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Abstract: We measure the running of the SU(∞) ’t Hooft coupling by performing a

step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory

on a single site lattice with twisted boundary conditions. The computation relies on the

conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional

twisted torus are controlled by an effective size parameter l̃ = l
√
N , with l the torus period.

We set the scale for the running coupling in terms of l̃ and use the gradient flow to define a

renormalized ’t Hooft coupling λ(l̃). In the TEK model, this idea allows the determination

of the running of the coupling through a step scaling procedure that uses the rank of the

group as a size parameter. The continuum renormalized coupling constant is extracted in

the zero lattice spacing limit, which in the TEK model corresponds to the large N limit

taken at fixed value of λ(l̃). The coupling constant is thus expected to coincide with that

of the ordinary pure gauge theory at N = ∞. The idea is shown to work and permits us to

follow the evolution of the coupling over a wide range of scales. At weak coupling we find

a remarkable agreement with the perturbative two-loop formula for the running coupling.
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1 Introduction

The Twisted Eguchi-Kawai (TEK) model [1–3] is a single-site formulation of SU(N) lattice

gauge theory. In the large N limit, taken at fixed bare ’t Hooft coupling, it becomes equiv-

alent to a SU(∞) lattice gauge theory in the thermodynamic limit, as tested numerically

in detail in ref. [4]. In this paper we will be concerned with the analysis of the TEK model

in a different scaling regime. The conjecture of TEK volume reduction and the more gen-

eral one of volume independence at finite N with twisted boundary conditions have been

recently reviewed in ref. [5], and analyzed in 2+1 dimensions in refs. [6, 7]. The main

ingredient to be used in this paper is that SU(N) gauge theories, when defined on twisted

4-dimensional tori, have volume effects controlled by an effective size parameter l̃ = l
√
N ,

with l the torus period. Our objective will be to determine the non-perturbative running

of the ’t Hooft coupling with the effective scale l̃. For that purpose we will be using a

standard step scaling procedure l̃ → sl̃ implemented non-perturbatively by discretizing the

torus on a lattice [8]. The unusual feature in our determination is that we will work on a

single-site TEK lattice with l̃ = a
√
N . Even in this extreme case, volume independence

suggests that step scaling may be implemented by scaling the gauge group from SU(N) to

SU(s2N). We will show this procedure at work and will reproduce the 2-loop running of

the coupling constant from the step scaling non-perturbative simulations. One important

remark is that this will require us to approach the continuum limit at a fixed value of l̃,
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which amounts in the TEK model to a large N limit taken at fixed renormalized ’t Hooft

coupling λ(l̃). If volume independence holds, we expect that our calculation will provide

the running of the SU(∞) ’t Hooft coupling in the continuum limit.

Before proceeding any further, let us mention that twisted boundary conditions have

already been used in combination with the Yang-Mills gradient flow [9, 10] to define a

running coupling for SU(N) gauge theories [11, 12]. Here we define an analogous coupling

that runs in terms of the effective scale l̃. Preliminary results of this work have been

presented in ref. [13].

The paper is organized as follows. Section 2 discusses briefly the idea of volume

independence, linking finite size and finite N effects in the presence of twisted boundary

conditions. We discuss how this general idea particularizes to the case of the TEKmodel. In

section 3 we define a non-perturbative coupling based on the use of the gradient flow on a 4-

dimensional torus with twisted boundary conditions in all directions. The renormalization

scale is fixed in terms on the effective box size l̃. The perturbative behaviour of the gradient

flow in this set-up is analyzed in section 4. We briefly discuss how to improve the lattice

definition of the coupling at tree-level in perturbation theory deferring all the technical

details to appendix A. In section 5 we present the results of a non-perturbative calculation

of the TEK running coupling and describe in detail the step scaling procedure involved in

its determination. We conclude with a brief summary of our results. Appendix B collects

all our numerical data.

2 Volume independence in SU(N) gauge theories on the twisted torus

Twisted Eguchi-Kawai reduction [1–3] can be considered a particular case of the more gen-

eral idea of volume independence in Yang-Mills theories with twisted boundary conditions,

recently reviewed in ref. [5]. The main observation is that finite size and finite N effects

are intertwined. In the case of the 4-dimensional lattice TEK model, the corrections at

finite N take the form, in perturbation theory, of finite volume corrections for an effective

lattice size of
√
N . For instance, the propagator is identical to that of a (

√
N)4 lattice [2].

In this paper we will use this fact to define a running coupling constant in the large N

gauge theory using the rank of the group as a size parameter.

To be precise, let us start from the general case of a SU(N) gauge theory defined on a

four dimensional torus with all periods equal to l and twisted boundary conditions. It has

been conjectured that finite size effects are controlled by an effective size parameter given

by: l̃ = l
√
N . This is so for the set of irreducible antisymmetric twist tensors [14]:

nµν = k
√
N , for µ < ν , (2.1)

with k and
√
N coprime integers. The conjecture is sustained by the observation that the

momentum quantization rule and the free propagators correspond to those of a box with ex-

tended periods l̃. Moreover, the perturbative Feynman rules in the twisted box respect the l̃

dependence up to a phase factor determined by the boundary conditions through the angle:

θ̃ =
2π|k̄|√

N
, (2.2)
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with k̄ defined to satisfy kk̄ = 1 (mod
√
N). Provided θ̃ is kept fixed as the large N limit

is taken, volume effects in perturbation theory are controlled by the effective size l̃.

