentum in terms

of the Virasoro generators L0 and L0 of CFT2 in the usual manner:4

M =
r2

+ + r2
−

`2
=⇒ M` = L0 + L0 , (5.4)

J =
2r+r−
`

=⇒ J = L0 − L0 . (5.5)

Defining the parameter τ = y+itE , the partition function of the two-dimensional CFT

is

Z = Tr qL0qL0 , q = e2πiτ . (5.6)

The Peccei-Quinn transformation in the SL(2,Z) modular group of the CFT shifts the real

part of the period variable τ by an integer quantity. As this acts as the chemical potential

for the generator of spatial translations along the asymptotic circle defined by L0−L0. The

eigenvalues correspond to momentum on this circle. The generator acts as a symmetry of

the two-dimensional partition function only when the eigenvalues of L0−L0 are quantized.

This is consistent with the assignment of this quantity to the angular momentum charge J .

The generator of translations on the time circle of the boundary torus of AdS is L0 + L0.

In changing the mass of a black hole at fixed quantum number, we change the temperature

and therefore the periodicity of this Euclidean time circle. Under this process, only the

eigenvalue of translations along this circle changes with the mass. This corroborates the

identification of the mass with the generator L0 + L0.

As we consider different eigenvalues of L0 +L0, the eigenvalue on the orthogonal circle

determined by L0−L0 remains fixed. Consequently, along the orbit described by L0 +L0,

the product r+r− is independent of the non-extremality parameter and is quantized in terms

of the charges. At extremality, we know that L0 = 0, and hence M` = J . Here, r+r− = r2
ext

unambiguously and this remains constant as the mass changes. This calculation supplies

a microscopic justification for the independence of the product of the horizon areas as the

non-extremality parameter is varied.

3The AdS3 part is not given in the usual form of a BTZ black hole, but since BTZ is the unique AdS3

black hole, the two must be related by a coordinate transformation.
4For convenience, we work in units where 8G3 = 1.
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Extremal BHs Non-Extremal BHs

Moduli-independent area Moduli-independent product of areas〈
Veff(φ)
b2

− 1
〉

AdS2×S2
= 0

〈
Veff(φ)
b2

− 1
〉

Region 2
= 0〈

∂φiVeff(φ)

b2

〉
AdS2×S2

= 0
〈
∂φiVeff(φ)

b2

〉
Region 2

= 0

Table 2. Comparison of hot and cold attractors.

6 Discussion and conclusions

The attractor mechanism relies on extremality, not supersymmetry [51]. It establishes that

extremal black hole solutions in N = 2 four-dimensional gauged supergravity backgrounds

have a horizon area that is independent of the asymptotic moduli. The horizon acts as

an attractor point in the moduli space towards which all the moduli flows converge. We

explore equivalent properties of the horizon and the moduli space in the non-extremal case.

We find that the product of the inner and outer horizon areas is moduli independent and

write down conditions on the moduli space flows for non-extremal backgrounds.

These results could be better understood by looking at how the near-horizon geome-

try is analyzed in the extremal case. Here, we zoom in on the geometry near the extremal

horizon and analyze the moduli in this region which is AdS2×S2 and by itself is a complete

solution of the equations of motion. The various symmetries of this background constrain

the scalar moduli to be constant and hence the one-dimensional Lagrangian density be-

comes purely a function of the constant effective potential. Extremizing the potential with

respect to the scalar moduli give their extremum values at the horizon, and the extremum

value of the potential is proportional to the horizon area. Recapitulating (2.18), (2.19),

this can be written as 〈
Veff(φ)

b2
− 1

〉
AdS2×S2

= 0 , (6.1)〈
∂φiVeff(φ)

b2

〉
AdS2×S2

= 0 , (6.2)

where the angle brackets emphasize the geometry of the near-horizon region.

