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1 Introduction

Spacetime singularities are believed to be one of the inevitable consequences of the Ein-

stein’s theory of relativity. It describes the “end point” or incomplete geodesics for timelike

or null trajectories followed by classical particles. The black hole and colliding plane wave

spacetimes are the two important branches of this theory that the nature and characteris-

tics of spacetime singularities are manifested. Another intriguing one is the Big-Bang-like

cosmological singularities. According to the classical singularity classification devised by

Ellis and Schmidt [1], curvature singularities can be grouped as scalar and nonscalar. The

scalar curvature singularities are the strongest ones in the sense that the spacetime be-

comes inextendible and all the physical quantities, such as the gravitational field, energy

density and tidal forces, diverge at the singular point. Singularities forming at the centre

of black holes and in some colliding plane wave spacetimes are good examples for strong

scalar curvature singularity. In black hole spacetimes singularities located at the centre

(r = 0) is hidden by horizon(s). In the cases where this singularity is not hidden, it is

called the naked singularity. Whereas, the singularity occurring in the interaction region

of Bell-Szekeres solution [2] which describes the nonlinear interaction of electromagnetic

plane waves can be given as an example to nonscalar curvature singularity.

Naked singularity which is visible from outside needs further care as far as the weak

cosmic censorship hypothesis is concerned. It is believed that, naked singularity forms a

threat to this hypothesis. Hence, understanding and the resolution of naked singularities

seems to be extremely important for the deterministic nature of general relativity.

However, the scale where the singularities are forming is very small (smaller than

the Planck scale), so that the classical general relativity methods in the resolution of the

singularities are expected to be replaced by the quantum theory of gravity. Unfortunately,

there is no consistent quantum theory of gravity yet. Since this theory is still “under

construction”, the alternative methods in healing the singularities are always attracted the

attentions. String theory [3, 4] and loop quantum gravity [5] constitute two major study

fields in resolving singularities. It is shown in string theory that some timelike singularities

are resolved: the orbifold, the flop, and the conifold. The flop and the conifold occurs in

the Calabi-Yau manifolds in which their resolution involves the use of light matters such

as “twisted sectors” and “wrapped D-branes” [6] (and references therein).

A rather different approach is considered in [7] for resolving the timelike singularities

in Reissner-Nordström and negative mass Schwarzschild solutions. In this approach, the

spacetime is viewed as being made of two parts which are naturally connected across the

singularity. In this study, it is shown that the Reissner-Nordström singularity allows for

communication through the singularity and can be termed as “beam splitter” since the

transmission probability of a suitably prepared high energy wave packet is 25%.

Another alternative method; following the work of Wald [8], is proposed by Horowitz

and Marolf (HM) [9], which incorporates “self-adjointness” of the spatial part of the wave

operator. Hence, the classical notion of geodesics incompleteness with respect to point-

particle probe will be replaced by the notion of quantum singularity with respect to wave

probes.
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The method of HM has been used successfully for other spacetimes to check whether the

classically singular spacetimes are quantum mechanically regular or not. As an example;

negative mass Schwarzschild spacetime, charged dilatonic black hole spacetime and funda-

mental string spacetimes are considered in [9]. An alternative function space, namely the

Sobolev space instead of the Hilbert space, has been introduced in [10], for analyzing the sin-

gularities within the framework of quantum mechanics. As a result, the occurrence of time-

like naked singularity in the negative mass Schwarzschild solution is shown to be quantum

mechanically regular. Helliwell and Konkowski have studied quasiregular [11], Gal’tsov-

Letelier-Tod spacetime [12], Levi-Civita spacetimes [13, 14], and recently, they have also

considered conformally static spacetimes [15, 16]. Pitelli and Letelier have studied spher-

ical and cylindrical topological defects [17], Banados−Teitelboim−Zanelli (BTZ) space-

times [18], the global monopole spacetime [19] and cosmological spacetimes [20]. Quantum

singularities in matter coupled 2+1 dimensional black hole spacetimes are considered in [21].

Quantum singularities are also considered in Lovelock theory [22] and linear dilaton black

hole spacetimes [23]. The occurrence of naked singularities in a 2 + 1 dimensional magnet-

ically charged solution in Einstein-Power-Maxwell theory have also been considered [24].

Recently, the formation of naked singularity in a model of f(R) gravity is considered in [25].

The main motivation in these studies is to understand whether these classically sin-

gular spacetimes turn out to be quantum mechanically regular if they are probed with

quantum fields rather than classical particles.

Recently, a solution describing f(R) global monopole in the weak field regime has been

presented in [26]. This study showed that, the main contribution of the modified theory

compared to the ordinary global monopole solution due to Barriola and Vilenkin (BV) [27]

is that, in addition to admitting double and single horizons, it admits solution without

horizon as well. And, the most important influence is seen on the nature of the singularity

that occur at r = 0. In the case of BV, this singularity is spacelike, whereas in the case of

f(R) theory, it has timelike nature.

Generally, solutions admitting black holes attracted more attention than the solutions

admitting naked singularity. Recently, the influence of the modified theory on the thermo-

dynamic quantities of an f(R) global monopole spacetime [26] has been investigated and

compared with BV spacetime in [28]. The outcome of this investigation is that, f(R) the-

ory modifies the thermodynamic quantities, but the shapes of curves for thermodynamic

quantities with respect to the horizon are similar to the results within the frame of general

relativity.

In this paper, we wish to investigate the occurrence of timelike naked singularities in

f(R) global monopole spacetime within the context of quantum mechanics. The singularity

at r = 0 will be probed with three different types of quantum fields that obey Klein-Gordon,

Maxwell and Dirac equations. The singularity for the BV spacetime will also be investigated

with the spinor fields obeying Maxwell and Dirac equations. This will be the spinor field

generalization of the study performed by Pitelli and Letelier [19] for BV spacetime.

The appearance of naked singularities are also encountered in gauged supergravity

theories. Gubser [29] proposed a singularity conjecture to resolve singularities in these

theories in the following way.

– 3 –
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Conjecture: large curvatures in scalar coupled gravity with four dimensional Poincare

invariant solution are allowed only if the scalar potential is bounded above in the solution.

In this paper, the approach of Gubser will be incorporated to our analysis briefly to

display its applicability in spacetimes which do not obey Poincare invariance.