In order to establish a connection to the TEK model, one discretizes the theory on a

L4 lattice with l̃ = aL
√
N . The TEK model corresponds to the case of a one point lattice

with L = 1. It is defined in terms of four SU(N) matrices Uµ, with the action

S = bN
∑

µν

(
N − ZµνTr

[
UµUνU

†
µU

†
ν

])
, Zµν = Z∗

νµ = e2πik/
√
N for µ < ν, (2.3)

where b is the lattice analog of the inverse ’t Hooft coupling, 1/(Ng2). In the original

proposal, put forward long ago in ref. [2], the large N limit is attained at fixed value of

the lattice spacing a, with the continuum limit taken afterwards driven by the large N

beta function. TEK reduction implies that the resulting theory is equivalent to a SU(∞)

gauge theory in the thermodynamic limit. This holds as long as center symmetry is not

spontaneously broken for largeN , i.e. the trace of all openWilson loops on the lattice should

go to zero in this limit. For that to be the case the flux k has to satisfy k/
√
N > 1/9 [3].

As mentioned in the introduction, we will follow a different strategy, taking the continuum

limit at a fixed value of the effective torus size l̃. For the TEK model l̃ = a
√
N , and the

continuum limit corresponds to the N → ∞ limit taken at fixed l̃. This has to be done

while scaling the flux appropriately to keep the parameter θ̃ fixed [5].

3 Twisted Gradient Flow (TGF) running coupling: λTGF

To determine the running coupling we will make use of the recently proposed Twisted

Gradient Flow (TGF) scheme [12]. The gradient flow [9, 10] smoothes gauge fields along a

flow-time trajectory defined by the equation:

∂tBµ(x, t) = DνGνµ(x, t) (3.1)

with Bµ(x, t = 0) determined by the gauge potential Aµ(x). At positive gradient flow time,

the action density of SU(N) gauge theory is a renormalized quantity with a perturbative

expansion in the thermodynamic limit given by [10, 15],

1
N 〈E(t)〉 = 1

2N 〈Tr{Gµν(t)Gµν(t)}〉 =
3(N2 − 1)

128N2π2t2
λMS +O

(
λ2
MS

)
, (3.2)

with λMS ≡ Ng2
MS

denoting the ’t Hooft coupling in the MS scheme. This quantity can

be used to define a renormalized coupling at a renormalization scale µ = 1/
√
8t. The

identification of this scale with the linear size of the box gives rise to the finite volume

gradient flow schemes [16, 17]. In this context, the use of twisted boundary conditions,

leading to the TGF scheme, has many advantages [12]. Among them, the absence of zero

momentum modes and the manifest invariance of the theory under space-time translations.

In this paper we will present a modification of the TGF scheme which adopts the twisted

boundary conditions introduced in the previous section. It incorporates the idea of volume

– 3 –
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independence by fixing the renormalization scale in terms of the effective box size l̃ = l
√
N .

The renormalized coupling at scale l̃ is thus given by:

λTGF

(
l̃
)
= N−1(c)

t2〈E(t)〉
N

∣∣∣∣
t=c2 l̃2/8

, (3.3)

with c an arbitrary constant parameter defining the renormalization scheme. The constant

N (c) is determined by matching λTGF(l̃) to the bare ’t Hooft coupling (λ0) at tree-level

in perturbation theory. The details of the calculation of N (c) on a finite twisted torus are

presented in appendix A. The tree-level expansion of E(t) is easily obtained in momen-

tum space:

t2〈E(t)〉
N

∣∣∣
tree

=
3λ0 t

2

2 l̃4

′∑

q

e−2tq2 , (3.4)

where qµ = 2πnµ/l̃, with nµ ∈ ZZ. The prime in the sum implies the exclusion of momenta

with nµ = 0 (mod
√
N), ∀µ. This leads to:

N (c) =
3c4

128

(
θ43

(
0, iπc2

)
− θ43

(
0, iπc2N

) )
, (3.5)

expressed in terms of the Jacobi Theta function:

θ3(z, it) =
∑

m∈ZZ
e−tπm2+2πimz . (3.6)

A non-perturbative determination of the running coupling requires a lattice calculation.

Our proposal is to replace the standard step scaling procedure [8] taking into account that

the effective box size is l̃. Accordingly we define a continuum step scaling function

σ(u, s) = λTGF

(
sl̃
)∣∣∣

λTGF(l̃)=u
, (3.7)

and the corresponding lattice expression

Σ
(
u, s, L

√
N
)
= λTGF

(
sL

√
N, b

)∣∣∣
λTGF(L

√
N,b)=u

(3.8)

defined on an L4 site lattice with l̃ = aL
√
N . In addition, we will push the idea of volume

independence to the extreme by discretizing the continuum box on a one point lattice with

L = 1. The running of the coupling will be determined in this case from a step scaling

procedure that uses the rank of the gauge group as a size parameter. Step scaling will

proceed by scaling the gauge group from SU(N) to SU(s2N). The continuum step scaling

function is thus obtained from the extrapolation

σ(u, s) = lim
N→∞

Σ
(
u, s,

√
N
)
, (3.9)

at fixed u. Here we have used that l̃ = a
√
N gives the effective lattice size, and thus for

fixed l̃ the continuum limit is approached by sending N to infinity. The TGF coupling is

automatically O(a) improved [18, 19] thus an extrapolation in a2 ∼ 1/N will be required.
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4 Perturbative analysis of the twisted gradient flow on the lattice

Before presenting the outcome of the step scaling analysis we need to discuss the lattice

definition of the TGF coupling. We will just summarize the main results; all the technical

details are included in appendix A. Let us recall that we are discussing the case of SU(N)

gauge theories discretized on an L4 lattice with twisted boundary conditions. The discus-

sion will be done for arbitrary L, the TEK case follows easily by setting L = 1. One has to

start by considering a discretization of the flow equation and the lattice action used in the

Monte Carlo simulation. We will focus on the case in which the Wilson plaquette action

is used for both. For our choice of twist tensor eq. (2.1), it reads:

S = bN
∑

n

∑

µν

[
N − Zµν(n)Tr

(
Uµ(n)Uν(n+ µ̂)U †

µ(n+ ν̂)U †
ν (n)

)]
. (4.1)

with Zµν(n) = 1 for all plaquettes except for one corner plaquette in each plane, for which:

Zµν(n) = exp

{
i
2πk√
N

}
, forµ < ν ; Zνµ(n) = Z∗

µν(n). (4.2)

The next step is to consider lattice approximants to the observable E(t). There are

two standard choices in the literature: the plaquette definition

t2EP (t)

N
=

t2

N
Tr (1− 〈Zµν(n)Pµν(n, t)〉) , (4.3)

where

Pµν(n, t) ≡ Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n) , (4.4)

and the symmetric one

t2ES(t)

N
=

t2

2N
〈Tr

(
Ĝµν(n, t)Ĝµν(n, t)

)
〉 , (4.5)

where

Ĝµν(n, t) ≡ − i

8
{Zµν(n)Pµν(n, t) + Zµν(n− ν̂)P−νµ(n, t) (4.6)

+ Zµν(n− µ̂)Pν−µ(n, t) + Zµν(n− µ̂− ν̂)P−µ−ν(n, t)− c.c.} ,

and U−µ(x) ≡ U †
µ(x− µ).

To have an idea of the artifacts induced by the discretization we can compare the

lattice and the continuum definitions of t2E(t)/N at tree-level in perturbation theory. The

lattice expressions are derived in appendix A. We obtain:

t2EP

N

∣∣∣
tree

=
3λ0t

2

2N2L4

′∑

q

e−2tq̂2 , (4.7)

t2ES

N

∣∣∣
tree

=
λ0t

2

2N2L4

∑

µ 6=ν

′∑

q

e−2tq̂2 sin2(qν) cos
2(qµ/2)

1

q̂2
. (4.8)
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Figure 1. We display the tree-level perturbative dependence of t2E/N on the flow time t for L = 1

and
√
N = 13. Results for the plaquette (blue) and symmetric (red) definitions are compared to

the continuum expression (green). The different plots correspond to different kernels inserted in the

flow equation: (a) the Wilson lattice kernel exp(−2tq̂2); (b) the continuum kernel exp(−2tq2); (c)

the kernel of the Symanzik improved Square action exp(−2tq̃2µ), with q̂ and q̃µ given by eqs. (A.26)

and (A.36) respectively.

The lattice momentum q̂µ = 2 sin(qµ/2), where qµ is given by:

qµ =
2πmµ

L
√
N

, (4.9)

with mµ = 0, · · · , L
√
N − 1. The comparison between the different tree-level expressions

for t2E(t)/N is displayed on figure 1. The dependence on the flow time t of the plaquette

(blue) and symmetric (red) definitions compared to the continuum expression (green) is

displayed in figure 1(a). Reduced lattice artifacts are observed for the symmetric defini-

tion. Note however that this effect is strongly dependent on the lattice action used in

the flow equation [18, 19]. For example, substituting in eqs. (4.7) and (4.8) the lattice

kernel, exp(−2tq̂2), by the continuum one, exp(−2tq2), we obtain the results displayed

in figure 1(b). In this case the plaquette definition approximates the continuum result

much better than the symmetric one. For comparison we also display in figure 1(c) the

results that are obtained if the Symanzik improved Square action [20, 21] is used for the

flow (details are given in appendix A).

These artifacts affect the determination of the TGF running coupling. A significant

improvement is obtained if one adjusts the normalization constant N (c) entering the defi-

nition of the coupling to preserve the equality between renormalized and bare coupling at

leading order on the lattice [12, 13, 17, 22]. For our purposes we will only need N (c) on

the TEK single-site lattices when the Wilson plaquette action is used for the simulation

and the flow. From eqs. (4.7) and (4.8) we derive

NP (c) =
3c4

128

′∑

q

e−c2Nq̂2/4 (4.10)

and

NS(c) =
c4

128

∑

µ 6=ν

′∑

q

e−c2Nq̂2/4 sin2(qν) cos
2(qµ/2)

1

q̂2
, (4.11)
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depending on whether the plaquette or symmetric definition of the coupling is employed. If

N (c) is chosen appropriately for each observable a significant reduction in lattice artifacts

is achieved. Examples will be presented in section 5. Most of the results that will be

discussed in the next section correspond to these improved coupling definitions.

5 Results

In this section we will compute the non-perturbative running coupling in the TEK model

following the steps described in the previous sections. The procedure involves a numerical

determination of the lattice step scaling function Σ(u, s,
√
N). Ideally one would start by

measuring the TGF coupling on a set of SU(N) TEK lattices, tuning the bare coupling b

to obtain the same value of the renormalized coupling u for several values of N :

u = λTGF

(√
N, bN (u)

)
. (5.1)

A fixed value of u determines the line of constant physics. For a given N and scale factor

s, the lattice step scaling function Σ(u, s,
√
N) is given by:

Σ(u, s,
√
N) = λTGF

(
s
√
N, bN (u)

)∣∣∣
λTGF(

√
N,bN (u))=u

, (5.2)

with the new renormalized coupling computed on a SU(s2N) TEK lattice at the same

value of the bare coupling bN (u). The continuum step scaling function is obtained from

the extrapolation N → ∞ at fixed u. This step is iterated several times, starting each run

from a new value of un+1 = σ(s, un).

The need to tune b for each step makes this approach computationally expensive, and

since the continuum extrapolation has to be taken for each step before repeating the tuning

of b for the next step, each step requires a new set of simulations.

A more economic alternative consists of measuring the TGF renormalized coupling for

a wide range of values of b at each value of N , and making use of an interpolating function

to extract Σ at any desired fixed value of u from this data. This is the approach that we

have followed in this paper.

5.1 Simulation details

The lattice action employed in the Monte Carlo simulation is the TEK model action

given by eq. (2.3). We generate 2000 configurations for a range of values of b, at
√
N =

8, 10, 12, 15, 18. This allows us to determine Σ(u, s,
√
N) for s = 3/2 at three values of the

lattice spacing (
√
N ≡ l̃/a = 8 → 12, 10 → 15, 12 → 18). Each configuration is separated

by 250–1600 sweeps, where each sweep consists of one heat-bath and 5 over-relaxation

updates, such that autocorrelations between configurations in the measured coupling are

negligible. The specific run parameters for each value of N are listed in table 1.

