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1 Introduction

There are important examples of physical systems which contain degrees of freedom con-

fined to a lower-dimensional subspace of spacetime and can be described by conformal field

theories. This was studied in particular for CFT in 1+1 dimensions, where often the defect

may be described in terms of a boundary condition [1]. In the case where the ambient

degrees of freedom are strongly coupled even without the defect, it is natural to expect

that applying the AdS/CFT correspondence [2–4] or one of its extensions will also prove

very useful in this context.

The most general holographic approach for studying defect conformal field theory

(DCFT) is to consider ‘Janus’ solutions in supergravity, which may be embedded in

string theory [5–7] (for recent work see [8–17]). The Janus configurations amount to a

d-dimensional domain wall embedded in AdSd+1, for which the field theory defect dissolves

smoothly in the interior of the spacetime. Due to the non-local structure of these config-

urations, the calculation of physical observables is involved in this approach and generally

involves PDE’s.

Recently, there has been interest in the holographic study of boundary conformal field

theories (BCFT) and defect conformal field theories (DCFT) in a simpler approach where

the gravity dual of the boundary or defect is taken to be a localised infinitesimally thin

d-dimensional surface in AdSd+1 [18–20]. These models were generalised to holographic

models of boundary RG flows, where ‘boundary’ refers to the field theory boundary degrees

of freedom rather than to the AdS boundary [18, 19, 21]. It was shown that these flows

satisfy a holographic version of the g-theorem, which states that the boundary entropy

decreases along an RG flow from a UV to an IR fixed point [18–21]. Within field theory,

this theorem was given in [22, 23].

Gravity duals of DCFT in which the dual of the defect remains localised were recently

used also for holographic models of the quantum Hall effect. Recent examples include both

bottom-up models [24, 25] and top-down models involving brane constructions [26, 27].

For example, these models display incompressible states with quantised Hall conductivity.

In this paper, we find explicit solutions of the models of [18–20] for non-trivial field

content. We refer to the localised gravity dual of the field theory defect as the brane,

and find explicit solutions which take the backreaction of the brane matter fields on the

geometry into account. We construct holographic duals for DCFT by gluing together two

a priori distinct asymptotically AdS manifolds. For this to be consistent with the Einstein

field equations, the system has to obey the Israel junction conditions [28]. These relate the

exterior curvature and the induced metric of the brane with the energy-momentum tensor

constrained to it. The defect energy-momentum tensor is dynamically generated by matter

fields on the brane, subject to appropriate energy conditions. Throughout the paper, we

will always assume the null energy condition (NEC) to be satisfied and also investigate the

impact of the strong (SEC) and weak energy condition (WEC).

In the AdS/BCFT models mentioned above [18–20], von Neumann boundary condi-

tions are imposed on the brane and, as usual, Dirichlet conditions on the conformal bound-

ary. This ansatz yields the same equations of motion as the use of Israel junction conditions
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together with the assumption that there is a reflection symmetry around the brane. This

is analogous to classical electrodynamics, where von Neumann boundary conditions may

be imposed by introducing mirror charges.

Moreover, in this paper we use the Israel junction conditions to link energy conditions

imposed on the brane matter to qualitative statements about the exterior geometry of its

embedding into the ambient spacetime. In particular, we make use of the so-called ‘barrier

theorem’ recently proved by Engelhardt and Wall in [29]. This theorem states under which

conditions the brane may be intersected by spacelike hypersurfaces which are anchored at

the boundary of the manifold. We find a connection between the assumption made for

this theorem and a specific combination of energy conditions, which can also be used to

distinguish between hypersurface configurations which are anchored twice at the boundary,

and others which are infinitely extended into the bulk.

We obtain analytic solutions for the embedding functions for the cases of a constant

brane tension, as well as for perfect fluids and a free massless scalar field in AdS3 and BTZ

backgrounds. We find that the constant tension solutions may be generated by following

a normal flow starting from the trivial solution in a non-backreacting geometry.

Our main motivation to study the models presented, with bulk spacetimes to both sides

of the brane, is the holographic bottom-up model for the Kondo effect proposed in [30], in

which a magnetic impurity with SU(N) spin interacts with a strongly coupled field theory.

This model is based on a 1+1-dimensional brane with matter fields that extends radially

from the AdS boundary into the bulk, in a BTZ black hole spacetime. In the holographic

model of [30], the formation of the Kondo screening cloud corresponds to the formation

of a condensate involving an electron and a slave fermion, as realised in field theory for

large N Kondo models for instance in [31–34] . Moreover, this model involves the gravity

dual of a boundary RG flow triggered by the gravity dual of a marginally relevant field

theory operator.

The model of [30] does not include the backreaction of the brane degrees of freedom

on the geometry. However, to calculate the Ryu-Takayanagi holographic entanglement

entropy (HEE) [35, 36] for this model, it is necessary to include the backreaction: the

HEE is obtained from a minimal surface which encodes information about the metric of

the background geometry. This metric is not altered in the probe limit. According to

the result of this present paper, the Israel junction conditions are then the natural choice

to describe the backreaction that the energy-momentum localised on the brane exerts on

the overall geometry. This allows for the calculation of the HEE in AdS/BCFT, as was

already done in [15], but also in AdS/DCFT models such as in [30]. Due to the generality

of these junction conditions and of the AdS/BCFT ansatz, we expect that the findings of

this present paper will have a much more wide range of applications than the holographic

Kondo model mentioned above. We note that complementary approaches for calculating

the HEE for DCFT were presented in [11, 14], and for probe branes in [37, 38].

The outline of this paper is as follows: we begin by reviewing the AdS/BCFT approach

in section 2. In section 3 we specify our ansatz and its equations of motion. In the three-

dimensional static case, this ansatz will generally only involve ODEs. Then, in section 4,

we investigate these equations in detail, formulating them in a simpler way and analysing
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Figure 1. Setup for the holographic description of BCFT: asymptotically AdS bulk spacetime N

with conformal boundary M and additional boundary Q. P is the intersection of M and Q. On

the field theory side, we refer to P as the defect and to M as the ambient space.

the implications of the energy conditions imposed on the brane. These energy conditions

play an important role in section 5, where we make the connection between our ansatz

and the ‘barrier theorem’ recently proven in [29]. In section 6 we revisit a toy model with

constant brane tension previously studied in [15] and reformulate it in terms of the Israel

junction conditions. We then apply our methods to the case where the matter content on

the brane can be described by a perfect fluid or a free massless scalar field in 7. Moreover,

in section 8 we study a more involved matter content which behaves very differently from

the fluid solutions investigated before, and is physically motivated as a holographic dual

of the Kondo effect as introduced in [30]. We conclude with an outlook, in particular on

calculating the HEE for the holographic Kondo model of [30], in section 9. We comment

on the generalisation of the results from section 5 to higher dimensions in appendix A.

Finally, in appendix B we give precise statements about if and under which assumptions

the construction of constant brane tension solutions can be generalised to other spacetimes.

2 Review of the AdS/BCFT formalism

We begin by reviewing the holographic approach to boundary conformal field theories

(BCFT) proposed in [18–20].1 In the standard AdS/CFT correspondence, an asymp-

totically AdS spacetime N is considered, with a conformal boundary M and a Dirichlet

boundary condition imposed on the bulk metric at M . In contrast to this, the AdS/BCFT

ansatz mentioned above introduces an additional boundary Q that intersects M in P and

extends from there into the bulk as shown in figure 1. On this hypersurface Q (which

we will also refer to as brane), the bulk-metric will be required to satisfy a von Neumann

boundary condition.

Let us consider the metric contribution to the dual gravity action. With the usual

Gibbons-Hawking boundary term [45] this action reads [18–20]

S =
1

2κ

∫
N

dd+1x
√
−g (R− 2Λ) +

1

κ

∫
M

ddx
√
−h
(
K(h) − Σ(h)

)
+

1

κ

∫
Q

ddx
√
−γK(γ) +

∫
Q

ddx
√
−γ LQ + SP ,

(2.1)

1This method was later utilised in [21, 24, 39–44].
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where we defined κ = 8πGN . The Lagrangian LQ describes matter fields constrained to

Q, and SP the necessary counterterms arising on P . Any extrinsic curvature is defined via

normal vectors pointing outwards.

In (2.1) the first line contains the usual metric bulk- and boundary-terms from

AdS/CFT correspondence, with K(h) the extrinsic curvature of the induced metric hij
on M . The constant Σ(h) is added as a counterterm for holographic renormalisation. The

new terms in the AdS/BCFT ansatz are those in the second line of (2.1): the first two

describe the extrinsic geometry of the brane Q and the dynamics of matter fields with

Lagrangian LQ possibly living on it, while SP describes boundary terms that may arise

from P . We will explicitly allow for a cosmological constant (or constant tension) term

LQ = const., as this is one of the most widely studied models of AdS/BCFT [18–20].

Taking the variation of this action, with Dirichlet boundary conditions on M and von Neu-

mann boundary conditions on Q yields the usual bulk equations of motion together with

the boundary condition

K
(γ)
ij − γijK

(γ) = κSij , (2.2)

with Sij the energy-momentum tensor derived from LQ, the letter S referring to ‘shell’

or ‘surface’.

As starting point for the present paper, we note that while the equations (2.2) are

derived as boundary conditions from the surface term
∫
Q . . ., they take a form similar

to the Israel junction conditions [28] that describe the matching of two spacetimes along

the hypersurface Q. These conditions will be described in section 3. In this setting, the

hypersurface Q has a specified embedding in both spacetimes, with corresponding points

on Q being identified, see figure 2 for an illustration. An observer who lives in one of the

spacetimes and enters Q will hence emerge in the other spacetime. As shown by Israel [28],

such a sewing of two spacetimes along a given hypersurface Q can only be sustained by

Einstein’s equations if there is a correct distribution of energy-momentum localised on

Q. Under a certain symmetry assumption, these Israel junction conditions will then take

a form similar to (2.2), as we will show in more detail in section 3. We will propose a

holographic model for defect CFT (DCFT) which follows this line of thought.2

While the setup (2.1) has been studied in a number of papers, concrete analytical

solutions for non-constant Lmatter,Q are quite rare in the literature, see [44] for one recent

exception. Hence the explicit solutions presented in sections 7 and 8 below, as well as the

methods presented in section 4 that allow us to obtain these solutions quite simply, are the

main results of this paper.

3 A model for DCFT in two dimensions

In this section we describe in detail the setup we are going to use in this paper. The idea

is to take the AdS/BCFT setup depicted in figure 1 (with an additional boundary Q that

reaches from the AdS boundary M into the bulk) and to allow for bulk spacetimes N± on

both sides of Q as in figure 2.

2Indeed, during the preparation of this work similar ideas have been proposed in [44].
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x = 0

(identify)

(N−, g
−)

M−

Q

x
z = 0

z = zH

x−(t, z)

z = 0

z = zH

(N+, g
+)

Q

M+

z z
x

x+(t, z)

n+n−

Figure 2. Geometry of the setup: the manifold N is split into two submanifolds N+ and N−.

The white region is excised from the manifold. For each submanifold, the position of the brane is

given by x = x±(t, z) and corresponding points of the two embeddings x+ and x− are identified, as

indicated by double arrows. The normal vectors to Q on both sides are named n±, and point from

N− to N+. In most of the paper, we will assume N± to be BTZ metrics (3.6) of equal temperature

and the embedding to be symmetric, i.e. x+ = −x−.

Indeed, the equations (2.2) resemble the Israel junction conditions that describe how

two spacetimes can be sewn together. For example, starting somewhere in N+ in figure 2,

a curve might cross Q and leave it immediately into N− to the left, as the corresponding

points of Q in N+ and N− are identified. In this setup, the hypersurface Q is not a

boundary of the bulk spacetime, but merely a hypersurface (or brane) embedded into a

spacetime that consists of the two halves N±.