The paper is organized as follows: in section II, we give the solution and the spacetime

structure obtained in [26]. The definition of quantum singularity is briefly reviewed in

section III. Section IV is devoted for the quantum singularity analysis of the f(R) global

monopole spacetime. Three different types of waves with different spins are used to probe

the singularity. The spinor field generalization of the paper by Pitelli and Letelier [19] is

given in section V. In section VI, Gubser’s singularity conjecture is used to identify if the

studied curvature singularity is bad or good. Finally, we give the concluding remarks of

this study in section VII.

2 The metric for a global monopole in f(R) theories and spacetime struc-

ture

2.1 The metric for a global monopole in f(R) theories

Recently, the metric describing the global monopole in f (R) theories for the static spher-

ically symmetric systems has been presented in the weak field regime [26]. The adopted

action for such a gravitational field coupled to matter fields in f (R) theory is given by

S =
1

2κ

∫
d4x
√
−gf(R) + Sm, (2.1)

in which f(R) is an analytic function of the Ricci scalar R, κ = 8πG, here G is the Newton

constant and Sm represents the action of the coupled matter fields given by

Sm =

∫
d4x
√
−gL. (2.2)

In the considered global monopole model, L represents the Lagrangian density that gives

the simplest global monopole model given by

L =
1

2
∂µφ

a∂µφa − 1

4
λ
(
φaφa − η2

)
, (2.3)

in which λ and η are constant parameters. The global monopole, that forms as a result

of spontaneous symmetry breaking from global O(3) to U(1), during the phase transitions

in the early universe is described by the self-coupling triplet of scalar fields φa (a = 1, 2, 3)

given by the following ansatz,

φa = η
xa

r
, (2.4)

with xaxa = r2 and η is a constant parameter. The adopted metric for such a model is

given by

ds2 = Bdt2 −Adr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (2.5)
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where B = B (r) and A = A (r) are only function of r. The field equation reads

F (R)Rνµ +

(
�F (R)− 1

2
f(R)

)
δνµ −∇ν∇µF (R) = κT νµ (2.6)

in which

F (R) =
df (R)

dR
, (2.7)

�F (R) =
1√
−g

∂µ
(√
−g∂µ

)
F (R) (2.8)

and

∇ν∇µF (R) = gαν
[
(F (R)),µ,α − Γmµα (F (R)),m

]
. (2.9)

In eq. (2.6) T νµ represents minimally coupled energy − momentum tensor of the matter

field whose non-zero components are given by

T 0
0 = T rr = −8πGη2 + 3GMψ0

r2
+

3− 16πGη2

r
ψ0 + 3ψ2

0. (2.10)

Furthermore, the trace of the field equation (2.6) reads

F (R)R+ 3�F (R)− 2f(R) = κT, (2.11)

with T = Tµµ . With reference to the paper [26], the solution to the field equations was ob-

tained in the weak field regime which assumes the metric function in the form of B = 1+b(r)

and A = 1 + a(r) with the property that |a (r)| and |b (r)| smaller than unity. As a conse-

quence of a weak field regime, the considered model of f(R) theory corresponds to a small

correction on standard general relativity in such a way that, F (R(r)) = 1 + ψ(r) with

ψ(r)� 1. Explicit form of f(R) is given in [26] (eq. 42 in [26]). Hence, F (R(r)) = 1 corre-

sponds to the standard general relativity. Employing these conditions in the field equations

yields ψ(r) = ψ0r and resulting metric function with global monopole is found to be

B = A−1 = 1− 8πGη2 − 2GM

r
− ψ0r, (2.12)

where M is the mass parameter and ψ0 is a very small parameter ( since ψ0r � 1) that

measures the deviation from the standard general relativity. As stated in [26], for a typical

Grand Unified Theory the parameter η is in the order of 1016 GeV. Hence, 8πGη2 ≈ 10−5.

Note that one can recover the result of BV if ψ0 = 0. It is known that, the global monopole

solution obtained by BV has one horizon only and the nature of the singularity at r = 0

is spacelike.

2.2 The spacetime structure

The structure of the solution obtained in [26] and given in eq. (2.12), has remarkable

features that deserves to be investigated in detail. The obtained solution admits black

– 5 –
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holes with inner and outer horizons. To find the location of the horizon, we prefer to write

the metric component gtt in the following form

B = −ψ0

r
(r − r+) (r − r−) (2.13)

where r+ and r− denote the outer and inner horizons respectively and given by

r± =
α±

√
α2 − 8ψ0GM

2ψ0
, α = 1− 8πGη2. (2.14)

The Kretschmann scalar which indicates the formation of curvature singularity for the

f(R) global monopole is given by

K =
4

r6

{
2ψ2

0r
4 +

(
16ψ0πGη

2
)
r3 +

(
8πGη2

)2
r2 +

(
32πG2Mη2

)
r + 12GM2

}
. (2.15)

It is evident that r = 0 is a typical central curvature singularity that is peculiar to the

spherically symmetric systems. In order to find the nature or the character of the singularity

at r = 0 for the f(R) global monopole, we perform conformal compactification. The

conformal radial or tortoise coordinate is given by

r∗ =

∫
dr

B
= − 1

ψ0 (r+ − r−)
{r+ ln |r − r+| − r− ln |r − r−|} . (2.16)

The retarded and advanced coordinates are defined as u = t−r∗ and v = t+r∗ respectively.

Defining the Kruskal coordinates as

u
′

= exp

(
ψ0 (r+ − r−)

2r−
u

)
, (2.17)

v
′

= exp

(
−ψ0 (r+ − r−)

2r−
v

)
, (2.18)

the metric can be written as

ds2 =
4r2− (r − r+)

r++r−
r−

ψ0r (r+ − r−)2
du
′
dv
′ − r2

(
dθ2 + sin2 θdϕ2

)
, (2.19)

and

u
′
v
′

= (r − r−) (r − r+)−r+/r− . (2.20)

In order to bring infinity into a finite coordinate, we define

u
′′

= arctanu
′
, 0 < u

′′
< π/2, (2.21)

v
′′

= arctan v
′
, 0 < v

′′
< π/2. (2.22)

The corresponding Carter-Penrose diagrams for the following three possible cases are plot-

ted and given in figures. The singularity located at r = 0 is shown vertically on the

Carter-Penrose diagram which indicates timelike character.

There are three possible cases to be investigated.

– 6 –
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Figure 1. Carter-Penrose diagram of the f(R) global monopole spacetime with inner r− and outer

r+ horizons. Timelike singularity is at r = 0.

