
J
H
E
P
0
1
(
2
0
1
4
)
1
7
3

Published for SISSA by Springer

Received: March 22, 2013

Revised: December 24, 2013

Accepted: January 10, 2014

Published: January 30, 2014

5D perspective on Higgs production at the boundary

of a warped extra dimension

Raoul Malm, Matthias Neubert, Kristiane Novotny and Christoph Schmell

PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,

Johannes Gutenberg University, 55099 Mainz, Germany

E-mail: rmalm@students.uni-mainz.de, matthias.neubert@uni-mainz.de,

knovotny@students.uni-mainz.de, schmell@uni-mainz.de

Abstract: A comprehensive, five-dimensional calculation of Higgs-boson production in

gluon fusion is performed for both the minimal and the custodially protected Randall-

Sundrum (RS) model, with Standard Model fields propagating in the bulk and the scalar

sector confined on or near the IR brane. For the first time, an exact expression for the

gg → h amplitude in terms of the five-dimensional fermion propagator is derived, which

includes the full dependence on the Higgs-boson mass. Various results in the literature are

reconciled and shown to correspond to different incarnations of the RS model, in which

the Higgs field is either localized on the IR brane or is described in terms of a narrow bulk

state. The results in the two scenarios differ in a qualitative way: the gg → h amplitude is

suppressed in models where the scalar sector is localized on the IR brane, while it tends to

be enhanced in bulk Higgs models. In both cases, effects of higher-dimensional operators

contributing to the gg → h amplitude at tree level are shown to be numerically suppressed

under reasonable assumptions. There is no smooth cross-over between the two scenarios,

since the effective field-theory description breaks down in the transition region. A detailed

phenomenological analysis of Higgs production in various RS scenarios is presented, and

for each scenario the regions of parameter space already excluded by LHC data are derived.

Keywords: Phenomenology of Field Theories in Higher Dimensions

ArXiv ePrint: 1303.5702

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2014)173

mailto:rmalm@students.uni-mainz.de
mailto:matthias.neubert@uni-mainz.de
mailto:knovotny@students.uni-mainz.de
mailto:schmell@uni-mainz.de
http://arxiv.org/abs/1303.5702
http://dx.doi.org/10.1007/JHEP01(2014)173


J
H
E
P
0
1
(
2
0
1
4
)
1
7
3

Contents

1 Introduction 1

2 Setup and classification of models 5

3 5D analysis of the gluon fusion amplitude 8

4 Calculation of the propagator functions ∆q
LL and ∆q

RL 13

5 Analysis of the loop amplitude 17

5.1 Properties of the functions T±(p2E) 17

5.2 Analysis of the loop integrals I±(m2) 19

5.3 Power corrections and higher-dimensional operators 20

5.4 Final expressions for the loop integrals 21

5.5 Alternative derivation of the result for a brane Higgs 22

5.6 Analysis of the zero-mode contributions 23

5.7 Brane-localized Higgs sector with different Yukawa matrices 25

6 Impact of higher-dimensional |Φ|2(Ga
µν)

2 operators 27

7 Extension to the RS model with custodial symmetry 30

8 Phenomenological implications 35

9 Conclusions 42

A Details of the solution for the propagator functions 45

B Case of a bulk-Higgs field 48

C Case of two different Yukawa matrices 54

D Perturbativity bounds on the Yukawa couplings 56

1 Introduction

The discovery of a Higgs-like boson at the LHC [1, 2] marks the beginning of a new era in

particle physics. The properties of the new particle appear to be close to those predicted for

an elementary scalar with couplings as given by the Standard Model (SM). The hierarchy

problem — the question about the ultra-violet (UV) sensitivity of the scalar sector and

the stability of the Higgs potential under quantum fluctuations — is thus more pressing
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than ever. In extensions of the SM the scalar sector can be stabilized in various ways. The

most popular solution to the hierarchy problem is low-scale supersymmetry, which protects

the Higgs-boson mass by linking it to the masses of its fermionic partners. An interesting

alternative is provided by models featuring a warped extra dimension [3], in which the

SM is embedded in a compact extra dimension of anti-de Sitter space, while the scalar

sector is localized on one of two branes bounding the fifth dimension. The fundamental

UV cutoff of the model is the warped Planck scale, whose value near this “infra-red (IR)

brane” lies in the TeV range. These models, introduced by Randall and Sundrum (RS),

provide particularly attractive scenarios of TeV-scale new physics, since in addition to the

hierarchy problem they also address the flavor puzzle and yield an attractive framework for

understanding the hierarchies of fermion masses and mixing angles [4–6] and the smallness

of flavor-changing neutral currents [7–13].

Precision measurements of the Higgs-boson couplings to SM particles, which are ac-

cessible via studies of both the Higgs production cross sections and its decay rates into

various final states, present unique opportunities to test the SM description of electroweak

symmetry breaking and search for indirect hints of new physics. In the context of warped

extra dimensions, Higgs physics has been studied by several authors [14–23]. The effect

on the gg → h amplitude caused by the heavy b′ state, the SU(2)R partner of the top

quark predicted in RS models with custodial symmetry, was investigated in [14]. Models

in which the Higgs scalar is a pseudo Nambu-Goldstone boson, such as warped gauge-Higgs

unification scenarios, were studied in [15, 21]. One finds that the result for the gg → h

amplitude only depends on the fundamental parameter v/f of these models, but that it is

insensitive to the details about the spectrum of the Kaluza-Klein (KK) quarks. The au-

thors of [16, 18] have studied the effect of KK resonances on the loop-induced hgg and hγγ

couplings by working out the corrections to the top- and bottom-quark Yukawa couplings

induced by their mixing with KK states. In these papers no significant contributions from

the heavy KK quark states propagating in the loop were observed, because the Yukawa

interactions coupling the Higgs to two Z2-odd fermions (the second term in the last line

of (3.4) below) were implicitly assumed to be zero.1 The possibly large effect on the Higgs-

boson couplings induced by the shift of the Higgs vacuum expectation value (vev) relative

to its SM value, which can arise in RS models with custodial symmetry, was emphasized

in [18]. The first complete calculation of the hgg and hγγ couplings, in which both types of

Yukawa interactions in (3.4) were included, was performed in [19]. In this paper both the

production of Higgs bosons in the gluon fusion process as well as the main decay channels

were studied in an extended RS model with custodial symmetry. It was observed that the

dominant corrections to the hgg and hγγ couplings arise from the towers of KK quark

states propagating in the loop, and that these effects are to a very good approximation

independent of the masses of the corresponding SM quarks. The production rate was found

to be suppressed in most regions of parameter space, while the branching fraction for the

1The fact that there are two towers of KK quark states for every massive SM quark, which is deeply

connected to the finiteness of the 5D loop amplitude [23], was overlooked in [17]. In order to obtain a finite

sum for the infinite KK tower, the authors made the approximation mqn = λqnv/
√
2 with λqn ≈ 1 for the

masses of the KK quarks, see eqs. (8) and (10) of their paper, which is incorrect.
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diphoton channel h → γγ tends to be enhanced with respect to the SM. At about the same

time, an independent analysis of the Higgs couplings to gluons and photons appeared [20],

which reached the opposite conclusions. In a recent paper [23], it was shown that the dis-

crepancy between the two sets of results can be traced back to a subtlety in the calculation

of the loop-induced Higgs couplings to gluons and photons. In order to compute the rele-

vant overlap integrals of fermion wave functions with the brane-localized Higgs field, it is

necessary to regularize the Higgs profile in an intermediate step and give it an infinitesimal

width η [24]. When the calculation of the gluon fusion amplitude is performed in a naive

way, the limits of sending the regulator to zero (η → 0) and including an infinite number

of KK modes (N → ∞) in the sum over virtual states do not commute. This ambiguity

disappears once the loop calculation is performed in the presence of a consistent UV regu-

lator, such as dimensional regularization with d < 4 space-time dimensions. For the case of

a brane-localized Higgs sector, one then obtains the results of [19] no matter in which order

the limits are taken. The same conclusion can be reached by using a hard UV momentum

cutoff on the four-dimensional (4D) loop integral. The physical significance of the results

found in [20] was not fully elucidated in [23], but the discussion in that paper suggests that

they might refer to a certain limit of a model featuring a Higgs boson living in the bulk

of the extra dimension. It was demonstrated that the gluon fusion amplitude receives an

unsuppressed “resonance contribution” from high-mass KK states, which can resolve the

wave function of the Higgs boson (see also [25]). This effect is absent for a brane-localized

scalar sector.

In the present paper, we shed new light on these issues by performing the calculation

of the gg → h amplitude as a five-dimensional (5D) loop calculation. In this way the very

notion of KK states is avoided, the infinite sum over KK states is performed implicitly,

and the only relevant limit to be considered is that of sending the regulator η of the Higgs

profile to zero. In the context of dimensional regularization, we find that this limit can be

taken either before or after performing the loop integration. In both cases we confirm the

results obtained in [19, 23]. If the width of the Higgs profile is kept finite, in a way that

will be specified more precisely below, we recover the findings of [20]. They correspond

to a model with a narrow bulk-Higgs field, whose shape along the extra dimension can be

resolved by the high-momentum modes of the RS model. The 5D analysis highlights the

relevance of different mass scales. In brane-Higgs models, these are the Higgs vev v, the

KK mass scale MKK, and the physical UV cutoff ΛTeV of the RS model near the IR brane.

Models in which the Higgs boson is treated as a narrow bulk state contain, in addition, the

scale v/η ≫ MKK (the inverse width of the Higgs profile). It makes an important difference

whether this scale lies above or below the cutoff. The relevant loop integrand approaches

a first plateau for Euclidean loop momenta pE ≫ MKK and a second one for pE ≫ v/η

(see figure 2 in section 5). While in brane-Higgs models the second plateau is absent, in

bulk-Higgs scenarios the gg → h amplitude receives an unsuppressed contribution from the

high scale v/η, and it is thus sensitive to physics on distances shorter than 1/MKK.

It is worth noting in this context that naive dimensional analysis (NDA) indicates

that the gg → h amplitude is finite for the case of a bulk-Higgs field, but that it is

logarithmically divergent by power counting if the Higgs sector is localized on the IR brane.
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As explained in [23], however, systematic cancellations between the Yukawa couplings of

the various fermion states within each KK level ensure the finiteness of the result also in the

brane-localized Higgs scenario. Analogous cancellations were observed in [25] for the case

of loop-induced dipole-operator contributions to flavor-changing processes. The 5D loop

calculation performed in the present work confirms this observation and yields convergent

results for both scenarios. We do not address the question whether the gg → h amplitude

remains finite at two-loop order and beyond.

Our paper is structured as follows. In section 2, we define our setup and present some

important remarks concerning the classification of the various RS models considered in

our study. In section 3, we derive an exact representation of the dimensionally-regularized

gluon fusion amplitude in terms of an integral over the mixed-chirality components of

the 5D quark propagator in the mixed momentum-position representation, including the

contributions of the SM quarks and the full dependence on the Higgs-boson mass. To the

best of our knowledge, such a result has not been presented before. Our expression holds

for an arbitrary Higgs profile. The calculation of the 5D propagator for the case of a very

narrow Higgs profile localized near the IR brane is performed in section 4, with technical

details relegated to appendix A. In section 5, we use these results to evaluate the gg → h

amplitude and show explicitly that taking the limit η → 0 commutes with the integration

over the 4D loop momentum. We prove a conjecture made in [23] for the analytic form

of the contribution of the infinite tower of heavy KK quark states. We also present an

alternative derivation of the same result by implementing the brane-localized Yukawa terms

via appropriate boundary conditions in the field equations for the fermion mass eigenstates.

In this approach, the notion of an infinitesimal regulator η does not appear, and many of

the subtleties related to the η → 0 limit are avoided from the beginning. We also consider a

generalization of the model in which two different Yukawa matrices enter in the 5D Yukawa

interactions. We then discuss the changes that occur when the width of the Higgs profile is

kept small but non-zero, corresponding to the case of a narrow bulk-Higgs field. In section 6,

we address the question of the numerical importance of power-suppressed operators, which

contribute to the gg → h amplitude at tree level. They can arise because RS models are

effective field theories valid below some cutoff. We argue that even if the UV completion of

these models is strongly coupled, the corresponding power corrections are likely to be much

smaller than the RS loop effects calculated in section 5. While most of our discussion refers

to the minimal RS model with the SM gauge group in the bulk, we generalize our results

in section 7 to an extended RS model with a custodial symmetry protecting electroweak

precision observables [26–28]. Contrary to the minimal RS scenario, this model allows

for masses of KK excitations that are in reach of the LHC [29–32]. Phenomenological

implications of our findings in the context of recent LHC data are discussed in section 8,

where we study the corrections to the Higgs-boson production cross section in three different

versions of both the minimal and the custodially protected RS model. We illustrate the

magnitude of the effects as a function of the mass of the lightest KK gluon state and

the scale of the 5D Yukawa matrices, and derive the regions in parameter space that are

already excluded by recent LHC measurements. Our main results are summarized in the

conclusions. Some technical details of our calculations are collected in four appendices.
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2 Setup and classification of models

Our focus in this work is on minimal RS models, in which the electroweak symmetry-

breaking sector is localized on or near the IR brane. The extra dimension is taken to be

an S1/Z2 orbifold, labeled by a coordinate φ ∈ [−π, π]. Two branes are localized on the

orbifold fixed-points φ = 0 (UV brane) and |φ| = π (IR brane). The size r and curvature

k of the extra dimension are assumed to be of Planck size, k ∼ 1/r ∼ MPl. The RS metric

reads [3]

ds2 = e−2σ(φ) ηµν dx
µdxν − r2dφ2 =

ǫ2

t2

(
ηµν dx

µdxν − 1

M2
KK

dt2
)
, (2.1)

where e−σ(φ) with σ(φ) = kr|φ| is referred to as the warp factor. The quantity L =

σ(π) = krπ measures the size of the extra dimension. In the second equation above we

have introduced a new coordinate t = ǫ eσ(φ), where ǫ = e−σ(π) determines the hierarchy

between the Planck scale and the TeV scale, and MKK = kǫ sets the mass scale for the low-

lying KK excitations of the SM particles.2 Our primary focus is on models where the scalar

sector is localized on (or very near) the IR brane at t = 1, in contrast to more complicated

models, in which the Higgs boson is a 5D field propagating in the extended bulk of the

extra dimension [33–38]. While some of these extended models are rather appealing and

deserve further investigation, also with regard to their Higgs phenomenology, we believe

that the minimal models define important benchmark scenarios which should be explored

first. This is not least because only in these cases analytic expressions for the production

and decay amplitudes of the Higgs boson can be derived. A more detailed discussion of

bulk-Higgs models can be found in appendix B.

Before presenting our results, we find it useful to make a few comments concerning our

definition of a brane-localized Higgs sector, which is general enough to allow for a non-zero

width of the Higgs profile, as long as it cannot be resolved by the modes of the theory and

hence does not affect any observables. Recall that RS models are effective field theories

with an inherent, position-dependent UV cutoff given by the warped Planck scale [39–43]

ΛUV(t) ∼ MPl e
−σ(φ) = MPl

ǫ

t
≡ ΛTeV

t
. (2.2)

This accounts for the fact that they do not provide a description of quantum gravity.

The variation of the UV cutoff along the extra dimension is a crucial feature in order for

RS models to provide a solution to the hierarchy problem. If the sector of electroweak

symmetry breaking lives on or near the IR brane at t = 1, then the effective UV cutoff

regularizing quantum corrections to the scalar sector is of order ΛTeV ∼ 10MKK. The little

hierarchy problem is not addressed by RS models, because the theory must contain several

KK modes (and hence the value of ΛTeV must be in the multi-TeV range) in order to

deserve the attribute “extra dimensional”. As argued in [23], the scale ΛTeV also provides

the effective UV cutoff in loop graphs involving Higgs bosons. The condition that the

2The dimensionless variable t is related to the conformal coordinate z frequently used in the literature

by the simple rescaling z = t/MKK ≡ R′ t.

– 5 –



J
H
E
P
0
1
(
2
0
1
4
)
1
7
3

fermionic modes in the effective theory cannot resolve the width of the Higgs boson can be

stated as

η ≪ v|Yq|
ΛTeV

(brane-localized Higgs), (2.3)

where |Yq| sets the scale for the dimensionless, 5D Yukawa couplings of the model. Only

if this condition is satisfied, the Higgs field can be regarded as being localized on the IR

brane in the sense that any possible extension into the bulk does not give rise to observable

effects. As shown in [23], another consequence of condition (2.3) is that the results for the

loop-induced hgg and hγγ couplings can be well approximated by performing truncated

sums over a small number of KK modes, whose individual Yukawa couplings are evaluated

in the limit η → 0. Relation (2.3) should be considered as a condition on the regulator η at

fixed, physical UV cutoff ΛTeV. For a brane-localized Higgs field one should take the limit

η → 0 wherever possible, but the above condition states that keeping η finite but smaller

than the bound on the right-hand side would not change the physics.

A Higgs profile with a width η > v|Yq|/ΛTeV must be regarded as a bulk field. The

features of the Higgs profile can then be resolved by the high-momentum states in the effec-

tive theory, and indeed one finds that high-mass KK fermions make sizable contributions.

In the general case, the gluon fusion amplitude in an RS model with a bulk-Higgs field

depends in a complicated way on the shapes of the Higgs and fermion profiles along the

extra dimension (see [20] for an approximate treatment; a more detailed analysis will be

presented in [44]). However, we find that for a narrow Higgs profile, defined by the relation

v|Yq|
ΛTeV

≪ η ≪ v|Yq|
MKK

(narrow bulk Higgs), (2.4)

a model-independent expression can be derived, which generalizes the findings of [20].

Our results for the case of a narrow bulk-Higgs scenario are in full agreement with those

obtained in [25] for the analogous case of loop-induced dipole-operator contributions to

flavor-changing processes. Working under the assumption that the Higgs width is much

larger than the inverse cutoff on the IR brane (i.e., η ≫ v|Yq|/ΛTeV), these authors find

important contributions from high-mass KK states, which probe the “bulky” nature of the

Higgs field.

We take an agnostic point of view regarding the question which kind of RS model is

theoretically most appealing. The overwhelming majority of the RS literature has been

based on models in which the scalar sector is localized on the IR brane. These models

should therefore be included as a benchmark in any phenomenological study. Yet, having

the Higgs as the only brane-localized field is somewhat peculiar, and after realizing that

successful models of electroweak symmetry breaking can be constructed with a scalar sector

in the bulk one may consider this to be a more appealing scenario. The fact that important

one-loop amplitudes such as gg → h and b → sγ are convergent by naive power counting in

bulk-Higgs models adds to their attractiveness. However, a bulk-Higgs model featuring a

very narrow Higgs profile (η ≪ 1) requires some fine-tuning. The most natural assumption

would be that η = O(1).

We will see that the results obtained under the two assumptions (2.3) and (2.4) are

rather different, both qualitatively and quantitatively. Indeed, one should consider the two

– 6 –



J
H
E
P
0
1
(
2
0
1
4
)
1
7
3

Model bulk Higgs narrow bulk Higgs transition region brane Higgs

Higgs width η = O(1)
v|Yq|
ΛTeV

≪ η ≪ v|Yq|
MKK

η ∼ v|Yq|
ΛTeV

η ≪ v|Yq|
ΛTeV

Power cors.
(
MKK

ΛTeV

)n (
MKK

ηΛTeV

)n (
MKK

v|Yq|

)n (
MKK

ΛTeV

)n

MKK

ΛTeV

MKK

v|Yq|
≪ MKK

ηΛTeV
≪ MKK

v|Yq|

Higgs profile resolved by resolved by partially resolved by not resolved
all modes high-momentum modes high-mom. modes

A(gg → h) enhanced enhanced not calculable suppressed

Result model-dependent model-independent unreliable model-indep.