What is the physical interpretation of such a setup? We know that in 2 + 1-bulk

dimensions, Einstein-Hilbert gravity does not have any propagating bulk degrees of freedom

and all vacuum solutions (including the famous BTZ black holes [46, 47]) will hence be

locally identical to the AdS3 metric. Suppose now we have a holographic (toy) model of

a defect CFT (DCFT) that involves a hypersurface that is anchored at the boundary and

reaches into the bulk, such as the one proposed in [30]. If there are matter fields living

on this hypersurface, how will their energy-momentum backreact on the bulk spacetime?

Here we investigate this question in the case of three bulk dimensions, where gravity has

no propagating degrees of freedom and the bulk spacetime has to be locally AdS3.

Our ansatz is that the backreaction of such a model will be given precisely by the Israel

junction conditions. The right hand side of the brane Q will be the locally AdS3 spacetime

N+, the left hand side of the brane will be the spacetime N−. We define the representation

of Q in N± by two a priori distinct embeddings

X± : Q ↪→ N±, X±(t, z) =
(
t, z, x±(t, z))

)
, (3.1)

which we assume to be differentiable at least once.

The entire spacetime is then constructed by identifying corresponding points along the

curves x+ and x−, see figure 2.3 Assuming that no external force acts on the brane, the

Israel junction conditions then relate the functions x±(t, z) with the energy-momentum

3Note that in the construction presented here, the induced metrics on both embeddings of Q are assumed

to be equal: γ− = γ+ ≡ γ. Hence choosing a specific coordinate system on Q, two points in the two
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tensor Sij on the brane [28, 49], {
Kij

}
Sij = 0, (3.2)

[Kij − γij trK] = −κSij , (3.3)

where {A } := 1
2(A+ + A−), [A ] := A+ − A− for any tensors A± defined on both sides of

the brane. γij is the induced metric on the brane, Sij is the energy-momentum tensor on

the brane and κ the coupling constant in the Einstein equations.

Given the embeddings x±, we may define two functions f±(t, z, x) := x − x±(t, z) in

N± and obtain two one-forms by applying the exterior derivative Nn± = df± with N a

normalisation factor. The corresponding vectors defined via n±(n±) = 1 give the normals

to the embedding. Due to our sign convention in the definition of f±, these normal vectors

point out of N− and into N+, see figure 2. Using the definition of the extrinsic curvature

K±(u, v) = g
(
∇±
U±V

±, n±
)

= −g
(
V ±,∇±

U±n
±) , (3.4)

where U± and V ± denote the pushforwards of u and v by X±, we compute its components

in this specific coordinate system. In components, the definition is given by

K±ij ≡
∂Xα

∂ξi
∂Xβ

∂ξj
∇αn±β = −n±α

(
∂2Xα

∂ξi∂ξj
+ Γαβγ

∂Xβ

∂ξi
∂Xγ

∂ξj

)
, (3.5)

where ξi denote the coordinates on Q and Γαβγ the Christoffel symbols in N±.

In view of applications to systems with finite temperature, we assume the bulk space-

times N± to be BTZ black holes equal temperature, i.e. the metrics g± are identical and

given by

g±µνdxµdxν =: gµνdxµdxν =
L2

z2

(
−h(z)dt2 +

dz2

h(z)
+ dx2

)
, (3.6)

with h(z) = 1− z2/z2
H for the BTZ black hole and h(z) = 1 in the limiting Poincaré AdS3

case. With this, and choosing the coordinates on Q to be t, z, we explicitly find

K±tt =
1

N

(
∂ 2
t x± − ∂zx±

(
h

2

(
h′ − 2h

z

)
+
h

z
(∂tx±)2

))
,

K±tz = Kzt =
1

N

(
∂t∂zx± − ∂tx±

(
h

z
(∂zx±)2 +

h′

2h

))
,

K±zz =
1

N

(
∂ 2
z x± − ∂zx±

(
h

z
(∂zx±)2 +

1

z
− h′

2h

))
,

(3.7)

where (. . .)′ denotes the derivative with respect to z and N is the normalisation of nµ. The

induced metric reads

γij =

(
gtt + (∂tx±)2 gxx (∂tx±) (∂zx±) gxx

(∂tx±) (∂zx±) gxx gzz + (∂zx±)2 gxx

)
. (3.8)

embeddings of Q which are described by the same coordinates on Q are to be identified. See [48] for an

exploration of the possibility γ+ 6= γ−.
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For simplicity, in the following we will always assume a symmetric embedding with x+ =

−x−, and hence find

K−ij = −K+
ij , {K} = 0. (3.9)

For this ansatz, (3.2) is trivially satisfied while (3.3) reduces to

K+
ij − γijK

+ = −κ
2
Sij . (3.10)

Apart from a factor 1/2 (due to K+ − K− = 2K+), this equation seems to have an

additional − sign as compared to (2.2). The reason is that we need to find a convention

that fixes the sign of the normal vector nµ. In (3.3) the signs are correct when assuming

that nµ points from N− to N+. Then expressing (3.3) (with x+ = −x−) in terms of K+

leads to (3.10). The equation (2.2) in contrast was derived from the Gibbons-Hawking like

boundary term in (2.1), where nµ was defined to point out of the bulk. Hence alternatively

expressing (3.10) in terms of K−, the signs would be as in (2.2).

The Israel junction conditions may also be derived from the variational problem using

the Einstein-Hilbert action for both parts of the spacetime, including the Gibbons-Hawking

terms, and identifying their common boundary Q. For details see [50–52].

In this paper we allow for a two-sided defect setup as depicted in figure 2. Due to the

similarity of the equations (2.2) and (3.10), our results will equally apply to the one-sided

AdS/BCFT setup (2.2). Our results will have applications on the holographic bottom-up

models of 1+1-dimensional BCFT or DCFT that contain (or can be approximated by bulk

spacetimes containing) co-dimension one hypersurfaces with a non-trivial matter content,

such as for example [30]. For other holographic (often top-down) studies of BCFT and

DCFT, see [8–14].4

4 Decomposition of the Israel junction conditions

In this section, our aim is to show how for a two-dimensional brane the tensorial Israel

junction conditions (3.10) can be projected into scalar equations in a very simple manner.

Writing the equations in this way will allow us to easily make a connection with energy

conditions in subsection 4.2 and with the barrier theorem of Engelhardt and Wall in sec-

tion 5. Moreover, this will allow us to find simple exact solutions to these equations for

non-trivial matter content on the brane in section 7.

4.1 The brane energy-momentum tensor in two dimensions

As the brane worldsheet is 1+1-dimensional, the energy-momentum tensor as a symmetric

(0, 2)-tensor is described by three values at every point in the spacetime. In order to

achieve a decomposition of the equation (3.10) into scalar equations, we define a basis of

three tensors that span the space of symmetric (0, 2)-tensors in 1+1 dimensions. To this

end, we note that the lightcone on the 1+1-dimensional brane worldsheet does not consist

4In a not necessarily holographic context, the Israel junction conditions may also play a role in brane

world scenarios, see [49, 53–55].
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of infinitely many null-vectors, but of two distinct null directions, which we normalise such

that the two (left- and right pointing) null vectors satisfy

lil
i = 0 = rir

i, lir
i = −1. (4.1)

We may now decompose the energy-momentum tensor Sij (and any other symmetric

(0, 2)-tensors on the brane) as follows,

Sij =
S

2
γij + SLlilj + SRrirj . (4.2)

Here γij is the induced metric on the brane, and S is the trace of Sij . lilj and rirj are two

independent symmetric traceless tensors, and SL and SR are the non-trace components of

Sij in this decomposition.5

4.2 Energy conditions in two dimensions

We will repeatedly make use of energy conditions on the brane energy-momentum tensor

Sij . Let us discuss some of these conditions in detail in the following. For reviews of energy

condition we refer to [56, 57].

The null energy condition (NEC) implies that for every null vectormi on the worldsheet

of the brane, we have

Sijm
imj ≥ 0 ∀ mimi = 0. (4.3)

As said above, there are only two distinct null directions on the brane. The NEC

hence reads

Sijl
ilj ≥ 0 and Sijr

irj ≥ 0 ⇒ SL ≥ 0 and SR ≥ 0. (4.4)

The weak energy condition (WEC) is similar to the NEC, just with timelike vectors, i.e.

Sijm
imj ≥ 0 ∀ mimi < 0. (4.5)

In general, parameterising mi = αli + βri with α, β > 0 we find6

SL ≥ 0, SR ≥ 0, Sαβ ≤ SLα2 + SRβ
2 ∀α, β > 0. (4.6)

This implies for optimal choice of α, β:

SL ≥ 0, SR ≥ 0, S ≤ 2
√
SLSR. (4.7)

The last energy condition that we are going to discuss is the strong energy condition

(SEC). Unfortunately, the proper generalisation of the SEC in 3+1 dimensions to arbitrary

5It is indeed easy to define proper projection operators, e.g. SL = Sijr
irj .

6Note that the WEC implies the NEC by continuity in the limits α→ 0 respectively β → 0.
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dimensions is not unique, and we will find it most useful to set7

(Sij − Sγij)mimj ≥ 0 ∀ mimi < 0. (4.8)

The reason for this choice is that with γii = 2, the equation (3.10) can be rewritten as

K+
ij = −κ

2
(Sij − Sγij), (4.9)

which will be useful in section 5. In particular, using the decomposition (4.2) again, the

SEC takes the form (for optimal choice of α, β):

SL ≥ 0, SR ≥ 0, S ≥ −2
√
SLSR. (4.10)

The NEC is the most fundamental energy condition discussed here, as it is implied

by both WEC and SEC. Although we will study WEC violating setups in section 6 and

SEC violating setups in sections 6 and 8, we will not consider any NEC violations in this

paper. Such NEC violations may be possible for exotic forms of classical matter [56, 57],

but NEC is expected to hold in string theory, see [58]. It is also possible to define other

energy conditions (see e.g. [57, 59]), but these will not play a prominent role in this work.

4.3 Static case

In this section, we consider the static case, in which the bulk-spacetime is assumed to be

static with Killing time coordinate t and where the embedding of the brane as well as the

matter fields living on the brane are assumed to be independent of t.

From previous results (3.7) and (3.8), we get

K±tz = K±zt = 0 (4.11)

and

γ =

(
gtt 0

0 gzz + (∂zx±)2 gxx

)
. (4.12)

Hence, for the static symmetric case in the BTZ background we are going to investigate,

the equation (3.10) requires Sij to be diagonal. Let us now write the induced metric as

γij =

(
−a(z) 0

0 b(z)

)
, (4.13)

7Theories of spacetime curvature are usually described by equations that equate a matter energy-

momentum tensor with a certain curvature tensor. In the case of Einstein-Hilbert gravity, this curvature

tensor is the intrinsic Einstein-tensor of the metric while in our ansatz (3.10) this is an extrinsic curvature

tensor. As pointed out in [57] for example, certain energy conditions can be motivated from the matter side

as conditions that realistic matter fields should satisfy, but others may be motivated from the curvature

side. In our discussion of the SEC, we take the second approach. Especially in section 8 we will find it

phenomenologically very important to work with a matter content on the brane that does violate what we

call SEC.
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with a(z), b(z) > 0. The two null vectors li and ri can easily be found, and the decompo-

sition of Sij now reads

Sij =
S

2
γij + SLlilj + SRrirj (4.14)

=
S

2

(
−a 0

0 b

)
+
SL
2

(
a −

√
ab

−
√
ab b

)
+
SR
2

(
a
√
ab√

ab b

)
. (4.15)

As staticity demands Sij to be diagonal in the coordinate system we chose in (4.13), this

implies SL = SR ≡ SL/R and hence

Sij =
S

2

(
−a 0

0 b

)
+ SL/R

(
a 0

0 b

)
. (4.16)

The physical meaning of this is simply that the matter content of the brane has to be at

rest with respect to the Killing time direction ∂t.