2.2.1 Case 1: when α2 > 8ψ0GM

The metric function, B(r) = α− 2GM
r −ψ0r, admits two positive roots r+ and r−, indicating

the location of the outer and inner horizons of a black hole. The Penrose diagram for this

case is shown in figure 1.

2.2.2 Case 2: when α2 = 8ψ0GM

The metric function, B(r) = α− 2GM
r −ψ0r, admits one horizon only. It can be interpreted

as the extreme black hole. The Penrose diagram of this case is given in figure 2. Re-

cently, the thermodynamic properties of the black hole solutions of f(R) global monopole

is investigated and presented in [27].

2.2.3 Case 3: when α2 < 8ψ0GM

In this case, the metric function, B(r) = α− 2GM
r −ψ0r, does not admit real roots. Hence,

the solution in this particular case is not a black hole solution and the singularity at r = 0

becomes timelike naked singularity, as depicted in the Penrose diagram in figure 3. The

choice of the parameters of the f(R) global monopole metric results with timelike naked

singularity at r = 0 or black hole solutions with one or two horizons. These results seem

to show that the small correction to the standard general relativity produces significant

changes on the spacetime structure of the BV metric obtained by Barriola and Vilenkin.

In this paper, we are aiming to investigate this singularity within the context of quan-

tum mechanics. This classically singular spacetime will be probed with quantum waves

obeying the Klein-Gordon, Maxwell and Dirac equations to check whether the timelike

naked singularity is smoothed out or not.

– 7 –
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Figure 2. Carter-Penrose diagram of f(R) global monopole spacetime with a single horizon at

r = rh.

Figure 3. Carter-Penrose diagram for f(R) global monopole spacetime without a horizon in which

r = 0 is a naked timelike singularity.

2.3 The description of the f(R) global monopole spacetime in a Newman-

Penrose (NP) formalism

The f(R) global monopole metric is investigated with the Newman-Penrose (NP) formal-

ism, in order to clarify the contribution of the f(R) gravity. The set of proper null tetrads

1− forms is given by

l = dt− dr

B(r)
, (2.23)

n =
1

2
(B(r)dt+ dr) , (2.24)

m = − r√
2

(dθ + i sin θdϕ) . (2.25)

m̄ = − r√
2

(dθ − i sin θdϕ) (2.26)

– 8 –
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The non-zero spin coefficients in these tetrads are

β = −α =
cot θ

2
√

2r
, ρ = −1

r
, (2.27)

µ = −B
2r
, γ =

1

4

dB

dr
. (2.28)

As a result, we obtain the Weyl and the Ricci scalars as

Ψ2 = −3GM + 4πGη2r

3r3
, (2.29)

φ11 =
8πGη2 + ψ0r

4r2
, (2.30)

Λ =
8πGη2 + 3ψ0r

12r2
, (2.31)

so that the spacetime is Petrov type−D. The parameter ψ0 representing the contribution

of f(R)gravity is seen to effect only the Ricci components, leaving the mass term Ψ2 of an

ordinary global monopole unchanged.

3 Quantum singularities

Horowitz and Marolf (HM) [9], by developing the pioneering work of Wald [8], have pro-

posed a prescription which involves the use of quantum particles/waves to judge whether

the classical timelike curvature singularities occurring in static spacetimes are smoothed

out quantum mechanically or not. According to HM, the singular character of the space-

time is defined as the ambiguity in the evolution of the wave functions. That is to say,

the singular character is determined in terms of the ambiguity when attempting to find a

self-adjoint extension of the spatial part of the wave operator to the entire Hilbert space.

If the extension is unique, it is said that the space is quantum mechanically regular. A

brief review now follows: consider a static spacetime (M, gµν) with a timelike Killing vector

field ξµ. Let t denote the Killing parameter and Σ denote a static slice. The Klein-Gordon

equation in this space is (
∇µ∇µ −m2

)
ψ = 0. (3.1)

This equation can be written in the form

∂2ψ

∂t2
=
√
fDi

(√
fDiψ

)
− fm2ψ = −Aψ, (3.2)

in which f = −ξµξµ and Di is the spatial covariant derivative on Σ. The Hilbert space

H,
(
L2 (Σ)

)
is the space of square integrable functions on Σ. The domain of an operator

A, D(A), is taken in such a way that it does not enclose the spacetime singularities. An

appropriate set is C∞0 (Σ), the set of smooth functions with compact support on Σ. The

operator A is real, positive and symmetric; therefore, its self-adjoint extensions always

exist. If it has a unique extension AE , then A is called essentially self-adjoint [30–32].

Accordingly, the Klein-Gordon equation for a free particle satisfies

i
dψ

dt
=
√
AEψ, (3.3)

– 9 –
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with the solution

ψ (t) = exp
[
−it
√
AE

]
ψ (0) . (3.4)

If A is not essentially self-adjoint, the future time evolution of the wave function (3.4) is

ambiguous. Then the HM criterion defines the spacetime as quantum mechanically singu-

lar. However, if there is only a single self-adjoint extension, the operator A is said to be

essentially self-adjoint and the quantum evolution described by eq. (3.4) is uniquely deter-

mined by the initial conditions. According to the HM criterion, this spacetime is said to

be quantum mechanically non-singular. In order to determine the number of self-adjoint

extensions, the concept of deficiency indices is used. The deficiency subspaces N± are

defined by (see ref. [10] for a detailed mathematical background)

N+ = {ψ ∈ D(A∗), A∗ψ = Z+ψ, ImZ+ > 0} (3.5)

with dimension n+

N− = {ψ ∈ D(A∗), A∗ψ = Z−ψ, ImZ− < 0} (3.6)

with dimension n−

The dimensions ( n+, n−) are the deficiency indices of the operator A. The indices n+(n−)

are completely independent of the choice of Z+(Z−) depending only on whether or not Z

lies in the upper (lower) half complex plane. Generally one takes Z+ = iλ and Z− = −iλ,

where λ is an arbitrary positive constant necessary for dimensional reasons. The determina-

tion of deficiency indices is then reduced to counting the number of solutions of A∗ψ = Zψ;

(for λ = 1),

A∗ψ ± iψ = 0 (3.7)

that belong to the Hilbert space H. If there are no square integrable solutions ( i.e.

n+ = n− = 0), the operator A possesses a unique self-adjoint extension and is essentially

self-adjoint. Consequently, the way to find a sufficient condition for the operator A to be

essentially self-adjoint is to investigate the solutions satisfying eq. (3.7) that do not belong

to the Hilbert space.