In the non-extremal case, the role of the near-horizon geometry is fulfilled by Region

2, the region between the two horizons. If the angle brackets above are interpreted to

mean the average value in Region 2, the equations are the same. Thus, our analysis has

taken an initial step to extending studies of moduli flow from extremal backgrounds to the

non-extremal ones. Every statement that we can make about the moduli space in extremal

backgrounds is encoded in the attractor mechanism, and we can now make corresponding

statements for non-extremal black holes, as displayed in table 2.

The attractor mechanism for the extremal black holes fixes the moduli at the horizon

purely in terms of the charges, thereby lowering the degrees of the freedom of the system to

half of the number required to determine a generic solution. This allows us to formulate first

order equations of motion, which can be solved to obtain extremal solutions. It has been
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known for sometime that in certain cases, one can find first order equations describing non-

extremal flows, [62, 63]. Although there has been a lot of progress constructing such flows

— see, for example, [64–71] — a general understanding remains elusive. The existence of an

“attractor” mechanism for a generic non-extremal solution may yield deeper understanding

of first order flows and help in finding new solutions.

The recent article [72] argues that the S+S− = S2
ext relation supports the microstate

picture of black holes. (See [73–76] for reviews.) According to [72], the inner and outer

horizons delimit the capped region in which long string degrees of freedom are localized. In

light of these observations and our complementary analysis of the geometric mean formula

using the attractor mechanism, non-extremal solitonic solutions in supergravity [77–82]

should be investigated further. This may be a crucial laboratory for describing the ther-

modynamics of inner horizons.

Finally, although our results only apply fully to Lagrangians of the form (2.1) we

believe it should be possible to generalise them to higher derivative theories and gauged

supergravities.
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A Exact solution

In this appendix, we review some features of known exact solutions and derive some prop-

erties summarized in table 1.

A.1 Case 1

Consider the effective potential, Veff = e2φ(Q1)2 + e−2φ(Q2)2 whose solutions can be writ-

ten [83]

exp(2φ) = e2φ∞ (r + Σ)

(r − Σ)
,

a2 =
(r − r+)(r − r−)

(r2 − Σ2)
, (A.1)

b2 = (r2 − Σ2) ,

where

r± = M ±∆, Q1 = eφ∞Q1, Q2 = e−φ∞Q2 . (A.2)
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In this case, the Hamiltonian constraint (2.15) becomes

Σ2 +M2 −Q2
1 −Q

2
2 = ∆2 . (A.3)

The scalar charge, Σ, is not an independent parameter — it is given by

Σ =
Q

2
2 −Q

2
1

2M
. (A.4)

Now, the attractor value, φ0, which extremizes the effective potential, is

e2φ0 = |Q2/Q1| , (A.5)

and one can check using (A.1), (A.2), (A.4) that

e2φ+e2φ− = e4φ∞ (M + Σ)2 − r2
0

(M − Σ)2 − r2
0

= Q2
2/Q

2
1 = e4φ0 , (A.6)

so that the scalar averaged on both horizons gives the attractor value:

φ0 =
1

2
(φ+ + φ−) . (A.7)

From (A.5), (A.7) we can see that

V+ = e4φ0e−2φ−Q2
1 + e−4φ0e2φ−Q2

2 = V− (A.8)

(∂φVeff)+ = 2e4φ0e−2φ−Q2
1 − 2e−4φ0e2φ−Q2

2 = −(∂φVeff)− (A.9)

As expected,

b2+b
2
− = (r2

+ − Σ2)(r2
− − Σ2) (A.10)

= (M2 + r2
0 − Σ2)− 4M2r2

0 (A.11)

= (Q
2
1 +Q

2
2)2 − (Q

2
1 −Q

2
2)2 (A.12)

= 4Q2
1Q

2
2 = b40 , (A.13)

is independent of φ∞.