Table 1. Comparison of the main features of various versions of RS model (see text for further

explanation). The label “model-independent result” means that the corrections to the SM prediction

for the Higgs production cross section can be calculated (to excellent approximation) without any

reference to the Higgs and fermion bulk profiles.

scenarios as two different, distinguishable realizations of RS models. This fact has also been

realized in [45]. The situation resembles that encountered when one compares the original

RS model, in which only gravity was allowed to propagate in the extra dimension while

all SM fields were confined to the IR brane [3], with the more popular models in which all

matter and gauge fields live in the bulk [6]. While the original model only addressed the

hierarchy problem, the latter models are qualitatively different in that they also provide

successful theories of flavor.

While the width of the Higgs profile is a physical parameter, which in principle can be

adjusted to take any desired value, the transition from the narrow bulk-Higgs scenario (2.4)

to the brane-Higgs scenario (2.3) cannot be described in a controlled analytical way. This

fact can be understood by investigating the structures of the corresponding effective theo-

ries in more detail. Table 1 summarizes the main features of the various models as defined

by the size of the width parameter η. The second row in the table shows the scaling of power

corrections, as represented by higher-dimensional operators in the effective Lagrangian of

the RS model. Both in a generic bulk-Higgs model (with η = O(1)) and in models where

the scalar sector is localized on the IR brane, effects of higher-dimensional operators in

Higgs physics are suppressed by powers of the ratio MKK/ΛTeV, since as explained earlier

the warped Planck scale ΛTeV is the natural UV cutoff of these theories. The situation

changes if one considers bulk-Higgs models, in which the width parameter η is paramet-

rically suppressed. Then the effective theory knows about an extra small parameter, and

derivatives ∂t acting on the bulk scalar field can produce powers of 1/η. As a result, there

is a class of enhanced power corrections scaling like (MKK/ηΛTeV)
n. In the transition re-

gion between the narrow bulk-Higgs and brane-localized Higgs scenarios, these enhanced

power corrections become of O(1) or larger, and hence the effective field-theory approach

breaks down. In other words, because of the uncontrolled behavior of power-suppressed

terms in the transition region, we lack the analytical control over the theory, which would

be required to see how the results interpolate from the bulk-Higgs case to the brane-Higgs
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scenario as one reduces the value of η. In [20], the authors computed the hgg amplitude in

the context of a bulk-Higgs model and took the limit η → 0 at the end of their calculation,

stating that the answer corresponds to the case of a brane-localized Higgs. As we have just

argued, such an approach gives the correct result in the model (2.4), and we thus find it

more appropriate to refer to it as a narrow bulk-Higgs scenario.

The above remarks referred to an idealized case, in which the electroweak scale v|Yq|
and the KK mass scale MKK are of comparable magnitude. In practice, due to the lack

of KK modes below the TeV scale, there appears to be a little hierarchy between these

scales, such that v|Yq|/MKK . 0.3 or less. Then the power corrections in the transition

region are even larger than O(1), and also in the narrow bulk-Higgs case the lower bound

on MKK/ηΛTeV cannot be much smaller than 1. In view of this fact, one must consider the

results derived in this paper for the narrow bulk-Higgs case with some caution. A more

reliable calculation should stay in a regime where η = O(1) [44]. This has the disadvantage

that the results will depend in a complicated way on the shapes of the Higgs and fermion

profiles. If it turns out that this dependence is weak, however, then the results obtained

here for the narrow bulk-Higgs scenario might serve as reasonable approximations.

3 5D analysis of the gluon fusion amplitude

We adopt the same definitions and notation as in the recent work [23], in which the gluon

fusion process gg → h was analyzed in the context of an effective 4D theory, where it is

understood as a sum over the contributions from an infinite tower of KK quarks propagating

in the loop. Our goal is to repeat the calculation using 5D quark propagators instead, for

which we adopt the mixed momentum-position representation [39, 46–49] (with q = u, d)

iSq(t, t′; p) =
∫

d4x eip·x 〈 0|T
(
QL(t, x) +QR(t, x)

)(
Q̄L(t

′, 0) + Q̄R(t
′, 0)

)
|0 〉

=
[
∆q

LL(t, t
′;−p2) /p+∆q

RL(t, t
′;−p2)

]
PR + (L ↔ R) ,

(3.1)

where PR,L = 1
2(1±γ5), and the symbol T denotes time ordering. We begin by considering

the minimal RS model with the SM gauge group in the bulk. An extended model with

a custodial symmetry will be discussed in section 7. The minimal model contains an

SU(2)L doublet quark field Q(t, x) and two SU(2)L singlet fields u(t, x) and d(t, x) in the

5D Lagrangian, each of which are three-component vectors in generation space. The 5D

fermion states can be described by four-component Dirac spinors [4, 5]. We use a compact

notation, where we collect the left- and right-handed components of the up- and down-type

states into six-component vectors UA = (UA, uA)
T and DA = (DA, dA)

T with A = L,R,

which are collectively referred to as QL,R in the equation above. The Yukawa interactions

– 8 –
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of the Higgs boson with up- and down-type quarks are then given by3

Lhqq(x) = −
∑

q=u,d

∫ 1

ǫ
dt δηh(t− 1)h(x) Q̄L(t, x)

1√
2

(
0 Yq

Y
†
q 0

)
QR(t, x) + h.c.

= −
∑

q=u,d

∑

m,n

gqmn h(x) q̄
(m)
L (x) q

(n)
R (x) + h.c. ,

(3.2)

where the zeros in the diagonal blocks of the 6× 6 Yukawa matrices are required by gauge-

invariance. The function δηh(t − 1) denotes the normalized Higgs profile along the extra

dimension, which we take to be a regularized δ-function (see below). In the second step we

have decomposed the 5D fermion spinors into 4D KK modes,

QA(t, x) =
∑

n

Q(n)
A (t) q

(n)
A (x) ; A = L,R . (3.3)

The superscript n labels the different mass eigenstates in the 4D effective theory, such that

n = 1, 2, 3 refer to the SM quarks, while n = 4, . . . , 9 label the six fermion modes of the

first KK level, and so on. The functions Q(n)
L,R(t) denote the wave functions of the left- and

right-handed components of the nth KK mass eigenstate along the extra dimension. The

Yukawa couplings gqmn are given in terms of the overlap integrals [19]

gumn =
1√
2

∫ 1

ǫ
dt δηh(t− 1) U†(m)

L (t)

(
0 Yu

Y
†
u 0

)
U (n)
R (t)

=

√
2π

Lǫ

∫ 1

ǫ
dt δηh(t− 1)

[
a(U)†
m C(Q)

m (t)YuC
(u)
n (t) a(u)n + a(u)†m S(u)

m (t)Y †
u S(Q)

n (t) a(U)
n

]
,

(3.4)

and likewise in the down-type quark sector. In the last step we have rewritten the answer

in terms of the Z2-even and Z2-odd fermion profiles C
(A)
n (t) and S

(A)
n (t) introduced in [10],

which are diagonal 3 × 3 matrices in generation space. These can be expressed in terms

of combinations of Bessel functions, whose rank depends on the bulk mass parameters

cQ = MQ/k and cu,d = −Mu,d/k of the 5D fermion fields [4, 5]. Without loss of generality,

we work in a basis where the ci matrices are diagonal. The SU(2)L gauge symmetry in

the bulk implies that the SU(2)-doublet quark fields have common cQ parameters. The 3-

component vectors a
(A)
n , on the other hand, describe the flavor mixings of the 5D interaction

eigenstates into the 4D mass eigenstates, which are generated by the Yukawa interactions

on the IR brane. Because of electroweak symmetry breaking, these vectors are different

for A = U,D, u, d. For simplicity, from now on we use the generic notation Q for U,D

and q for u, d. The 3 × 3 matrices Yq contain the dimensionless Yukawa couplings of

the 5D theory, which are obtained from the dimensionful Yukawa couplings Y 5D
q in the

original 5D Lagrangian by the rescaling Y 5D
q = 2Yq/k [4, 5] (see also the discussion of

Yukawa interactions in appendix B). Contrary to the SM, these matrices are assumed

to have an anarchical structure, meaning that they are non-hierarchical matrices with

O(1) complex elements. The hierarchies of the Yukawa matrices of the SM quarks in the

3To keep the notation transparent, we do not use boldface symbols for unit and zero matrices.
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p
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k2

t

t1

t2

Figure 1. Effective hgg couplings induced by the exchange of 5D quark states. The positions of

the vertices along the extra dimension are denoted by t1,2 and t.

effective 4D theory are explained in terms of a geometrical realization of the Froggatt-

Nielsen mechanism in RS models [9–11, 50].

The one-loop graph giving rise to the gluon fusion amplitude is shown in figure 1,

where at each vertex an integral over the fifth coordinate t = ekr(|φ|−π) is implied, which

varies between ǫ = e−krπ ≈ 10−15 on the UV brane and t = 1 on the IR brane. We

summarize the results of the calculation in terms of two coefficients C1 and C5 defined by

the decomposition

A(gg → h) = C1
αs

12πv
〈 0 |Ga

µν G
µν,a|gg〉 − C5

αs

8πv
〈 0 |Ga

µν G̃
µν,a|gg〉 , (3.5)

where G̃µν,a = −1
2ǫ

µναβ Ga
αβ (with ǫ0123 = −1) denotes the dual field-strength tensor. Note

that, contrary to [23], the Wilson coefficients C1 and C5 also include the contributions

of the SM quarks. Throughout this paper, v denotes the value of the Higgs vev in the

RS model, which differs from the SM value vSM ≈ 246GeV by a small amount [18] (see

section 8).

In order to perform the calculation of the gluon fusion amplitude at one-loop order

consistently, it is necessary to introduce two different kinds of regulators. For a brane-

localized scalar sector, the fermion profile functions are discontinuous on the IR brane, and

hence their overlap integrals with a δ-function type Higgs profile are ill defined. Before

computing these integrals, it is important to regularize the Higgs profile by giving it a small

but finite width η ≪ 1 [24]. We therefore use the notation δηh(t − 1) in (3.2) and (3.4),

where the regularized profile has unit area and support in the interval 1−η ≤ t ≤ 1. Many

of our results will be independent of the shape of the Higgs profile and would remain valid

for the case of a general bulk-Higgs field, which we discuss in appendix B. Only at the

end of our analysis we will specialize to the case of a very narrow Higgs profile, with η

satisfying one of the conditions (2.3) or (2.4). Note that we use the same Yukawa matrix

Yq in the two off-diagonal blocks in (3.2). For a bulk-Higgs field, the equality of the two

Yukawa matrices is a consequence of 5D Lorentz invariance. If the Higgs field is confined

to the IR brane this argument no longer applies, and it would in principle be possible to

allow for two different Yukawa matrices Y C
q and Y

S†
q in the two terms in the last line

of (3.4) [20, 24]. This generalization is discussed in appendix C, and the corresponding

results are summarized in section 5.7.

Secondly, as has been emphasized in [23], it is important to introduce a consistent UV

regulator in the calculation, even though the final answer for the gluon fusion amplitude
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is UV finite. This should not come as a surprise, as it is well known that even in the 4D

case the introduction of a UV regulator is required in order to obtain a gauge-invariant

answer. To see this, consider the loop diagram for a single KK mode, which naively is

linearly divergent. Using invariance under p → −p, a superficial logarithmic divergence

remains. In dimensional regularization, one encounters the integral

∫
ddp

(2π)d

[
4− d

d

p2

(p2 −∆)3
+

∆

(p2 −∆)3

]
ε(k1) · ε(k2) , (3.6)

which identically vanishes for d 6= 4. Here ∆ = m2
qn − xy(1− y)m2

h arises after combining

denominator using Feynman parameters. Note that if the calculation was performed naively

in four dimensions, then only the second term would be present, and it would correspond to

a gauge-dependent operator Aa
µA

µ,a. In the 5D model, the UV regulator has the additional

effect of regularizing the infinite sum over KK modes, which once again is superficially

logarithmically divergent [23]. The relevant sum is of the form (recall that n = 4 labels

the lightest KK excitation)

lim
N→∞, η→0

∑

q=u,d

3+6N∑

n=4

vgqnn
mqn

(
µ

mqn

)4−d

, (3.7)

where mqn are the masses of the KK quarks and gqnn denote their effective 4D Yukawa

couplings as defined in (3.4). For d = 4, one obtains different results depending on which

of the two limits is evaluated first. However, in the presence of the dimensional regulator

d < 4 the order of limits becomes irrelevant, and one obtains a unique answer for the sum,

which in the limit d → 4 (taken at the end of the calculation) coincides with the result

found in [19]. Note that regularizing only the ordinary (4D) components of momentum

space with a dimensional regulator is justified, since the warp factor and the presence of

the branes break 5D Lorentz invariance, and because the integral over the compact interval

t ∈ [ǫ, 1] does not give rise to additional singularities. Introducing a UV cutoff in a way

that respects the AdS5 geometry leads to a warped 4D cutoff, as shown in (2.2). Likewise,

the scale µ of dimensional regularization should be replaced by µTeV in the present case.

With the regulators in place, the gluon fusion amplitude can be written in the form

A(gg → h) = ig2s δ
ab
∑

q=u,d

∫
ddp

(2π)d

∫ 1

ǫ
dt1

∫ 1

ǫ
dt2

∫ 1

ǫ
dt δηh(t− 1)

× Tr

[
1√
2

(
0 Yq

Y
†
q 0

)
Sq(t, t2; p− k2) /ε(k2)S

q(t2, t1; p) /ε(k1)S
q(t1, t; p+ k1)

]
,

(3.8)

where ki denote the incoming momenta of the external gluons, a and b their color indices,

and ε(ki) their polarization vectors. We may now insert the decomposition of the 5D prop-

agator given in (3.1) and try to simplify the result. This task is made complicated by the

fact that the propagator functions ∆AB are complicated functions of the 4-momentum p

and the coordinates t, t′. In order to simplify the calculation, it is convenient to use in
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intermediate steps their representations as sums over KK modes. Using the KK decompo-

sition (3.3), it is straightforward to show that

∆q
LL(t, t

′;−p2) =
∑

n

1

p2 −m2
qn

Q(n)
L (t)Q(n)†

L (t′) ,

∆q
RL(t, t

′;−p2) =
∑

n

mqn

p2 −m2
qn

Q(n)
R (t)Q(n)†

L (t′) ,
(3.9)

and similarly for the other two propagator functions. With the dimensional regulator in

place, the 4D loop integral as well as the infinite sums over KK modes converge, and

therefore the KK representations provide exact representations of the 5D propagator func-

tions. The integrals over the coordinates t1 and t2 of the two external gluons can then be

performed using the orthonormality relations [10]

∫ 1

ǫ
dtQ(m)†

A (t)Q(n)
A (t) = δmn ; A = L,R . (3.10)

After this is done, the 5D loop amplitude A in (3.8) is expressed as a single sum over KK

modes, and we find that it can be reduced to integrals of the regularized Higgs profile with

traces of the mixed-chirality components of the 5D propagator evaluated at t = t′. We

define

T+(p
2
E) = −

∑

q=u,d

v√
2

∫ 1

ǫ
dt δηh(t− 1)Tr

[(
0 Yq

Y
†
q 0

)
∆q

RL(t, t; p
2
E) +∆q

LR(t, t; p
2
E)

2

]
,

T−(p
2
E) = −

∑

q=u,d

v√
2

∫ 1

ǫ
dt δηh(t− 1)Tr

[(
0 Yq

Y
†
q 0

)
∆q

RL(t, t; p
2
E)−∆q

LR(t, t; p
2
E)

2i

]
,

(3.11)

where p2E ≡ −p2 denotes the square of the Euclidean loop momentum after the Wick

rotation. Matching the resulting expression for the amplitude A with the two-gluon matrix

elements in (3.5), we obtain

C1 =
3

2

∫ 1

0
dx

∫ 1

0
dy
(
1− 4xyȳ

)
I+(xyȳ m

2
h) =

3

2

∫ 1

0
dz (1− z) f(z) I+

(
z
m2

h

4

)
,

C5 =

∫ 1

0
dx

∫ 1

0
dy I−(xyȳ m

2
h) =

∫ 1

0
dz f(z) I−

(
z
m2

h

4

)
,

(3.12)

where mh is the Higgs-boson mass, x and y are Feynman parameters, and we abbreviate

ȳ ≡ 1− y and f(z) = arctanh
√
1− z. The quantities

I±(m
2) =

eǫ̂γEµ2ǫ̂

Γ(2− ǫ̂)

∫ ∞

0
dp2E p

2(1−ǫ̂)
E

(
∂

∂p2E

)2

T±
(
p2E −m2 − i0

)

= − eǫ̂γEµ2ǫ̂

Γ(1− ǫ̂)

∫ ∞

0
dpE p−2ǫ̂

E

∂

∂pE
T±
(
p2E −m2 − i0

)
(3.13)

are the dimensionally regularized loop-momentum integrals (after Wick rotation) over the

functions T±(p2E) in (3.11), shifted by an amount m2. We work in the MS scheme with
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d = 4 − 2ǫ̂ space-time dimensions. In the last step we have integrated by parts, which is

justified as long as the quantity pE ∂T±/∂pE vanishes at pE = 0 and at pE = ∞. Our

analysis in the following section confirms that these conditions are satisfied.

In [23], we have also explored a more intuitive regularization scheme based on using a

hard UV momentum cutoff on the loop integral. This can be readily implemented once we

have the answers in the form given above. Setting ǫ̂ = 0 and restricting the loop momentum

to the range 0 ≤ pE ≤ Λ, we obtain

I±(m
2) = T±(−m2 − i0)− T±(Λ

2 −m2) + Λ2 ∂

∂Λ2
T±(Λ

2 −m2) , (3.14)

where Λ should be identified with the physical UV cutoff ΛTeV of the RS model.

The relations (3.12) are one of our main results. They provide exact expressions for

the Wilson coefficients corresponding to the 5D loop integral. The trick of using the KK

representation in intermediate steps is legitimate and not different from similar techniques

routinely used in 4D loop calculations. Note that in our analysis we have not taken the limit

mh → 0, which is often adopted in discussions of the gluon fusion amplitude and provides

a good approximation if the mass of the particle in the loop satisfies the inequality m2
qn ≫

m2
h/4. There would be no problem in using this approximation for the KK excitations,

but for the light SM quarks (and to some extent even for the top quark) the Higgs mass

must be kept in order to obtain a reliable result. The strategy adopted in [14–23] was

to first evaluate the gluon fusion amplitude in the limit mh → 0, then to subtract the

contributions of the zero modes by hand, and finally to add back the contributions of the

top and bottom quarks using the proper loop functions calculated with the physical value

of the Higgs mass. Since in a 5D framework there is no distinction between zero modes

and KK excitations, we are forced to keep the Higgs mass finite in order to include the SM

contributions in the correct way.

Our results (3.11) and (3.12) are valid for an arbitrary Higgs-boson profile along the

extra dimension. As long as one succeeds in computing the mixed-chirality components

of the 5D propagator in a generic bulk-Higgs model, one can use (3.12) to compute the

corresponding effective ggh couplings. The limit of a brane-localized scalar sector cor-

responds to taking the limit η → 0 in (3.11). The calculation of the function ∆q
RL in

that limit will be presented in the following section. It suffices to focus on one of the

mixed-chirality components, since for space-like momenta the two components are related

by ∆q
LR(t, t

′; p2E) = [∆q
RL(t

′, t; p2E)]
†.