4 Quantum singularities in f(R) global monopole spacetime

4.1 Klein-Gordon fields

The massive Klein-Gordon equation for a scalar particle with mass m can be written as(
g−1/2∂µ

[
g1/2gµν∂ν

]
−m2

)
ψ = 0. (4.1)

For the metric (2.5), the Klein-Gordon equation can be splitted into a time and spatial

part and written as

∂2ψ

∂t2
= −B

{
B
∂2ψ

∂r2
+

1

r2
∂2ψ

∂θ2
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
+

cot θ

r2
∂ψ

∂θ
+

(
2B

r
+B

′
)
∂ψ

∂r

}
+Bm2ψ.

(4.2)

– 10 –
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In analogy with eq. (3.2), the spatial operator A for the massless case is

A = B

{
B
∂2

∂r2
+

1

r2
∂2

∂θ2
+

1

r2 sin2 θ

∂2

∂ϕ2
+

cot θ

r2
∂

∂θ
+

(
2B

r
+B

′
)
∂

∂r

}
, (4.3)

and the equation to be solved is (A∗ ± i)ψ = 0.Using separation of variables, ψ =

R (r)Y m
l (θ, ϕ), we get the radial part of eq. (3.7) as

R′′ +

(
r2B

)′
r2B

R′ +

(
−l (l + 1)

r2B
± i

B2

)
R = 0, (4.4)

whose solutions represents spin 0 bosonic waves and a prime denotes the derivative with

respect to r. The spatial operator A is esentially self adjoint if neither of two solutions of

eq. (4.4) is square integrable over all space L2(0,∞). Because of the complexity in finding

exact analytic solution to eq. (4.4), we study the behavior of R (r) near r →∞ and r → 0.

4.1.1 The case of r→ ∞

The case r → ∞ is topologically different compared to the analysis for ordinary global

monopole solutions reported in [19]. The asymptotic behavior of the f(R) global monopole

metric when r →∞ is not conical and given by

ds2 ' −(α− ψ0r)dt
2 +

dr2

(α− ψ0r)
+ r2

(
dθ2 + sin2 θdϕ2

)
. (4.5)

For the above metric, the radial equation (4.4), for r →∞ becomes,

R′′ ± i

(α− ψ0r)
R = 0, (4.6)

whose solution is

R±=C1

√
α−ψ0rJ1

[
(±1 + i)

√
2

√
α− ψ0r

ψ2
0

]
+C2

√
α− ψ0rN1

[
(±1 + i)

√
2

√
α− ψ0r

ψ2
0

]
,

(4.7)

where C1 and C2 are arbitrary integration constants, J1 and N1 are the first and second

kind Bessel functions. The square integrability of the above solution for each sign ± is

checked by calculating the squared norm of the above solution in which the function space

on each t = constant hypersurface Σ is defined as H ={R | ‖R‖ <∞}. The squared norm

for the metric (4.5) is given by,

‖R‖2 =

∫ ∞
r

|R± (r)|2 r2

(α− ψ0r)
dr. (4.8)

Our calculation has revealed that the obtained solution at infinity fails to satisfy square

integrability condition i.e. ‖R‖2 → ∞ . Hence, the solution at infinity does not belong to

the Hilbert space.
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4.1.2 The case of r→ 0

The approximate metric near the origin is Schwarzschild like and given by

ds2 ' −
(
α− 2GM

r

)
dt2 +

dr2

(α− 2GM
r )

+ r2
(
dθ2 + sin2 θdϕ2

)
. (4.9)

The radial equation (4.4), for the above metric reduces to

R′′ − β

r
R = 0, (4.10)

in which β = l(l+1)
2GM , and the solution is obtained in terms of first and second kind of Bessel’s

functions and given by

R = C3

√
rJ1

(
2
√
βr
)

+ C4

√
rN1

(
2
√
βr
)

(4.11)

where C3 and C4 are arbitrary integration constants. The square integrability of the above

solution is checked by calculating the squared norm for the metric (4.9) which is given by,

‖ R ‖2=
∫ constant

0

|R|2 r2

(α− 2GM
r )

dr <∞ (4.12)

which is always square integrable near r = 0. Consequently, the spatial operator A is not

square integrable over all space L2(0,∞) and therefore, it is not essentially self-adjoint.

Hence, the classical singularity at r = 0 remains quantum mechanically singular when

probed with fields obeying the Klein-Gordon equation.

In the next subsections, the singularity will be probed with spinorial fields obeying

Maxwell and Dirac equations. We prefer to use same method and terminology reported

in [25].

4.2 Maxwell fields

The Newman-Penrose formalism will be used to find the source-free Maxwell fields prop-

agating in the space of f(R) global monopole spacetime. The four coupled source-free

Maxwell equations for electromagnetic fields in the Newman-Penrose formalism is given by

Dφ1 − δ̄φ0 = (π − 2α)φ0 + 2ρφ1 − κφ2, (4.13)

δφ2 −∆φ1 = −νφ0 + 2µφ1 + (τ − 2β)φ2, (4.14)

δφ1 −∆φ0 = (µ− 2γ)φ0 + 2τφ1 − σφ2, (4.15)

Dφ2 − δ̄φ1 = −λφ0 + 2πφ1 + (ρ− 2ε)φ2, (4.16)

where φ0, φ1 and φ2 are the Maxwell spinors, ε, ρ, π, α, µ, γ, β and τ are the spin coefficients

to be found and the bar denotes complex conjugation. The null tetrad vectors for the

metric (2.5) are defined by

la =

(
1

B
, 1, 0, 0

)
, (4.17)
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na =

(
1

2
,−B

2
, 0, 0

)
, (4.18)

ma =
1√
2

(
0, 0,

1

r
,

i

r sin θ

)
. (4.19)

m̄a =
1√
2

(
0, 0,

1

r
,
−i

r sin θ

)
(4.20)

The directional derivatives in the Maxwell’s equations are defined by D = la∂a,∆ = na∂a
and δ = ma∂a. We define operators in the following way by assuming φα = φα(r, θ)ei(ωt+mϕ)

(α = 0, 1, 2)

D0 = D, (4.21)

D†0 = − 2

B
∆, (4.22)

L†0 =
√

2r δ and L†1 = L†0 +
cot θ

2
, (4.23)