A.2 Case 1′

Consider the effective potential, Veff = eαφ(Q1)2 + e−
4
α
φ(Q2)2 whose solutions can be

written [51, 84]

e(α
2

+ 2
α

)φ =

(
2

|α|

)(
|Q2|F2

|Q1|F1

)
, (A.14)

a2 = ∆2(Q1F1)
− 8/α
α+4/α (Q2F2)

− 2α
α+4/α /♠ , (A.15)

where

Fi = sinh(∆τ − log(ei)) , ♠ = (4/α2)α/(α+4/α) + (4/α2)4/α/(α+4/α) , (A.16)
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and τ is given by (3.8), so that

b2 = ♠(µ1r − ν1)8/(4+α2)(µ2r − ν2)2α2/(4+α2)/∆2 , (A.17)

where

µi = Qi(e
2
i − 1)/(2ei) , (A.18)

νi = (r+ − r−e2
i )/(2ei) , (A.19)

and the ei are given by [57]

1

2

(
ei − e−1

i

)
= 2∆(α2

i + 4)(Qi)
−1
, (A.20)

with (α1, α2) = (α,−4/α) and Q
2
i = eαiφ∞Q2

i .

On the inner and outer horizons, we obtain,

e(α
2

+ 2
α

)φ+ =
2e2Q2

e1Q1α
, (A.21)

e(α
2

+ 2
α

)φ− =
2e1Q2

e2Q1α
, (A.22)

so

e(α
2

+ 2
α

)φ+e(α
2

+ 2
α

)φ− =
4Q2

2

Q2
1α

2
= e2(α

2
+ 2
α

)φ0 , (A.23)

and we again have that the scalar averaged on both horizons gives the attractor value:

φ0 =
1

2
(φ+ + φ−) . (A.24)

We also have that

b2+ = ♠(−e1Q1)8/(4+α2)(−e2Q2)2α2/(4+α2) , (A.25)

b2− = ♠(−Q1/e1)8/(4+α2)(−Q2/e2)2α2/(4+α2) . (A.26)

So that as expected

b2+b
2
− = b40 . (A.27)

However, unlike the previous case, one can show numerically that one does not generically

have V+ = V−.

A.3 Case 2

Consider the effective potential, Veff = e2
√

3φ(Q1)2 + e−2
√

3φ(Q2)2 whose solutions [85–88]

can be written [51]

e
4√
3
φ

=

(
Q2

Q1

)2/3 e−q2

e−q1
, (A.28)

a2 =
e

1
2

(q1+q2)

√
16Q1Q2

, (A.29)
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where the qi satisfy the two particle toda equation

q̈1 = e2q1−q2 , (A.30)

q̈2 = e2q2−q1 , (A.31)

and the dot denotes derivatives with respect to τ which is defined by (3.8). Solutions

to (A.30) can be written

e−q1 = f1e
m1τ + f2e

m2τ + f3e
−(m1+m2)τ , (A.32)

e−q2 = f4e
−m2τ + f5e

−m1τ + f6e
(m1+m2)τ , (A.33)

where

f3 =
1

f1f2(m1 −m2)2(2m1 +m2)2(m1 + 2m2)2
, (A.34)

f4 =
1

f2(m1 −m2)2(m1 + 2m2)2
, (A.35)

f5 =
1

f1(m1 −m2)2(2m1 +m2)2
, (A.36)

f6 = −f1f2(m1 −m2)2 , (A.37)

and matching with the known solutions (or imposing φ finite on the horizon and finite

horizon area) fixes m1 = −m2 and m1 = ±(r+−r−) — without a loss of generality we may

take m1 = (r+ − r−) = 2∆. The constants f1,2 depend on Q1,2 and φ∞ in a complicated

way. Using (3.8) we get

e−q1 =
f1(r − r+)2 + f2(r − r−)2 + f3(r − r+)(r − r−)

(r − r+)(r − r−)
, (A.38)

e−q2 =
f4(r − r+)2 + f5(r − r−)2 + f6(r − r+)(r − r−)

(r − r+)(r − r−)
. (A.39)