Let us now collect some formulae that will be helpful later on. The traceless symmet-

ric tensor

γ̃ij ≡

(
a 0

0 b

)
, γ̃ij =

(
1
a 0

0 1
b

)
, γ̃ij γ̃

ij = 2 (4.17)

can be written as γ̃ij = γij + 2uiuj with the normalised timelike vector ui =
(√

a
0

)
. It will

also be of use later on to note that

∇iui = 0, (4.18)

ui∇iuj =

(
0

1
2γ

ttγzz∂zγtt

)
. (4.19)

The same decomposition as for Sij is also possible for the right side of the equation

Kij ≡ −
(
K+
ij − γijK

+
)

=
κ

2
Sij , (4.20)

i.e.

Kij =
K
2
γij +KL/Rγ̃ij , (4.21)

such that the equations of motion reduce to

K =
κ

2
S and KL/R =

κ

2
SL/R. (4.22)

This form for the equations (3.10) is very interesting, as S and SL/R are directly constrained

by energy conditions. We summarise our results for AdS3 and BTZ metrics of the form (3.6)

in table 1.
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BTZ h(z) = 1− z2/z2
H , zH > z

KL/R
z(z2H−z

2)(zx′+3+z2Hx
′′
+)

2zHL(z2H+(z2H−z2)x
′
+

2)3/2

K 2z4Hx
′
++(z4−3z2z2H+2z4H)x′+3+zz2H(z2−z2H)x′′+

zHL(z2H+(z2H−z2)x
′
+

2)3/2

NEC (KL/R ≥ 0) zx′+
3 + z2

Hx
′′
+ ≥ 0

WEC (2KL/R −K ≥ 0) zz2
H

(
z2
H − z2

)
x′′+ − z4

Hx
′
+ −

(
z2
H − z2

)2
x′+

3 ≥ 0

SEC (2KL/R +K ≥ 0) x′+ ≥ 0

AdS h(z) = 1

KL/R
zx′′+

2L(1+x′+
2)

3/2

K 2x′++2x′+
3−zx′′+

L(1+x′+
2)

3/2

NEC (KL/R ≥ 0) x′′+ ≥ 0

WEC (2KL/R −K ≥ 0) zx′′+ − x′+ − x′+3 ≥ 0

SEC (2KL/R +K ≥ 0) x′+ ≥ 0

Table 1. Table summarising our findings of the impact of the different energy conditions NEC,

WEC and SEC for static embeddings in BTZ and AdS backgrounds (3.6). Note that the NEC is part

of the WEC and SEC, i.e. WEC means that the NEC is satisfied and additionally 2KL/R −K ≥ 0.

In the first two lines each we give the extrinsic curvature scalars defined in (4.21). The last line

in each case implies that the curve x+ would bend to the right in our figure 2 iff the SEC where

satisfied. Indeed, the general example shown in figure 2 contains violations of any energy condition

for some value of z.

4.4 Energy-momentum conservation

Using the decomposition into scalars and the choice of coordinate system described in sec-

tion 4.3, we describe in this subsection how to phrase the conservation of the hypersurface

energy-momentum tensor Sij in a very simple and useful way. Remember that we are work-

ing in the static setting discussed in section 4.3. Conservation of the energy-momentum

tensor Sij = S/2γij + SL/Rγ̃ij now demands, using ∇iγij = 0 and γ̃ij = γij + 2uiuj ,
8

0 = ∇iSij =
1

2
∂iSγ

ij + ∂iSL/Rγ̃
ij + SL/R

(
2uj∇iui + 2ui∇iuj

)
. (4.23)

8This is implied by the Israel junction conditions (4.20) and the fact that ∇iKij = 0 is a geometrical

identity, at least for an embedding in an AdS or BTZ background. See [41] for a related discussion.

– 12 –



J
H
E
P
0
1
(
2
0
1
5
)
0
5
8

In this expression, we have uj∇iui = 0. As the tensors γij and γ̃ij are diagonal, we can

now easily investigate the two possible choices of the index j above.

j = t : as we assume staticity, i.e. ∂tS = ∂tSL/R = 0, we end up with 0 = ∇iSit =

2SL/Ru
i∇iut which holds by (4.19).

j = z : now, using again (4.19) and γzz = γ̃zz, we find

0 = ∇iSiz =
1

2
S′γzz + S′L/Rγ

zz − 2

z
SL/Rγ

zz (4.24)

⇒
(
S + 2SL/R

)′
=

4

z
SL/R (4.25)

for a static embedding in AdS space ((3.6) with h(z) = 1) and

(
S + 2SL/R

)′
=

4

z − z3

z2H

SL/R (4.26)

in the BTZ case. Although the equation (4.26) is just the conservation of the energy-

momentum tensor in our coordinate system, its simple form will be very useful in section 7.

Also this equation has already a profound implication on the energy conditions: note that

(outside of the horizon) the right hand side of (4.26) is ≥ 0 by NEC, hence the quantity

S + 2SL/R inside the brackets can only grow with z. Comparing with table 1, this already

tells us that assuming NEC, if the SEC is satisfied near the boundary, it cannot become

violated deeper inside the bulk, as the SEC requires precisely S + 2SL/R ≥ 0.

5 Implications of energy conditions in two dimensions

We now investigate the relation between the brane and geodesic curves, and show that when

the WEC and SEC are satisfied, the brane bends back to the boundary. As we will see for a

toy model in section 6, it is of importance whether geodesics that both start and end at the

boundary to the same side of the brane will reach the brane, see the left drawing in figure 3.

In this context, it will be enlightening to consider the theorems presented by Engelhardt

and Wall in [29]. These authors proved that under certain conditions a codimension one

hypersurface is an extremal surface barrier, i.e. a surface such that spacelike extremal

surfaces anchored to one side of the barrier cannot cross it. For example, in section 6

where we will investigate the case of a brane with constant tension λ, the brane is such a

barrier for λ > 0, but not for λ < 0.

Let us now first state the theorem and then relate its assumptions to the energy

conditions on the hypersurface. We will phrase the theorem in terms of our nomenclature

introduced in figure 2.

Barrier theorem. (Engelhardt, Wall [29])9 Let Q be a hypersurface splitting the space-

time N in two parts (N+ and N−) such that K+
ijv

ivj ≤ 0 for any vector field vi on Q. Then

9There are some subtleties related to whether an extremal surface may touch the extremal surface

barrier or not, which are not of much importance to us in this work. Hence the theorem presented here is

a combined result of theorems 2.1, 2.2 and corollary 2.4 in [29].
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Q2

Q3

Q4

Υ0 Υ1

Υ2
Υ3

M+
x

z

z
Q1

Υ0
Υ1

Υ2

Υ3

xM+

Figure 3. Left: the case where the brane Q1 bends back to the boundary. Υ0, Υ1, Υ2 are Q-

deformable spacelike extremal curves which are half-circles in a Poincaré background. The brane is

crossed by Υ3, but as Q1 is anchored at the boundary twice, M+ is a finite interval, and as the point

where Υ3 returns to the boundary is not inside of M+, it does not violate the barrier theorem. The

matter fields sustaining Q1 hence may satisfy WEC and SEC everywhere, and Q1 is an extremal

surface barrier. Right: possible cases where branes Qi are anchored once to the boundary M+,

which hence extends infinitely in one direction. Several Q-deformable extremal spacelike curves Υa
are depicted. Q3 is a trivially embedded brane with K+

ij = 0 (i.e. sustained by Sij = 0) and is an

extremal surface barrier in the sense of the theorem presented above. Q2 violates SEC as it has

x′+(z) < 0 (see table 1), but as it falls behind Q3 everywhere it is also an extremal surface barrier.

Q4 is crossed by Υ3, and must according to the barrier theorem hence violate the WEC somewhere.

any Q-deformable10 spacelike extremal surface Υ which is anchored in M+ remains in N+.

This means that if we have two points A and B on the boundary (to the same side of

the brane Q), the extremal curve Υ[AB] connecting the two points in the bulk cannot cross

Q if the extrinsic curvature on Q satisfies the assumption made in the theorem.

This theorem is also of relevance for holographic computations of entanglement entropy.

In the Ryu-Takayanagi proposal [35, 36], the entanglement entropy of some spatial area on

the field theory side is proportional to the area of extremal surfaces in the bulk. Hence,

in view of the holographic calculation of entanglement entropy in the present context, it is

interesting to know whether the hypersurface Q is a barrier surface as defined above or not.

As the barrier theorem relies on an assumption concerning the extrinsic curvature

tensor Kij , we use the equations (3.10) to relate this assumption to properties of the

energy-momentum tensor Sij . The issue is that the condition utilised above is supposed to

hold for any vector field vi, which includes spacelike vectors. Although energy conditions

usually only restrict the contraction of Sij with causal vectors (see section 4.2), we now

show that the assumption in the above theorem is indeed implied by particular energy

conditions. This provides us with another way to determine qualitatively how the brane

10This means that we assume there to be a family {Υa} of extremal spacelike surfaces such that all of

those are anchored on M+, and can be continuously deformed from some Υ0 ∈ {Υa} which is only located

in N+ and does not touch Q. We refer to any member Υ of this family as Q-deformable.
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may bend (see figure 3), which is based on whether the energy conditions are satisfied or

violated by matter fields localised on Q.

As a next step, we relate the assumptions of the barrier theorem to typical energy

conditions in 1+1 dimensions by applying the Israel junction conditions. From (3.10)11 it

follows that K = S (dropping the superscript + from now on) and hence

−Kij = +Sij − Sγij . (5.1)

Demanding Kijv
ivj ≤ 0 hence corresponds to Sijv

ivj − Svivi ≥ 0, which with the usual

decomposition of Sij reads

−S
2
viv

i + SL(liv
i)2 + SR(riv

i)2 ≥ 0. (5.2)

The last two terms are nonnegative by positivity of the squares and the NEC. There are

now three cases: S > 0, S = 0 and S < 0.

In the case S = 0, the above inequality is satisfied for any vi due to the NEC. S =

SL = SR = 0 would be the trivial case.

In the case S < 0, the term −S
2 viv

i can only be negative (i.e. problematic) for timelike

vectors vi, for which the above equation corresponds to the SEC.

In the case S > 0, the term −S
2 viv

i can only be negative (i.e. problematic) for spacelike

vectors vi. Assuming a decomposition vi = −αli + βri (with α · β > 0) we find

−Sαβ + SLβ
2 + SRα

2 ≥ 0 for any α · β > 0 (5.3)

which corresponds to the WEC.

Hence we see very generally that the condition of the barrier theorem corresponds

to SEC and WEC being satisfied simultaneously,12 which is a rather strict condition on

the energy-momentum tensor. In this case, the brane Q is an extremal surface barrier in

the sense of [29], but there may be extremal surface barriers for which SEC or WEC are

violated. Especially in sections 6 and 8 we will encounter examples where SEC is violated,

but where the brane is located behind an extremal surface barrier and is hence an extremal

surface barrier itself, see also figure 3.

The barrier theorem described above allows for a nice and simple corollary that tells

us how certain branes bend in the bulk spacetime depending on the energy conditions that

the matter content of the brane satisfies or violates. Suppose that we have a brane where

near the boundary the SEC is satisfied, which by table 1 means that x′+(z) ≥ 0 for small

enough z. By the conservation of energy-momentum (4.26) we know that then SEC will

be satisfied everywhere when NEC holds. Qualitatively, the brane hence looks like either

Q1 or Q4 in figure 3. The case Q1 is possible for the situation where WEC and SEC

are satisfied everywhere on the brane. We will obtain precisely this kind of behaviour is

section 7. For the case Q4 we see that an extremal curve Υ3 crossing the brane can indeed

easily be constructed: take a curve Υ0 that connects boundary points x2 > x1 > 0 in M+

11As we are only interested in energy conditions, we set the positive prefactor κ
2

to one from now on.
12Remember that NEC is implied by WEC, see section 4.2.
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defined by x ≥ 0. The larger x2 − x1, the deeper the curve enters into the bulk. When

now sending x1 → 0 and x2 → ∞ (which is not possible if the brane reaches back to the

boundary, such as Q1), we will sooner or later encounter an intersection between the brane

and the geodesic. Hence, by the barrier theorem a situation as sketched with Q4 in figure 3

can only appear if somewhere on Q4, WEC and/or SEC are violated. Phrased differently,

this means that if WEC and SEC are satisfied everywhere by the matter content on the

brane Q, it has to bend over and return to the boundary.13

The results summarised in table 1 already point at this for the case of a BTZ black hole

as background, however the barrier theorem gives a more general argument. Assuming that

the brane enters the event horizon with x′+(zH), x′′+(zH) finite, we find that WEC implies

x′+(z) ≤ 0, which means that (again except for the trivial case K+
ij = 0) either SEC or

WEC have to be violated. If they are not violated, the brane has to turn around before

reaching the event horizon and return to the boundary, see section 7.3 for examples. In

section 8, we will present a system where for model building purposes it is very important

that SEC is violated everywhere on Q, giving a geometry similar to Q2 in figure 3.