Before presenting the results for the coupling it is convenient to make a few comments

regarding the validity of reduction for our set of lattices. There are certain restrictions on

the allowed values of the flux k and the integer k̄. Let us briefly describe what they are.

– 7 –
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√
N = 8

√
N = 10

√
N = 12

√
N = 15

√
N = 18

(k, |k̄|) (3,3) (3,3) (5,5) (4,4) (5,7)

θ̃/2π = |k̄|/
√
N 0.375 0.300 0.417 0.267 0.389

Table 1. Run parameters for each N . The flux, denoted by k, is an integer coprime with
√
N . θ̃

equals 2π|k̄|/
√
N , with k̄ an integer satisfying kk̄ = 1 (mod

√
N).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

√
b

 |
 T

r 
U

 |

k/√N

√b | Tr U | vs k/√N

A/sin(πk/√N)
b=0.36
b=1.00
b=2.00
b=5.00

b=10.00
b=20.00

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0  0.005  0.01  0.015  0.02

<
(1

/N
)|

T
r[

U
]|
>

1/N

Polyakov Loop Modulus vs 1/N

b=0.36
b=2.00

Figure 2. (a)
√
b |TrUµ| vs k/

√
N for many values of N and b, along with the perturbative

prediction:
√
b |Tr(Uµ)| =

∣∣∣A/ sin(πk/
√
N)

∣∣∣; (b) 1

N |TrUµ| vs 1/N at the strongest and weakest

couplings used in this work. The scatter of the points reflects the dependence on k/
√
N .

Following [3], center symmetry is preserved on the TEK lattices if k/
√
N > 1/9. As

an example of the behaviour of Polyakov loops, which act as order parameters for center

symmetry breaking, we have analyzed the quantity |TrUµ| /N . Figure 2(a) shows the

quantity
√
b |TrUµ| as a function of k/

√
N for many values of N and b. For a given value of

b, the points lie on a single curve. Furthermore, for b & 1 there is no dependence on b. These

results are in qualitative agreement with the perturbative prediction. To see this, take into

account that the quantity measures Tr(AµΓµ) ∝
√
NÂµ(p) for a particular value of the

momentum p. The actual value of p depends on the flux k. It is given by p = (0, pc, pc, pc)

with pc = 2πk/
√
N . In perturbation theory Âµ(p) has a Gaussian distribution with a

width σ(p) ∼ 1/(
√
Nb|p|). For dimensional reasons the expectation value of |Âµ(p)| is

also proportional to σ(p). Replacing the continuum momentum by lattice momentum, our

considerations lead to
√
b|Tr(Uµ)| = |A/ sin(πk/

√
N)| which describes the data very well

for b & 1. This quantity divided by
√
bN is shown as a function of 1/N for the weakest

and strongest values of the coupling used in this work in figure 2(b). By definition it is

always positive but the figure shows that it goes to zero in the large N limit.

At finite values of N , the results obtained for the renormalized coupling will depend

also on the value of the quantity θ̃. A smooth continuum limit is best obtained by taking

large N while keeping the value of this quantity fixed. Strictly speaking this is impossible

since k̄ and
√
N are coprime integers, introducing a source of systematic errors in our

data. Nevertheless, it is to be expected that if θ̃ is taken approximately constant this effect

would be small. To test this question we present in table 2 the dependence on θ̃ of the TGF

– 8 –
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θ̃/2π = |k̄|/
√
N 2/11 3/11 4/11 5/11

b = 1.00 1.005(2) 1.003(2) 1.002(2) 1

b = 0.36 1.121(6) 1.029(5) 1.005(5) 1

Table 2. The dependence of the coupling λTGF (normalized to the value at k̄ = 5) on the quantity

θ̃/2π = |k̄|/
√
N , for

√
N = 11.

coupling for N = 121 and two values of b. One sees that at weak coupling this dependence

is negligible. At strong coupling it can become a sizable effect. Notice, however, that if

θ̃ > π/2 the effect is at most 3 %. This explains the values of θ̃ used in our analysis and

given in table 1.

5.2 Step scaling function

To determine the TGF running coupling, we integrate the gradient flow using the 3rd order

Runge-Kutta scheme proposed in ref. [10] with an integration step-size ∆t in the range

0.01−0.03, such that integration errors are much smaller than the statistical uncertainties.

We have computed the tree-level improved couplings determined from either the plaquette

or the symmetric definition using the lattice determined constants NP (c) or NS(c) given

in eqs. (4.10) and (4.11) respectively. The parameter c is in principle free, and different

values correspond to different renormalization schemes. In general, a smaller value of c will

result in smaller statistical uncertainties, but at the cost of larger lattice artifacts, and vice

versa [17]. Here we take c = 0.30 as a good compromise between these two effects. The

measured couplings using the plaquette and symmetric definitions are listed in appendix B

in tables 3 and 4 respectively. They have statistical errors O(0.3 − 0.5%). For
√
N ≥ 10

there is no clear dependence on the choice of discretisation within the statistical errors.

5.3 Continuum extrapolation

The results of the lattice step scaling function have to be extrapolated to the continuum

limit at a fixed value of the renormalized coupling u. In order to do that we have to

interpolate the data. We use two different interpolating strategies. The first, following

ref. [17], is to fit the b dependence of the coupling to a 4-parameter Padé ansatz of the form:

λTGF

(√
N, b

)
=

1

b

a0 + a1b+ b2

a2 + a3b+ b2
. (5.3)

Examples of such fits for the symmetric definition of the coupling are displayed in the left-

hand plot of figure 3. For plotting purposes the quantity plotted is bλTGF(
√
N, b) and data

corresponding to different values of N have been displaced vertically by 0.2. We obtain

good fits with typical χ2 per degree of freedom of order 1. The Padé fits allow us to extract

the lattice step scaling function for arbitrary values of u.