4 Calculation of the propagator functions ∆q

LL and ∆q

RL

We will now derive explicit expressions for the 5D fermion propagator in the mixed

momentum-position representation (3.1). Previous studies of the warped-space 5D fermion

propagator have been presented in [47–49]. We generalize these results by keeping for the

first time the exact dependence on v2/M2
KK and the full three-generation flavor structure

(see also [51]), and by paying special attention to the effects of the regularized profile of

the Higgs boson.
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The profiles Q(n)
L,R(t) form complete sets of functions on the interval t ∈ [ǫ, 1], subject

to the orthonormality conditions (3.10). In our notation, the Dirac operator takes the form

D = /p−MKK γ5
∂

∂t
−MKKMq(t) , (4.1)

where

Mq(t) =
1

t

(
cQ 0

0 −cq

)
+

v√
2MKK

δηv (t− 1)

(
0 Yq

Y
†
q 0

)
(4.2)

is the generalized, hermitian mass matrix [23]. Here δηv (t − 1) denotes the normalized

profile of the Higgs vev along the extra dimension. For a brane-localized scalar sector, we

may without loss of generality assume that δηv (t − 1) = δηh(t − 1) are given by the same

regularized δ-function. For the general case of a bulk-Higgs field, the two profiles differ,

but as described in appendix B these differences vanish in the limit of vanishing η.

Starting from the definition of the propagator in (3.1), it is straightforward to show

that

DSq(t, t′; p) = δ(t− t′) , (4.3)

where we have used the completeness relations

∑

n

Q(n)
A (t)Q(n)†

A (t′) = δ(t− t′) ; A = L,R (4.4)

for the bulk profiles. For the various propagator functions, this generalized Dirac equation

implies the coupled system of equations

p2∆q
LL(t, t

′;−p2)−MKK

(
∂

∂t
+Mq(t)

)
∆q

RL(t, t
′;−p2) = δ(t− t′) ,

∆q
RL(t, t

′;−p2)−MKK

(
− ∂

∂t
+Mq(t)

)
∆q

LL(t, t
′;−p2) = 0 ,

(4.5)

and similarly for the other two functions.4 Integrating these equations over an infinitesimal

interval t ∈ [t′ − 0, t′ + 0] at fixed t′ yields the jump conditions

∆q
RL(t

′ + 0, t′;−p2)−∆q
RL(t

′ − 0, t′;−p2) = − 1

MKK
,

∆q
LL(t

′ + 0, t′;−p2)−∆q
LL(t

′ − 0, t′;−p2) = 0 .

(4.6)

We also need to specify appropriate boundary conditions on the UV and IR branes. In the

presence of a regularized Higgs profile, they are

(0 1)∆q
LL(ti, t

′;−p2) = (1 0)∆q
RL(ti, t

′;−p2) = 0 ; for ti = ǫ, 1 . (4.7)

This is nothing but the statement that the Z2-odd fermion profiles obey Dirichlet boundary

conditions on the two branes.

4For p2 = 0, we recover the first-order differential equations for the mixed-chirality components derived

in [23], once we identify ∆
q
RL(t, t

′; 0) ≡ −∆
q
RL(t, t

′) and ∆
q
LR(t, t

′; 0) ≡ −∆
q
LR(t, t

′).
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In order to solve the coupled equations (4.5), we first combine them to yield the second-

order differential equation
[
∂2

∂t2
−M2

q(t)−
dMq(t)

dt
− p̂2E

]
∆q

LL(t, t
′;−p2) =

1

M2
KK

δ(t− t′) , (4.8)

where p̂2E ≡ −p2/M2
KK. We then solve this equation assuming that t 6= t′, in which case the

right-hand side vanishes. Next, we compute the function ∆q
RL(t, t

′;−p2) from the second

equation in (4.5). In the final step we determine the constants of integration by means of the

jump conditions (4.6) and the boundary conditions (4.7). The solution of the second-order

differential equation involves as integration “constants” functions Ci(t
′) with i = 1, . . . , 8,

which are 3 × 3 matrices in generation space and whose values can differ depending on

whether t > t′ or t < t′. In total, we thus have 16 functions C>
i (t′) and C<

i (t′). The jump

conditions impose eight relations among these functions, and the boundary conditions give

four conditions each on the UV and IR branes. Solving these relations determines the

coefficient functions uniquely.

Up to this point our discussion is completely general and holds for an arbitrary bulk-

Higgs field. Unfortunately, it is impossible to obtain a closed form of the solution for the

general case of an arbitrary mass matrix Mq(t). Only for the special case where pE = 0

a formal solution in terms of an ordered exponential can be given [23]. To proceed, we

exploit the fact that the result of the calculation must be regularization independent in the

limit η → 0. We therefore assume a particularly simple form of the regularized δ-function

for the profile of the Higgs vev, for which we take a square box of width η and height 1/η:

δηv (t− 1) → 1

η
θ(t− 1 + η) , with η ≪ v|Yq|

MKK
. (4.9)

It then follows that for t < 1− η, where the Higgs profile vanishes, we have

M2
q(t) +

dMq(t)

dt
=

1

t2

(
cQ (cQ − 1) 0

0 cq (cq + 1)

)
, (4.10)

while for t > 1− η we can approximate

M2
q(t) +

dMq(t)

dt
=

v2

2M2
KKη

2

[(
YqY

†
q 0

0 Y
†
q Yq

)
+O

(
ηMKK

v|Yq|

)]
. (4.11)

The omitted terms are suppressed, relative to the leading one, by at least a factor η. It

will be useful to introduce the abbreviations

Xq =
v√

2MKK

√
YqY

†
q , X̄q =

v√
2MKK

√
Y

†
q Yq (4.12)

for the positive, hermitian 3×3 matrices entering the leading term, which are given entirely

in terms of the 5D anarchic Yukawa matrices. The general solution to (4.8) in the region

t < 1− η is given in terms of modified Bessel functions Iα(z). It can be written as

∆q
LL(t, t

′;−p2) =
√
t

(
IcQ− 1

2
(p̂Et) 0

0 Icq+ 1
2
(p̂Et)

)(
C1(t

′) C2(t
′)

C3(t
′) C4(t

′)

)

+
√
t

(
I−cQ+ 1

2
(p̂Et) 0

0 I−cq− 1
2
(p̂Et)

)(
C5(t

′) C6(t
′)

C7(t
′) C8(t

′)

)
.

(4.13)
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The general solution in the region t > 1− η can be expressed through hyperbolic trigono-

metric functions. It reads

∆q
LL(t, t

′;−p2) =

(
cosh[Sq θ̄

η(t− 1)] 0

0 cosh[S̄q θ̄
η(t− 1)]

)(
Ĉ1(t

′) Ĉ2(t
′)

Ĉ3(t
′) Ĉ4(t

′)

)

+

(
sinh[Sq θ̄

η(t− 1)] 0

0 sinh[S̄q θ̄
η(t− 1)]

)(
Ĉ5(t

′) Ĉ6(t
′)

Ĉ7(t
′) Ĉ8(t

′)

)
,

(4.14)

where the dependence on the coordinate t enters via the integral (for t ≥ 1− η)

θ̄η(t− 1) ≡
∫ 1

t
dt′ δηv (t

′ − 1) =
1− t

η
, (4.15)

and we have introduced the abbreviations

Sq =
√
X2

q + η2p̂2E , S̄q =
√
X̄2

q + η2p̂2E . (4.16)

Once again the coefficient functions Ĉi(t
′) can take different values for t > t′ and t < t′.

Requiring that the propagator functions ∆LL(t, t
′;−p2) and ∆RL(t, t

′;−p2) are continuous

at t = 1− η gives eight conditions, which allow us to relate the coefficients Ĉi(t
′) to Ci(t

′).
In working out the solutions we neglect the infinitesimal regularization parameter η

wherever possible, with two exceptions: first, like the profile of the Higgs vev itself, the

θ̄η(t−1) functions vary rapidly over the interval 1−η ≤ t ≤ 1, and hence η appears in (4.15)

in an essential way. Second, inside the quantities Sq and S̄q the regulator appears in the

product ηp̂E , and since in (3.13) we integrate over all values of the loop momentum there

might in principle be contributions from very large momenta, for which η2p̂2E is comparable

to the entries of X2
q or larger. For the case of a brane-localized Higgs boson as defined

in (2.3), such contributions are unphysical in view of the inherent UV cutoff of RS models,

and we might therefore simply exclude them by hand. However, we find it more instructive

to show their decoupling explicitly in the context of dimensional regularization.

Further details of the solution for the coefficient functions are described in appendix A.

In the following section we report our final expressions for the quantities T±(p2E) defined

in (3.11). The dependence on the Euclidean 4-momentum enters our results via the quan-

tities Sq and S̄q introduced in (4.16) and via the ratio of certain linear combinations of

modified Bessel functions, which we define as

RA(p̂E) =
I−cA− 1

2
(ǫp̂E) IcA− 1

2
(p̂E)− IcA+ 1

2
(ǫp̂E) I−cA+ 1

2
(p̂E)

I−cA− 1
2
(ǫp̂E) IcA+ 1

2
(p̂E)− IcA+ 1

2
(ǫp̂E) I−cA− 1

2
(p̂E)

; A = Q, q . (4.17)

These quantities are diagonal matrices in generation space. A significant complication

originates from the fact that they do not commute with the matrices Sq and S̄q, giving

rise to non-trivial matrix products. It will be important for our discussion to exploit the

asymptotic behavior of the ratio RA for large and small values of p̂E . Using the well-known

properties of the modified Bessel functions Iα(z), we find that for Re p̂E ≫ 1

RA(p̂E) = 1 +
cA

p̂E
+

cA (1 + cA)

2p̂2E
+O(p̂−3

E ) , (4.18)
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up to exponentially small O(e−2p̂E ) terms. The asymptotic behavior for small values of

p̂E is

RA(p̂E) =
F 2(cA)

p̂E
+

p̂E
1− 2cA

[
1− F 2(cA) +

F 4(cA)

3 + 2cA

]
+O(p̂3E) , (4.19)

where

F 2(c) =
1 + 2c

1− ǫ1+2c
(4.20)

denotes the squared value of the profile of a chiral component of a SM fermion on the IR

brane [4, 5].

5 Analysis of the loop amplitude

We now show how to calculate the loop integrals I±(m2) in (3.13) for the cases of a brane-

localized Higgs boson and a narrow bulk-Higgs field, as defined in (2.3) and (2.4). We

perform the calculation in dimensional regularization, but we first motivate the results in

the context of the more intuitive scheme in which a hard UV cutoff is used. We begin

by collecting some general properties of the functions T±(p2E) defined in (3.11), which are

derived from the general solution to the differential equations discussed in the previous

section and in appendix A.

5.1 Properties of the functions T±(p2

E)

In the region of small momenta (|pE | ≪ MKK), the functions T±(p2E) vary rapidly and in

a way that is strongly dependent on the values of the bulk mass parameters ci. This is

expected, because in this momentum range their behavior is dominated by the contributions

of the SM quarks. Remarkably, we find that at the special value pE = 0 the results are

given by the very simple expressions

T+(0) =
∑

q=u,d

Tr
[
Xq cothXq

]
≡ t0 , T−(0) = 0 , (5.1)

which only depend on the 5D Yukawa couplings, via the quantity Xq defined in (4.12). In

the neighborhood of this point the behavior is complicated and not described by a simple

formula. For larger values of the Euclidean momentum, such that pE ≫ MKK, the function

T+(p
2
E) converges towards a universal limiting value

T+(p
2
E) =

∑

q=u,d

Tr

{
Xq tanh 2Xq +

1

2p̂E

[
cQXq tanh 2Xq

cosh 2Xq
+

cq X̄q tanh 2X̄q

cosh 2X̄q

]
+O(p̂−2

E )

}

≡ t1 +
t2
p̂E

+ . . . , (MKK ≪ pE ≪ v|Yq|/η) (5.2)

while T−(p2E) = O(p̂−2
E ) falls off more rapidly. To derive this result, we have taken the

limit ηp̂E → 0 and used the asymptotic expansion in (4.18). A dependence on the bulk

mass parameters enters only at subleading order. Interestingly, there exists a third region
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Figure 2. Momentum dependence of the propagator function T+(p
2
E) for the case of one fermion

generation and parameters corresponding to the top quark. The three curves refer to different

values of the regulator η, as indicated. The vertical dashed line indicates the value of the UV cutoff

of the RS model (for ΛTeV = 10MKK).

of extremely large Euclidean momentum, pE ≫ v|Yq|/η, for which the behavior changes

once again, and the function T+(p
2
E) tends to zero according to

T+(p
2
E) =

1

ηp̂E

∑

q=u,d

TrX2
q +O(p̂−2

E ) ≡ t3
ηp̂E

+ . . . , (pE ≫ v|Yq|/η) (5.3)

while still T−(p2E) = O(p̂−2
E ). Note that in this region the loop momentum pE exceeds

the value of the intrinsic UV cutoff of a consistent RS model with a brane-localized Higgs

sector, because condition (2.3) implies ΛTeV ≪ v|Yq|/η. It can therefore only contribute if

we consider a bulk-Higgs field as defined in (2.4).

It follows from this discussion that the functions T±(p2E) have all the properties required
for the integration by parts in (3.13). The exact momentum dependence of these functions

is rather complicated, and we refrain from giving explicit expressions for the general case.

We will instead discuss the simpler case of a single fermion generation, which exhibits all the

relevant features mentioned above. In this case we have obtained the analytic expression

T 1 gen
+ (p2E) =

∑

q=u,d

X2
q

Sq

k1(p̂E)Sq sinh 2Sq + k2(p̂E) ηp̂E

(
cosh 2Sq − sinh 2Sq

2Sq

)

k1(p̂E)Sq (cosh 2Sq − 1) + k2(p̂E) ηp̂E sinh 2Sq + 2Sq
, (5.4)

where Sq has been defined in (4.16), and

k1(p̂E) = 1 +Rq(p̂E)RQ(p̂E) , k2(p̂E) = Rq(p̂E) +RQ(p̂E) . (5.5)

The function T 1 gen
− (p2E) = 0 vanishes trivially. It is a simple exercise to derive from (5.4)

the various limiting behaviors shown in (5.1)–(5.3), simplified to the one-generation case.
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Figure 2 shows the behavior of the result (5.4) for the parameter choices cQ = −0.45,

cq = 0.395, and |Yq| = 2.3, which correspond to the physical mass mq = 172.6GeV of

the top quark. We set the KK scale to MKK = 2TeV, such that Xq ≈ 0.2. The three

curves correspond to different values of the regulator η. The three regions of Euclidean

momenta mentioned above (pE/MKK ∼ 1, pE/MKK ≫ 1, and pE/MKK ≫ Xq/η) are

clearly visible from the plot. The dark and light blue curves correspond to models for

which ΛTeV/MKK ≪ Xq/η, and hence condition (2.3) defining a brane-localized Higgs field

holds. The gray curve corresponds to the case of a narrow bulk Higgs, as defined in (2.4).

5.2 Analysis of the loop integrals I±(m2)

Our final goal is to calculate the loop integrals I±(m2) defined in (3.13) in the dimensional

regularization scheme. For simplicity, however, we first consider the integral I+(0) at the

special point m2 = 0 and work with a hard momentum cutoff Λ = ΛTeV. For the case of a

brane-localized Higgs sector, defined according to condition (2.3), we obtain from (3.14)

I+(0)
∣∣
brane Higgs

= t0 − t1 −
3t2
2

MKK

ΛTeV
+ . . . , (5.6)

with t0 and t1,2 as defined in (5.1) and (5.2), respectively. The last term is a small threshold

correction (suppressed by the UV cutoff, which we assume to be much larger than the

KK mass scale), which is present in a hard-cutoff scheme but will not be visible in the

dimensional regularization scheme discussed below. Such power-suppressed terms can be

included via higher-dimensional operators in the effective Lagrangian of the RS model.

Their suppression ∼ MKK/ΛTeV is in accordance with table 1.

The difference (t0 − t1) coincides with the expression for the quantity Σ
(CGHNP)
q

(summed over q = u, d) derived in [23] for the case of a brane-localized Higgs sector. It

corresponds to the numerical result first derived in [19]. The same result would be obtained

if one would take the limit η → 0 before performing the integral over the loop momentum.

For the opposite case of a narrow bulk-Higgs field, defined according to condition (2.4),

the UV cutoff is such that the quantity T+(Λ
2) in (3.14) must be evaluated using (5.3), so

that we obtain

I+(0)
∣∣
narrow bulk Higgs

= t0 −
3t3
2

MKK

ηΛTeV
+ . . . (5.7)

instead of (5.6). The two answers differ by an amount t1 given by the first term on the

right-hand side in (5.2). The term t0 coincides with the expression for the quantity Σ
(ATZ)
q

(summed over q = u, d) derived in [23], which corresponds to the result first obtained

in [20]. We emphasize that the threshold corrections are enhanced by a factor 1/η in this

case, which provides an example of the general behavior anticipated in table 1 for the case

of a narrow bulk-Higgs field. We will comment more on the structure of power corrections

and the role of higher-dimensional operators in sections 5.3 and 6.

It is instructive to reproduce the above results in the less intuitive, but more consistent

(from a mathematical point of view) dimensional regularization scheme. We will argue

that also in this case the limit of a brane-localized Higgs sector can be taken without

encountering any ambiguities. In order to demonstrate this, we should perform the integrals
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over pE in (3.13) and then take the limit η → 0, and show that this yields the same answer

as first setting η → 0 and then integrating over the loop momentum. However, our explicit

result in (5.4) and its generalization to three generations are so complicated that the

dimensionally regularized integral cannot be evaluated in closed form. We will instead

consider a toy model, which captures all important features of the exact result. To this

end, we study the function

Tmodel
+ (p2E) =

t0 − t1 − t2
1 + p̂2E

+
t2√

1 + p̂2E

+
t3√

(t3/t1)2 + (ηp̂E)2
, (5.8)

which exhibits the same asymptotic behavior in the three regions as the exact result.

Evaluating the integrals in (3.13) for this function, we obtain

Imodel
+ (0) = (t0 − t1 − t2)

(
µ

MKK

)2ǫ̂

+ t2

(
µ

2MKK

)2ǫ̂

+ t1

(
t1
2t3

)2ǫ̂( µη

MKK

)2ǫ̂

+O(ǫ̂2) , (5.9)

where t1/(2t3) = 1 + O(v2/M2
KK). While the first two contributions are associated with

the scale MKK, i.e. with low-lying KK modes, the third contribution is associated with

the super-heavy scale MKK/η, which for a brane-localized Higgs sector is larger than the

physical UV cutoff of the RS model. Note that in the limit η → 0 this contribution tends to

zero, leaving Imodel
+ (0) = (t0−t1) as the final result for the integral after the UV regulator ǫ̂

has been removed, in accordance with (5.6). The same result is obtained if the limit η → 0

is taken in (5.8) before the integral is evaluated. The last term in (5.8) then reduces to a

constant, which does not contribute to (3.13). In the dimensional regularization scheme,

the case of a narrow bulk Higgs, for which the loop momenta can resolve the shape of the

Higgs profile, is obtained by removing the UV regulator ǫ̂ at small but finite value of η. In

this case one finds Imodel
+ (0) = t0, in accordance with (5.7).

5.3 Power corrections and higher-dimensional operators

Let us add some comments concerning the size of generic power corrections, which can

be described in terms of higher-dimensional operators added to the Lagrangian of the RS

model (with unknown coefficients). For example, what should one expect for the magnitude

of the leading power corrections to the Yukawa interactions (3.2) coupling the Higgs boson

to bulk fermions? In general, higher-dimensional operators can be constructed by inserting

one or more (covariant) derivatives acting on the fields.5 These operators are suppressed

by the fundamental, physical UV cutoff of RS models, which is of order the Planck scale.