It is a natural question to ask whether this relation between WEC and SEC and

the assumption in the barrier theorem generalises to higher dimensions. We will briefly

comment on this in appendix A. We find that the results presented here do not easily

generalise to higher dimensions, meaning that the case of a two-dimensional hypersurface

Q is very special, in that here the satisfaction or violation of the WEC and SEC will have

profound and immediate consequences for the geometry of the hypersurface. Indeed, in

later sections 7 and 8 we will see concrete examples where the geometry of the hypersurface

Q is determined by the energy conditions that the matter fields living on this hypersurface

do or do not satisfy, just as explained in this section for the general case.

6 Special case: constant brane tension

Before studying situations with non-trivial matter fields on the hypersurface Q, in this

section we revisit a simple model that has already been investigated in [15], namely the

model where we have a brane with constant tension embedded into global AdS3. This will

serve as a first example for applying the results of sections 4 and 5. The case of a brane

with a constant tension embedded in Poincaré AdS is very simple and will be discussed as

a further application in section 7.2.

6.1 Toy model: global AdS

In [15], a toy model was studied which involves a brane Q with action14

S = −λ
∫
d2x
√
−γ (6.1)

embedded in global AdS3. In (6.1), γ is the determinant of the induced metric on the 1+1-

dimensional brane. λ will be referred to as brane tension, although out of mathematical

13Exluding, of course, the case of a trivial embedding with K+
ij = 0⇒ Sij = 0.

14See also section 2 of [55] for earlier thoughts in this direction.
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curiosity we will also consider negative values λ < 0. λ may be considered as a cosmological

constant living on the brane.

The authors of [15] worked with a very useful coordinate system with coordinates t, r, y

and line element

ds2 = − cosh(r)2 cosh(y)2dt2 + cosh(y)2dr2 + dy2, (6.2)

where the AdS scale is set to L = 1. This is related to the usual coordinates t, ρ, φ with

line element

ds2 = − cosh(ρ)2dt2 + dρ2 + sinh(ρ)2dφ2 (6.3)

via the relations cosh(y) cosh(r) = cosh(ρ), sinh(y) = sinh(ρ) sin(φ).

6.2 Brane embedding

In [15] it was found that the embedding of the brane is given by two AdS spaces sewed

together along lines of constant y, see figures 4 and 5. We will now verify these results using

the Israel junction conditions governing the behaviour of the brane. To do so, similarly to

the setup presented in figure 2, we will assume that in N+ the embedding of the brane is

given by a function y+(r), which we will then show to be constant.

From (6.1) we immediately obtain

Sij = − 2√
−γ

δ (−λ
√
−γ)

δγij
= −λγij , (6.4)

with induced metric γij . Note that for λ ≥ 0 this satisfies the WEC, see section 4. The

equations (3.10) then read

−Kij +Kγij = −κλ
2
γij . (6.5)

Assuming the brane embedding y+(r) = −y∗ = const. we find

nµ = δµ3 , (6.6)

Kij =

(
cosh(y∗) sinh(y∗) cosh(r)2 0

0 − cosh(y∗) sinh(y∗)

)
, (6.7)

γij =

(
− cosh(y∗)

2 cosh(r)2 0

0 cosh(y∗)
2

)
. (6.8)

From this and (6.5) it follows that

tanh(y∗) =
κλ

2
= 4πGNλ (6.9)

precisely as in [15], i.e. the solutions to (6.5) are indeed given by a brane embedding of the

form y+(r) = −y∗. Obviously, there is an upper bound on the absolute value of the brane

tension λ.
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Figure 4. Embedding of the branes given by y = −y∗ in AdS space with coordinates t, ρ, φ. The

spacetime to the right of each of these curves corresponds to the region N+ in figure 2, while the

part of the spacetime to their left is excised. We set t = const. to consider a spacelike slice with

coordinates ρ, φ, and compactify by plotting arctan(ρ) as radial coordinate, such that the thick

black circle represents the AdS boundary. φ is the angular coordinate. The values of λ for the

branes shown are specified by y∗ = arctanh(κλ2 ) = {−3,−2.75, . . . , 3}. Lines involving red colour

(bending to the left) stand for branes with λ > 0, while lines involving blue colour (bending to the

right) stand for branes with λ < 0. The straight vertical line is the brane with zero tension, λ = 0.

The black dashed lines are geodesics perpendicular to the branes, see section 6.3.

Let us now discuss the geometries obtained by this construction. For λ = 0 = y∗,

i.e. the case without tension, we just cut the AdS space in half and match the two sides

(i.e. N− and N+, see figure 2) trivially. For general values of λ, the profile of the brane

y = −y∗ with respect to N+ is shown in figure 4. N+ in this figure is always to the right

side of the brane. As we can see, for λ > 0 the branes extend to the left, such that N+ is

larger than half of the AdS space, while for λ < 0 (and hence WEC violation) the branes

extend to the right, hence making N+ smaller than half of the AdS space, see also figure 5.

6.3 Normal geodesics

As seen in the previous section, the branes parameterised by their tension λ are described

by an embedding of the form y = −y∗(λ). Obviously, the curves xµ(y) = (t0, r0, y) are

normal to all of these branes as ẋµ = nµ with the normal vector n and have the coordinate

y as affine parameter. As it turns out, these curves actually describe geodesics, as with

this ansatz the geodesic equations ẍµ + Γµαβẋ
αẋβ = 0 simplify to Γµyy = 0. From the

metric (6.2) it is indeed easy to see that this is satisfied. Indeed, these geodesics normal

to the branes are exactly those which are symmetric to reflections about the brane with

vanishing tension, i.e. with λ = 0 ⇒ y∗ = 0, see figure 4. Hence we know that due to the

backreaction of the brane, all these geodesics are extended by an amount of 2y∗ compared

to the pure AdS3 case λ = 0. For boundary regions that extend symmetrically to the

left and right from the point where the brane meets the boundary, this means that the
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Figure 5. Nontrivial matching of two AdS spacetimes along a constant tension brane for the cases

λ > 0 and λ < 0. The two figures to the left of the equality depict the embedding of the brane with

respect to N− and N+, respectively. The grey shaded area is then excised, and the two resulting

spacetimes are glued together along the brane, as shown to the right of the equality. By assumption

of symmetry, N− is always the mirror image of N+. As described in the text, the resulting spacetime

will have increased volume for λ > 0 and smaller volume than AdS3 for λ < 0.

entanglement entropy increases by an amount of exactly y∗/2GN . This coincides with the

result of [15]. In the next section, we will discuss entanglement entropy for intervals that

do not include the point where the brane is anchored at the boundary.

6.4 Entanglement entropy of general intervals

The major motivation to investigate the backreaction on the geometry is that it is neces-

sary for calculating the entanglement entropy using the Ryu-Takayanagi proposal [35, 36].

This states that the entanglement entropy of some spacelike area in the field theory is pro-

portional to the area of a spacelike minimal surface in the bulk with the same boundary.

In 2+1 bulk dimensions, the area will be given by a line segment [AB] ⊂ M on the

conformal boundary and the extremal surface by the geodesic connecting the boundaries

of [AB] which we denote Υ[AB]. Furthermore ∂[AB] = ∂Υ[AB] = {A,B}. The proposal is

then given by

S[AB] =
min area(Υ[AB])

4GN
. (6.10)

In the probe limit, the geometry does not change according to the fields on the defect

and thus the entanglement entropy cannot be affected since localised energy-momentum

does not alter the variational problem for minimal surfaces.

In this section we point out one important difference between the cases of positive

and negative brane tension λ with respect to the holographic calculation of entanglement

entropy. These cases can be physically distinguished by WEC (satisfied for λ ≥ 0, violated

for λ < 0) and SEC (violated for λ > 0, satisfied for λ ≤ 0).

First, let us mention that the surface defined by y = 0 in figure 6 is an extremal

surface barrier in the sense of [29] and the barrier theorem given in section 5. This means
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Figure 6. Spacelike geodesics Υ [AB] defining entanglement entropy for intervals [AB] in the cases

λ > 0 and λ < 0. y = 0 would be the brane for the tensionless case λ = 0. For λ < 0, the geodesics

Υ [AB] may intersect the brane and may be reflected/refracted by it.

that if we have two points A and B on the boundary (to the same side of the brane), the

extremal curve Υ[AB] connecting the two points in the bulk cannot cross this surface, see

figure 6. Note that as we work in 2 + 1 bulk dimensions, and as we suppress the (static)

time direction, the length of this curve Υ[AB] determines the entanglement entropy of the

interval between A and B.

For λ > 0, the brane, given by y = −y∗, stays behind the extremal surface barrier

y = 0 (see figure 6) and is hence itself an extremal surface barrier, just as Q2 in figure 3.

This means that the new spacetime we obtain has more volume than global AdS3,15 and

geodesics crossing the brane perpendicularly are longer than in the tensionless case, i.e. the

entanglement entropy given by these curves increases, see section 6.3. This makes sense

if we assume that the interface described by the brane introduces new degrees of freedom

into the system. Geodesics which are not crossing the barrier, such as Υ[AB] in the figure 6,

will be unaltered, which means that if we take any boundary interval [AB] such that the

brane does not reach the AdS boundary within this interval, its entanglement entropy will

be precisely the same as in the pure AdS case.

For λ < 0 in contrast, the brane at y = −y∗ crosses the extremal surface barrier y = 0,

see figure 6. This means that the new spacetime we obtain by excising the grey area has less

volume than AdS, and geodesics crossing the brane perpendicularly are shorter than in the

tensionless case, i.e. also the entanglement entropy defined by these curves is smaller (see

again section 6.3). Even geodesics which are not crossing the barrier y = 0, such as Υ[AB]

in the figure 6 may be cut off at the brane, hence the entanglement entropies of intervals

like [AB] may be described by altered curves. In principle, we expect that there should

always be a minimal curve connecting any two points in the spacetime (see however [60]

for geometries where this is not the case), but for λ < 0 it appears that there exist curves

which must be refracted (or reflected) at the brane.

The refraction conditions at the brane follow from a local minimisation problem,

see [61]. However, there is a subtlety: suppose we would like to connect two points A

15Assuming a suitable regularisation.
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Figure 7. The four possibilities of minimal curves connecting two points A and B for λ < 0

as considered in the main text. The first three possibilities are excluded by general properties of

geodesics in AdS if a part of the original geodesic is excised by the approach. The only possibility

left is the forth in which the dashed part of the curve is not geodesic w.r.t. to the ambient geometry,

but nevertheless minimal.

and B which lie in the interior (or on the conformal boundary) of N+ for λ < 0. Moreover,

suppose that a segment of the original geodesic connecting the points is excised by our

approach as indicated in figure 6. In this case, the curve of minimal length connecting A

and B clearly cannot lie only in the interior of N+, since there the geometry is smooth and

there is always a mean curvature flow which leads towards the original geodesic and hence

the brane. If the geodesic approaches the brane at a finite angle, then due to the refraction

conditions (which are given by a generalised Snell’s law, see [61]) it would continue in N−
with a finite angle, too. In order to return to N+ it must cross the brane at least once

more. However, the segment connecting both crossing points, regarded as elements of N−,

cannot be of minimal length for negative tension. In the original spacetime, the geodesic

connecting those points would lie entirely in the excised part. The same argument holds

for curves connecting the crossing points (now regarded as elements of N+) and lying in

the interior of N+. Hence the minimal curve connecting the “crossing” points must lie

on the brane. Thus we can reduce the problem to considering minimal curves lying in

N+ ∪Q only.