L0 =
√

2r δ̄ and L1 = L0 +
cot θ

2
. (4.24)

The non-zero spin coefficients are given in eqs. (2.27), (2.28). The Maxwell spinors are

defined by [33]

φ0 = F13 = Fµν l
µmν (4.25)

φ1 =
1

2
(F12 + F43) =

1

2
Fµν (lµnν +mµmν) , (4.26)

φ2 = F42 = Fµνm
µnν , (4.27)

where Fij (i, j = 1, 2, 3, 4) and Fµν (µ, ν = 0, 1, 2, 3) are the components of the Maxwell

tensor in the tetrad and tensor bases, respectively. Substituting eqs. (4.21)–(4.24) into the

Maxwell’s equations together with non-zero spin coefficients, the Maxwell equations become(
D0 +

2

r

)
φ1 −

1

r
√

2
L1φ0 = 0, (4.28)(

D0 +
1

r

)
φ2 −

1

r
√

2
L0φ1 = 0, (4.29)

B

2

(
D†0 +

B
′

B
+

1

r

)
φ0 +

1

r
√

2
L†0φ1 = 0, (4.30)

B

2

(
D†0 +

2

r

)
φ1 +

1

r
√

2
L†1φ2 = 0. (4.31)

The equations above will become more tractable if the variables are changed to

Φ0 = φ0, Φ1 =
√

2rφ1, Φ2 = 2r2φ2. (4.32)

Then, we have (
D0 +

1

r

)
Φ1 − L1Φ0 = 0, (4.33)
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(
D0 −

1

r

)
Φ2 − L0Φ1 = 0, (4.34)

r2B

(
D†0 +

B
′

B
+

1

r

)
Φ0 + L†0Φ1 = 0, (4.35)

r2B

(
D†0 +

1

r

)
Φ1 + L†1Φ2 = 0. (4.36)

The commutativity of the operators L and D enables us to eliminate each Φi from above

equations, and hence we have [
L†0L1 + r2B

(
D0 +

B
′

B
+

3

r

)
×(

D†0 +
B
′

B
+

1

r

)]
Φ0 (r, θ) = 0, (4.37)[

L1L
†
0 + r2B

(
D†0 +

B
′

B
+

1

r

)(
D0 +

1

r

)]
Φ1 (r, θ) = 0. (4.38)[

L0L
†
1 + r2B

(
D†0 +

1

r

)(
D0 −

1

r

)]
Φ2 (r, θ) = 0, (4.39)

The variables r and θ can be separated by assuming a separable solution in the form of

Φ0 (r, θ) = R0 (r) Θ0 (θ) , (4.40)

Φ1 (r, θ) = R1 (r) Θ1 (θ) , (4.41)

Φ2 (r, θ) = R2 (r) Θ2 (θ) . (4.42)

The separation constants for eq. (4.37) and eq. (4.38) are the same, because

Ln = −L†n (π − θ) , or, in other words, the operator L†0L1 acting on Θ0 (θ) is the

same as the operator L0L
†
1 acting on Θ2 (θ) if we replace θ by π − θ. However,

for eq. (4.39) we will assume another separation constant. Furthermore, by defining

R0 (r) = f0(r)
rB(r) , R1(r) = f1(r)

r and R2(r) = f2(r)
r , the radial equations can be written as

f
′′
0 (r) +

2

r
f
′
0(r) +

[
−iω

(
2

rB
− B

′

B2

)
+
ω2

B2
− ε2

r2B

]
f0(r) = 0, (4.43)

f
′′
1 (r) +

B
′

B
f
′
1(r) +

[
ω2

B2
− η2

r2B

]
f1(r) = 0, (4.44)

f
′′
2 (r)− 2

r
f
′
2(r) +

[
iω

(
2

rB
− B

′

B2

)
+
ω2

B2
− ε2

r2B

]
f2(r) = 0, (4.45)

where ε and η are the separability constants and ω denotes the frequency of the photon

wave.

The definition of the quantum singularity for Maxwell fields will be the same as for

the Klein−Gordon fields. Here, since we have three equations governing the dynamics of

the photon waves, the unique self-adjoint extension condition on the spatial part of the

Maxwell operator should be examined for each of the three equations for all space.
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4.2.1 For the case r → ∞

The corresponding metric is given in eq. (4.5). Hence, the radial parts of the Maxwell

equations, (4.43) , (4.44) and (4.45), become

f
′′
0 (r) +

ω (ω − iϕ0)

(α− ψ0r)
2 f0(r) = 0, (4.46)

f
′′
1 (r) +

ω2

(α− ψ0r)
2 f1(r) = 0 (4.47)

f
′′
2 (r) +

ω (ω + iϕ0)

(α− ψ0r)
2 f2(r) = 0, (4.48)

Thus, the solutions in the asymptotic case are

f0(r) = C1 (α− ψ0r)
ϕ0+iω

ϕ0 + C2 (α− ψ0r)
−iω
ϕ0 (4.49)

f1(r) = C3 (α− ψ0r)
γ1 + C4 (α− ψ0r)

γ1 , (4.50)

f2(r) = C5 (α− ψ0r)
ϕ0−iω

ϕ0 + C6 (α− ψ0r)
iω
ϕ0 (4.51)

in which Ci are integration constants, γ1 =
ψ0+
√
ψ2
0−4ω2

2ψ0
and γ2 =

ψ0−
√
ψ2
0−4ω2

2ψ0
. The

square integrability condition at infinity is checked by calculating the squared norm of

each solution fi

‖fi‖2 =

∫ ∞
r

|fi (r)|2 r2

(α− ψ0r)
dr. i = 0, 1, 2 (4.52)

Calculations has revealed that the obtained solutions do not belong to the Hilbert space

because ‖fi‖2 →∞.