Now using (2.10), (A.28), (A.38), (A.39), we get

e
4√
3
φ+ =

(
Q2

Q1

)2/3 f5

f2
= −

(
Q2

Q1

)2/3 1

64f1f2∆4
, (A.40)

e
4√
3
φ− =

(
Q2

Q1

)2/3 f4

f1
= −

(
Q2

Q1

)2/3 2

64f1f2∆4
, (A.41)

b4+ = 256Q2
1Q

2
2f2f5∆4 = 4Q2

1Q
2
2

(
f2

f1

)
, (A.42)

b4− = 256Q2
1Q

2
2f1f4∆4 = 4Q2

1Q
2
2

(
f1

f2

)
, (A.43)

so that

φ+ = φ− , (A.44)

and as expected

b2+b
2
− = 4Q2

1Q
2
2 = b20 . (A.45)
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Now requiring asymptotic flatness and plugging in the asymptotic values of the scalars

gives (A.28), (A.29)

f1 + f2 + f3 =
1

4
(Q1)

−5/6
(Q2)

−1/6
(A.46)

f4 + f5 + f6 =
1

4
(Q2)

−5/6
(Q1)

−1/6
(A.47)

with Q1 = e
√

3φ∞Q1 and Q2 = e−
√

3φ∞Q2. If we define

g1 = f1 + f2 , (A.48)

g2 = f1f2 , (A.49)

we can use (A.34), (A.35), (A.36), (A.37), (A.46), (A.47) to find cubic equations for g1 and

g2. These are a little unwieldy, so for producing various plots, we found the following form

of the solution useful [89]:

exp(4φ/
√

3) = e4φ∞/
√

3 p2

p1
, (A.50)

a2 =
(r − r+)(r − r−)

√
p1p2

, (A.51)

where

pi = (r − ri+)(r − ri−) , (A.52)

r1± = − 1√
Σ
±Q1

√
2Σ

Σ +
√

3M
, (A.53)

r2± =
1√
Σ
±Q2

√
2Σ

Σ−
√

3M
, (A.54)

and the scalar charge Σ satisfies the cubic equation

2

3
Σ =

Q
2
1

Σ +
√

3M
+

Q
2
2

Σ−
√

3M
. (A.55)

The relationship between the two forms of the solution shown above is non-trivial because

of the cubic equations that Σ and g1,2 satisfy.

B Perturbation

We wish to construct a perturbation series about the non-extremal constant scalar solution.

As discussed in section 4, when the scalars are fixed to the minimum of Veff , we have a

Reissner-Nordström background which we can write as:

a2
0(r) =

(r − r+)(r − r−)

r2
, b0(r) = r , φ = φ0 , (B.1)

where ∂φVeff |φ0 = 0. From the constraint (2.8) we obtain

b0+b0− = r+r− = Veff(φ0) = V0 . (B.2)
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Suppose we now consider a scalar near the attractor value, let

φ = φ0 + εφ1 +O(ε2) , (B.3)

Neglecting back-reaction, the equation for φ1 becomes

((r − r+)(r − r−)φ′1)′ = σ2φ1/(2r
2) , (B.4)

where σ2 = ∂2
φVeff |φ=φ0 is the coefficient of the first order expansion of the r.h.s. of (2.7).

Now, substituting

z =

(
r+ − r
r

)
r−

r+ − r−
, (B.5)

into (B.4), which moves the poles from {r+, r−, 0} to {0, 1,∞}, gives

∂z(z(z − 1)∂zφ1) = λ2φ1 , (B.6)

where

λ2 =
∂2
φVeff |φ=φ0

2Veff |φ=φ0

. (B.7)

For an effective potential of the form eα1φQ2
1 + eα2φQ2

2, it is not hard to see that λ2 =

−α1α2/2. Now (B.6) has the solution

φ1(z) = c1Pν(2z − 1) + c2Qν(2z − 1) , (B.8)

where Pν and Qν are Legendre functions of the first and second kind respectively and

ν = 1
2(
√

1 + 4λ2−1). If ν is not an integer the perturbation diverges on both horizons since,

for non-integer ν, Pν(x) has a singularity at x = −1 which corresponds to the outer horizon

and Qν(x) has singularities at x = ±1 which corresponds to the inner and outer horizon.