To check for systematic effects involved in the fitting procedure we also use a different

strategy, where we first construct Σ(u, s,
√
N)/u directly from our coupling data, and then

– 9 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
8

0.36 0.45 0.60 0.8 1.0 1.5 2.0
b

1.0

2.0

5.0

10.0

bλ
T
G
F
(√ N

,b
)

4-parameter Pade Fits to λTGF(
√
N,b)√

N =8, χ2 /dof=1.12√
N =10, χ2 /dof=0.94√
N =12, χ2 /dof=0.50√
N =15, χ2 /dof=1.99√
N =18, χ2 /dof=0.95

0 2 4 6 8 10 12 14 16 18
u

1.0

1.2

1.4

1.6

1.8

2.0

Σ
/u

3-parameter polynomical fits to Σ(u)
Σ(u,

√
N =8), χ2 /dof=0.94

Σ(u,
√
N =10), χ2 /dof=2.31

Σ(u,
√
N =12), χ2 /dof=0.77

Figure 3. Left: dependence of bλTGF(
√
N, b) on the bare coupling b for various values of N . The

lines represent 4-parameter Padé interpolating fits to the data. Right: dependence of Σ(u, s =

3/2,
√
N)/u on u. The lines represent 3-parameter polynomial interpolating fits to the data. The

data corresponding to different N values have been displaced vertically for clarity (by 0.2 and 0.1

for the left and right-hand plots respectively).

interpolate this in u using a 3-parameter polynomial of the form:

Σ
(
u, s,

√
N
)
/u = 1 + a0u+ a1u

2 + a2u
3 . (5.4)

Examples of these fits, along with the lattice data, are displayed in the right-hand plot of

figure 3, again for the symmetric definition of the coupling. The χ2 per degree of freedom

for these fits are similar to those of the Padé fits.

Let us start by illustrating the effect that the choice of N (c) has on the size of lattice

artifacts. An example is presented in figure 4. We display the continuum extrapolation

of the lattice step scaling function Σ(u, s = 3/2,
√
N)/u for u = 0.9875 and u = 7.3250.

As already anticipated, the choice of the lattice definition of the renormalization constant

results in a very significative decrease of lattice artifacts.

Figure 5 shows the continuum extrapolation of Σ(u, s = 3/2,
√
N) for several repre-

sentative values of u ranging from u = 0.6 to u = 15.4. At each value of u there are two

different continuum extrapolations. Results obtained from the plaquette definition of the

coupling are represented by circles, and those from the symmetric definition by crosses.

The difference between them at finite N is a measure of lattice artifacts and they should

give consistent continuum extrapolations. The analysis is repeated, using both types of

interpolation, on a large number of bootstrap replicas of the data. The central value and

associated uncertainty are then determined from the mean and the variance of this set of

bootstrap estimates. Hence the error bars include both statistical errors, and the system-

atic error due to the choice of interpolation, although they do not include the systematic

dependence introduced by not keeping θ̃ exactly constant while taking the continuum limit.

The fact that the
√
N = 10 data is systematically higher than the rest might indeed be

due to this effect. This source of error limits the accuracy of our continuum extrapolation

which however does not seem to have a strong effect on the results.

– 10 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
8

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.005  0.01  0.015  0.02  0.025
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u
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2

Lattice Artefacts: Σ(u)/u at u=0.98750
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Plaquette Coupling, Continuum Constant
Symmetric Coupling, Continuum Constant

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.005  0.01  0.015  0.02  0.025

Σ
(u

)/
u

1/N ~ a
2

Lattice Artefacts: Σ(u)/u at u=7.325000

Plaquette Coupling, Lattice Constant
Symmetric Coupling, Lattice Constant

Plaquette Coupling, Continuum Constant
Symmetric Coupling, Continuum Constant

Figure 4. We display the continuum extrapolation of the step scaling function Σ(u, s = 3/2,
√
N)/u

for u = 0.9875 (Left) and u = 7.3250 (Right). The plots illustrate the size of lattice artifacts

depending on the choice of normalization constant N (c).

8−210−212−2

1/N

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Σ
/u

Continuum Extrapolation: Σ/u vs 1/N

u=15.400

u=13.920

u=12.440

u=10.960

u=9.480

u=8.000

u=6.520

u=5.040

u=3.560

u=2.080

u=0.600

Figure 5. We show the continuum extrapolation of Σ(u, s = 3/2,
√
N)/u for several representative

values of u. The results correspond to the TGF scheme with c = 0.3, using both the plaquette

(circles) and symmetric (crosses) definitions of the coupling.

The final, continuum extrapolated, result for σ(u)/u is shown in figure 6 as a function

of u, together with the 1-loop and 2-loop perturbative predictions.

Our final result for the running coupling constant as a function of renormalization scale

is presented in figure 7 and table 5 in appendix B. We display λTGF(l̃) versus log3/2(l̃/l̃min)

over a range of change in scale of s30 with s = 1.5, starting at λTGF(l̃max) = 23.0, and run-

ning down to λTGF(l̃min) = 1.65(10). A very good agreement with the 2-loop perturbative

formula is observed at weak coupling.
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σ/u vs u
1-loop
2-loop
Symmetric coupling definition
Plaquette coupling definition

Figure 6. We display the continuum extrapolated step scaling function compared with the one-loop

and two-loop perturbative predictions. The results correspond to the TGF scheme with c = 0.3.