The leading such operators involving a fermion bilinear contain a single derivative, possibly

accompanied by a factor sgn(φ). We are thus led to study the object

1

MPl
EA

a iDAγ
a =

1

MPl

(
eσ(φ) i/∂ − 1

r
γ5 ∂φ

)
+ terms containing gauge fields, (5.10)

5Note that the 5D Lagrangian does not contain any small mass parameters, which could be used to

construct non-derivative operators of higher dimension.
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where γa = {γµ, iγ5} are the 5D Dirac matrices and EA
a denotes the vielbein [4, 5]. From

now on we focus on the derivative terms only. Changing variables from φ to t, and using

the definition of the warped UV cutoff in (2.2), we obtain

1

MPl
EA

a iDAγ
a =

1

ΛUV(t)
(i/∂ − γ5MKK ∂t) + . . . . (5.11)

Operators containing more than one derivative contain similar structures. For example,

the 5D d’Alembertian can be written as

1

M2
Pl

�5 =
e2σ(φ)

M2
Pl

(
�4 −

e−2σ(φ)

r2
∂2
φ

)
=

1

Λ2
UV(t)

(
�4 −M2

KK

1

t
∂t t ∂t

)
. (5.12)

Several comments are in order. First, we note that higher-derivative operators in the

effective Lagrangian are indeed suppressed by the position-dependent UV cutoff ΛUV(t),

as stated in the Introduction. If we consider power corrections to couplings involving the

Higgs boson (no matter whether the Higgs field is localized on or near the IR brane),

the corresponding cutoff scale is ΛTeV. The 4D derivatives contained in (5.11) and (5.12)

will produce powers of external momenta or masses of the various fermion modes. The

corresponding terms scale like (MKK/ΛTeV)
n. For models in which the Higgs field is a

generic bulk scalar (with width η ∼ 1) or a brane-localized field, derivatives ∂t acting

on the fields near t = 1 produce O(1) factors, since the wave functions are naturally

expressed in terms of the t variable, typically involving Bessel functions of argument xnt

with xn = mn/MKK, or powers of t in the case of the SM fermions. (For a brane-localized

Higgs field, these derivatives must be evaluated at t = 1−, i.e., by approaching the IR brane

from the left.) Hence, the ∂t terms in the derivative operators shown above also give rise

to (MKK/ΛTeV)
n corrections. The situation changes if we consider a limit of a bulk-Higgs

model in which the width η of the Higgs profile becomes parametrically suppressed. Then

the Higgs profile itself, as well as the profiles of particles coupling to the Higgs field, change

rapidly over a small interval of width η near the IR brane. In such a scenario, a derivative

∂t acting on the Higgs field or any field coupling to the Higgs boson picks up a factor 1/η,

and hence the corresponding power corrections scale like (MKK/ηΛTeV)
n. We thus confirm

the scaling of power corrections anticipated in table 1.

5.4 Final expressions for the loop integrals

The above discussion shows that in the presence of the UV regulator, and for a brane-

localized Higgs boson, it is possible to take the limit η → 0 at the level of the functions

T±(p2E), before the loop integral is performed. Using the results from appendix A, we

extended the form (5.4) valid for one fermion generation to the general case of more than

one fermion generations. For η → 0, we find

T+(p
2
E) =

∑

q=u,d

Tr

{
2Xq

sinh 2Xq

[
sinh2Xq +

1

2

(
Zq(p

2
E)

1 +Zq(p2E)
+

Z
†
q(p2E)

1 +Z
†
q(p2E)

)]}
,

T−(p
2
E) =

∑

q=u,d

Tr

{
2Xq

sinh 2Xq

[
1

2i

(
Zq(p

2
E)

1 +Zq(p2E)
− Z

†
q(p2E)

1 +Z
†
q(p2E)

)]}
,

(5.13)
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where the quantity

Zq(p
2
E) =

v2

2M2
KK

tanhXq

Xq
Yq Rq(p̂E)Y

†
q

tanhXq

Xq
RQ(p̂E) (5.14)

involves a non-trivial product of matrix-valued functions. Note that we have removed any

reference to the matrices X̄q in the final expressions by using the identities Yq f(X̄q) =

f(Xq)Yq and f(X̄q)Y
†
q = Y

†
q f(Xq), which hold for an arbitrary function f(Xq) that has

a non-singular expansion in powers of X2
q .

We are now ready to derive the final expressions for the loop integrals in (3.13). The

quantities T±(−m2 − i0) computed using (5.13) replace the quantity t0 in (5.6), (5.7),

and (5.9), while t1 has already been given in (5.2). Removing the UV regulator after the

integral over the loop momentum has been performed, we obtain

I+(m
2) =

∑

q=u,d

{
Tr g(Xq) +

1

2
Tr

[
2Xq

sinh 2Xq

(
Zq(−m2)

1 +Zq(−m2)
+

Z
†
q(−m2)

1 +Z
†
q(−m2)

)]}
,

I−(m
2) =

∑

q=u,d

1

2i
Tr

[
2Xq

sinh 2Xq

(
Zq(−m2)

1 +Zq(−m2)
− Z

†
q(−m2)

1 +Z
†
q(−m2)

)]
,

(5.15)

where m2 ≡ m2 + i0, and the function

g(Xq)
∣∣
brane Higgs

= Xq tanhXq −Xq tanh 2Xq = −Xq tanhXq

cosh 2Xq
(5.16)

obeys a non-singular series expansions in powers of X2
q . Note that due to the presence of

strong-interaction phases arising from the analytic continuation from a Euclidean momen-

tum p2E to −m2 − i0, the functions I±(m2) cannot simply be written in terms of the real

and imaginary parts of a traces over matrices. If instead of the brane-localized Higgs boson

we consider a narrow bulk-Higgs state, then the subtraction term t1 is absent, see (5.6)

and (5.7). The expressions in (5.15) remain valid also in this case, provided we use

g(Xq)
∣∣
narrow bulk Higgs

= Xq tanhXq . (5.17)

The above equations are the main result of our paper. Up to some small corrections

to be determined below, the first term on the right-hand side of the equation for I+(m
2)

corresponds to the contribution of the infinite tower of KK quarks to the ggh amplitude.

The remaining terms describe the contributions of the SM quarks. For the case of a brane-

localized Higgs sector, the function g(Xq) coincides with an expression first obtained in [23]

by means of a conjecture. In the present work we have derived this form. For the case of

a narrow bulk-Higgs field, the expansion of g(Xq) to O(X2
q ) reproduces the result derived

in [20]. This demonstrates that the “brane-Higgs limit” considered in that paper really

corresponds to the case of a narrow bulk scalar, as defined in (2.4).

5.5 Alternative derivation of the result for a brane Higgs

For the case of a brane-localized scalar sector, it has been shown in [23] that the fermion

bulk profiles and the Yukawa couplings gqmn to the fermion mass eigenstates defined in (3.4)
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can also be derived in a different way, by solving the field equations for the fermion modes in

the bulk and incorporating the effects of the Yukawa interactions by imposing appropriate

boundary conditions on the IR brane. The Yukawa couplings are then derived by evaluating

the fermion profiles in the limit t → 1− (approached from the left), which defines their

values on the IR brane by continuous extension.

This method, which in [23] was established for individual fermion states, can also be

applied to the infinite tower of KK modes, by imposing similar boundary conditions on

the 5D propagator functions. Indeed, we find that with a brane-localized Higgs field the

functions T±(p2E) defined in (3.11) can also be computed as

T+(p
2
E)
∣∣
brane Higgs

= −
∑

q=u,d

v√
2
Tr

[(
0 Yq

Y
†
q 0

)
∆q

RL(1
−, 1−; p2E) +∆q

LR(1
−, 1−; p2E)

2

]
,

(5.18)

and similarly for T−(p2E). The propagator functions ∆
q
AB are now computed by solving the

coupled system of equations (4.5) without including the Yukawa term in the generalized

mass matrix Mq(t) in (4.2). Instead, one modifies the boundary conditions on the IR

brane, such that

(
vỸ †

q√
2MKK

1

)
∆q

LL(1
−, t′;−p2) =

(
1 − vỸq√

2MKK

)
∆q

RL(1
−, t′;−p2) = 0 (5.19)

instead of condition (4.7) with ti = 1. Here

Ỹq =
tanhXq

Xq
Yq (5.20)

are the modified Yukawa matrices introduced in [19]. The boundary conditions on the UV

brane (at ti = ǫ) and the jump conditions (4.6) remain unchanged. It is a straightforward

exercise to derive the propagator functions from these equations, and in particular to

determine the mixed-chirality components at t = t′ = 1−. We have confirmed that inserting

these results into (5.18) one reproduces the expressions given in (5.15). This method

provides an independent derivation of the result for the brane-localized Higgs boson, in

which the notion of a regulator η never appears.

5.6 Analysis of the zero-mode contributions

We will now analyze the terms involving the matrices Zq in (5.15), which include the

contributions of the SM quarks, in more detail, using results derived in [10]. We first note

that we can rewrite

Zq(p
2
E) =

v2

2M2
KK

Ỹq Rq(p̂E) Ỹ
†
q RQ(p̂E) , (5.21)

with Ỹq as defined above. In terms of these quantities, the eigenvalue equation determining

the KK masses reads

det
[
1 +Zq(−m2

n)
]
= 0 . (5.22)
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The asymptotic expansion for RA in (4.19) introduces the fermion profiles F (cA) next to

the modified Yukawa matrices. We can then reexpress the answer in terms of the effective

Yukawa matrices defined as [19]

Y eff
q ≡ F (cQ) Ỹq F (cq) = Uq λq W

†
q , where λq =

√
2

v
mq,0 (5.23)

are diagonal, positive real matrices. The entries mqi,0 denote the zeroth-order values of the

masses of the SM quarks. The unitary matrices Uq and Wq are defined by relation (5.23).

Including also the subleading terms in the expansion (4.19), we obtain

Zq(p
2
E) = F−1(cQ)Uq

[
m2

q,0

p2E
+
(
δQ +mq,0 δq m

−1
q,0

)
+ . . .

]
U †

q F (cQ) , (5.24)

where

δQ = xq W
†
q

[
1

1− 2cq

(
1

F 2(cq)
− 1 +

F 2(cq)

3 + 2cq

)]
Wq xq ,

δq = xq U
†
q

[
1

1− 2cQ

(
1

F 2(cQ)
− 1 +

F 2(cQ)

3 + 2cQ

)]
Uq xq

(5.25)

with xq = mq,0/MKK are hermitian matrices giving rise to some small corrections of order

v2/M2
KK, which except for the two entries proportional to m2

u3
= m2

t carry an additional

strong chiral suppression [10]. Introducing the abbreviation εq = δQ +mq,0 δq m
−1
q,0, and

working to first order in v2/M2
KK, we can rewrite the eigenvalue equation (5.22) in the form

det
[
m2

n −m2
q,0 (1− εq) + . . .

]
= 0 , (5.26)

whereas

Zq(p
2
E)

1 +Zq(p2E)
= F−1(cQ)Uq

[
εq +

(1− εq)m
2
q,0 (1− εq)

p2E +m2
q,0 (1− εq)

+ . . .

]
U †

q F (cQ) . (5.27)

Only the diagonal elements of the matrices εq contribute when (5.26) and traces of (5.27)

are evaluated to first order in v2/M2
KK. It is then not difficult to show that the masses of

the SM quarks are given by

m2
qi = m2

qi,0 (1− εqi + . . . ) , with εqi ≡ (εq)ii = (δQ)ii + (δq)ii , (5.28)

where the dots represent terms of order v4/M4
KK and higher. Moreover, we find

∑

q=u,d

Tr

[
2Xq

sinh 2Xq

Zq(p
2
E)

1 +Zq(p2E)

]
=
∑

i

[
κqi

m2
qi

m2
qi + p2E

+ εqi

]
+ . . . , (5.29)

where

κqi = 1− εqi −
2

3

[
U †

q F (cQ)X
2
q F

−1(cQ)Uq

]

ii
. (5.30)

Note that while the parameters κqi are in general complex, the quantities εqi are real. The

sum in (5.29) extends over all six SM quarks. However, in practice the contributions of the

light quarks can safely be neglected. For the third-generation quarks, we find that

κt = 1− εt −
v2

3M2
KK

(
YuY

†
uYu

)

33

(Yu)33
(5.31)
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up to chirally-suppressed terms, and a corresponding formula holds for κb. This expression

coincides with the result derived in [23]. Explicit formulae for the matrix elements (δA)33
can also be found in this reference.

It is now a simple exercise to evaluate the Wilson coefficients C1,5 using (3.12). We

obtain

C1 =
∑

q=u,d

Tr
[
g(Xq) + εq

]
+
∑

i

Re(κqi)A(τi) + . . .

≈
[
1− v2

3M2
KK

Re

(
YuY

†
uYu

)

33

(Yu)33

]
A(τt) +A(τb) + Tr g(Xu) + Tr g(Xd) ,

C5 =
∑

i

Im(κqi)B(τi) + · · · ≈ − v2

3M2
KK

Im

[(
YuY

†
uYu

)

33

(Yu)33

]
B(τt) ,

(5.32)

where τi = 4m2
qi/m

2
h − i0, and the parameter integrals evaluate to [52, 53]

A(τ) =
3τ

2

[
1 + (1− τ) arctan2

1√
τ − 1

]
, B(τ) = τ arctan2

1√
τ − 1

. (5.33)

For the light SM quarks, these functions must be analytically continued to τ < 1. In (5.32),

we first present expressions that are exact up to small corrections of order v4/M4
KK, repre-

sented by the dots, which are numerically insignificant. The leading effects, which involve

traces over functions of Yukawa matrices and thus increase with the number of fermion

generations, are exact to all orders in v2/M2
KK. The infinite sum over KK quark states

contributes the trace term in the expression for C1. The second term contains the sum over

the contributions of the SM quarks, whose Yukawa interactions are modified with respect

to the SM by factors κqi .

In the final, approximate expressions we have used the fact that all εqi parameters other

than εt can be neglected to a very good approximation, and that for the term proportional

to εt we can neglect the small deviation of the function A(τt) ≈ 1.03 from 1. Also, for the

small b-quark contribution, it is safe to neglect the small deviation of κb from 1. In this

approximation, which is accurate to better than 1% for MKK & 2TeV, we observe that the

Wilson coefficients C1 and C5 become independent of the bulk mass parameters ci. They

are entirely given in terms of the 5D Yukawa matrices of the RS model. In the SM, we

have CSM
1 = A(τt) +A(τb) and CSM

5 = 0.

5.7 Brane-localized Higgs sector with different Yukawa matrices

Before closing this section, we return to the generalization of the RS model with a brane-

localized Higgs sector in which one allows for different Yukawa matrices Y C
q and Y

S†
q in the

two terms in the last line of (3.4) [20, 24]. We will refer to this model as “type-II brane-

Higgs” scenario. As discussed in appendix C, we find that the expressions valid in this

case can be obtained from the ones derived so far by means of some simple manipulations.

Instead of the matrices Xq defined in (4.12) and Ỹq given in (5.20), we must use

Xq =
v√

2MKK

√
Y C
q Y

S†
q , Ỹq =

tanhXq

Xq
Y C
q . (5.34)
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It follows that instead of (5.14) we now have

Zq(p
2
E) =

v2

2M2
KK

tanhXq

Xq
Y C
q Rq(p̂E)Y

C†
q

tanhX†
q

X
†
q

RQ(p̂E) . (5.35)

Also, the master formulae (5.15) must be generalized to read

I+(m
2) =

∑

q=u,d

{
ReTr g(Xq, Ỹq) +

1

2
Tr

[
2Xq

sinh 2Xq

Zq(−m2)

1 +Zq(−m2)
+

2X†
q

sinh 2X†
q

Z†
q (−m2)

1 +Z
†
q (−m2)

]}
,

I−(m
2) =

∑

q=u,d

{
ImTr g(Xq, Ỹq) +

1

2i
Tr

[
2Xq

sinh 2Xq

Zq(−m2)

1 +Zq(−m2)
−

2X†
q

sinh 2X†
q

Z†
q (−m2)

1 +Z
†
q (−m2)

]}
,

(5.36)

where

g(Xq, Ỹq)
∣∣type−II

brane Higgs
= − 2Xq

sinh 2Xq

v2

2M2
KK

ỸqỸ
†
q

1 + v2

2M2
KK

ỸqỸ
†
q

= − v2

2M2
KK

Y C
q Y C†

q + . . . . (5.37)

Finally, in the formulae for κt in (5.31) one must replace the combination(
YuY

†
uYu

)
33
/
(
Yu

)
33

by
(
Y C
u Y

S†
u Y C

u

)
33
/
(
Y C
u

)
33
. Note that because Xq is no longer a

positive hermitian matrix, traces of Xn
q can now have arbitrary phases. However, at lead-

ing order in the expansion in v2/M2
KK the trace of the function g(Xq, Ỹq) is a negative

real number. Indeed, at this order there is no difference between the result (5.37) and the

original result in (5.16) valid for the brane-Higgs scenario with Y C
q = Y S

q .

An interesting special case is that where Y S
q = 0, meaning that the Yukawa couplings

involving a product of two Z2-odd fields, given by the second term in the last line of (3.4),

is put to zero. This choice was frequently adopted in the literature. It corresponds to

taking the limit Xq → 0 in our results, in which case Ỹq → Y C
q , and the quantities κqi

in (5.30) reduce to κqi = 1− εqi . It follows that in this particular model one obtains

C1 =
∑

q=u,d

Tr
[
g(0,Y C

q ) + εq
]
+
∑

i

(1− εqi)A(τi) + . . .

≈ CSM
1 + [1−A(τt)] εt + εb −

v2

2M2
KK

Tr
[
Y C
u Y C†

u + Y C
d Y

C†
d

]
,

(5.38)

whereas C5 = 0. The first term in the first line is the result of the summation over the KK

tower of quark states, while the second term gives the contributions of the SM quarks, whose

Yukawa couplings are modified with respect to their values in the SM by factors (1− εqi).

It suffices for all practical purposes to keep only the terms shown in the second line. Apart

from the last term, they agree with a corresponding result presented in [18]. The first two

corrections to the SM result are numerically very small, because 1−A(τt) ≈ −0.03 and the

quantity εb is chirally suppressed. The third correction, which arises from the infinite sum

over KK states, gives the dominant contribution by far. This effect was not found in [20],

because in this paper the brane-Higgs case was derived by taking a limit of a bulk-Higgs

result. If one formally introduces two different Yukawa matrices in the narrow bulk-Higgs

scenario, one indeed finds that g(Xq) defined in (5.17) vanishes in the limit where Y S
q → 0.
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However, in the context of a bulk Higgs model taking Y S
q different from Y C

q violates 5D

Lorentz invariance, and moreover (as we have explained several times) the brane-Higgs

case cannot be derived by taking a limit of the bulk-Higgs results.

In practice, we find that the corrections to the gluon fusion amplitude found in the

type-II brane-Higgs scenario are numerically very similar to those obtained in the original

brane-Higgs model. The main difference is a slightly larger spread of the distribution of

points obtained when one scans the parameter space of the model. In our phenomenolog-

ical analysis in section 8 we will therefore restrict ourselves to a study of the case where

Y C
q = Y S

q .

6 Impact of higher-dimensional |Φ|2(Ga
µν
)2 operators

We have argued in the introduction that RS models must be considered as effective field the-

ories, valid below a (position-dependent) UV cutoff given by the warped Planck scale. The

UV completion of these models is unknown. It may be strongly coupled, for instance due

to effects of quantum gravity. Short-distance contributions from physics above the cutoff

scale give rise to higher-dimensional operators, such as those studied briefly in section 5.3.