4.2.2 The case r→ 0

The metric near r → 0 is given in eq. (4.9). Hence, the radial parts of the Maxwell

equations (4.43), (4.44) and (4.45) for this case are given by

f
′′
0 (r) +

2

r
f
′
0(r) +

a0
r
f0(r) = 0, (4.53)

f
′′
1 (r)− 1

r
f
′
1(r) +

b0
r
f0(r) = 0, (4.54)

f
′′
2 (r)− 2

r
f
′
2(r) +

a0
r
f0(r) = 0 (4.55)

in which a0 = ε2

2GM , b0 = η2

2GM and solutions are obtained as,

f0(r) =
C1√
r
J1(2
√
a0r) +

C2√
r
N1(2

√
a0r), (4.56)

f1(r) = C3rJ2(2
√
b0r) + C4rN2(2

√
b0r), (4.57)

f2(r) = C5r
3/2J3(2

√
a0r) + C6r

3/2N3(2
√
a0r), (4.58)

where Ci are constants, Ji and Ni are Bessel and Neumann functions. The above solutions

is checked for square integrability. Calculations have revealed that

‖fi‖2 =

∫ constant

0

|fi (r)|2 r2(
α− 2GM

r

)dr <∞, (4.59)
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which indicates that the obtained solutions are square integrable. As a result, the spatial

part of the Maxwell operator is not essentially self-adjoint and therefore, the occurrence

of the timelike naked singularity in f(R) gravity is quantum mechanically singular, if it is

probed with photon waves.

4.3 Dirac fields

The Newman-Penrose formalism will also be used here to find the massless Dirac

fields (fermions) propagating in the space of f(R) global monopole spacetime. The

Chandrasekhar-Dirac (CD) equations in the Newman-Penrose formalism are given by

(D + ε− ρ)F1 +
(
δ̄ + π − α

)
F2 = 0, (4.60)

(∆ + µ− γ)F2 + (δ + β − τ)F1 = 0, (4.61)

(D + ε̄− ρ̄)G2 − (δ + π̄ − ᾱ)G1 = 0, (4.62)

(∆ + µ̄− γ̄)G1 −
(
δ̄ + β̄ − τ̄

)
G2 = 0, (4.63)

where F1, F2, G1 and G2 are the components of the wave function, ε, ρ, π, α, µ, γ, β and τ

are the spin coefficients. The non-zero spin coefficients are given in eqs. (2.27), (2.28).

The directional derivatives in the CD equations are the same as in the Maxwell equa-

tions. Substituting non-zero spin coefficients and the definitions of the operators given in

eqs. (4.21)–(4.24) into the CD equations leads to(
D0 +

1

r

)
F1 +

1

r
√

2
L1F2 = 0, (4.64)

−B
2

(
D†0 +

B
′

2B
+

1

r

)
F2 +

1

r
√

2
L†1F1 = 0, (4.65)(

D0 +
1

r

)
G2 −

1

r
√

2
L†1G1 = 0, (4.66)

B

2

(
D†0 +

B
′

2B
+

1

r

)
G1 +

1

r
√

2
L1G2 = 0. (4.67)

For the solution of the CD equations, we assume a separable solution in the form of

F1 = f1(r)Y1(θ)e
i(kt+mϕ), (4.68)

F2 = f2(r)Y2(θ)e
i(kt+mϕ), (4.69)

G1 = g1(r)Y3(θ)e
i(kt+mϕ), (4.70)

G2 = g2(r)Y4(θ)e
i(kt+mϕ), (4.71)

where m is the azimuthal quantum number and k is the frequency of the Dirac fields,

which is assumed to be positive and real. Since {f1, f2, g1, g2} and {Y1, Y2, Y3, Y4} are

functions of r and θ, respectively, by substituting eqs. (4.68)–(4.71) into eqs. (4.64)–(4.67)

and applying the assumptions given by

f1(r) = g2(r) and f2(r) = g1(r) , (4.72)

Y1(θ) = Y3(θ) and Y2(θ) = Y4(θ) , (4.73)
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the Dirac equations transform into eqs. (4.74), (4.75) below. In order to solve the radial

equations, the separation constant λ should be defined. This is achieved by using the

angular equations. In fact, it is already known from the literature that the separation

constant can be expressed in terms of the spin-weighted spheroidal harmonics. The radial

parts of the Dirac equations become(
D0 +

1

r

)
f1 (r) =

λ

r
√

2
f2 (r) , (4.74)

B

2

(
D†0 +

B
′

2B
+

1

r

)
f2 (r) =

λ

r
√

2
f1 (r) . (4.75)

We further assume that

f1 (r) =
Ψ1 (r)

r
, (4.76)

f2 (r) =
Ψ2 (r)

r
, (4.77)

then eqs. (4.74), (4.75) transforms into,

D0Ψ1 =
λ

r
√

2
Ψ2, (4.78)

B

2

(
D†0 +

B
′

2B

)
Ψ2 =

λ

r
√

2
Ψ1. (4.79)

Note that
√

B
2 D†0

√
B
2 = D†0 + B

′

2B + 1
r , and using this together with the new functions

R1 (r) = Ψ1 (r) , (4.80)

R2 (r) =

√
B

2
Ψ2 (r) , (4.81)

and defining the tortoise coordinate r∗ as

d

dr∗
= B

d

dr
, (4.82)

Eqs. (4.78), (4.79) become (
d

dr∗
+ ik

)
R1 =

√
Bλ

r
R2, (4.83)(

d

dr∗
− ik

)
R2 =

√
Bλ

r
R1, (4.84)

In order to write eqs. (4.83), (4.84) in a more compact form, we combine the solutions in

the following way:

Z+ = R1 +R2, (4.85)

Z− = R2 −R1. (4.86)
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After doing some calculations we end up with a pair of one-dimensional Schrödinger-like

wave equations with effective potentials,(
d2

dr2∗
+ k2

)
Z± = V±Z±, (4.87)

V± =

[
Bλ2

r2
± λ d

dr∗

(√
B

r

)]
. (4.88)

In analogy with eq. (3.2), the radial operator A for the Dirac equations can be written as,

A = − d2

dr2∗
+ V±, (4.89)

If we write the above operator in terms of the usual coordinates r, by using eq. (4.82), we

have

A = − d2

dr2
− B

′

B

d

dr
+
λ

B

[
λ

r2
± d

dr

(√
B

r

)]
, (4.90)

Our aim now is to show whether this radial part of the Dirac operator is essentially

self-adjoint or not. This will be achieved by considering eq. (3.7) and counting the number

of solutions that do not belong to Hilbert space. Hence, eq. (3.7) becomes(
d2

dr2
+
B
′

B

d

dr
− λ

B

[
λ

r2
± d

dr

(√
B

r

)]
∓ i

)
ψ(r) = 0. (4.91)

4.3.1 For the case r → ∞

For the asymptotic case, r →∞ , the above equation transforms to

d2ψ (r)

dr2
± iψ (r) = 0, (4.92)

whose solution is

ψ± (r) = C1 sin

[
(1± i)√

2
r

]
+ C2 cos

[
(1± i)√

2
r

]
(4.93)

The square integrability condition at infinity is checked by calculating the squared norm

of each sign of solution ψ± (r)

‖ ψ± (r) ‖2=
∫ ∞
r

|ψ± (r)|2 r2

(α− ψ0r)
dr. (4.94)

The outcome of the calculations showed that the obtained solutions are not belong to the

Hilbert space because ‖ψ± (r)‖2 →∞.