Now that a finite segment of the minimal curve connecting A and B lies completely

on the brane, the curve is not allowed to reach the brane at a finite angle. Otherwise, it

would have a kink at that point which can always be replaced by a smooth edge of minor

length. Thus the desired minimising curve connecting A and B consists of three segments:

the first segment is a geodesic in N+ connecting A with the entrance point on the brane

at which it ends tangentially. The second segment lies entirely on the brane, connects the

entrance and exit points and is required to be a geodesic w.r.t. the induced geometry on the

brane.16 The last segment is again a geodesic in N+ which leaves the brane tangentially

and connects the exit point on the brane and B. The discussion is illustrated in figure 7.

To summarise, for λ < 0 we obtain that the holographic entanglement entropy of

intervals which do not include the defect itself becomes affected. When tuning λ from 0

16As the segment lies entire on the brane, the notion of being a geodesic w.r.t. the induced geometry on

Q is sensible. Regarded as a curve in N+, this part of the curve cannot be geodesic w.r.t. N+ since the

embedding of Q is not totally geodesic for λ 6= 0. Nevertheless, this segment would be the minimal curve

connecting the entrance and exit points on the brane because proper geodesics connecting those points

and lying in N+ or N− are excised by the approach and being a geodesic on Q, the curve is the minimal

one allowed.
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to − 1
4πGN

, the first geodesics to intersect the brane are those reaching deep into the bulk

and hence belonging to large intervals [AB]. The geodesics belonging to smaller intervals

[AB] will intersect the brane for smaller values of λ. Due to this behaviour, it would be

very interesting to find systems in which λ < 0 is satisfied and study the impact of what

was found above, see also the discussion in section 9.

7 Perfect fluid on the brane

Let us now come to one of the main results in this paper. Using the decomposition of the

equations (3.10) into scalar equations outlined in section 4.1, it is possible to find simple

analytical expressions for the (static) embedding of the brane Q in the case where the

matter content on Q is a perfect fluid. We compute the brane embeddings explicitly for

this case.

7.1 Perfect fluid in Poincaré AdS

Let us consider the configuration where the brane matter is given by a perfect fluid. The

brane is embedded in a Poincaré AdS geometry, hence h(z) = 1 and h′(z) = 0 in (3.6). To

keep track of the AdS-scale L, we assume

x+(z)→ L · x+

( z
L

)
(7.1)

so that x+ is a dimensionless function with a dimensionless argument, and find for the

extrinsic curvature scalars defined in (4.20) and (4.22)

KL/R =
zx′′+(z/L)

2L2(1 + x′+(z/L)2)3/2
, (7.2)

K =
2Lx′+(z/L)3 + 2Lx′+(z/L)− zx′′+(z/L)

L2(1 + x′+(z/L)2)3/2
. (7.3)

As we assume the matter content on the brane to be a perfect fluid, the energy-

momentum tensor is given by17

Sij = (ρ+ p)uiuj + pγij (7.4)

with ui ∼ (1, 0) for staticity, which easily gives

S = p− ρ, SL/R =
p+ ρ

2
. (7.5)

Let us now assume an equation of state18

p = a · ρ (7.6)

17Recently, perfect fluids in an AdS/BCFT setting were studied in [44]. Apart from working in one

dimension less in this paper, another important difference is that we can assume the equation of state of

the fluid as a matter of choice, while in [44] the equation of state is a necessary consequence of the ansatz.

Also, [44] investigates a connection between AdS/BCFT and fluid/gravity correspondence, which is not our

intent in this work.
18Also, solutions may exist for more complicated equations of state, and we found that for the form

p = a · ρb at least part of the following computations can still be performed analytically.
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with constant a so that

S = ρ(a− 1), SL/R = ρ
1 + a

2
(7.7)

and the energy conditions, assuming ρ > 0, read

NEC: a ≥ −1, WEC: a ≥ −1, SEC: a ≥ 0. (7.8)

There are now two possible ways to proceed towards exact solutions of this system.

The first one is to take the two scalar equations (4.22) and get rid of ρ(z) by setting up

the equation

K
KL/R

=
2(a− 1)

a+ 1
= const. (7.9)

which is then a first order ODE for x′+(z/L) and can be easily solved by separation

of variables.

The second, more easily generalisable method is to make use of equation (4.25) which

for the perfect fluid under consideration here reads19

ρ(z)′ =
1 + a

a

ρ(z)

z
⇒ ρ(z) =

2c

κL

( z
L

)1+ 1
a
, (7.10)

with c some positive number of our choice. Inserting this into (4.22) and solving for the

profile x+(z), we find (with y ≡ z/L),

x′+(y) =
acy

1
2(2+ 2

a)√
1− a2c2y2+ 2

a

, (7.11)

x+(y) =
a2cy2+ 1

a 2F1

(
1
2 ,

1+2a
2+2a ; 3+4a

2+2a ; a2c2y2+ 2
a

)
1 + 2a

, (7.12)

with 2F1(a, b; c; d) the hypergeometric function. It may be shown that as y →
(

1
a2c2

) a
2a+2 ,

the derivative diverges while the function itself reaches a finite value. Also, the function is

real only for y ≤
(

1
a2c2

) a
2a+2 and below, i.e. at the critical value and closer to the boundary,

for a ≥ 0 (i.e. SEC) and a ≤ −1. For the intermediate range −1 < a < 0, we do not obtain

solutions for which the brane actually reaches the boundary, and therefore we will ignore

this parameter range. While the SEC may easily be violated by sensible classical matter

(see section 8), we assume NEC to be satisfied (see the discussion at the end of section 4.2)

19This is basically the equation of motion for the perfect fluid. Another important equation would be

the particle number conservation, which in the static case is trivially satisfied as

∇i
(
n(ρ(z))ui

)
= ui∂in(ρ(z)) + n(ρ(z))∇iui = 0,

where the last term vanishes by (4.18) and the first term vanishes by uz = 0 and ∂tn(ρ(z)) = 0. Here, the

particle number density n is related to the energy density ρ by the equation of state. See [62] for more

information on perfect fluids.
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0

1

z

1 x0

1
z

1 2 xM+ M+

Figure 8. Left: brane profiles (7.12) (added with symmetric parts leading back to the bound-

ary) for L = 1, c = 1/a and, in order of increasing second intersection with the x-axis, a ≈
0.1, 0.2, 0.4, 0.7, 1.1, 2.0, 4.8, 100. Right : brane profiles with L = 1, a = 1 and, from outer to inner

curve, c = 0.5, 1, 1.5, . . . , 5. Note that all the turning points lie on a straight line, indicated in

dashed black.

and hence we will in the following only discuss the solutions for a ≥ 0.20 See figure 8 for

plots of the embedding function x+ for several values of the parameters.

At the critical value of y where the derivative of x+ diverges, the brane should not

simply end, but instead be joined with a similar profile that symmetrically goes back to the

boundary. So the brane starts at the boundary and enters the bulk, until at some critical

value of y it turns around and returns to the boundary in a symmetric fashion. This is

interesting, since it means that a finite part of the boundary is enclosed by the brane and

hence by gluing two parts together the spatial boundary of the spacetime is compactified.

The final result is of the form discussed in section 6, see in particular the right hand sides

of figures 5 and 6.

Will the perfect fluid rather resemble the λ > 0 or the λ < 0 case of the discussion

in 6? As discussed above, for a ≥ 0 the perfect fluid satisfies both WEC and SEC. Due

to the barrier theorem (see the discussion in section 5), we know that extremal curves

anchored to one side of the brane will not cross it and hence cannot be altered by it. For

spacelike codimension one extremal surfaces describing entanglement entropy, this can be

seen easily from figure 8: in AdS space the geodesics are half circles, and it can be shown

that any half-circle anchored to the boundary on one side of the brane will never intersect

this brane. This is because the brane always extends further into the bulk than the largest

half-circle that could possibly be anchored on one side of the brane, compare Υ2 and Q1

on the left side of figure 3. In fact, in the limit a → +∞ the profile (7.12) asymptotes to

the half circle drawn as Υ2 in figure 3.

7.2 Perfect fluid in AdS with cosmological constant

The results obtained above may be generalised to the case where the tension on the brane

involves a cosmological constant. Generalising (7.7), let us now assume

S = Ω + ρ(a− 1), SL/R = ρ
1 + a

2
, (7.13)

20In the special a = −1, conservation of energy-momentum requires ρ = const. and the perfect fluid hence

turns into a constant tension. We will explicitly allow for a constant tension in section 7.2.
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which corresponds to a cosmological constant (or equivalently a constant tension) Ω on the

brane.21 This leads to a situation where the SEC is violated at least near the boundary,

and may or may not become satisfied deeper in the bulk, depending on the energy content

of the perfect fluid. This situation is interesting in the light of the discussion given in

section 5: will the branes generally turn around and bend back to the boundary?

Ω drops out of the equation (4.25) when differentiating, so we end up with the same

solution for ρ as before: ρ(z) = cz1+ 1
a where we set L = 1 and κ = 2 for simplicity. By the

scalar equations of motion (4.22) we now find

Ω + 2aρ(z) = K + 2KL/R =
2x′+(z)√

1 + x′+(z)2
(7.14)

and integrate with the result

x′+(z) =
Ω + 2aρ√

4− (Ω + 2aρ)2
(7.15)

⇒ x+(z) =
z

(1 + 2a)
√

4− Ω2
(7.16)

×

[
(Ω + 2aΩ)F1

(
a

1 + a
;
1

2
,
1

2
;
1 + 2a

1 + a
;−2acz1+ 1

a

−2 + Ω
,−2acz1+ 1

a

2 + Ω

)

+ 2a2cz1+ 1
aF1

(
2 + a

1 + a
;
1

2
,
1

2
;
3 + 2a

1 + a
;−2acz1+ 1

a

−2 + Ω
,−2acz1+ 1

a

2 + Ω

)]

where F1(a; b, c; d; e, f) is the Appell hypergeometric function.

As expected, the behaviour is dominated by the cosmological constant near the bound-

ary and by the perfect fluid in the bulk, see figure 9 (left). This also means that these

branes do in fact bend back to the boundary.

Let us briefly mention that in the limit c → 0, the above results show us that for a

constant tension and no other matter-energy content on the brane in Poincaré AdS the

solution simply reads:

x+(z) =
Ωz√

4− Ω2
, (7.17)

i.e. the brane is defined by a straight line in Poincaré coordinates as was found

before [18–20].

7.3 Perfect fluid in BTZ

Let us repeat the calculation of section 7.2 in the BTZ background (3.6), still assuming

L = 1, κ = 2 and (7.13). The solution to (4.26) now reads

ρ(z) = c

(
z2z2

H

z2
H − z2

)a+1
2a

. (7.18)

21With this ansatz we have Sij = Ω/2γij+Smatter, i.e. compared to the constant tension case investigated

in section 6 we have Ω = −2λ.
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z

0 1 x

1

1

z

1
x

0 M+ M+

Figure 9. Left: embedding functions (7.16) (with additional symmetric branches leading back to

the boundary) for L = 1, a = c = 1 and, in order of increasing second intersection with the x-axis,

Ω = −1,−0.5, 0, 0.5, 1. Right: embedding functions for the brane with a perfect fluid in a BTZ

background. Depicted are the cases for Ω = 0, L = a = c = 1 and, in order of increasing second

intersection with the x-axis, zH = 0.5, 1, 1.5, . . . , 3.