Two particularly interesting higher-dimensional operators relevant for Higgs production

are Φ†ΦGa
MNGMN,a and Φ†ΦGa

MN G̃MN,a, which mediate effective hgg couplings at tree

level. Here Ga
MN is the 5D gluon field-strength tensor. We will now address the question

how important the contributions of these operator are in the low-energy effective theory,

focussing on the first operator for concreteness.

In the RS model with the scalar sector localized on the IR brane, the relevant effective

action is

Seff =

∫
d4x

∫ rπ

−rπ
dx5 ceff δ(|x5| − rπ)

Φ†Φ

Λ2
TeV

g2s,5
4

Ga
µν Gµν,a + . . . , (6.1)

where we do not bother to write down terms involving Ga
µ5. Here gs,5 is the five-dimensional

strong coupling, which is related to the coupling gs of the SM by gs,5 =
√
2πr gs [54].

The natural UV cutoff governing the suppression of the brane-localized higher-dimensional

operator is ΛTeV. NDA suggests that the dimensionless coupling ceff could be as large

as O(1) if the UV completion above the cutoff of the RS model is strongly coupled. In

the absence of a complete model, it is impossible to say how ceff might depend on other

parameters, such as the Yukawa couplings or the number of fermion generations. Even in

a strongly coupled theory, it is possible that ceff could be significantly smaller than 1,6 for

instance because the effective degrees of freedom coupling the Higgs boson to two gluons

can only be pair produced, or because they have suppressed couplings to the operators

Φ†Φ or Ga
µν Gµν,a. Following common practice, we shall assume that taking ceff = O(1)

provides a conservative upper bound for the effect of the brane-localized operators on the

gluon fusion amplitude.

6An example is provided by the π0 → γγ decay amplitude, which is loop suppressed in the SM despite

the fact that QCD is strongly coupled in the low-energy regime.
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Using the KK decomposition of the gluon field,

Ga
µν(x, φ) =

1√
r

∑

n

G(n) a
µν (x)χG

n (φ) =
1√
2πr

Ga
µν(x) + KK modes , (6.2)

where the zero mode (the SM gluon Ga
µν ≡ G

(0) a
µν ) has a flat profile along the extra dimen-

sion, and writing the scalar doublet in the standard form

Φ(x) =

(
−iϕ+(x)

1√
2

[
v + h(x) + iϕ3(x)

]
)
, (6.3)

we find that the relevant terms in the action (6.1) gives rise to the effective Lagrangian

Leff =
ceff
Λ2
TeV

Oeff , (6.4)

where

Oeff = Φ†Φ
g2s
4
Ga

µν G
µν,a ∋ g2sv

2

8

(
1 +

h(x)

v

)2

Ga
µν G

µν,a . (6.5)

We now repeat this analysis for an RS model in which the Higgs field lives in the bulk

of the extra dimension. A detailed discussion of the properties of a bulk-Higgs field and

its vev is presented in appendix B. In this case the higher-dimensional operator can be

localized on both the IR and UV branes, or it can live in the bulk. We thus consider the

action

Seff =

∫
d4x

∫ rπ

−rπ
dx5

[
c1 + c2 δ(|x5| − rπ) + c3 δ(x5)

] Φ†Φ

M2
Pl

g2s,5
4

Ga
µν Gµν,a + . . . , (6.6)

where the coupling c1 is dimensionless, while c2,3 ∼ 1/MPl. Since all fields live in the bulk,

the natural cutoff suppressing the operator is set by the Planck scale. Also, the scalar field

now takes the form shown in relation (B.4) in appendix B. Using the KK decomposition

of the Higgs field given in (B.17), we find that

Seff =

∫
d4x

g2s
4
Ga

µν(x)G
µν,a(x)

2π

L

∫ 1

ǫ

dt

t

v2(t)

2Λ2
UV(t)

(
1 + h(x)

χ0(t)

v(t)

)2

×
{
c1 +

k

2

[
c2 δ(t− 1) + ǫ c3 δ(t− ǫ)

]}
+ . . . ,

(6.7)

where ΛUV(t) = MPl ǫ/t is the warped Planck scale as introduced in (2.2), and v(t) and

χ0(t) are the profiles of the Higgs vev and the physical SM Higgs boson along the extra

dimension. We now use the explicit form of the profile of the Higgs vev given in (B.16),

as well as the fact that according to (B.25) we have χ0(t)/v(t) = 1/v up to corrections of

order m2
h/M

2
KK, which we neglect here. Here v ≈ 246GeV denotes the SM value of the

Higgs vev. It is then straightforward to perform the integration over t in the above result.

Matching the answer onto the effective Lagrangian given in (6.4), we obtain

ceff =
1 + β

2 + β
c1 + (1 + β) kc2

β≫1−→ c1 + |µ|c2 , (6.8)
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where the parameter β ∼ 1/η is related to the width of the profile of the scalar field (see

appendix B). NDA suggests that c1 and kc2 can be as large as O(1) if the UV completion

of the RS model is strongly coupled. The contribution of the operator localized on the UV

brane is of O(ǫ4+2β) c3 and thus entirely negligible. This suppression results from a factor

1/M2
Pl times v2(ǫ) ∼ ǫ2+2β reflecting the smallness of the Higgs vev profile on the UV brane.

Note that in the limit of a very narrow bulk-Higgs field, corresponding to β ≫ 1 (or η ≪ 1),

the largest mass scale in the model is the Higgs mass parameter |µ| ≈ βk = O(MPl) in (B.1)

and (B.7), and hence it is more appropriate to assume that c2 ∼ 1/|µ| ∼ 1/MPl. Once

again, this leads to ceff = O(1). The structure of the result (6.8) is completely analogous to

the corresponding expression in (6.4) valid for a brane-localized Higgs boson. In both cases

the results for ceff , and hence the magnitude of the contributions of higher-dimensional

operators, are expected to be of the same order.

The effective Lagrangian (6.4) yields a contribution to the Wilson coefficient C1 in (3.5)

given by

∆C1 =
3ceff
4

(
4πv

ΛTeV

)2

≈ ceff

(
2.7TeV

ΛTeV

)2

. (6.9)

In order for this contribution to be much smaller than the SM value C1 = 1, we need to

assume that either the cutoff scale is much larger than about 3TeV or that |ceff | ≪ 1 for

some reason. With ΛTeV ∼ 10MKK ∼ 20 – 50TeV, the first criterion is satisfied in realistic

RS models even if ceff = O(1). The expected contribution to the Wilson coefficient C1 is

then in the percent range, which is negligible in view of the current experimental uncertainty

in the measurements of the Higgs-boson couplings. Another interesting question is under

which assumptions the contribution (6.9) is much smaller than the corrections to the SM

result C1 = 1 which we have obtained from loop effects in the RS model, which are

approximately given by

|C1 − 1| ≈ v2

2M2
KK

∑

q=u,d

Tr
(
YqY

†
q

)
≈ v2

2M2
KK

2N2
g |Yq|2 , (6.10)

where Ng = 3 is the number of fermion generations, and |Yq| is the typical size of an

element of the anarchic 5D Yukawa matrices, defined by

|Yq|2 ≡ 〈|(Yq)ij |2〉 =
y2∗
2

. (6.11)

We work with anarchic 5D Yukawa matrices and assume that the entries (Yq)ij are random

complex numbers, which with equal probability can take any value in the complex plane

inside a circle of radius y∗. Throughout our paper, we will assume that y∗ is an O(1)

parameter. This is natural, since we have obtained the matrices Yq by multiplying the

underlying, dimensionful Yukawa couplings Y 5D
q of the original 5D Lagrangian by the AdS

curvature k, which sets the natural scale for dimensionful quantities in the RS model. It

follows that the power-suppressed contribution (6.9) can be neglected as long as

ceff

(
MKK

ΛTeV

)2

≪
N2

g y
2
∗

24π2
, (6.12)
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which for ΛTeV ≈ 10MKK can be rewritten as ceff ≪ 3.8 y2∗. In the custodial RS model

studied in the next section, the expression on the right-hand side of this relation is multi-

plied by 4, yielding the weaker condition ceff ≪ 15.2 y2∗. In our phenomenological analysis

in section 8 we will consider values of y∗ between 3 and 0.5. In order to neglect the power-

suppressed contributions for y∗ = 0.5 in the minimal RS model, we would need to rely on

the assumption that |ceff | ≪ 1.

Relation (6.12) makes it clear that, in comparing the contributions from higher-

dimensional operators with the contribution from virtual KK states, we are comparing

a power-suppressed effect with a loop effect. Since we treat the dimensionless Yukawa

couplings as O(1) random complex parameters, it would follow that in the formal limit

ΛTeV → ∞ the higher-dimensional operator contribution tends to zero, while the loop con-

tribution remains as the dominant effect.7 However, since by construction the RS model is

free of large hierarchies, the ratio MKK/ΛTeV cannot be made arbitrarily small. We there-

fore do not expect a strong hierarchy between the contribution from virtual KK states

and those from higher-dimensional operators. In practice, which of the effect wins is more

of a numerical question than a parametric one. In our phenomenological analysis in sec-

tion 8, we include the contribution ∆C1 in (6.9) by treating ceff as a random number with

magnitude less than 1.

For our loop calculation to be trustable, we should impose an upper bound on the size

of y∗ by requiring that the Yukawa interactions remain perturbative up to the cutoff of the

RS model under consideration (see e.g. [9, 57]). Following common practice, we will assume

that y∗ < ymax ≈ 3. A detailed discussion of different estimates of the perturbativity bound

ymax is presented in appendix D.

7 Extension to the RS model with custodial symmetry

We will now present the generalization of the above results to an extended version of the

RS model, in which large corrections to electroweak precision observables are avoided by

means of an enlarged gauge symmetry in the bulk of the extra dimension. Electroweak

precision tests are then no longer in conflict with having the masses of the lightest KK

states lie in the range of a few TeV, in reach for direct production of these particles at

the LHC [29–32]. Specifically, we consider an RS model based on the gauge symmetry

SU(3)C × SU(2)L × SU(2)R × U(1)X × PLR. On the IR brane, the symmetry-breaking

pattern SU(2)L × SU(2)R → SU(2)V provides a custodial symmetry, which protects the T

parameter from receiving excessively large contributions [26, 27]. This symmetry breaking

is accomplished by means of a Higgs field transforming as a bi-doublet under the two SU(2)

symmetries. The additional PLR symmetry, which interchanges the two SU(2) groups,

protects the left-handed Zbb̄ coupling from receiving large modifications [28]. On the UV

brane, the symmetry breaking SU(2)R × U(1)X → U(1)Y generates the SM gauge group.

The symmetry breaking to U(1)EM is implemented by means of an interplay of the UV and

IR boundary conditions. Thorough discussions of this model containing many technical

7Since for too large values of the cutoff the Yukawa sector becomes strongly coupled (see below), our

result in such an academic limit could at best be taken as a rough estimate of the KK loop contributions.
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details have been presented in [19, 55], and we will adopt the notations of the first paper

throughout our analysis.

The fermion representations we adopt are chosen such that they can be embedded into

complete SO(5) multiplets used in the context of models with gauge-Higgs unification [31,

32, 56]. As a consequence of the discrete PLR symmetry, which is instrumental in protecting

the left-handed Zbb̄ coupling [28] and its flavor-changing counterparts [11], the left-handed

bottom quark has to be embedded in a SU(2)L × SU(2)R bi-doublet with isospin quantum

numbers T 3
L = −T 3

R = −1/2. This fixes the quantum numbers of the other fields uniquely.

In particular, the right-handed down-type quarks have to be embedded in an SU(2)R
triplet in order to obtain an U(1)X -invariant Yukawa coupling. One arrives at the following

multiplet structure for the quark fields with even Z2 parity:

QL =


 u

(+)
L 2

3
λ
(−)
L 5

3

d
(+)
L − 1

3
u
′ (−)
L 2

3




2
3

, ucR =
(
u
c (+)
R 2

3

)
2
3

,

TR = T1R ⊕ T2R =




Λ
′ (−)
R 5

3

U
′ (−)
R 2

3

D
′ (−)
R − 1

3




2
3

⊕
(
D

(+)
R − 1

3
U

(−)
R 2

3
Λ
(−)
R 5

3

)
2
3

.

(7.1)

QL is a bi-doublet under SU(2)L × SU(2)R, while TR transforms as (3,1) ⊕ (1,3). The

fields with odd Z2 parity have the opposite chirality. Their profiles are related to those of

the Z2-even fields by the field equations. The inner and outer subscripts on the various

fields denote their U(1)EM and U(1)X charges, respectively, which are connected through

the relations Y = −T 3
R +QX and Q = T 3

L + Y .

The superscripts on the fields specify the type of boundary conditions they obey on

the UV boundary. Fields with superscript (+) obey the usual mixed boundary conditions

allowing for a light zero mode, meaning that we impose the Dirichlet condition S
A(+)
n (ǫ) = 0

on the profile functions of the corresponding Z2-odd fields. These zero modes correspond

to the SM quarks.8 Fields with superscripts (−) correspond to heavy, exotic fermions with

no counterparts in the SM. For these states, the Dirichlet boundary condition is imposed

on the Z2-even fields (this means imposing the conditions C
A(−)
n (ǫ) = 0 on the profile

functions) in order to avoid the presence of a zero mode. The UV boundary conditions for

the profiles S
A(−)
n (t) and C

A(+)
n (t) are of mixed type and follow from the field equations.

We do not explicitly show the boundary conditions on the IR brane, which in the presence

of a regularized Higgs profile are of Dirichlet type for all fields, S
A(±)
n (1−) = 0.

Note that we have chosen the same SU(2)L×SU(2)R representations for all three quark

generations, which is necessary if one wants to consistently incorporate quark mixing in

the fully anarchic approach to flavor in warped extra dimensions. The chosen represen-

tations also play a crucial role in the suppression of flavor-changing, left-handed Z-boson

couplings [11, 19]. Altogether, there are fifteen different quark states in the up sector and

8Note that the notation uL, dL, u
c
R, DR for these fields adopted here differs from the notation UL, DL,

uR, dR we used for the minimal RS model.
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nine in the down sector. The boundary conditions give rise to three light modes in each

sector, which are identified with the SM quarks. These are accompanied by KK towers

consisting of groups of fifteen and nine modes of similar masses in the up and down sectors,

respectively. In addition, there is a KK tower of exotic fermion states with electric charge

5/3, which exhibits nine excitations in each KK level.

In order to simplify the notation as much as possible, it is convenient to introduce the

vectors

~U =

(
u

u′

)
, ~u =




uc

U ′

U


 , ~D = d , ~d =

(
D

D′

)
, ~Λ = λ , ~λ =

(
Λ′

Λ

)
,

(7.2)

which collect the fields with same electric charges (2/3, −1/3, and 5/3). Upper-case (lower-

case) symbols denote fields whose left-handed (right-handed) components are Z2 even. The

corresponding matrices of bulk mass parameters are

c~U = diag
(
cQ, cQ

)
, c ~D = cQ , c~Λ = cQ ,

c~u = diag
(
cuc , cτ1 , cτ2

)
, c~d

= diag
(
cτ2 , cτ1

)
, c~λ = diag

(
cτ1 , cτ2

)
,

(7.3)

where each entry is a 3 × 3 diagonal matrix in generation space. Note that the fields ~U ,
~D, and ~Λ are governed by the same bulk mass matrix cQ, while ~u, ~d, and ~λ are associated

with three different mass matrices cuc , cτ2 , and cτ1 . The first two of them, cuc ≡ cu and

cτ2 ≡ cd, can be identified with the mass matrices appearing in the minimal RS model.

The three new parameters contained in the matrix cτ1 can be related to the other ones by

extending the PLR symmetry to the part of the quark sector that mixes with the left-handed

down-type zero modes, by requiring that the action be invariant under the exchange of the

fields D′ and D [19]. This extended version of the PLR symmetry implies

cτ1 = cτ2 , (7.4)

and hence the number of independent bulk mass parameters is reduced to the same number

as in the minimal RS model. Whether or not this equation holds will turn out to be largely

irrelevant to our discussion.

In generalization of (3.2), we now collect all left- and right-handed fields in the up,

down, and exotic sectors into the 15-component vectors (~UA, ~uA)
T and the 9-component

vectors ( ~DA, ~dA)
T and (~ΛA, ~λA)

T (with A = L,R), to which we will collectively refer as

QL,R. The Yukawa couplings of the Higgs boson to these fields can then be written in the

form

Lhqq(x) = −
∑

q=u,d,λ

∫ 1

ǫ
dt δηh(t− 1)h(x) Q̄L(t, x)

1√
2

(
0 Y~q

Y
†
~q 0

)
QR(t, x) + h.c. , (7.5)

where

Y~u =

(
Yu

1√
2
Yd

1√
2
Yd

Yu − 1√
2
Yd − 1√

2
Yd

)
, Y~d

= Y~λ
=
(
Yd Yd

)
(7.6)
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denote the corresponding 6 × 9 and 3 × 6 Yukawa matrices. The 3 × 3 block matrices

Yq entering these expressions are the same as in the minimal RS model. Even though

the extended RS model with custodial symmetry has a much richer structure than the

minimal model, it thus features the same number of parameters in the fermion sector, once

relation (7.4) is imposed.

With all the notation in place, we are now ready to generalize the analysis presented in

the previous sections to the extended RS model with custodial symmetry. Since the Yukawa

interactions (7.5) have the same structure as in (3.2), and since the boundary conditions

on the IR brane are the same as in the minimal model, the only difference in the solution

of the differential equations (4.5) concerns the UV boundary conditions imposed on the

propagator functions. While the boundary conditions for fields with superscript (+) give

rise to the particular combination of Bessel functions defined in (4.17),R
(+)
A (p̂E) ≡ RA(p̂E),

the corresponding linear combination for fields with superscript (−) is given by

R
(−)
A (p̂E) =

IcA− 1
2
(ǫp̂E) I−cA+ 1

2
(p̂E)− I−cA+ 1

2
(ǫp̂E) IcA− 1

2
(p̂E)

IcA− 1
2
(ǫp̂E) I−cA− 1

2
(p̂E)− I−cA+ 1

2
(ǫp̂E) IcA+ 1

2
(p̂E)

=
1

R
(+)
A (p̂E)

∣∣∣∣
cA→−cA

.

(7.7)

Apart from this effect, we find that the central results (5.15) remain valid if we extend the

sum over flavors appropriately, i.e.

I+(m
2) =

∑

q=u,d,λ

{
Tr g(X~q) +

1

2
Tr

[
2X~q

sinh 2X~q

(
Z~q(−m2)

1 +Z~q(−m2)
+

Z
†
~q(−m2)

1 +Z
†
~q(−m2)

)]}
,

(7.8)

and similarly for I−(m2). In analogy to (5.14), the matrices Z~q(p
2
E) are given by

Z~q(p
2
E) =

v2

2M2
KK

tanhX~q

X~q
Y~q R~q(p̂E)Y

†
~q

tanhX~q

X~q
R ~Q(p̂E) , (7.9)

where

R~U = diag
(
R

(+)
Q ,R

(−)
Q

)
, R ~D = R

(+)
Q , R~Λ = R

(−)
Q ,

R~u = diag
(
R

(+)
uc , R(−)

τ1 , R(−)
τ2

)
, R~d

= diag
(
R(+)

τ2 , R(−)
τ1

)
, R~λ

= diag
(
R(−)

τ1 , R(−)
τ2

)
,

(7.10)

which resembles the structure of the bulk mass matrices in (7.3). For simplicity of notation,

we have omitted the argument p̂E of the various R
(±)
A matrices.