4.3.2 For the case r→ 0

Near r → 0 , the approximate metric is given in eq. (4.9) and hence, eq. (4.91) for r → 0

becomes
d2ψ (r)

dr2
+

iξ

r3/2
ψ (r) = 0, (4.95)

– 18 –



J
H
E
P
0
1
(
2
0
1
4
)
1
7
8

in which ξ = ±λ−2
2
√
2GM

, whose solution is given by

ψ (r) = C1

{
−(1− i)

√
2r1/4J1(X) + 4

√
rξJ0(X)

}
+ C2

{
−(1− i)

√
2r1/4N1(X) + 4

√
rξN0(X)

}
(4.96)

where Ji (X) and Ni (X) are Bessel functions of the first and second kind, and

X = 2(1 + i)
√

2ξr1/4. Checking for the square integrability near r → 0 has revealed that

both solutions are square integrable.

Hence, the radial operator of the Dirac field fails to satisfy a unique self-adjoint ex-

tension condition for the entire space. As a result, the occurrence of the timelike naked

singularity in the context of f(R) global monopole remains singular from the quantum

mechanical point of view, if it is probed with fermions.

5 Probing the singularity around BV spacetime with Maxwell and Dirac

fields

In this section, we will extend the study of Pitelli and Letelier [19] for the BV spacetime in

which the bosonic waves obeying the Klein-Gordon equation is used to probe the singularity

to the spinor fields obeying the Maxwell and Dirac equations. Our motivation here is to

check whether the spinorial waves can smooth out the singularity or not. The metric

describing global monopole was obtained by BV and given by

ds2 = dt2 − dr2 − a2r2
(
dθ2 + sin2 θdϕ2

)
. (5.1)

The appropriate tetrads and the non zero spin coefficients are given by

la = (1, 1, 0, 0) , (5.2)

na =

(
1

2
,−1

2
, 0, 0

)
, (5.3)

ma =
1√
2

(
0, 0,

1

ar
,

i

ra sin θ

)
. (5.4)

m̄a =
1√
2

(
0, 0,

1

ar
,
−i

ra sin θ

)
(5.5)

µ = − 1

2r
, ρ = −1

r
, β = −α =

1

2
√

2

cot θ

ra
. (5.6)

The non-vanishing tetrad fields are

Ψ2 = −2Λ = −2

3
φ11 =

1

6r2

(
1− 1

a2

)
(5.7)

which vanish for a = ±1.
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5.1 Maxwell fields

Following the same steps of the previous section, the radial part of the Maxwell’s equations

(4.13)–(4.16) governing the photon waves are obtained as

f
′′
0 (r) +

[
ω2 − 2iω

r
− ε2

r2a2

]
f0(r) = 0, (5.8)

f
′′
1 (r) +

[
ω2 − η2

r2a2

]
f1(r) = 0, (5.9)

f
′′
2 (r) +

[
ω2 +

2iω

r
− ε2

r2a2

]
f2(r) = 0. (5.10)

5.1.1 For the case r→ ∞

For the asymptotic case the Maxwell’s equations reduces to

f
′′
i (r) + ω2fi(r) = 0, i = 0, 1, 2 (5.11)

whose solution is

fi (r) = C1 sin (ωr) + C2 cos (ωr) , i = 0, 1, 2 (5.12)

in which C1 and C2 are arbitrary constants. The square integrability condition at infinity

is calculated by

‖fi (r)‖2 =

∫ ∞
r
|fi (r)|2 r2dr, (5.13)

and it is found that the squared norm ‖fi (r)‖2 → ∞. This result indicates that all the

asymptotic solutions of the Maxwell’s equation do not belong to the Hilbert space.

5.1.2 For the case r→ 0

The Maxwell’s equations near r = 0 behaves as

f
′′
i (r)− ε2

r2α2
fi(r) = 0, i = 0, 2 (5.14)

f
′′
1 (r)− η2

r2α2
f1(r) = 0. (5.15)

The solutions to these equations are obtained as

fi(r) = C3ir
γ1 + C4ir

γ2 , i = 0, 2 (5.16)

and

f1(r) = C5r
γ3 + C6r

γ4 , (5.17)

where C3i, C4i, C5 and C6 are arbitrary constants. The exponents are given by

γ1 =
1

2

(
1 +

√
1 +

4ε2

a2

)
, (5.18)
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γ2 =
1

2

(
1−

√
1 +

4ε2

a2

)
, (5.19)

γ3 =
1

2

(
1 +

√
1 +

4η2

a2

)
, (5.20)

γ4 =
1

2

(
1−

√
1 +

4η2

a2

)
. (5.21)

The square integrability near r = 0 is checked by calculating the squared norms of the

obtained solutions by

‖ fi ‖2=
∫ constant

0
|fi (r)|2 r2dr. (5.22)

Our analysis has revealed that, if C3i = C5 = 0 together with ε2

α2 >
15
4 and η2

α2 >
15
4 , the

squared norms diverges. This result implies that the solutions for these specific modes do

not belong to the Hilbert space.

Consequently, in contrast to the bosonic wave probe reported in [19], the classical

singularity at r = 0, for global monopole spacetime due to the BV, remains quantum

mechanically nonsingular with respect to the photonic wave probe that has spin 1.