 0
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 20

 25

 0  5  10  15  20  25  30

λ
T

G
F
(l~ )

log3/2(l
~
/l
~
min)

Running coupling vs renormalization scale

Symmetric Coupling Definition
Plaquette Coupling Definition

1-loop
2-loop

Figure 7. We display the continuum determination of the running coupling λTGF(l̃) versus

log3/2(l̃/l̃min), along with the one-loop and two-loop perturbative predictions. The results cor-

respond to the TGF scheme with c = 0.3, starting at λTGF(l̃max) = 23.0, and running down to

λTGF(l̃min) = 1.65(10).
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6 Conclusions

We have pushed the idea of volume independence to the extreme by determining the scale

dependence of the SU(N) renormalized gauge coupling from a scaling analysis of the single

site TEK lattice, where the rank of the gauge group acts as a size parameter. This allows

us to determine the running of the coupling through a step scaling procedure that involves

the scaling of the gauge group SU(N) → SU(s2N). The continuum step scaling function is

obtained in the N → ∞ limit taken at fixed values of the renormalized ’t Hooft coupling.

We have computed the running of the coupling across a wide range of scales, finding an

excellent agreement with the two-loop perturbative formula at weak coupling. Our results

provide support to the conjecture that finite volume and finite N effects are related in the

TEK model.

To define the coupling we have proposed a modification of the Twisted Gradient Flow

running coupling scheme introduced by A. Ramos in ref. [12]. TGF is a finite volume

renormalization scheme that uses the gradient flow [10] combined with twisted boundary

conditions to define the SU(N) running coupling at a scale set by the size of the box. Our

proposal, based on the idea of volume independence, has been to fix the renormalization

scale in terms of an effective box size that combines finite volume and finite N effects:

l̃ = l
√
N . The renormalized coupling at scale l̃ is thus given by:

λTGF

(
l̃
)
= N−1(c)

t2〈E(t)〉
N

∣∣∣∣
t=c2 l̃2/8

, (6.1)

with c an arbitrary constant parameter defining the renormalization scheme and E(t) the

energy density at a finite flow time t. The proposal makes use of the idea of twisted

volume reduction conjecturing that finite volume effects on a 4-dimensional twisted box

are controlled by the effective size parameter l̃ [1–3, 5]. This holds for a specific choice of

twisted boundary conditions given by twist tensors nµν satisfying eq. (2.1). For our choice

of twisted boundary conditions, we have analyzed the tree-level perturbative behaviour

of the energy density in the continuum and on the lattice. This allows to determine the

normalization constant N (c) entering the definition of the running coupling. As already

pointed out in refs. [12, 13, 17, 22], the use of the lattice determined normalization constant

results in a very significant reduction of cut-off effects in the running coupling.

A The normalization constant N (c) entering the definition of λTGF

In this section we will focus on the calculation of the normalization constant N (c) used

in the definition of the ’t Hooft coupling within the Twisted Gradient Flow scheme given

by eq. (3.3). As already mentioned, N (c) is determined by imposing that λTGF(l̃) agrees

at tree-level with the bare coupling λ0. Although the results presented in this paper

correspond to d = 4 dimensions, in this appendix we will keep the discussion general

by considering an arbitrary number of, even, space-time dimensions d. In this case, the

effective linear size of the box, in terms of which we fix the scale of the running coupling,

is given by l̃ = lN2/d.
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To set the stage, we will start by deriving an expression for N (c) in the continuum.

Consider a SU(N) gauge theory defined on a d dimensional torus with periods l and twisted

boundary conditions given by the twist tensor nµν . We will focus on the set of irreducible

twist tensors [14] given by:

nµν = ǫµν kN
d−2

d , (A.1)

with

ǫµν = Θ(ν − µ)−Θ(µ− ν) , (A.2)

with Θ the step function. For d = 4 this reduces to the expression presented in eq. (2.1).

In this set up the perturbative formulas are derived by scaling the gauge potential as gAµ

and expanding all expressions in powers of the coupling g. The derivation will require us

to consider the momentum expansion of the gauge potential compatible with the twisted

boundary conditions:

Aµ(x) =
1

ld/2

′∑

q

eiqxAµ(q)Γ̂(q) (A.3)

with momenta quantized as:

qµ =
2πmµ

l̃
, mµ ∈ ZZ , (A.4)

excluding those for which qµ = 0 (mod N2/d) for all µ (indicated by the prime in the sum

over momenta). The matrices Γ̂(q) are given by:

Γ̂(q) =
1√
2N

eiα(q) Γ
s0(q)
0 · · ·Γsd−1(q)

d−1 , (A.5)

with integers s related to the momenta through:

sµ(q) = ǫ̃νµ k̄ qν
l̃

2π

(
modN2/d

)
. (A.6)

The Γµ matrices are the so-called twist-eaters that satisfy:

ΓµΓν = exp
{
2πi

nνµ

N

}
ΓνΓµ . (A.7)

Here k̄ is an integer defined through the relation:

kk̄ = 1
(
modN2/d

)
, (A.8)

and ǫ̃µν is an antisymmetric tensor satisfying:

∑

ρ

ǫ̃µρǫρν = δµν . (A.9)

The flow equation can be solved order by order in perturbation theory. For that

purpose it is convenient to analyze the modified flow equation:

∂tBµ(x, t, ξ) = DνGνµ(x, t, ξ) + ξDµ∂νBν(x, t, ξ) . (A.10)
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Solutions of the original and modified flow equations are related by a flow-time dependent

gauge transformation that leaves E(t) invariant. At tree-level order, this is equivalent

to solving the flow equation for the tree-level gauge fixed action. In the Feynman gauge

(ξ = 1):

S + SGF = −
∫

dxTr
{
Aν∂

2
µAν

}
. (A.11)

A solution to the modified flow equation at this order is easily obtained in momentum

space:

Bµ(x, t, ξ = 1) =
1

ld/2

′∑

q

e−q2teiqxB̂µ(q, t = 0, ξ = 1)Γ̂(q) . (A.12)

Inserting this expansion in the expression for t2E/N gives:

t2E

N
=

(d− 1)λ0t
2

2l̃d

′∑

q

e−2tq2 . (A.13)

Through eq. (3.3), this leads to:

N (c) =
(d− 1)c4 l̃(4−d)

128

′∑

q

e−c2 l̃2q2/4 =
(d− 1)c4 l̃(4−d)

128

′∑

m∈ZZd

e−c2π2m2

. (A.14)

A compact expression for N (c) is obtained using the Jacobi Theta function:

θ3(z, it) =
∑

m∈ZZ
e−tπm2+2πimz (A.15)

This gives the following expression

N (c) =
(d− 1)c4 l̃(4−d)

128

(
θd3

(
0, iπc2

)
− θd3

(
0, iπc2N4/d

))
, (A.16)

which can be easily evaluated.