The relevant squared Yukawa matrices entering the quantities X~q in (7.8) and (7.9),

which are defined in analogy with (4.12), are given by the 6× 6 matrix

Y~uY
†
~u =

(
YuY

†
u +YdY

†
d YuY

†
u −YdY

†
d

YuY
†
u −YdY

†
d YuY

†
u +YdY

†
d

)
= V

(
2YdY

†
d 0

0 2YuY
†
u

)
V † ,

with V = V † =
1√
2

(−1 1

1 1

)
,

(7.11)

and the 3× 3 matrices Y~d
Y

†
~d
= Y~λ

Y
†
~λ
= 2YdY

†
d . It follows that

∑

q=u,d,λ

Tr g(X~q) = Tr g
(√

2Xu

)
+ 3Tr g

(√
2Xd

)
, (7.12)
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where the final answer is now expressed in terms of traces over the same 3× 3 matrices Xq

as in the minimal RS model.

Our next task is to reduce also the second term in (7.8) to traces over 3× 3 matrices.

From the definition (7.9), it is straightforward to derive that

Z~u(p
2
E) =

v2

2M2
KK

V

(
Ỹd

[
R

(−)
τ1 +R

(−)
τ2

]
Ỹ

†
d 0

0 2ỸuR
(+)
uc Ỹ

†
u

)
V †
(
R

(+)
Q 0

0 R
(−)
Q

)
,

Z~d
(p2E) =

v2

2M2
KK

Ỹd

[
R(+)

τ2 +R(−)
τ1

]
Ỹ

†
d R

(+)
Q ,

Z~λ
(p2E) =

v2

2M2
KK

Ỹd

[
R(−)

τ1 +R(−)
τ2

]
Ỹ

†
d R

(−)
Q ,

(7.13)

where again we have omitted the argument p̂E of the R
(±)
A matrices on the right-hand side

of the equations. In the custodial model, the modified Yukawa matrices are defined as

Ỹq =
[
tanh(

√
2Xq)/(

√
2Xq)

]
Yq [19], with an extra factor of

√
2 inserted compared with

the minimal model. In (3.12), we need to evaluate the result (7.8) for values |p2E | ≪ M2
KK.

Using the expansion in (4.19), we obtain after a straightforward calculation (again with

xq = mq,0/MKK)

V †Z~u(p
2
E)V = F−1(cQ)Uu

{[
m2

u,0

p2E
+
(
ΦU +mu,0Φum

−1
u,0

)
+ . . .

](
0 0

−1 1

)

+ VCKM xdW
†
d

1

2F 2(cτ2)

[
1

F 2(−cτ1)
+

1

F 2(−cτ2)

]
Wd xd V

†
CKM

(
1 −1

1 −1

)

+ x2
uU

†
u

2

F 2(cQ)F 2(−cQ)
Uu

(
0 0

1 0

)
+ . . .

}
U †

u F (cQ) ,

Z~d
(p2E) = F−1(cQ)Ud

[
m2

d,0

p2E
+
(
ΦD +md,0Φdm

−1
d,0

)
+ . . .

]
U

†
d F (cQ) ,

(7.14)

where VCKM = U
†
u Ud is the CKM mixing matrix. The terms shown explicitly above are

of leading and subleading order in v2/M2
KK. To this order, the quantity Z~λ

(p2E) vanishes.

The quantities ΦA are generalizations of the matrices δA given in (5.25). They are defined

as [19]

ΦU = xuW
†
u

[
1

1− 2cu

(
1

F 2(cu)
− 1 +

F 2(cu)

3 + 2cu

)]
Wu xu

+ VCKM xdW
†
d

1

2F 2(cτ2)

[
1

F 2(−cτ1)
+

1

F 2(−cτ2)

]
Wd xd V

†
CKM ,

Φu = xuU
†
u

[
1

1− 2cQ

(
1

F 2(cQ)

[
1 +

1− 2cQ
F 2(−cQ)

]
− 1 +

F 2(cQ)

3 + 2cQ

)]
Uu xu ,

ΦD = xdW
†
d

[
1

1− 2cτ2

(
1

F 2(cτ2)

[
1 +

1− 2cτ2
F 2(−cτ1)

]
− 1 +

F 2(cτ2)

3 + 2cτ2

)]
Wd xd ,

Φd = xdU
†
d

[
1

1− 2cQ

(
1

F 2(cQ)
− 1 +

F 2(cQ)

3 + 2cQ

)]
Ud xd .

(7.15)
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After a lengthy calculation, we find that in analogy with (5.29)

∑

q=u,d,λ

Tr

[
2X~q

sinh 2X~q

Z~q(p
2
E)

1 +Z~q(p
2
E)

]
=
∑

i

[
κqi

m2
qi

m2
qi + p2E

+ εqi

]
+ . . . , (7.16)

where

κqi = 1− εqi −
2

3

[
U †

q F (cQ) 2X
2
q F

−1(cQ)Uq

]

ii
(7.17)

now contains an extra factor of 2 in the last term compared with the result (5.30) for the

minimal model, while

εqi = (ΦQ)ii + (Φq)ii . (7.18)

We are now ready to present our final expressions for the Wilson coefficients C1 and

C5 in the RS model with custodial symmetry. To an excellent approximation, we obtain

instead of (5.32)

C1 ≈
[
1− 2v2

3M2
KK

Re

(
YuY

†
uYu

)

33

(Yu)33

]
A(τt) +A(τb) + Tr g

(√
2Xu

)
+ 3Tr g

(√
2Xd

)
,

C5 ≈ − 2v2

3M2
KK

Im

[(
YuY

†
uYu

)

33

(Yu)33

]
B(τt) ,

(7.19)

which once again is independent of the bulk mass parameters ci. We find that this approx-

imation is accurate to better than 2% for MKK & 2TeV. Whereas the small corrections

parameterized by κqi and εqi have only a minor impact, the main difference between the

minimal and the custodial RS models consists in the different multiplicity factors in the

trace terms in (5.32) and (7.19). Since the functions g(Xq) start with a quadratic term,

we must compare X2
u +X2

d in the minimal model with the combination 2X2
u +6X2

d in the

custodial model. Since we assume that the 5D Yukawa matrices in the up- and down-type

quark sectors are random matrices of similar magnitude, it follows that the effect of the

KK modes in the custodial model is approximately four times as large as in the minimal

model.9

8 Phenomenological implications

We now present a numerical study of our results for both the minimal RS model and

its extension with custodial symmetry. In each case, we distinguish the two cases of a

brane-localized scalar sector and a narrow bulk-Higgs scenario. At the end of this section,

we also discuss the generalization of the brane-Higgs scenario with two different Yukawa

matrices, which was discussed in section 5.7. For the purposes of our discussion here, we

will include the possible effects of the power-suppressed, higher-dimensional |Φ|2(Ga
µν)

2

operators, which give rise to the effective Lagrangian (6.4), by treating the coefficient ceff
as a random variable, whose value is scanned between −1 and 1 using a flat distribution.

9Based on a naive counting of degrees of freedom, this factor was estimated as 11/4 (instead of 4) in [22].
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As discussed in detail in section 6, the numerical impact of such operators is very small

provided that ceff ≪ 3.8 y2∗ in the minimal RS model and ceff ≪ 15.2 y2∗ in the custodial

RS model, where y∗ is the upper bound on the magnitudes of the complex entries of the

random 5D Yukawa matrices, see (6.11).

Based on the expressions obtained in sections 5 and 7, we evaluate the Higgs-boson

production cross section via gluon fusion relative to the SM cross section [23],

Rh =
σ(gg → h)RS

σ(gg → h)SM
=

|κg|2 + |κg5|2
κ2v

, (8.1)

where κg and κg5 parametrize the values of the Wilson coefficients, normalized to the SM

value CSM
1 = A(τt) + A(τb), such that κg = C1/C

SM
1 and κg5 = 3

2 C5/C
SM
1 . The quantity

κv in (8.1) denotes the shift of the Higgs vev v in the RS model relative to the value vSM
of the SM [18]. We determine κv from the shift to the Fermi constant derived in the RS

model by considering (at tree level) the effect of the exchange of the infinite tower of KK

gauge bosons on the rate for muon decay.10 Using the definition vSM = (
√
2GF )

−1/2 along

with results derived in [10], we then obtain to first order in v2/M2
KK

κv
∣∣
minimal RS

=
v

vSM
≈ 1 +

Lm2
W

4M2
KK

, κv
∣∣
custodial RS

=
v

vSM
≈ 1 +

Lm2
W

2M2
KK

, (8.2)

where mW = gv/2 is the lowest-order expression for the mass of the W boson, and L =

− ln ǫ = ln(MPl/ΛTeV) ∼ 33 – 34 for ΛTeV ∼ 20 – 50TeV. In the custodial RS model with

PLR symmetry, the correction is twice as large as in the minimal model.

Concerning the contributions from the infinite towers of KK quarks to C1 and C5, we

need to evaluate the traces of the functions g(Xq) defined in (5.16) and (5.17), which can

be expanded in a power series in the positive matrix X2
q = O(v2/M2

KK). Keeping only the

first term in this expansion, one encounters the quantity

TrX2
q =

v2

2M2
KK

Ng∑

i,j=1

|(Yq)ij |2 ≈
v2

2M2
KK

N2
g y

2
∗

2
, (8.3)

where Ng = 3 is the number of quark generations. In the last step we have used rela-

tion (6.11), which states that on average 〈|(Yq)ij |2〉 = y2∗/2 for a complex random num-

ber.11 It follows that, to good approximation, the effect of the KK tower of quark states

scales proportional to the number of quark generations squared. While each entry of the

Yukawa matrices Yq is a randomly distributed complex number, the central limit theo-

rem implies that the sum over the N2
g = 9 positive numbers in (8.3) is (approximately)

normally distributed about the average value shown in the equation. It is this fact which

allows us to predict the Higgs-boson production rate to good accuracy in terms of only

the two parameters MKK and y∗ (see also [22, 23]). This observation has an important

10If one uses instead the shift on the value of the W -boson mass, one finds some additional contributions

not enhanced by a factor of L, which are numerically insignificant [10].
11In [23] the modulus and phase of the elements of the Yukawa matrices were chosen as random variables,

in which case 〈|(Yq)ij |2〉 = y2
∗/3.
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Figure 3. Predictions for the ratio Rh in the minimal RS model, for the cases of a brane-localized

Higgs boson (left) and a narrow bulk-Higgs field (right). The green, red, and blue scatter points

correspond to model points obtained using y∗ = 0.5, 1.5, and 3, respectively. The overlaid lines

show fits to the various distributions. The area colored in blue represents the experimental 1σ band.

See text for further explanation.

implication, though. If we were interested in an observable depending on a single Yukawa

coupling |(Yq)ij | (for some particular choice of i and j), then scanning this parameter over

all allowed values between 0 and the perturbativity bound ymax would cover the range of

all possible results for the observable. We would not introduce a bias by allowing |(Yq)ij |
to take values close to the upper bound. The situation is different in our case. Scanning

N2
g = 9 random numbers (Yq)ij in the complex plane within a radius set by y∗, the sum of

their absolute squares in (8.3) will be described by a narrow gaussian distribution centered

at N2
g y

2
∗/2. Even though it is mathematically allowed that this sum takes a value much

smaller or much larger than this result (any value between 0 and N2
g y

2
∗ is possible), this

will almost never happen in practice. It is thus necessary that we consider sets of model

predictions for several different values of y∗, some close to the perturbativity bound ymax

and some significantly smaller than it. For the numerical analysis, we generate three sets

of 5000 random and anarchic 5D Yukawa matrices, whose entries satisfy |(Yq)ij | ≤ y∗ with

y∗ = 0.5, 1.5, and 3. As a further constraint, we impose that these matrices correctly

reproduce the Wolfenstein parameters ρ and η of the unitarity triangle (see [10] for explicit

formulae). This requirement helps to eliminate some outliers in the plots presented below.

We also require that, with appropriately chosen bulk mass parameters ci, one can repro-

duce the correct values for the masses of the SM quarks; however, imposing this condition

only has a minor impact on our results.

Figure 3 shows the results for the ratio Rh defined in (8.1) in the minimal RS model

for the scenarios with a brane-localized Higgs boson (left) and a narrow bulk-Higgs field

(right), in dependence of the mass Mg(1) of the lightest KK gluon state. We use the mass

of the first excited gluon state as a reference, because it is more physical than the KK scale

MKK, and because its value Mg(1) ≈ 2.45MKK is a model-independent prediction of the RS

models considered in this work. The green, red, and blue scatter points refer to the three
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different values of y∗. They have been obtained using the approximate expressions for the

Wilson coefficients given in (5.32), but at the scale of the plots they are indistinguishable

from the results one would obtain using the exact expressions in (3.12) and (5.15). We use

mh = 126GeV for the mass of the Higgs boson, and mt = 172.6GeV and mb = mb(mh) =

2.9GeV for the masses of the third-generation quarks. While for the heavy top-quark it

is appropriate to use the pole mass, a running mass should be used for the b-quark. We

observe that the ratio Rh is strictly below 1 for the case of a brane-localized Higgs sector,

while it is larger than 1 for the case of a narrow bulk-Higgs state. This observation allows

for a clear distinction between the two scenarios. Only for very small y∗, a few points exist

for which Rh lies slightly below 1. This effect is due to the modification of the Higgs vev

in the RS model, which always gives rise to a negative contribution.

In order to compare our predictions with experiment, we consider the cross section

for the process pp → h → ZZ(∗) → 4ℓ measured at the LHC. Since gg → h is the

dominant production channel, accounting for about 90% of the events in the SM, and

because corrections to the hZZ coupling in RS models are in general very small [19, 22],

we assume that any deviation of the rate for this process from its SM value can be traced

back to new-physics contributions to the gluon fusion amplitude. The ATLAS and CMS

collaborations have recently reported updated results for the ratio µZZ = σ(pp → h →
ZZ(∗))/σSM(pp → h → ZZ(∗)), which were obtained using the full data set collected up to

the end of 2012 (approximately 25 fb−1). The observed values are µATLAS
ZZ = 1.7+0.5

−0.4 (at

mh = 124.3GeV) and µCMS
ZZ = 0.91+0.30

−0.24 (at mh = 125.8GeV) [58, 59],12 which we naively

average to obtain µZZ = 1.12+0.26
−0.21. The 1σ range corresponding to this result is shown by

the blue band in the two plots. In our analysis we will assume that µZZ ≈ Rh, i.e., that

any possible deviation from 1 is due to a modification of the production cross section of the

Higgs boson in gluon fusion. Model points falling outside these bands are excluded at the

68% confidence level (CL). While for small y∗ = 0.5 most model points are in agreement

with the data, it is interesting to observe that for larger y∗ the data already disfavor KK

gluon masses in the low TeV range. The discrepancies between theory and experiment are

stronger for the brane-Higgs model, because the mild tendency of an enhanced production

rate seen in the data is in conflict with the suppression of the cross section predicted in

this case.

The overlaid, solid lines in figure 3 show fits to the various distributions of model points.

In regions of parameter space where the deviations of Rh from 1 are modest enough in order

to be compatible with the data, a good approximation to these curves can be obtained by

approximating the functions g(Xq) in (5.16) and (5.17) by the first terms in their Taylor

expansions and exploiting the anarchy of the 5D Yukawa matrices. In this way we find

Rh ≈ 1− v2

2M2
KK

[(
±4N2

g +
8

3
Ng −

4

3

)
〈|(Yq)ij |2〉+

Lm2
W

v2

]
, (8.4)

where the upper sign corresponds to the brane-localized Higgs sector and the lower sign

to the narrow bulk-Higgs scenario. For randomly chosen complex elements of the Yukawa

12At mh = 125.5GeV, the ATLAS result is shifted to µATLAS
ZZ = 1.5 ± 0.4, which is closer to the CMS

value and gives rise to the average result µZZ = 1.09+0.24
−0.21.
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Figure 4. Excluded regions of parameter space in the minimal RS model, for the cases of a brane-

localized Higgs boson (left) and a narrow bulk-Higgs field (right). The vertical dashed line shows

the lower bound on Mg(1) obtained from a tree-level analysis of electroweak precision observables.

matrices, it follows that 〈|(Yq)ij |2〉 = y2∗/2. The terms in brackets then evaluate to approxi-

mately [21.3 y2∗+3.6] for the RS model with a brane-localized Higgs, and [−14.7 y2∗+3.6] for

the model with a narrow bulk Higgs (with L = 33.5). Relation (8.4) exhibits the quadratic

dependency on the number of quark generations Ng and on the maximum absolute value

y∗ imposed on the entries of the random Yukawa matrices.

Even at the present level of precision, the existing measurements of the Higgs-boson

production cross section already provide highly non-trivial constraints on the parameter

space of RS models. In figure 4, we show the regions in the Mg(1)–y∗ parameter space which

are already excluded by the current experimental data at various confidence levels. To ob-

tain these regions, we first fit an approximately gaussian distribution to the model points

shown in figure 3 for each pair ofMg(1) and y∗, and extract from it our theoretical prediction

Rth
h and uncertainty ∆Rth

h for these parameters. We then take the ratio Rth
h /Rexp

h , combine

the theoretical and experimental errors in quadrature, and test at which confidence level

this ratio is compatible with 1. In both versions of the RS model, the data exclude sig-

nificant portions of the model parameter space. With the conventional choice y∗ = 3, for

example, one finds Mg(1) > 13TeV for the brane-Higgs model and Mg(1) > 4.5TeV for the

bulk-Higgs scenario, both at 95% CL. Weaker constraints are obtained for smaller values

of y∗. These bounds may be compared with those derived from the analysis of electroweak

precision observables. The strongest constraint arises from the S and T parameters [60],

whose present values are S = 0.03±0.10 and T = 0.05±0.12, with a correlation coefficient

ρ = 0.89 [61]. In the minimal RS model, one obtains at tree level [62]

S =
2πv2

M2
KK

(
1− 1

L

)
, T =

πv2

2 cos2 θW M2
KK

(
L− 1

2L

)
. (8.5)

Requiring that these corrections are compatible with the experimental data, we find that

Mg(1) > 12TeV at 95% CL. This strong bound, which is indicated by the dashed line

in figure 4, may however be weakened in several ways, for instance by including loop
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Figure 5. Predictions for the ratio Rh in the custodial RS model, for the cases of a brane-localized

Higgs boson (left) and a narrow bulk-Higgs field (right). The meaning of the colors and curves is

the same as in figure 3.

corrections, by reducing the size L of the extra dimension (so-called “little RS models”) [63],

or by introducing large brane-localized kinetic terms in the RS Lagrangian [62]. We note

that for Mg(1) > 12TeV there is no significant flavor problem of the minimal RS model, as

the tightest constraint from the ǫK parameter in K–K̄ mixing [9] can be satisfied with a

modest 25% fine-tuning [64].

Softening the constraints from electroweak precision tests by means of a symmetry

is the main motivation for extending the RS model by enlarging the gauge group in the

bulk [26–28]. We now proceed to study the RS model with custodial symmetry, in which

the Wilson coefficients C1 and C5 are given in (7.19). The corresponding numerical results

are shown in figure 5. For large masses Mg(1) we can derive analogously to (8.4) a formula

for Rh depending explicitly on Ng and y∗, which in the present case reads

Rh ≈ 1− v2

2M2
KK

[(
±16N2

g +
16

3
Ng −

8

3

)
〈|(Yq)ij |2〉+

2Lm2
W

v2

]
. (8.6)

Note that the leading terms proportional to N2
g are enhanced by a factor 4 compared

with the minimal model, reflecting the larger multiplicity of KK quark states. The re-

maining terms are enhanced by a factor 2, as can be seen from (7.17) and (8.2). As

a result, in the custodial RS model one finds significantly larger corrections to the SM

prediction Rh = 1 than in the minimal model [22]. The terms in brackets then evalu-

ate to approximately [78.7 y2∗ + 7.1] for the RS model with a brane-localized Higgs, and

[−65.3 y2∗ + 7.1] for the model with a narrow bulk Higgs. For the same reason, the relative

effect of higher-dimensional operators is suppressed compared with the minimal RS model.