From the equations (4.22) we find again:

Ω + 2aρ(z) = S + 2SL/R =
2zHx

′
+(z)√

(z2
H − z2)x′+(z)2 + z2

H

. (7.19)

Obviously, together with (7.18) this can be solved to give an analytic expression for x′+(z),

yet unfortunately this expression cannot be integrated to a closed form expression for x+(z)

for general parameters Ω, a, c, zH . In any case, by investigating the limit z → 0 we see that,

assuming a > 0, x′+(z) and hence x+(z) are real for small enough z whenever Ω2 < 4, as

expected. Also assuming a > 0,Ω2 < 4, it may be shown that x′+(z) necessarily diverges

for some finite value zcrit < zH , i.e. the brane will always bend back to the boundary before

reaching the event horizon, see figure 9 (right).

7.4 Relation to scalar field

A perfect fluid with an equation of state (7.6) may not seem to be a model of matter

that might appear in a ‘fundamental’ holographic construction of a given DCFT or BCFT.

Nevertheless, we would like to point out that at least in the static case the conformal fluid

with a = 1 may be shown to be equivalent to a free massless scalar field with action

Lmatter,Q = −1

2
γij∂iφ∂jφ. (7.20)

Specifically, identifying ρ ≡ 1
2γ

ij∂iφ∂jφ = γzz

2 (φ′)2, the equations of motion

γ′11φ′ − 2

z
γ11φ′ + 2γ11φ′′ = 0 (7.21)

following from (7.20) take precisely the form (7.10) for a Poincaré background and we also

recover (7.7). In this way, the solutions presented in the previous subsections for a = 1 can

equally be interpreted as solutions for the massless free scalar field.
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We conclude with a short summary of what was derived in this section. We found

explicit analytic solutions for the backreaction in the AdS/BCFT ansatz as described in

sections 2 and 3. In particular, we found solutions for the case when the energy-momentum

tensor on the brane is described by a perfect fluid. Moreover, we also considered the case

where we add a constant brane tension to a perfect fluid in an ambient AdS or BTZ

background in 2+1 dimensions. For all of these cases, due to the barrier theorem the brane

has to bend back to the boundary and hence the spatial boundary direction has to be

compactified. It will also be interesting to make contact between the present results for

a = 1 and the discussion of holographic boundary RG flows as considered in [21].

8 A holographic model of the Kondo effect

In this last section, we focus on a particular holographic model, namely the holographic

Kondo model proposed in [30] (see e.g. [63] for a review of the Kondo model in field theory).

This describes the coupling of an impurity in a 1+1-dimensional CFT, i.e. in a DCFT.

Hence we assume that the formalism described in section 3 is applicable. In [30], the probe

limit was considered in which the brane is fixed to be given by a totally geodesic brane

embedding x± = 0, and the energy-momentum tensor of the brane does not backreact to

the geometry.

As mentioned before, the probe limit cannot give information about the behaviour of

entanglement entropy near the defect as it is fixed by the ambient geometry, at least for

the Ryu-Takayanagi formalism [35, 36]. Here, we shed some light on this topic by including

the backreaction for the dual Kondo system.

In sections 4 and 5 we saw how critical it is for the structure of the embedding whether

certain energy conditions are satisfied or violated. In section 7 we studied a concrete

example of an energy-momentum tensor on the brane that everywhere satisfies WEC and

SEC. By the results in table 1, SEC implies that initially x′+ ≥ 0, i.e. the brane profile x+

initially bends to the right in figure 2. Then, by WEC, SEC and the theorem presented

in section 5, the brane has to reach back to the boundary after a finite distance ∆x. This

especially means that in 2+1 dimensions, with an ansatz relying on matter fields on the

brane that satisfy WEC and SEC, it will not be possible to find a solution where the brane

falls into the event horizon of a black hole, as for example in [44]. If this was the case for

all physical models, it would be very restrictive from the point of view of model building.

Hence, in this section we will present a physically motivated ansatz for matter fields

living on the brane that leads to a SEC violation, and brane embedding solutions that do

indeed reach into a black hole event horizon. The matter content on the brane is given by

a scalar field charged under a U(1) gauge field, which as well is contrained to the brane,

and a U(1) Chern-Simons field, which is defined throughout the bulk.

The matter fields on the brane are assumed to be given by the action

S = −N
∫

d2x
√
−γ

(
1

4
fmnf

mn + γmn(DmΦ)†(DnΦ) + V (ΦΦ†)

)
, (8.1)

where N is a factor which may be fixed in a top-down string theory derivation of the model,

see for instance [30]. D denotes gauge covariant differentiation w.r.t. the gauge field a and
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the Chern-Simons field A, given by

DmΦ ≡ ∂mΦ + i AmΦ− i amΦ. (8.2)

For simplicity, we will henceforth set the bulk Chern-Simons field to zero, A = 0, as it

would otherwise contribute to the equations of motion with its own junction conditions.

We will investigate the solutions of the full system (including the Chern-Simons field) and

their interpretation as a model of the Kondo effect in a forthcoming publication [64].

8.1 A gauge field on the brane

Let us first only look on the case of a U(1)-field on the brane with Φ ≡ 0 which resembles

the background solution of the Kondo model in the normal phase. The energy-momentum

tensor for the gauge field reads

S
(a)
ij = −N

4
fmnfmnγij +Nγmnfmifnj (8.3)

which can be decomposed into a trace part

S(a) =
N
2
fmnfmn (8.4)

and a traceless part given by

S
(a)
ij −

S(a)

2
γij = −N

2
fmnfmnγij +Nγmnfmifnj . (8.5)

The equations of motion in the absence of currents

∂m
(√
−γγmpγnqfpq

)
= 0 (8.6)

imply due to antisymmetry
√
−γf01 =: C, with C constant. This is the electric flux due

to the gauge field.

We will now assume a static configuration which means, as we saw in section 4.3,

that the metric takes the form (4.13).22 As the tensor fmn is antisymmetric and hence

has only one component that can be specified in 1+1-dimensions, it is straightforward to

show fmnfmn = −2C2 and γmnfmifnj = −γijC2. This means that the traceless part (8.5)

vanishes identically, and the energy-momentum tensor takes the form

S
(a)
ij = −N

2
γijC

2 (8.7)

which corresponds to a (WEC satisfying, SEC violating) constant tension λ = NC2/2.

Motivated by the results in [15] (see our section 6) in which the authors obtained that

the final embedding can be reached via a geodesic normal flow, we now investigate whether

this can be generalised to other spacetimes as well. The construction is then as follows,

see figure 10: starting from the trivial embedding x+ = 0, we follow the geodesics starting

22From here on, our arguments will also be valid in the case C 6= const as applies for a current present

in (8.6).
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x = 0
z = 0

z = zH

M+

Q

s

s = 0s > 0

exclu
ded

N+

x

Figure 10. Construction of constant brane tension solutions in a BTZ geometry using a geodesic

normal flow. We start from the trivial, totally geodesic embedding x+ = 0 (for which s = 0) and

follow the flow generated by geodesics normal to the trivial embedding and pointing outward of

N+. The region to the left of the family of embeddings is excluded from N+. The dashed lines to

the right hand side denote the continuation of the generating geodesics.

normal to the hypersurface for a certain arclength s, depicted by the solid black lines. The

arclength s can be matched to the brane tension λ using (6.9), in which we have to identify

y∗ with s such that

tanh(s/L) =
L

2
κλ =

L

4
κNC2. (8.8)

This relationship remains valid for our case with a BTZ background and even more general

spacetimes, see appendix B. Note that (8.8) yields a bound on the energy momentum tensor

on the brane. In particular, for our matter content it reads

|LκNC2| < 4. (8.9)

For the limiting case, s→∞, the embedding of Q is given by the conformal boundary and

the construction considered is no longer applicable.

The family of embeddings Xs : Q ↪→ N+ is explicitly given by

Xs(t, zb) = (t, x+(zb), z(zb)) =

t,−zH arctanh

(
zb
zH

tanh(
s

L
)

)
,

zb√
1 + f(zb) sinh2( sL)


(8.10)

with (t, zb) the point at which the geodesics start on the trivial embedding. The induced

metric and the extrinsic curvature are computed to be

γs = f ∗s g =

(
L cosh(s/L)

zb

)2 (
−f(zb) dt2 + f−1(zb) dz2

b

)
(8.11)

Ks =
−L sinh(s/L) cosh(s/L)

z2
b

(
−f(zb) dt2 + f−1(zb) dz2

b

)
. (8.12)
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Note that the normal flow changes the induced metric only by a conformal factor.

Furthermore, the extrinsic curvature is proportional to the induced metric

Ks =
− tanh(s/L)

L
γs (8.13)

and for s = 0 we recover the trivial embedding. This proportionality is necessary to satisfy

the Isreal junction conditions for constant tensions, see also appendix B.

To obtain explicit solutions in a BTZ background, we can choose the gauge az = 0 and

integrate ∂zat =
√
−γ(−C) with boundary condition az(zH) = 0 for regularity. Moreover

we may solve (8.10) for x+ as a function of z for constant s. We obtain

at = −
∫ z

zH

√
−γ C = −CL

2

zH
cosh(s/L)

(
cosh(s/L) +

√
(zH/z)2 + sinh2(s/L)

)

x+(z) = −zH arctanh

 sinh(s/L)√
(zH/z)2 + sinh2(s/L)

 (8.14)

where the arclength s and the electric flux C still have to be matched according to (8.8)

in order to satisfy the equations of motion.

8.2 A gauge field with non-trivial scalar on the brane

Now that we found the background solutions (8.14), we allow the scalar field in (8.1) to

be non-vanishing. In the holographic Kondo model, this amounts to an RG flow triggered

by a marginally relevant operator, and to a phase transition to a the condensed phase in

the large N limit [30]. This corresponds to the formation of the Kondo screening cloud.

Upon turning on the scalar field we have to add the scalar sector of the energy-momentum

tensor to (8.3), which reads

S
(Φ)
ij = 2N

[
(D(iΦ)†Dj)Φ−

1

2
γij

(
|DΦ|2 + V (Φ†Φ)

)]
. (8.15)

The total energy-momentum tensor is hence given by

S
(tot)
ij = S

(a)
ij + S

(Φ)
ij . (8.16)

For the static case in two dimensions the scalar part may be decomposed as

S(Φ) = −2NV (Φ†Φ), S
(Φ)
L/R =

N
2
γ̃ij(DiΦ)†DjΦ, (8.17)

γ̃ij being defined in (4.17). As the latter is manifestly positive, we see that the scalar field

always satisfies NEC.

To apply the results of section 5, we need to make statements about the violation of

WEC and/or SEC as well. For the holographic Kondo model, we find that in contrast to

the perfect fluid solutions discussed in section 7, the SEC is violated everywhere on the

brane. This can easily be seen from the numerical solutions in figure 11, since here x′ < 0
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between the conformal boundary and the event horizon. Due to the results of table 1, this

corresponds to SEC violation.

The equations of motion for the scalar Φ, the gauge field at (we gauge az = 0) and the

embedding scalar x+ read

γαβDαDβΦ−M2Φ = 0, (8.18)

∂z
√
−γfzt + J t = 0, (8.19)

Kzz +
κ

2
S(tot)
zz = 0, (8.20)

where we defined the gauge covariant derivative D = ∇+ia with ∇ the induced connection

on the brane and the conserved current Jµ = −2
√
−γγµν(aν)Φ2. Regularity at the event

horizon requires

Φ′(zH) = −L
2M2Φ(zH)

2zH
, at(zH) = 0, x′+(zH) = κ

2L4M2Φ(zH)2 − z 4
H a
′
t(zH)2

4L3
,

(8.21)

which fixes half of the integration constants. Since the embedding enters the EOMs only

via its first and second derivative, its remaining integration constant can easily be fixed

by requiring x±(0) = 0. This is resonable since the ambient spacetime is invariant under

translations in x-direction.