Let us now proceed with the lattice calculation of N (c). For that purpose we discretize

the SU(N) gauge theory on a Ld lattice endowed with twisted boundary conditions. The

torus periods are given by l = La, with a the lattice spacing. In what follows a will be set

to 1, a dependent expressions can be easily retrieved by using dimensional arguments. The

expressions derived in this way will reduce to those of the TEK one-point lattice model by

setting L = 1.

As mentioned in section 4, three ingredients have to be considered when deriving a

lattice expression for t2E(t):

• the discretized lattice action used in the Monte Carlo simulation,

• the discretized lattice flow equation,

• the discretization of the observable representing E(t) on the lattice.
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We will analyze the case in which the Wilson plaquette action is used both for the Monte

Carlo simulation and for the flow. For twisted boundary conditions, it reads:

S = bN
∑

n

∑

µν

[
N − Zµν(n)Tr

(
Uµ(n)Uν(n+ µ̂)U †

µ(n+ ν̂)U †
ν (n)

)]
. (A.17)

with Zµν(n) = 1 for all plaquettes except for one corner plaquette in each plane, for which:

Zµν(n) = exp
{
2πi

nµν

N

}
, (A.18)

nµν denoting the twist tensor given by eq. (A.1).

The gauge links are expanded in perturbation theory as:

Uµ(n) = Vµ(n) = eigAµ(n+ µ̂

2
) , (A.19)

for all n such that nµ 6= L− 1, and

Uµ(n) = Vµ(n)Γµ = eigAµ(n+ µ̂

2
)Γµ , (A.20)

if nµ = L− 1.

The modified lattice flow equation, equivalent to eq. (A.10) in the Feynman gauge

ξ = 1, is derived at tree-level from the discretized gauge fixed action:

S + SGF = −bN
∑

n

∑

µν

Tr
{
Aν(n)∇−

µ∇+
µAν(n)

}
, (A.21)

where the lattice forward and backward derivatives are given by:

∇+
µ φ = φ(n+ µ̂)− φ(n) , (A.22)

∇−
µ φ = φ(n)− φ(n− µ̂) . (A.23)

This gives at leading order in g:

∂tBµ(n, t) = ∇−
µ∇+

µBµ(n, t) , (A.24)

which is easily solved using the expansion in momenta of the gauge fields. The solution

reads:

Bµ(n, t) =
1

Ld/2

′∑

q

e−q̂2teiq(n+
µ̂

2
)B̂µ(q, t = 0)Γ̂(q) , (A.25)

with lattice momenta

q̂µ = 2 sin(qµ/2) , (A.26)

where qµ is given by qµ = 2πmµ/L̃ , with mµ = 0, · · · , L̃− 1, and L̃ = LN2/d.

In addition to the solution of the flow equation, one has to consider lattice aproxima-

tions to the observable E(t). Using the Fourier expansion of the gauge potential, eq. (A.25),
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and the lattice propagator for the Wilson action it is easy to derive the leading order ex-

pansions of the plaquette and symmetric definitions presented in eqs. (4.3) and (4.5):

t2EP

N
=

(d− 1)λ0t
2

2L̃d

′∑

q

e−2tq̂2 (A.27)

t2ES

N
=

λ0t
2

2L̃d

∑

µ 6=ν

′∑

q

e−2tq̂2 sin2(qν) cos
2(qµ/2)

1

q̂2
(A.28)

We are now ready to derive the lattice expressions for N obtained from the plaquette

and symmetric observables. The condition to be imposed is that λTGF in eq. (3.3) equals

the bare coupling λ0 at tree-level in perturbation theory. Taking into account that l̃ = L̃a,

this leads to:

NP (c) =
(d− 1)c4L̃4−d

128

′∑

q

e−c2L̃2q̂2/4 (A.29)

and

NS(c) =
c4L̃4−d

128

∑

µ 6=ν

′∑

q

e−c2L̃2q̂2/4 sin2(qν) cos
2(qµ/2)

1

q̂2
(A.30)

We have also analyzed the effect of lattice artefacts for other discretized versions of the

flow equation. We have considered in particular the Symanzik improved Square action [20,

21] which combines 1× 1, 1× 2 and 2× 2 plaquettes:

Ssq = bN
∑

µν

∑

n

{
c0
[
N − Zµν(n)TrPµν(n)

]
(A.31)

+2c1
[
N − Zµν(n)Zµν(n+ µ̂)TrP(2µ)ν(n)

]

+c4
[
N − Zµν(n)Zµν(n+ µ̂)Zµν(n+ ν̂)Zµν(n+ µ̂+ ν̂)TrP(2µ)(2ν)(n)

]}
, (A.32)

with tree-level improvement coefficients:

c0 =
16

9
, c1 = −1

9
, c4 =

1

144
. (A.33)

It has the advantage that, choosing appropriately the gauge fixing term, one can obtain

a diagonal propagator. This allows one to solve in a simple way the flow equation. The

action at lowest order in g reads:.