In relation (6.12), the right-hand side must be multiplied by a factor 4.

Figure 5 confirms the fact that the corrections to the Higgs-boson production rate are

much enhanced compared with the case of the minimal RS model. Correspondingly, we

obtain significantly larger exclusion regions than for the minimal model. This is shown in

figure 6. In the brane-Higgs scenario, we obtain the exclusion range 4.5TeV < Mg(1) <
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Figure 6. Excluded regions of parameter space in the custodial RS model, for the cases of a brane-

localized Higgs boson (left) and a narrow bulk-Higgs field (right). The vertical dashed line shows

the lower bound on Mg(1) obtained from a tree-level analysis of electroweak precision observables.

19TeV for y∗ = 3 at 99% CL, while in the bulk-Higgs model we find the lower bound

Mg(1) > 9.5TeV at 95% CL. Note that the allowed region in the upper left corner (at

small Mg(1) and large y∗) of the first plot in the figure is one in which the new-physics

contribution to the gluon fusion amplitude is larger than the SM contribution by about a

factor 2 and interferes destructively, which appears somewhat unnatural. Moreover, it has

been argued that most models in which the gluon fusion amplitude has the opposite sign

than in the SM have problems with fine-tuning and vacuum stability [65]. The bounds

on the RS parameter space that can be derived from figure 5 are stronger than those

derived from the analysis of electroweak precision observables. In the custodial model the

formula for the S parameter shown in (8.5) is left unchanged, while the custodial protection

removes the leading term proportional to L in the expression for the T parameter, such

that T = −πv2/(4L cos2 θWM2
KK) [26]. Requiring that these corrections are compatible

with the experimental data, we find that Mg(1) > 4.7TeV at 95% CL. As indicated by the

dashed line in figure 6, this lower bound is generally much weaker than the constraints

implied by Higgs physics, except for regions in parameter space where y∗ is very small.

Note that for such small values of the KK mass scale but y∗ ≈ 3, the RS flavor problem for

the ǫK parameter can be solved by a fine-tuning of 5–10%, or alternatively by enlarging

the strong-interaction gauge group in the bulk [64].

We may also read the exclusion plots in a different way. If we would like to have the

first KK excitations in the reach for direct production at the LHC, then this imposes a

strong upper bound on the maximum allowed values of the elements of the 5D Yukawa

matrices. For instance, assuming that Mg(1) = 5TeV, we find that y∗ < 0.6 in the brane-

Higgs model, and y∗ < 1.5 in the bulk-Higgs scenario (both at 95% CL). Too small Yukawa

couplings would however give rise to enhanced corrections to ǫK [9], and hence they would

reinforce the RS flavor problem.

The above analysis shows that Higgs physics, and in particular the Higgs-boson pro-
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duction rate in gluon fusion, provide sensitive probes of the virtual effects of KK excitations

in the context of various RS scenarios. While models with a brane-localized scalar sector

predict a suppression of the gluon fusion rate, this rate tends to be enhanced in scenar-

ios with a bulk-Higgs field. The two classes of models can thus easily be distinguished

in their signatures. The bounds on the model parameters obtained from Higgs physics

are complementary to and sometimes stronger than those derived from the analysis of

electroweak precision observables and rare flavor-changing processes. In models with a

custodial protection of electroweak precision observables, the indirect effects of KK states

on the Higgs-boson production rate are strongly enhanced compared with minimal RS mod-

els, and hence Higgs physics provides the strongest constraints in this case. Even under

the pessimistic (but not unrealistic) assumption that the direct detection of KK excitations

is out of the reach of the LHC, one may still see sizable modifications of the Higgs-boson

production cross section. For example, even with Mg(1) = 10TeV or even 15TeV, figures 3

and 5 show that virtual effects of KK particles can have significant effects on the Higgs-

boson production cross section, provided that the 5D Yukawa couplings are not too small.

We also note that different implementations of warped extra-dimension models, such as

little RS models in which the bounds from electroweak precision measurements and flavor

physics are relaxed by reducing the size L of the extra dimension [63], give rise to very

similar Higgs phenomenology, because the L-dependent corrections in (8.4) and (8.6) have

only a minor impact.

9 Conclusions

The discovery of a Higgs-like boson at the LHC [1, 2] has raised the demand for an ex-

planation of the hierarchy problem. Precise measurements of the Higgs-boson couplings

to various SM particles can provide valuable tools to distinguish between different new-

physics models addressing this problem. Such measurements can elucidate the mechanism

of electroweak symmetry breaking and probe for indirect hints of new particles. Of par-

ticular importance are loop-induced processes, such as the Higgs-boson production process

gg → h and the radiative decay h → γγ, since possible new heavy resonances can lead to

sizable deviations from the SM expectations.

In this paper, we have focused on the gluon fusion cross section in various incarnations

of RS models, in which the scalar sector is localized on or near the IR boundary of a warped

extra dimension. We have derived an exact expression for the gg → h amplitude in terms

of an integral of the mixed-chirality components of the 5D fermion propagator with the

Higgs-boson profile along the extra dimension. This expression can be used to calculate

the effective CP-even and CP-odd ggh couplings, as long as one succeeds in deriving an

explicit expression for the propagator. In contrast to the procedure commonly used in the

literature, all our calculations have been performed by keeping the exact dependence on the

Higgs-boson mass. Moreover, working in a 5D framework we have avoided the notion of KK

modes from the beginning, which means that the infinite sum over fermionic KK modes is

performed implicitly. Only at the end of the calculation we have been able to identify the

contributions of the SM particles and their KK towers to the effective ggh couplings. This
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removes any ambiguities as to the order in which one should perform the limits N → ∞
and η → 0 [23]. The 5D analysis also elucidates the relevance of different mass scales.

While in models with a brane-localized Higgs sector the gluon fusion amplitude receives

the dominant new-physics contributions from states with masses of order several times

MKK, in a narrow bulk-Higgs scenario there is another equally important contribution

arising from states with masses of order v/η, which can resolve the “bulky nature” of the

Higgs boson.

In table 1, we have classified different versions of RS models according to the parametric

relation of the characteristic width η of the Higgs-boson profile with respect to the two

ratios v|Yq|/MKK and v|Yq|/ΛTeV, where ΛTeV is the value of the inherent UV cutoff near

the IR brane. We have shown that it is possible to obtain explicit analytic expressions for

the 5D propagator for both a brane-localized scalar sector and a scalar sector that lives

very near the IR brane (narrow bulk-Higgs scenario). To an excellent approximation, the

effective ggh couplings in these cases only depend on the 5D Yukawa matrices Yq and the

ratio v2/M2
KK, see e.g. (5.32) and (7.19). On the contrary, the results for a generic bulk-

Higgs model, in which the width of the Higgs profile is not parametrically small, depend

in a complicated way on the 5D fermion masses and the shape of the Higgs profile [44].

Importantly, we have pointed out that there is no controllable interpolation between

bulk-Higgs and brane-Higgs models. In RS models in which the scalar sector is localized

on the IR brane, one finds that the gluon fusion cross section is reduced compared with its

SM value, in accordance with the findings of [19, 22, 23]. In this context, we have proved

a conjecture made in [23] for the analytic form of the contribution from virtual KK states.

On the other hand, in models in which the Higgs-boson is described in terms of a narrow

bulk field localized near the IR brane, the cross section is enhanced (apart from regions in

parameter space in which the 5D Yukawa matrices have very small entries). This result con-

firms the calculations performed in [20]. The qualitative difference between the predictions

obtained in the two types of scenarios provides an opportunity to distinguish between the

two classes of models, provided that a deviation of the gluon fusion rate from its SM value

is observed in the future. When one tries to interpolate between the bulk-Higgs and brane-

Higgs scenarios, for instance by considering the limit η → 0 in the context of a bulk-Higgs

model, one enters a transition region with η ∼ v|Yq|/ΛTeV, in which the contributions from

certain higher-dimensional operators involving additional derivatives in the RS Lagrangian

become unsuppressed, so that the effective field-theory approach breaks down.

We have furthermore addressed the question of the numerical impact of power-

suppressed |Φ|2(Ga
µν)

2 operators, which contribute to the gg → h amplitude at tree level.

They can be induced because RS models are effective field theories valid below some cutoff.

We have shown that, irrespective of whether the Higgs sector is localized on the IR brane or

lives in the bulk, one expects power corrections of similar size, as described by the effective

Lagrangian in (6.4) with a coefficient ceff that can be of O(1) if the UV completion of the

RS model is strongly coupled. We have argued that the resulting power corrections are

likely to be numerically smaller than the RS loop effects calculated in our paper.

For most of our discussion we have focused on the minimal RS model with gauge

symmetry SU(3)C ×SU(2)L×U(1)Y in the bulk. However, in section 7 we have considered
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an extension with a custodial symmetry, based on the gauge group SU(3)C × SU(2)L ×
SU(2)R × U(1)X × PLR. We have succeeded in deriving analytical expressions for the

effective ggh couplings in terms of the same input parameters that appear in the minimal

model. Due to the higher multiplicity of particles running in the loop, the contribution

from the infinite KK tower of virtual quark states turns out to be four times larger than

in the minimal model.

Investigating the phenomenological implications of our results, we have focused on the

ratio Rh representing the gluon fusion cross section in the various RS models normalized

to its SM value. We have distinguished between a brane-localized and a narrow bulk-Higgs

field for both the minimal and the custodial RS model. We have pointed out the fact

that the KK contribution to Rh does not only depend strongly on the number of quark

generations (Ng = 3), but also on the maximal value y∗ one imposes on the magnitudes

of the individual entries of the anarchic 5D Yukawa matrices, which are assumed to be

random complex numbers. To a good approximation, our results can be parameterized

in terms of y∗ and the mass Mg(1) ≈ 2.45MKK of the lightest KK gluon state. Provided

that the value of y∗ is not too small, we have shown that quite generically the new-physics

effects in RS models can lead to significant deviations of Rh from 1, even for KK masses

that are not in the reach of the LHC. This is evident from figures 3 and 5, which show

that significant corrections can be obtained even for KK gluon masses in the range of 10–

20TeV. For RS models with a custodial symmetry, whose original motivation was to lower

the KK scales via a protection of the T parameter and the Zbb̄ vertex, the effects are even

more pronounced. As mentioned earlier, Rh is strictly less than 1 in RS models with a

brane-localized scalar sector, whereas it exceeds 1 in models with a bulk-Higgs field for

almost all points in parameter space.

Comparing our predictions with the latest ATLAS and CMS data [58, 59], we have

derived exclusion regions in the Mg(1)–y∗ parameter space of the various models. The

corresponding results shown in figures 4 and 6 demonstrate the new-physics reach of Higgs-

boson observables such as Rh in an impressive way. In the minimal RS model and at 95%

CL, one can exclude KK gluon masses lighter than 12.8TeV×(y∗/3) for the brane-Higgs

case and 4.4TeV×(y∗/3) for the case of a narrow bulk-Higgs field. In custodially protected

RS models, these bounds increase to 24.4TeV×(y∗/3) and 9.6TeV×(y∗/3), respectively.
Especially in this latter case, the bounds derived from Higgs physics are already much

stronger than those obtained from electroweak precision tests. A possible way to weaken

these bounds is to assume that y∗ is significantly smaller than the value commonly adopted

in the literature (y∗ ≈ 3). However, this would create a tension with other observables,

such as the parameter ǫK in the neutral-kaon system, which in the context of RS models

receives corrections scaling like 1/y2∗ [9].

The methods developed in this work can be extended to analyze the loop-mediated

decay h → γγ as well as other decay modes of the Higgs boson. As the experimental

precision on the extracted Higgs couplings increases, it will be exciting to confront the

theoretical predictions obtained in various RS models with the data. One might hope that,

perhaps, one day this could provide a first hint of the possible existence of a warped extra

dimension, even if no KK excitations of SM particles are to be discovered at the LHC.
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Note added. While this paper was in writing, the work [66] appeared, in which similar

questions as in the present work were addressed. While we have no objections to the

analytical calculations presented in that paper, we disagree with the interpretation of

the results obtained by these authors. In particular, the argument that higher-derivative

operators in the RS Lagrangian would “dress” the brane-localized Higgs to make it look

like a bulk field is incompatible with our findings. Rather, these operators dress the bulk

Higgs as its profile is made narrower, and they are responsible for the transition from an

enhanced gg → h amplitude (bulk Higgs) to a suppressed one (brane-localized Higgs), see

table 1.
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A Details of the solution for the propagator functions

Here we present in more detail the derivations needed to calculate the functions T±(p2E)
defined in (3.11). Since ultimately we only need the mixed-chirality components of the

5D fermion propagator evaluated with t = t′ and convoluted with the profile of the Higgs

boson along the extra dimension, we can from the beginning assume that 1 − η ≤ t′ ≤ 1,

but we allow t to take any value.

Calculation of the propagator functions ∆LL and ∆RL. For t < 1− η in the bulk,

the most general solutions for the propagator functions are superpositions of modified

Bessel functions, as shown in (4.13) for the case of ∆LL. The function ∆RL then follows

from the second equation in (4.5). Imposing the boundary conditions (4.7) on the UV

brane (at t = ǫ), one finds four relations among the right coefficients Ci(t
′). Rescaling

these coefficients appropriately, we write the solutions in the form

∆q
LL(t, t

′;−p2) =
√
t

(
D

Q
1 (p̂E , t) 0

0 D
q
2(p̂E , t)

)(
K1(t

′) K2(t
′)

K3(t
′) K4(t

′)

)
,

∆q
RL(t, t

′;−p2) = −MKK p̂E
√
t

(
D

Q
2 (p̂E , t) 0

0 D
q
1(p̂E , t)

)(
K1(t

′) K2(t
′)

K3(t
′) K4(t

′)

)
,

(A.1)

where (with A = Q, q)

DA
1 (p̂E , t) = I−cA− 1

2
(ǫp̂E) IcA− 1

2
(p̂Et)− IcA+ 1

2
(ǫp̂E) I−cA+ 1

2
(p̂Et) ,

DA
2 (p̂E , t) = I−cA− 1

2
(ǫp̂E) IcA+ 1

2
(p̂Et)− IcA+ 1

2
(ǫp̂E) I−cA− 1

2
(p̂Et)

(A.2)

are diagonal matrices, and DA
2 (p̂E , ǫ) = 0.
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In the region t > 1− η very near the IR brane, the general solution for ∆q
LL(t, t

′;−p2)

has been given in (4.14), while the second equation in (4.5) yields

∆q
RL(t, t

′;−p2) =
MKK

η

(
Sq S(t) ̺Yq C̄(t)
̺Y †

q C(t) S̄q S̄(t)

)(
Ĉ1(t

′) Ĉ2(t
′)

Ĉ3(t
′) Ĉ4(t

′)

)

+
MKK

η

(
Sq C(t) ̺Yq S̄(t)
̺Y †

q S(t) S̄q C̄(t)

)(
Ĉ5(t

′) Ĉ6(t
′)

Ĉ7(t
′) Ĉ8(t

′)

)
,

(A.3)

where ̺ = v/(
√
2MKK), and we have used the abbreviations

C(t) = cosh[Sq θ̄
η(t− 1)] , S(t) = sinh[Sq θ̄

η(t− 1)] , (A.4)

and similarly C̄(t) and S̄(t) defined with S̄q instead of Sq. Because of the discontinuity at

t = t′, we must distinguish the cases where t > t′ and t < t′. We indicate this by means of a

superscript on the coefficient functions, using the notation Ĉ>
i (t′) for t > t′, and Ĉ<

i (t′) for
t < t′. Imposing the boundary conditions (4.7) on the IR brane (at t = 1), and satisfying

the jump conditions (4.6), it is straightforward to show that

Ĉ>
1 (t′) = Ĉ<

1 (t′) +
η

M2
KK

1

Sq
S(t′) , Ĉ<

5 (t′) =
η

M2
KK

1

Sq
C(t′) ,

Ĉ>
2 (t′) = Ĉ<

2 (t′) , Ĉ>
7 (t′) = Ĉ<

7 (t′) ,

Ĉ<
4 (t′) = − η

M2
KK

1

S̄q
S̄(t′) , Ĉ>

8 (t′) = Ĉ<
8 (t′)− η

M2
KK

1

S̄q
C̄(t′) ,

(A.5)

while all other coefficients vanish. These relations allow us to express the solution in terms

of the four functions Ĉ<
i (t′) with i = 1, 2, 7, 8.

The remaining eight coefficients are determined by requiring that the solutions for the

propagator functions be continuous at t = 1− η. Continuity of ∆LL yields the conditions

D
Q
1 (p̂E , 1− η)K1(t

′) = coshSq Ĉ
<
1 (t′) +

η

M2
KK

sinhSq

Sq
C(t′) ,

D
Q
1 (p̂E , 1− η)K2(t

′) = coshSq Ĉ
<
2 (t′) ,

D
q
2(p̂E , 1− η)K3(t

′) = sinh S̄q Ĉ
<
7 (t′) ,

D
q
2(p̂E , 1− η)K4(t

′) = sinh S̄q Ĉ
<
8 (t′)− η

M2
KK

cosh S̄q

S̄q
S̄(t′) ,

(A.6)

which can be used to eliminate the coefficients Ki(t
′). Note that on the left-hand sides of

these equations we can take the limit η → 0 without difficulty. When the solutions are

inserted into the expression for ∆RL in (A.1), we then encounter the ratios RA(p̂E) =

DA
1 (p̂E , 1)/D

A
2 (p̂E , 1) defined in (4.17). The remaining four coefficients Ĉ<

i (t′) can be

derived by requiring that the propagator function ∆RL is continuous at t = 1 − η. To

express the answers in a compact form, we introduce the definitions

Nη,1
q (p2E) = 1 +Zη,1

q (p2E) + ηp̂E

[
1 +R−1

Q (p̂E) (Y
†
q )

−1Rq(p̂E)Y
†
q

] tanhSq

Sq
RQ(p̂E) ,

Nη,2
q (p2E) = 1 +Zη,2

q (p2E) + ηp̂E
tanhSq

Sq

[
RQ(p̂E) + Yq Rq(p̂E)Y

−1
q

]
,

(A.7)
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where

Zη,1
q (p2E) =

v2

2M2
KK

Sq tanhSq

X2
q

Yq Rq(p̂E)Y
†
q

tanhSq

Sq
RQ(p̂E) ,

Zη,2
q (p2E) =

v2

2M2
KK

tanhSq

Sq
Yq Rq(p̂E)Y

†
q

Sq tanhSq

X2
q

RQ(p̂E) .