We start by treating the scalar field as a probe w.r.t. the background solution (8.14).

The leading order behaviour of the gauge field reads

at ∼
−CL2 cosh(s/L)

z
+
CL2 cosh2(s/L)

zH
+ . . . =: Q/z + µc + . . . (8.22)

where we defined Q = −CL2 cosh(s/L) and µc = CL2 cosh2(s/L)/zH , the latter being

identified with the chemical potential for the U(1) charge. If the scalar is nonzero, we have

µ > µc. Furthermore, from (8.8) we obtain LκC2 = 4 tanh(s/L) and hence a restriction

on the magnitude of C as mentioned above.

Turning on the scalar near the boundary, we find that there are two asymptotic solu-

tions which read

Φ ∼ zp, p =
1

2

(
1±

√
1 + 4(L2M2 −Q2) cosh2(s/L)

)
. (8.23)

To obtain the correct operator dimensions for mapping our bottom-up model to the Kondo

effect, just as in [30] we need p = 1/2. This means that our scalar field saturates the

Breitenlohner-Freedman bound and we have to adjust the mass of the scalar to be given by

M2 =
4Q2 cosh2 (s/L)− 1

4L2 cosh2 (s/L)
=

(
Q

L

)2

− (4L2 cosh2 (s/L))−1. (8.24)

The asymptotic behaviour of the scalar is then given by

Φ(z) ∼ α
√
z log(zΛ) + β

√
z + . . . (8.25)
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where we introduced an arbitrary energy scale Λ to define the logarithm. It was shown

in [30] that switching on the scalar triggers the running of the Kondo coupling. The dual

operator is similar to the double trace operator considered in [65]. Thus the Kondo coupling

is given by κ = α/β.

The leading order coefficient α is proportional to the vacuum expectation value of the

dual operator on the field theory side,

α ∼ 〈O〉, (8.26)

such that a non-vanishing scalar field leads to the condensation of the Kondo singlet in the

field theory. For further details we refer the reader to [30].

Now fixing L, zH , κ and C we solve for Q, M2 and s by using the formulae above. We

may turn on the scalar field by either increasing the chemical potential µ or the leading

order coefficient α of the scalar. Both approaches are equivalent for our considerations.

The phase transition occurs at µ = µc, which in the limit κ → 0 (and s → 0) yields the

value for the probe solution µ = −Q. Note that the critical value for the chemical potential

diverges if we saturate the bound (8.9) discussed above.

To solve the system of ODEs (8.18)–(8.20), we apply the finite difference method. We

fix L = 1, κ = 1, C = −1/2 and zH = 1 for concreteness. To have control on the steep

behaviour of the fields near the boundary, we subdivided the radial direction z ∈ (0, 1) into

two subregions zL = (0, 0.1) and zR = (0.1, 1). In zL, the ODEs were discretised on an

evenly spaced grid with 300 points while in zR, we applied a Chebyshev grid with 50 points.

Results for the embedding scalar x+(z) for different values of α ∼ 〈O〉 are shown

in figure 11. We see that turning on the scalar field decreases the overall volume of the

spacetime, in contrast to what happens if we increase the magnitude of the electric flux

C. At the boundary, the behaviour of the embedding does not change as the scalar field

condenses. Its derivative at the boundary x′+(0) is fixed by the asymptotics of the gauge

field and thus boundary data, i.e. the brane embedding approaches the conformal boundary

tangential to the background embedding.

8.3 Summary

To summarise, we have found analytic solutions for the brane embedding and the matter

field configurations in equilibrium for the case of vanishing scalar field on the brane. In

that case, the energy-momentum tensor is given by a constant brane tension and we may

construct the embedding by following a geodesic normal flow.

For constant brane tension solutions, the entanglement entropy of symmetric patches

around the defect will only differ from that of the trivial solution by a constant offset since

due to the refraction conditions at the brane,23 the generating geodesics are part of the

extremal surfaces (dashed lines in figure 10) used in the Ryu-Takayanagi formalism.

Turning on the scalar field decrases the volume of N+ and the energy momentum tensor

is not given by a constant tension anymore. This can be seen from (8.17), which implies

23The minimisation problem for spacelike curves yields that the geodesics connecting boundary points

located symmetric around the defect have to start normal to the brane embedding.
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−0.05 −0.01 x = 0

z = zH

x

z

α

N+

Q

exclu
ded

α = 0 1 2

Figure 11. Numerical solutions for the embedding function x+(z) for different ratios of µ/T . The

region between the embedding profile and the x-axis is excluded from the spacetime N+ as indicated

in the plot. The violet curve (thick) is given by a vanishing scalar field α = 0 and hence (8.14), where

the arclength s has been tuned to be consistent with the gauge field background configuration. The

other embeddings are given by numerical solutions for α = 0, 0.2, 0.4, . . . , 2 where we set L = 1,

zH = 1, C = −1/2 and κ = 1. Increasing α is equivalent to increasing the ratio of µ/T , hence

the overall volume of the spacetime decreases as the system undergoes a phase transition from

the normal to the condensed phase in the large N limit. The condensed phase corresponds to the

formation of the Kondo screening cloud.

SL/R 6= 0 for a non-vanishing scalar. Hence, the corresponding brane embedding cannot

be constructed by a geodesic flow, which means especially that the entanglement entropy

of symmetric patches around the defect will be a function of the boundary separation.

Renormalising this function by subtracting the normal phase solution with Φ = 0 will yield

a non-constant function from which we can extract essential information about the Kondo

screening cloud and the associated defect entropy. This will be investigated in more detail

in [64].

The Kondo model realises a boundary RG flow in agreement with the holographic

g-theorem. This theorem states that the boundary entropy Sbnd decreases along the RG

flow [22, 23]. From the holographic point of view, this can be derived by requiring the

NEC in the bulk and on the brane [18, 19]. In [18, 19], a g-function of the form

log(g) ∼ −arcsinh

(
x+(z)

z

)
(8.27)

was suggested to give the correct answer for the boundary entropy in AdS. We may apply

this function to our example as well, since due to the SEC violation, NEC implies x′′ > 0

in a BTZ background (see table 1). This is essential to prove that this function decreases

monotonically along the RG flow.

9 Conclusions and outlook

Motivated by a recent holographic Kondo model [30], we have studied gravity configurations

with matter fields restricted to infinitely thin co-dimension one hypersurfaces, i.e. branes.
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These configurations are described by equations of motion that involve the extrinsic cur-

vature of these hypersurfaces, as used in the AdS/BCFT correspondence.

In section 3, we considered the gravity dual of a DCFT, where the equations of mo-

tion of the brane Q are the Israel junction conditions. This setup may be considered to

describe an infinitely thin brane or to describe an approximation to a finitely thin matter

configuration. Moreover, we studied the ensuing equations of motion for non-trivial matter

fields living on Q, both by general arguments and by considering concrete examples.

Section 4 was devoted to decomposing the Israel junction conditions into its trace and

off-trace parts, and to a study of the restrictions that energy conditions may impose on

the geometry. In section 5, we related these energy conditions to a geometrical theorem,

the ‘barrier theorem’, recently obtained by Engelhardt and Wall. Moreover, we deduced

qualitative statements on the form that a brane Q may take, depending on whether certain

energy conditions are satisfied or violated by the matter fields living on it. We found that

if the weak and strong energy conditions are satisfied, the brane has to bend back to the

boundary. If just the null energy condition is satisfied, the brane may reach infinitely far

into the radial direction of the dual space.

In section 6, we discussed how the well-known toy model of a brane with constant

tension arises in our context. Then, in section 7, we found explicit results for the backre-

acted configurations corresponding to branes whose matter content is given by a perfect

fluid, or - equivalently, as we showed - by massless free scalar fields restricted to them.

Section 8 was then devoted to the numerical study of a brane with a matter content that

appears in the holographic Kondo model of [30]. Due to its violation of the strong energy

condition, it reaches all the way to the BTZ horizon in the radial direction and thus shows

a qualitatively different behaviour than the bending solutions studied in section 7.

Finally, let us give an outline to the three appendices included below. We comment on

the generalisation of the findings of section 5 to special geometries in higher dimensions in

appendix A. In appendix B, we justify the geodesic normal flow construction of constant

brane tension solutions in sections 6 and 8, and state under which conditions this may be

extended to more general setups.

We conclude this work with an outlook on interesting topics that in our eyes warrant

further investigation.

The Kondo model: the first issue is of course the holographic model of the Kondo

effect [30]. We presented preliminary results for the brane embedding in the backreacted

case in section 8. However, further important questions were left unanswered, for exam-

ple calculating the entanglement entropy for these solutions. Moreover, the behaviour of

the field theory dual to the backreacted solution remains undetermined. Also, the model

proposed in [30] contains a bulk Chern-Simons-field that we set to zero in section 8. In

general however, this field requires its own junction conditions. Interestingly, AdS/BCFT

like setups with Chern-Simons fields in the bulk were studied before in [24, 42]. Build-

ing upon the results of this work, we intend to revisit all of these questions in a future

publication [64].
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Exact solutions: in section 7 we presented analytical solutions for the case where the

matter living on the brane is a perfect fluid with simple equation of state p = aρ. While

this may not be a very realistic model in general, we pointed out in section 7.4 that for the

choice a = 1 it describes a massless free scalar on the brane. A further interesting question

will be to evaluate the on-shell action and examining the thermodynamic behaviour of

these solutions.

Quantum Hall effect: furthermore, we would like to shortly comment on the

AdS/BCFT model of the quantum Hall effect presented in [24].24 There (see especially

figure 2(d) of [24]), it was argued that a realistic model of the quantum Hall effect would

likely include a brane that is anchored to the boundary twice similar to Q1 in figure 3.

From our results in section 5, it is now clear that in 2 + 1-dimensions the brane can be

forced to show such a behaviour by choosing its matter content to satisfy both weak and

strong energy condition everywhere. However, the Hall model of [24] naturally lives in

3 + 1-bulk dimensions, so it would be desirable to generalise the findings from section 5 to

higher dimensions. We will shortly comment on this in appendix A.

Holographic bilayers: we note that bending brane configurations similar to those we

considered in section 7 also appear in recent holographic studies of bilayers [66–68]. Those

studies were performed in top-down probe models. It will be interesting to apply our

backreaction results to these bilayer models as well.

Transitions from SEC to SEC violation: as we saw in sections 5, 6, 7 and 8, the strong

energy condition (SEC) and whether it is satisfied or violated has tremendous qualitative

influence on the dual theory. So suppose it were possible to tailor a sensible holographic

model, in which by varying some physical order parameter σ (which may e.g. be a temper-

ature, a charge or something else) we obtain a transition from a regime where SEC (but

possibly not the weak energy condition (WEC)) is satisfied everywhere on the brane to a

regime where the SEC (but likely not the WEC) are violated everywhere. For example this

might be possible if the equations of state of some system depends on a tunable parameter.

We have seen in section 6 by varying λ from positive to negative values that this transition,

while nice and steady in the bulk, would manifest itself in a very sudden and profound way

in the values of entanglement entropy of certain boundary intervals, see figure 6. Specifi-

cally, this transition would set in in larger intervals [AB] first, and then gradually in smaller

and smaller intervals as the hypersurface Q moves closer to the boundary. Yet, from our

discussion in section 5, we should point out that such results would likely not generalise

well to higher dimensions.

Acknowledgments

We would like to thank Martin Ammon, Daniel Fernández, Daniela Herschmann, Car-

los Hoyos, Abhiram Kidambi, Matthew Lippert, Andy O’Bannon, Thore Posske, Dennis

Schimmel, Charlotte Sleight, Migael Strydom, Tadashi Takayanagi and Jackson Wu for

countless helpful discussions.

24An earlier study of the Hall effect using an AdS/BCFT ansatz is [42].
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Figure 12. Two interesting geometries for a 2+1-dimensional hypersurface Q in a 3+1-dimensional

bulk. The time direction is suppressed, z is the radial AdS coordinate, and u, v are boundary

coordinates. Left : spherical boundary region. Right : strip like boundary region. As indicated, this

can be mapped to the lower-dimensional case.