C Hamiltonian formulation for conservation laws

Suppose we take a static slice of the spacetime, bounded by a sphere at infinity and the

event horizon and foliate it radially. Then the dynamics governing the fields, evolving

radially, on each hypersurface should follow the tt component of the Einstein equation

obtained by varying the action with respect to g00. The resulting Einstein’s equation can

be formulated as a conserved density: G00− 8πGDT00 = 0. The resulting integral over the

constraint manifold gives an effective “Hamiltonian,” which is null over the phase space

of solutions of the system and whose variations with respect to the induced metric on the

foliation yields the correct Hamiltonian equations on the foliation hypersurface.

For the static spherically symmetric solution we consider [51, 55], the effective Hamil-

tonian density, as given in (2.49) of [68],5 is

0 = H =

(
(a2b)′b′ − a2b2(φ′)2 − Veff(φ)

b2

)
− (a2(b2)′)′ − 1 . (C.1)

5Put a = eU , b = eA, and ψ = A + U . The extra −1 above arises from the positivity of the horizon

curvature.
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This relation applies to Region 1. We may perform a variation in solution space as we

move from one solution to another infinitesimally closer to it. We make sure that these

variations do not trigger any non-normalizable modes at either boundary; this is ensured

by adding counterterms to cancel all such variations. The inner boundary, corresponding to

the horizon at r+, is defined by a2 = 0 while both b2 and (b2)′ diverge at the outer boundary,

r =∞. This allows us to perform a variation of the background and matter fields subject

to a null variation of the Hamiltonian density. As this condition is true at every point, one

can integrate these null variations over a given time slice to obtain the total null variation:

0 =

{
δ(HV ) +

1

2

[
(b2)′δa2 + (a2)′δb2 +

(a2)(b2)′

2b2
δb2
]
− δ(a2(b2)′)− 2a2b2(φ′)iδφi

}∣∣∣∣∞
r+

.

(C.2)

Here, the first term in the variation is the volume term which vanishes independently on

shell. The surface terms, however, have a constrained variation as noted above.

Keeping in mind that the asymptotic form of the metric elements is

a2
∞ ≈ 1− 2M

r
+
r+r−
r2

, b2∞ = r2 , (C.3)

and those of the scalar fields is

φi = φi0 +
Σi

r
+ . . . , (C.4)

we see that δb2 nor δ(b2)′ cannot vary at infinity; the variation δa2 at infinity is −2δM
r .

The variation δa2, meanwhile, vanishes at the horizon.

Evaluating (C.2), we find

0 = − (b2)′

2
δa2

∣∣∣∣
∞
− (a2)′

2
δb2
∣∣∣∣
r+

− 2a2b2(φ′)iδφi

∣∣∣∣∣
∞

(C.5)

= 2δM − 2T+δS+ + 2Σiδφi .

This is nothing but the first law for the outer horizon [57] at fixed charges.

Let us now repeat the exercise for Region 2. From (C.2), we deduce that

0 =
(a2)′

2
δb2
∣∣∣∣r+
r−

=
1

2
(a2)′+δb

2
+ −

1

2
(a2)′−δb

2
− . (C.6)

We know from (2.11) that (a2)′± = 4πT±. This means that if the entropy is proportional

to the horizon area (S± ∝ b2±), we may write

T+δS+ = T−δS− . (C.7)

Using (2.11) and (2.13), we see that

1

2
(a2)′± = ±∆

b2±
. (C.8)
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This allows us to recast (C.6) as

0 = ∆

(
δb2+
b2+

+
δb2−
b2−

)
= ∆

δ(b2+b
2
−)

b2+b
2
−

. (C.9)

The variation δ(b2+b
2
−) should be zero in order to satisfy the Hamiltonian constraint at

every point. This implies that b2+b
2
− is constant. To evaluate this constant, we go to a

point in moduli space where the asymptotic moduli are fixed at their attractor values so

that we have a Reisner-Nordström solution of the form (B.1). From (B.2) we conclude that,

b+b− = V (φ0), which is independent of the asymptotic moduli. If the extremal solution is

non-singular we can further conclude that

b2+b
2
− = b4ext ⇐⇒ A+A− = A2

ext . (C.10)
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