Ssq + SGF =
1

18

′∑

q

Aν(−q)
(
4− cos2(qν/2)

)(
4q̂2 −

∑

ρ

sin2(qρ)

)
Aν(q) (A.34)

The solution to the corresponding flow equation is given by:

Bµ(n, t) =
1

Ld/2

′∑

q

e−2tq̃2µeiq(n+
µ̂

2
)B̂µ(q, t = 0)Γ̂(q) , (A.35)

where

q̃2µ =
1

9

(
4q̂2 −

∑

ρ

sin2(qρ)

)(
4− cos2(qµ/2)

)
. (A.36)
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The insertion of this expression into the plaquette and symmetric definitions of E(t) leads to

t2Esq
P

N
=

λ0t
2

2L̃d

∑

µ

′∑

q

e−2tq̃2µ

(
1−

q̂2µ
q̂2

)
, (A.37)

and
t2Esq

S

N
=

λ0t
2

2L̃d

∑

µ 6=ν

′∑

q

e−2tq̃2µ sin2(qν) cos
2(qµ/2)

1

q̂2
. (A.38)

The analysis of the lattice artefacts for the Square action is displayed in figure 1(c).

B Numerical results for the running coupling constant

In tables 3 and 4 we list the tree-level improved couplings determined respectively from

the plaquette and the symmetric definition. The parameter c has been set to c = 0.3. The

results have statistical errors O(0.3–0.5%).

Our final results for the running coupling constant as a function of renormalization

scale are listed in table 5.

b
√
N = 8

√
N = 10

√
N = 12

√
N = 15

√
N = 18

0.360 16.801(72) 20.981(97) 25.53(12) - -

0.365 14.540(55) 17.479(77) 20.710(85) - -

0.370 13.121(48) 15.442(64) 17.830(78) 23.44(11) -

0.375 11.972(41) 13.688(54) 15.682(61) 19.737(92) 24.12(11)

0.380 11.101(36) 12.487(48) 14.044(54) 17.313(79) 20.459(96)

0.390 9.726(30) 10.707(37) 11.800(43) 13.865(57) 15.609(65)

0.400 8.684(26) 9.424(31) 10.247(36) 11.573(43) 12.990(53)

0.420 7.157(20) 7.669(24) 8.195(27) 8.967(29) 9.726(34)

0.450 5.763(15) 6.089(18) 6.356(18) 6.798(20) 7.186(24)

0.500 4.399(11) 4.556(12) 4.730(13) 4.972(14) 5.156(15)

0.600 3.0031(68) 3.0688(74) 3.1551(83) 3.2510(84) 3.3260(87)

0.800 1.8617(40) 1.8840(45) 1.9054(45) 1.9425(46) 1.9723(48)

1.000 1.3471(29) 1.3630(30) 1.3754(32) 1.3991(34) 1.4125(35)

1.200 1.0627(23) 1.0716(24) 1.0751(25) 1.0845(25) 1.0992(27)

1.500 0.8043(17) 0.8104(18) 0.8129(19) 0.8227(19) 0.8255(19)

2.000 0.5724(12) 0.5755(12) 0.5772(13) 0.5806(13) 0.5827(14)

Table 3. Measured coupling λTGF for each b and N (plaquette definition).
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b
√
N = 8

√
N = 10

√
N = 12

√
N = 15

√
N = 18

0.360 16.643(77) 21.05(10) 25.60(12) - -

0.365 14.383(61) 17.492(82) 20.755(88) - -

0.370 12.979(53) 15.445(67) 17.857(81) 23.52(11) -

0.375 11.843(45) 13.672(58) 15.698(63) 19.788(94) 24.17(11)

0.380 10.986(40) 12.469(51) 14.051(57) 17.350(81) 20.496(97)

0.390 9.624(33) 10.685(40) 11.801(44) 13.882(59) 15.626(66)

0.400 8.601(28) 9.402(33) 10.246(37) 11.579(44) 13.001(54)

0.420 7.091(22) 7.652(25) 8.190(28) 8.966(29) 9.727(35)

0.450 5.718(17) 6.075(19) 6.351(19) 6.796(20) 7.185(24)

0.500 4.370(12) 4.546(13) 4.726(14) 4.971(14) 5.156(15)

0.600 2.9878(76) 3.0635(79) 3.1536(87) 3.2498(86) 3.3256(88)

0.800 1.8556(46) 1.8815(48) 1.9041(47) 1.9419(47) 1.9720(49)

1.000 1.3434(33) 1.3618(32) 1.3747(33) 1.3990(35) 1.4123(36)

1.200 1.0603(26) 1.0712(26) 1.0747(26) 1.0842(26) 1.0990(27)

1.500 0.8030(19) 0.8101(20) 0.8127(20) 0.8227(20) 0.8255(20)

2.000 0.5716(13) 0.5752(13) 0.5771(14) 0.5805(13) 0.5826(14)

Table 4. Measured coupling λTGF for each b and N (symmetric definition).
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log3/2(l̃max/l̃) Plaquette coupling definition Symmetric coupling definition

0 23.0 23.0

1 14.776(75) 14.950(79)

2 10.995(99) 11.202(91)

3 8.865(112) 9.062(100)

4 7.494(109) 7.677(101)

5 6.522(107) 6.693(101)

6 5.790(106) 5.953(103)

7 5.216(107) 5.372(104)

8 4.751(108) 4.902(105)

9 4.365(109) 4.511(105)

10 4.039(110) 4.180(105)

11 3.759(110) 3.895(105)

12 3.515(109) 3.648(104)

13 3.300(109) 3.429(104)

14 3.110(108) 3.235(103)

15 2.939(107) 3.061(102)

16 2.785(106) 2.905(101)

17 2.645(105) 2.762(100)

18 2.518(104) 2.632(99)

19 2.401(103) 2.514(98)

20 2.294(102) 2.404(97)

21 2.195(101) 2.303(97)

22 2.104(100) 2.209(96)

23 2.019(99) 2.122(96)

24 1.939(98) 2.041(95)

25 1.866(98) 1.966(95)

26 1.797(97) 1.895(95)

27 1.732(96) 1.828(95)

28 1.671(95) 1.766(95)

29 1.614(95) 1.707(95)

30 1.561(94) 1.652(95)

Table 5. Running coupling λTGF(l̃) as a function of the scale l̃, for both the plaquette and

symmetric definitions of the coupling. The parameter c has been set to c = 0.3.
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