A Implications of energy conditions in higher dimensions

From our discussion in section 9, we note that it will interesting to generalise the findings of

section 5 to higher dimensions. This is involved in general. For illustration, let us consider

some examples.

It is indeed easy to construct examples showing that when the brane has more than

1+1 dimensions, WEC and SEC together are not enough to imply the assumption made

in the barrier theorem. Obviously, the analogue of equation (5.1) will always be related

to some SEC-like energy condition for timelike vectors. The problem is constraining the

spacelike vector fields vi by some condition on Sij that can easily be checked for a given

matter content. We have some numerical evidence based on radom matrices that in three

dimensions on the brane, the SEC together with the dominant energy condition (DEC, [56,

57]) and the determinant energy condition (DetEC, [57, 59]) will be sufficient to imply

Kijv
ivj ≤ 0 for any vi.

One particular problem of the generalisation to higher dimensions is that it may lead

to geometries as shown on the left hand side of figure 12. However, most applications

require a strip geometry.

Let us investigate such a strip geometry where the boundary region is infinitely ex-

tended, see the right of figure 12. This geometry may be interesting for the holographic

study of the Hall effect, see [24] and our short discussion in section 9. Can we use argu-

ments similar to section 5 to determine some condition on the energy-momentum tensor

that will force the brane to bend over and come back to the boundary as depicted in the

figure? As can easily be seen, geodesics Υ along the direction of the strip would sooner or

later cross it if their endpoints are taken far enough apart. This requires to enforce the

extremal surface barrier property only in a certain direction. For simplicity, let us consider

an embedding in Poincaré -AdS with L = 1 and κ = 2.
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For a brane as depicted on the right side of figure 12 and defined by an embedding

function u(z), the extrinsic curvature reads (coordinates x0 = t, x1 = z, x2 = v)

Kαβ =


− u′(z)

z2
√

1+u′(z)2
0 0

0 u′(z)+u′(z)3−zu′′(z)
z2
√

1+u′(z)2
0

0 0 u′(z)

z2
√

1+u′(z)2

 . (A.1)

The first diagonal entries are the extrinsic curvature of the profile curve embedded in 2+1-

dimensional Poincaré space, so it is possible to map the system to the lower-dimensional

case of section 5. Apart from the trivial case u′(z) = 0, the brane will be forced to return

to the boundary when u′(z) ≥ 0 and u′(z)+u′(z)3−zu′′(z) ≤ 0, see section 5 and compare

to the left hand side of figure 3. Interestingly, this will necessarily imply Kyy ≥ 0. As

expected, the brane will not be an extremal surface barrier for spacelike extremal surfaces

not contained in a v = const. slice. This applies e.g. to the geodesic Υ in figure 12.

The energy-momentum tensor on the brane is given by Sαβ = −Kαβ+γαβK and hence

Sαβ =


−2(u′+u′3)−zu′′

z2(1+u′2)3/2
0 0

0 2u′
√

1+u′2

z2
0

0 0 −−2(u′+u′3)+zu′′

z2(1+u′2)3/2

 . (A.2)

In the following we will only use vectors with vanishing v-component, i.e. vectors that

are contained in a v = const. slice. First of all, NEC implies u′′ ≥ 0, WEC implies

2u′ + 2u′3 − zu′′ ≤ 0 and together, these imply

u′ + u′3 − zu′′ ≤ 0 (A.3)

which is the one component in K. Let us project out the v-direction, so that we have

K⊥ij =

(
− u′

z2
√

1+u′2
0

0 u′+u′3−zu′′
z2
√

1+u′2

)
, (A.4)

S⊥ij =

−2(u′+u′3)−zu′′

z2(1+u′2)3/2
0

0 2u′
√

1+u′2

z2

 , (A.5)

γ⊥ij =

(
− 1
z2

0

0 1+u′2

z2

)
. (A.6)

Then the replacement of the SEC(
S⊥ij − γ⊥ijS⊥

)
vivj ≥ 0, (A.7)

with S⊥ = γ⊥ijS⊥ij implies u′ ≥ 0 which together with the NEC ensures that K⊥ij (but

not Kαβ) is negative definite. By choosing matter fields on the brane that satisfy these

conditions, one can hence ensure that the geometry will be as depicted on the right hand

side of figure 12.
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B Geodesic normal flows

Here we investigate the question if and under which conditions solutions to the Israel

junction conditions (3.3) with constant brane tension as in section 6 and 8 can be obtained

by a normal flow starting from some non-backreacted solution. The governing equations

of motion are assumed to be given by either imposing von Neumann conditions, as in

the study of AdS/BCFT (see section 2 and references therein) or by the Israel junction

conditions, as in the study of AdS/DCFT (see section 3).

In both cases, as discussed in sections 2 and 3, the equations of motion for the embed-

ding are given by (3.10)

Kij = −κλ
2

(
1

d− 1

)
γij (B.1)

where the proportionality constant is fixed by the dimension of the embedding d, the

gravitational coupling constant κ and the constant brane tension λ. Here, both Kij and

γij are (0,2)-tensors on the embedded hypersurface.

As was discussed in the main text, starting from an initially totally geodesic embedding,

which solves the Israel junction conditions under the above assumptions for κ = 0, we can

generate solutions for constant brane tensions in AdS (see section 2 and [15]) and BTZ

backgrounds (see section 8) by following geodesic normal flows.

How does this approach generalise to other spacetimes and which assumptions have

to be satisfied? We show that the construction continues to work as long as the ambient

geometry is given by an Einstein manifold and the proportionality of the induced metric

and the extrinsic curvature holds at the initial surface from where we start to follow the

flow. This is always the case if we start from a totally geodesic embedding in any Einstein

manifold, which resembles the probe limit. We furthermore derive that the flow acts on

the induced metric as a conformal transformation.

Suppose we have an embedding X0 : Q ↪→ N of some (D − 1)-dimensional manifold

Q in a D-dimensional manifold N .25 We define a family of embeddings Xs : Q ↪→ N
by following the geodesic normal flow starting from the initial embedding X0 for an arc

length s. The vector field associated to the flow is denoted by N . It is normalised and

satisfies the geodesic equation by construction. Gauss’ lemma states that this construction

yields a family of regular embeddings at least in the vicinity of the initial surface and that

the vector field generating these flows is always orthogonal to every member of the family

of embeddings.

To show whether (B.1) holds everywhere along the flow, we need to derive how the

induced metric and the extrinsic curvature of the family of embeddings change subject

to the geodesic normal flow. For this purpose, it is beneficial to define these geometric

quantities not as tensors on the codimension one embeddings, but rather as tensors in the

ambient spacetime.

The induced metric γ of the family of embeddings is defined by

γ = g − n⊗ n, γµν = gµν −NµNν , (B.2)

25In the main text, we denote N as N+ but since we will refer to the normal vector field as N , we changed

notation.
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where n = g(N, ·) = Nαdxα denotes the associated 1-form to the normal vector field N .

This is a (0,2)-tensor in the ambient spacetime defined everywhere along the flow and

projects the ambient metric g onto the embeddings in the sense that γ(N, ·) = 0. Its

change along the flow is given by the Lie derivative

LNγ = LNg − Ln(n⊗ n) = LNg − LN (n)⊗ n− n⊗ Ln(n) = LNg, (B.3)

where we used LN (n) = 0 if N generates a geodesic flow. Hence, we find

(LNγ)µν = (LNg)µν = ∇µNν +∇νNµ. (B.4)

We define the extrinsic curvature K by

K(U, V ) := g(N,∇UV ) = −g(∇UN,V ). (B.5)

In components, this reads

Kµν = −∇µNν = −∇νNµ = −∇(µNν) = −1

2
(∇µNν +∇νNµ) (B.6)

from which we see that it satisfies K(N, ·) = 0. Summarising the above, we obtained that

(LNγ)µν = −2Kµν , (B.7)

which is a standard result in differential geometry and may be seen as an alternative

definition for the extrinsic curvature.

Next, let us compute the Lie derivative of the extrinsic curvature K. For N generating

a geodesic flow, its Lie derivative is given by

(LNK)µν =− R

(D − 2)(D − 1)
γµν +NαNβCαµβν − gαβKαµKβν

+
1

D − 2

(
NαNβRαβgµν +Rµν −NαRανNµ −NβRβµNν

)
,

(B.8)

with C the Weyl curvature tensor. For our purposes, it is interesting to look at this equation

for more specific ambient manifolds, especially for Einstein manifolds for which

Rµν =
R

D
gµν . (B.9)

Let us further assume that the manifolds have vanishing Weyl curvature, C = 0, and hence

are conformally flat. For such manifolds, (B.8) simplifies drastically to

(LNK)µν =
R

D(D − 1)
γµν − gαβKµαKνβ . (B.10)

In an especially appropriate coordinate system in which the normal is given by the

unit vector Nα = {1, 0, . . .}, the equations are given by

∂sγµν = −2Kµν , (B.11)

∂sKµν = R̃ γµν − gαβKµαKνβ , (B.12)
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where we defined R̃ = R/(D(D−1)). This is a coupled system of first order ODEs in s and

hence admits a unique solution depending only on the initial conditions γ(0) and K(0).

We now assume a particular ansatz for the solution of the form

Kµν(s) = c(s)γµν(s) (B.13)

which we require to be satisfied at s = 0. Deriving w.r.t. s and comparing with the evolution

equations of the flow, we obtain an ordinary differential equation for c(s) of the form

c′(s) = R̃+ c2(s), (B.14)

which can solved by separation of varibles with the unique solution

c(s) =


−
√
|R̃| tanh

(√
|R̃| s+ s0

)
if R̃ < 0

(s0 − s)−1 if R̃ = 0√
R̃ tan

(√
R̃ s+ s0

)
if R̃ > 0

. (B.15)

We find two parameters in this set of solutions. One is given by R̃ which describes the

ambient geometry. The other parameter, s0, defines the proportionality constant initially,

at s = 0. It makes sense intuitively that the flow must at least include those two parameters.

There are three cases to be considered for an initially totally geodesic embedding with

c(0) = 0, for which only the scalar curvature R governs the sign of the extrinsic curvature:

Negative scalar curvature: is the case important for our considerations in holography

where the ambient spacetime is given by locally AdS in 2+1 dimensions with Λ < 0. In

particular in 2+1 dimensions, the results are valid for Poincaré AdS, global AdS, thermal

AdS and BTZ black holes.26 For λ > 0, the backreacted geometry will be given by a

positive value of s and hence the volume increases for larger tensions λ. Furthermore, the

proportionality constant c(s) is bounded from above and below by

|c(s)| <
√
R̃ (B.16)

and comparing to (B.1) exactly reproduces the bounds on the matter content found in

sections 6 and 8.

Vanishing scalar curvature: is given by an ambient Minkowski spacetime. If c(0) = 0

initially, we find that c(s) = 0 is the exact solution, so the extrinsic curvature is not driven

away from zero if the embedding is maximally geodesic initially. Hence the construction

does not work in flat space.

26In this work we are interested in the case of a junction along a brane with timelike worldvolume.

Some interesting constructions involving BTZ black holes and junctions along spacelike hypersurfaces with

constant tension were investigated in [69, 70].
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Positive scalar curvature: corresponds e.g. to de Sitter space. In this case we must fol-

low the geodesic normal flow to negative values of s and hence the volume of the spacetime

will be reduced in the backreacted geometry. It is remarkable that if we start with a maxi-

mally geodesic embedding (s0 = 0), the proportionality constant blows up at |s| = π/(2R̃).

This concludes our study of geodesic normal flows. We have shown that constant

brane tension solutions can be constructed by following such a flow starting from an initially

totally geodesic embedding with Kµν = 0, if we assume the ambient manifold to be Einstein

with vanishing Weyl curvature.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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[46] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].
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