5.2 Dirac fields

The Chandrasekhar-Dirac equations given in eqs. (4.60)–(4.63) is solved by using the

Newman-Penrose formalism for the ordinary global monopole metric (5.1). The same

steps are followed as in section IV and hence, we end up with a pair of one-dimensional

Schrödinger-like wave equations with effective potentials,(
d2

dr2
+ k2

)
Z± = V±Z±, (5.23)

V± =
λ
′2

r2
∓ λ

′

r2
. (5.24)

in which λ
′

= λ
α . Comparing with the equation (3.2), the radial operator A for the Dirac

equations can be written as

A = − d2

dr2
+ V±. (5.25)

As a requirement of the HM criterion, the radial Dirac operator A should be examined

whether it is essentially self-adjoint or not. We obtain this by considering eq. (3.7) and

counting the number of solutions for each sign that do not belong to Hilbert space. Hence,

we have (
d2

dr2
−

[
λ
′2

r2
∓ λ

′

r2

]
∓ i

)
ψ(r) = 0. (5.26)

5.2.1 For the case r→ ∞

The behavior of the eq. (5.26), as r →∞ is(
d2

dr2
∓ i
)
ψ(r) = 0, (5.27)
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whose solutions for each sign is

ψ±(r) = C1± sin

(
1√
2

(1± i) r
)

+ C2± cos

(
1√
2

(1± i) r
)
, (5.28)

in which C1± and C2± are arbitrary integration constants for each sign of solution. Our

calculations has shown that, the squared norms for each sign of solutions diverges, that is

‖ψ± (r)‖2 =

∫ ∞
r
|ψ± (r)|2 r2dr →∞, (5.29)

indicating that the solutions at infinity do not belong to the Hilbert space.

5.2.2 For the case r→ 0

The behavior of the eq. (5.26), near r = 0 is,(
d2

dr2
− λ

′

r2

[
λ
′ ∓ 1

])
ψ(r) = 0. (5.30)

The solution is

ψ(r) = C3r
τ1 + C4r

τ2 , (5.31)

in which C3 and C4 are arbitrary constants. The exponents are given by

τ1 =
1

2

(
1 +

√
1 + 4λ′ (λ′ ± 1)

)
, (5.32)

τ1 =
1

2

(
1−

√
1 + 4λ′ (λ′ ± 1)

)
. (5.33)

The obtained solution fails to be square integrable, if C3 = 0 and λ
′
(
λ
′ ± 1

)
> 15

4 . Hence,

solutions for these modes do not belong to the Hilbert space. As a result, the classical

singularity at r = 0, remains quantum mechanically nonsingular, if it is probed with

fermions whose spin structure is 1/2.

6 Analysis with Gubser’s singularity conjecture

In this section, Gubser’s [29] singularity conjecture will be used to analyse the timelike

naked singularity in the f(R) global monopole spacetime. It should be noted that this

conjecture is based on investigating the behavior of the scalar potential V (−→ϕ ) on shell.

Hence, the Gubser’s singularity conjecture, investigates the singularity from a geometric

point of view. Apparently different but structurally equivalent singularity criteria are

proposed by Kim in [35], in which D+ 1 dimensional geometry with D Poincare invariant

spacetime is considered in the following form,

ds2 = a (y)2 ηµνdx
µdxν + dy2. (6.1)

It is argued that, if the integral of the on-shell Lagrangian density over the finite range

of y, whose least upper bound is y = yc , is finite, the singularity at y = yc is physically

admissible.
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Figure 4. Contour plot of V (φa) with respect to φ1 and φ2 when
(
φ3
)2 − η2 = − 1

4 and λ = 1. A

local / absolute maximum is observed at
(
φ1
)2

+
(
φ2
)2

= 1
4 and therefore the potential is bounded

from above. From the Gubser’s conjecture the large scalar curvature in this spacetime is allowed.

The 4−dimensional global monopole spacetime is governed by the triplet scalar field

coupled with gravity. Therefore, we believe that this conjecture is applicable in this theory

too. We consider the simplest case in which the action is given by

I =

∫
d4x
√
−g
(
R+

1

2
∂µφ

a∂µφa + V (φa)

)
(6.2)

where V (φa) = −1
4λ
(
φaφa − η2

)2
and a = 1, 2, 3 [30]. It is clear that V (φa) has a

local maximum at φaφa = η2. Figure 4 shows a contour plot of V (φa) with respect to

φ1 and φ2 while
(
φ3
)2 − η2 = −1

4 and λ = 1. The corresponding superpotential [32]

W (φa) = −
√
3
2

((
φ1
)2

+
(
φ2
)2

+ 1
4

)
is also plotted in figure 5. Based on these figures one

concludes that according to the Gubser’s conjecture the singularity of this spacetime is

admissible i.e. a ‘good’ one.

7 Conclusion

In this paper, the formation of the timelike naked singularity in f(R) global monopole

spacetime is investigated within the framework of quantum mechanics. The timelike

naked singularity developed at r = 0, is probed with the quantum fields obeying the

Klein−Gordon, Maxwell and Dirac equations. Our investigation is based on the criterion

proposed by HM that incorporates the essential self-adjointness of the spatial part of the

wave operator A in the natural Hilbert space of quantum mechanics which is a linear

function space with square integrability.

In this paper, the spinorial field generalization of the quantum singularity analysis

of the BV spacetime reported in [19] is also studied. In order to show the influence of

the modified theory on the singularity structure, we compare the results of the standard

general relativity and f(R) theory.
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Figure 5. Contour plot of W (φa) with respect to φ1 and φ2 when
(
φ3
)2 − η2 = − 1

4 and λ = 1.

A local / absolute maximum is observed at
(
φ1
)

=
(
φ2
)

= 0 and therefore the superpotential is

bounded from above.

We showed with explicit calculations that the naked singularity at r = 0, for the f(R)

global monopole spacetime, remains quantum mechanically singular when it is probed

with quantum fields having different spin structures obeying Klein-Gordon, Maxwell

and Dirac equations. It should be noted that in the analysis of f(R) global monopole;

although the mass term vanishes for large values of r as in the case of BV spacetime,

unlike the case in BV, the mass term becomes effective for r → 0. Because of this nature,

the singularity at r = 0 becomes very strong in such a way that irrespective of the spin

structure of the fields used to probe the singularity, the f(R) global monopole spacetime

remains quantum mechanically singular.

An interesting result is obtained for the spinorial wave probe generalization of the

BV spacetime considered in [19]. We proved that for specific modes of solutions of the

Maxwell and Dirac equations, the singularity at r = 0 is smoothed out. The main reason

of this result, seems to be the absence of the mass term. In addition, briefly we considered

the geometrical approach of Gubser [32] to singularities in the present problem of cosmic

string singularity.

It will be interesting for future research to extend the quantum singularity analysis

in other f(R) gravity models. Furthermore, it will be a great achievement if the criterion

proposed by HM is extended to stationary metrics. Although the preliminary work in this

direction is considered in [35], the formulation has not been fully completed.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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