(A.8)

In the limit η → 0, the quantities N
η,i
q (p2E) approach 1 + Zq(p

2
E) with Zq(p

2
E) as defined

in (5.14), while the quantities Zη,i
q (p2E) approach Zq(p

2
E). After some lengthy algebra, we

now obtain

Ĉ<
1 (t′) = − η

M2
KK

1

Sq sinhSq

×
[
sinh2 Sq +Zη,1

q (p2E)
1

N
η,1
q (p2E)

+
Sq tanhSq

ηp̂E
RQ(p̂E)

1

N
η,1
q (p2E)

]
C(t′)

coshSq
,

Ĉ<
2 (t′) =

1

pEMKK

1

coshSq
RQ(p̂E)

1

N
η,2
q (p2E)

S(t′)
Sq coshSq

̺Yq ,

Ĉ<
7 (t′) =

̺Y †
q

pEMKK

1

Sq coshSq
RQ(p̂E)

1

N
η,1
q (p2E)

C(t′)
coshSq

,

Ĉ<
8 (t′) =

η̺Y †
q

M2
KK

1

X2
q sinhSq

×
[
sinh2 Sq +

N
η,2
q (p2E)− 1

N
η,2
q (p2E)

− Sq tanhSq

ηp̂E
RQ(p̂E)

1

N
η,2
q (p2E)

]
S(t′)

Sq coshSq
̺Yq .

(A.9)

Calculation of the functions T±(p2

E). Equipped with all required coefficients, we can

now derive explicit expressions for the quantities T±(p2E) defined in (3.11). Using (A.3),

we find that

v√
2

(
0 Yq

Y
†
q 0

)
∆q

RL(t, t; p
2
E) +∆q

LR(t, t; p
2
E)

2

=
M2

KK

2η

{
X2

q

[
C(t) Ĉ<

1 (t) +
η

M2
KK

S(t) C(t)
Sq

]
+ ̺Y †

q Sq S(t) Ĉ<
2 (t)

+ X̄2
q

[
S̄(t) Ĉ<

8 (t)− η

M2
KK

S̄(t) C̄(t)
S̄q

]
+ ̺Yq S̄q C̄(t) Ĉ<

7 (t) + h.c.

}
,

(A.10)

where the contribution from ∆q
LR is the hermitian conjugate of that from ∆q

RL (assuming

p2E > 0 for now). Upon taking the trace in (3.11), the two terms proportional to η in the

square brackets cancel each other. Next, using the explicit expressions for the coefficients

in (A.9), we find that the contribution involving the terms proportional to 1/η in square

brackets in the expression for Ĉ<
1 cancel against the contribution from Ĉ<

7 in (A.10), and
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likewise for the terms involving Ĉ<
2 and Ĉ<

8 . After the dust settles, we obtain

T+(p
2
E) =

∑

q=u,d

∫ 1

ǫ
dt δηh(t− 1)Tr

{
X2

q

Sq sinh 2Sq

×
[
sinh2 Sq + C2(t)Zη,1

q (p2E)
1

N
η,1
q (p2E)

− S2(t)
N

η,2
q (p2E)− 1

N
η,2
q (p2E)

+ h.c.

]}
,

(A.11)

and analogously for T−(p2E). In the case of one generation, the above expression reduces to

formula (5.4), once we identify k1(p̂E) = 1+Zq(p
2
E) coth

2 Sq. For the general case of three

generations, the result (A.11) simplifies if we take the limit η → 0, in which we recover

the results shown in (5.13). Note that in this case the dependence on t inside the square

brackets in (A.11) disappears, due to the identity C2(t)− S2(t) = 1. Therefore, as already

mentioned in section 5.5, we would have obtained the same result by setting t = t′ = 1−,
as shown in (5.18).

Generalizations for the model with custodial symmetry. The derivation of the

propagator functions in the RS model with custodial symmetry proceeds in an analogous

way. In fact, the only difference arises in the equations in (A.1), where DQ
1,2 and D

q
2,1 must

be replaced by

(
D

Q
1,2(p̂E , t) 0

0 D
Q
3,4(p̂E , t)

)
and




Duc

2,1(p̂E , t) 0 0

0 Dτ1
4,3(p̂E , t) 0

0 0 Dτ2
4,3(p̂E , t)


 (A.12)

for up-type quarks, and analogously for down- and λ-type quarks, with patterns that can

be read off from (7.10). The appearance of the functions

DA
3 (p̂E , t) = I−cA+ 1

2
(ǫp̂E) IcA− 1

2
(p̂Et)− IcA− 1

2
(ǫp̂E) I−cA+ 1

2
(p̂Et) ,

DA
4 (p̂E , t) = I−cA+ 1

2
(ǫp̂E) IcA+ 1

2
(p̂Et)− IcA− 1

2
(ǫp̂E) I−cA− 1

2
(p̂Et)

(A.13)

gives rise to the ratios R
(−)
A (p̂E) = DA

3 (p̂E , 1)/D
A
4 (p̂E , 1) defined in (7.7).

B Case of a bulk-Higgs field

This section intents to relate an RS model with a scalar sector in the bulk, in which the

Higgs field and its vev have profiles that are strongly peaked near the IR brane, to the RS

model with a brane-localized Higgs sector. Our discussion will follow the expositions given

in [38, 57], but we will generalize these results in some aspects.

Definition of the model. Using the orbifold coordinate x5 ≡ rφ, the action for the

Higgs sector reads

Sh =

∫
d4x

∫ rπ

−rπ
dx5 e

−4σ(φ)
[
gMNDMΦ†DNΦ−µ2 |Φ|2−VUV(Φ) δ(x5)−VIR(Φ) δ(|x5|−rπ)

]
,

(B.1)
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where µ provides a bulk mass for the scalar field, which can be tachyonic (see below). The

potentials localized on the UV and IR branes determine the boundary conditions of the

scalar fields and induce electroweak symmetry breaking. They are chosen to be

VUV(Φ) = MUV |Φ|2 , VIR(Φ) = −MIR |Φ|2 + λIR |Φ|4 , (B.2)

with mass dimensions [MUV] = [MIR] = 1 and [λIR] = −2. The dimensionful parameters

in the 5D action naturally scale with appropriate powers of MPl, and we find it useful to

introduce dimensionless O(1) parameters by the rescalings

mUV ≡ MUV

2k
, mIR ≡ MIR

2k
, λ ≡ λIR k

4r
. (B.3)

We now change variables from φ to t = ǫ eσ(φ) and express the scalar doublet Φ in the

form

Φ(x, t) =
t

ǫ
√
r

(
−iϕ+(x, t)

1√
2
[v(t) + h(x, t) + iϕ3(x, t)]

)
, (B.4)

where v(t) denotes the profile of the Higgs vev along the extra dimension, h(x, t) is the 5D

physical Higgs scalar after electroweak symmetry breaking, and ϕ+(x, t), ϕ3(x, t) are 5D

Goldstone bosons. For the following analysis we do not consider the Goldstone fields any

further (unitary gauge). Integrating by parts, the Lagrangian corresponding to the action

Sh =
∫
d4xLh(x) in (B.1) can be rewritten in the form

Lh(x)

=
2π

L

∫ 1

ǫ

dt

t

{
1

2
∂µh(x, t) ∂

µh(x, t)

+
M2

KK

2

[
v(t) + 2h(x, t)

t

(
t2∂2

t + t∂t − β2
) v(t)

t
+

h(x, t)

t

(
t2∂2

t + t∂t − β2
) h(x, t)

t

]}

− πM2
KK

L

{[
v(t) + 2h(x, t)

t2
∂t [t v(t)] +

h(x, t)

t2
∂t [t h(x, t)]

]1−

t=ǫ+
+

mUV

ǫ2
[
v(ǫ) + h(x, ǫ)

]2

−mIR

[
v(1) + h(x, 1)

]2
+

λ

M2
KK

[
v(1) + h(x, 1)

]4
}
,

(B.5)

where β =
√
4 + µ2/k2. Requiring that the terms linear or quadratic in h(x, t) cancel on

the UV and IR branes yields the boundary conditions13

∂t [t v(t)]t=ǫ+ = mUV v(ǫ) , ∂t [t v(t)]t=1− = mIR v(1)− 2λ

M2
KK

v3(1) ,

∂t [t h(x, t)]t=ǫ+ = mUV h(x, ǫ) , ∂t [t h(x, t)]t=1− = mIR h(x, 1)− 6λ

M2
KK

v2(1)h(x, 1) .

(B.6)

The notation ǫ+ and 1− indicates that the orbifold fixed points must be approached from

the appropriate sides.

13These conditions can also be derived by integrating the field equations over infinitesimal intervals about

the branes.
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Profile of the Higgs vacuum expectation value. By means of the variational prin-

ciple with respect to v(t), one obtains the equation

(
t2∂2

t + t∂t − β2
) v(t)

t
= 0 , with β2 = 4 +

µ2

k2
(B.7)

which ensures that the tadpole terms in the Lagrangian (B.5) cancel out. We then obtain

Lh(x) =
2π

L

∫ 1

ǫ

dt

t

[
1

2
∂µh(x, t) ∂

µh(x, t) +
M2

KK

2

h(x, t)

t

(
t2∂2

t + t∂t − β2
) h(x, t)

t

]

− π

L
λ
[
− v4(1) + 4v(1)h3(x, 1) + h4(x, 1)

]
.

(B.8)

The general solution to the differential equation (B.7) subject to the boundary condi-

tions (B.6) is

v(t) = Nv

(
t1+β − rv t

1−β
)
, with rv = ǫ2β

2 + β −mUV

2− β −mUV
, (B.9)

and

N2
v =

M2
KK

2λ

(mIR − 2− β)− rv (mIR − 2 + β)

(1− rv)
3 . (B.10)

Before proceeding, let us first discuss which values the parameter β can take. Motivated

by the observation that the energy-momentum flux in a pure anti-de Sitter space without

an IR brane (which corresponds to taking the limit r → ∞) vanishes at the boundary only

if the 5D scalar field obeys the Breitenlohner-Friedman bound µ2 > −4k2 [67], one usually

assumes that β must be a real positive number, even though not necessarily larger than 2.

Unless β is very close to zero, it follows that the coefficient rv ∝ ǫ2β in (B.9) is extremely

small and can be set to zero for all practical purposes. The only exception would be the

region where t ∼ ǫ is very near the UV brane, which however is irrelevant for our analysis

here. It follows that

v(t) = v(1) t1+β , with v(1) = MKK

√
mIR − 2− β

2λ
. (B.11)

The requirement that the Higgs vev be a real number imposes an upper bound on the

parameter β, since λ > 0 is required by vacuum stability. We thus obtain the allowed

range

0 < β < mIR − 2 . (B.12)

We proceed to relate the parameter v(1) to the physical value vSM of the Higgs vev in

the SM. After electroweak symmetry breaking, the mass terms for the W and Z bosons

are generated by the 5D Lagrangian

Sm =

∫
d4x

2π

L

∫ 1

ǫ

dt

t

v2(t) g25
4

[
W+

µ (x, t)W−µ(x, t) +
1

2 cos2 θW
Zµ(x, t)Z

µ(x, t)

]
,

(B.13)
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where the 5D gauge coupling g5 is related to the gauge coupling g of the SM by g =

g5/
√
2πr [54]. Introducing the KK decomposition

Zµ(x, t) =
1√
r

∞∑

n=0

Zµ
n(x)χ

Z
n (t) , (B.14)

and similarly for the W bosons, and using that the zero-mode profiles are flat, χZ
n (t) =

1/
√
2π up to higher-order terms in v2/M2

KK [54], we can identify

v24 ≡ 2π

L

∫ 1

ǫ

dt

t
v2(t) =

π

L

v2(1)

1 + β
, (B.15)

where once again we neglect terms suppressed by powers of ǫ. It follows that

v(t) = v4

√
L

π
(1 + β) t1+β . (B.16)

The parameter v4 coincides with the parameter v used elsewhere in this paper. At lowest

order in an expansion in powers of v2/M2
KK, it coincides with the SM parameter vSM as

defined, e.g., via the value of the Fermi constant. Higher-order corrections to the relation

vSM = v4 could be calculated by solving the differential equations for the profiles of the

gauge-boson zero modes in the presence of the Higgs vev.

Profiles for the Higgs boson and its KK excitations. We now proceed to study

the eigenvalue problem for the physical Higgs boson and its KK excitations. We write the

KK decomposition of the 5D Higgs field as

h(x, t) =
∞∑

n=0

hn(x)χn(t) , (B.17)

where the zero mode h(x) ≡ h0(x) corresponds to the SM Higgs boson. The profile

functions obey the orthonormality condition

2π

L

∫ 1

ǫ

dt

t
χm(t)χn(t) = δmn , (B.18)

which ensures that the kinetic terms in the effective 4D Lagrangian are canonically normal-

ized. In order to obtain canonical mass terms from the Lagrangian (B.8), we must impose

the equation of motion

(
t2∂2

t + t∂t + t2x2n − β2
) χn(t)

t
= 0 , (B.19)

where xn = mn/MKK denote the masses of the KK scalar bosons in units of MKK. The

general solution to this equation is a linear combination of Bessel functions,

χn(t) = Nn t
[
Jβ(xnt)− rnYβ(xnt)

]
, (B.20)
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where the boundary condition on the UV brane in (B.6) once again implies that rn ∝ ǫ2β is

extremely small and can be set to zero for all practical purposes, since we are not interested

in the region where t ∼ ǫ. We then obtain

χn(t) =

√
L

π

t Jβ(xnt)√
J2
β(xn)− Jβ+1(xn) Jβ−1(xn)

. (B.21)

The boundary condition on the IR brane gives rise to the eigenvalue equation, which

determines the masses of the scalar modes. We find

xnJβ+1(xn)

Jβ(xn)
= 2(mIR − 2− β) ≡ 2δ . (B.22)

It follows from this equation that even the zero mode (the SM Higgs boson) has a mass

that is naturally of order the KK scale MKK, which empirically cannot be less than a few

TeV. This is the little hierarchy problem, which as mentioned in the Introduction is not

addressed in RS scenarios. In order to obtain a realistic Higgs mass mh ≪ MKK, we must

assume that

δ = mIR − 2− β ≪ 1 . (B.23)

Once this is done, it is straightforward to obtain a formula for the zero-mode mass in a

power series in δ. We find

x20 =
m2

h

M2
KK

= 4(1 + β) δ

[
1− δ

2 + β
+

2δ2

(2 + β)2 (3 + β)
+ . . .

]
. (B.24)

Assuming MKK = 2TeV, for example, implies that (1+ β) δ ≈ 10−3, which corresponds to

a fine-tuning of 1 in 1000. For the zero-mode profile, it is now straightforward to obtain

an expansion in powers of x20. The leading terms are given by

χ0(t) =

√
L

π
(1 + β) t1+β

[
1− x20

4

(
t2

1 + β
− 1

2 + β

)
+ . . .

]
. (B.25)

Dropping the irrelevant constant proportional to v4(1), the Higgs Lagrangian (B.8)

can now be written as

Lh(x) =
∑

n

[
1

2
∂µhn(x) ∂

µhn(x)−
m2

n

2
h2n(x)

]

− v4
4L

π
(1 + β)2 λ

∑

l,m,n

ξl ξm ξn hl(x)hm(x)hn(x)

− L

π
(1 + β)2 λ

∑

k,l,m,n

ξk ξl ξm ξn hk(x)hl(x)hm(x)hn(x) ,

(B.26)

where ξn ≡ χn(1)/
√

L
π (1 + β). From (B.25) we find ξ0 ≈ 1 for the zero mode, while (B.21)

and (B.22) imply that ξn ≈ ±1/
√
1 + β for the KK excitations. We proceed to relate the
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parameter λ to the physical value λ4 of the Higgs self coupling. The relevant terms in the

SM Lagrangian are

LSM ∋ −m2
h

2
h2 − vSM λSM h3 − λSM

4
h4 , (B.27)

where m2
h = 2λSM v2SM. Matching either one of these terms with the corresponding term

in (B.26), we obtain at leading order

λSM = λ4 =
4L

π
(1 + β)2 λ = λIR k2 (1 + β)2 . (B.28)

The relation between λSM and λ4 receives higher-order corrections in v2/M2
KK, which are

calculable in the model and depend on which of the three couplings in (B.27) is used to

perform the matching.

Yukawa interactions. We finally consider the Yukawa couplings of the scalar field to

the fermions. In the model with a brane-localized Higgs sector, which we have considered

for most of this work, one has in analogy with (3.2)

− Lbrane
Y (x) =

∑

q=u,d

∫ 1

ǫ
dt
vδηv (t− 1)+h(x)δηh(t− 1)√

2
Q̄L(t, x)

k

2

(
0 Y 5D

q

Y
5D†
q 0

)
QR(t, x) + h.c.,

(B.29)

where the 5D Yukawa matrices Y 5D
q have mass dimension −1. In the model with a bulk-

Higgs field, we have instead

−Lbulk
Y (x) =

∑

q=u,d

∫ 1

ǫ
dt
v(t) +

∑
n hn(x)χn(t)√
2

Q̄L(t, x)
1√
r

(
0 Y 5D

q,bulk

Y
5D†
q,bulk 0

)
QR(t, x)+h.c.,

(B.30)

where the 5D Yukawa matrices Y 5D
q,bulk now have mass dimension −1/2. In order to match

the two expression onto each other, we must rewrite the functions v(t) from (B.16) and

χ0(t) from (B.25) in terms of functions with unit area, which can be mapped onto the

normalized distributions δηv (t− 1) and δηh(t− 1). We obtain

v(t) = v4

√
L

π

√
1 + β

2 + β
δ1/βv (t− 1) ,

χ0(t) =

√
L

π

√
1 + β

2 + β

[
1 +

β x20
4(1 + β)(2 + β)(4 + β)

+ . . .

]
δ
1/β
h (t− 1) ,

(B.31)

with
δ1/βv (t− 1) = (2 + β) t1+β ,

δ
1/β
h (t− 1) = (2 + β) t1+β

[
1− x20

4(1 + β)

(
t2 − 2 + β

4 + β

)
+ . . .

]
.

(B.32)

Here 1/β plays the role of the regulator η in (B.29). Using the quark bilinear terms as a

reference, the corresponding matching relations between the two Yukawa matrices read

Yq ≡
k

2
Y 5D
q =

√
k (1 + β)

2 + β
Y 5D
q,bulk . (B.33)

– 53 –



J
H
E
P
0
1
(
2
0
1
4
)
1
7
3

The quantities on the left-hand side of the equation are the dimensionless Yukawa matri-

ces introduced in (3.2), whose elements are assumed to be random numbers bounded in

magnitude by y∗. If one used the hqq̄ couplings instead, the above relation would receive

corrections of O(x20).

Limit of a narrow bulk-Higgs field. We are finally in a position to study the limit

β ≫ 1, in which the profile functions in (B.32) become strongly localized near the IR

brane. We can then identify 1/β with the width of the Higgs profile, which plays the role

of the regulator η in our brane-Higgs scenario. The Yukawa matrices of the bulk-Higgs

model must then be identified with Yq ↔
√
k/β Y 5D

q,bulk ≈ (k/
√
µ)Y 5D

q,bulk. It would be

inappropriate to conclude from this relation that the Yukawa matrices Yq vanish in the

limit β → ∞. Rather, one should consider the dimensionless Yukawa couplings as fixed

quantities, which are related to the observed masses and mixing angles of the SM quarks by

means of relations derived in [10]. It then follows that the dimensionful Yukawa matrices

Y 5D
q,bulk must scale with

√
β/k ≈ √

µ/k (see also the discussion in [24]).

Finally, since t is pushed near 1, we conclude from (B.32) that

δ
1/β
h (t− 1)

δ
1/β
v (t− 1)

= 1 +O
(

m2
h

β2M2
KK

)
, (B.34)

as was claimed near the beginning of section 4.

Taking the limit of very large β is not particularly natural, since β =
√
4 + µ2/k2 is

naturally of O(1). For large β, we have the double hierarchy

1

r
≪ k ≪ µ ≈ MIR

2
, or

10

r
∼ k ∼ µ

β
. (B.35)

Large β can be achieved by taking k significantly smaller than the Planck scale (and 1/r yet

smaller by an order of magnitude), or by assuming that µ and MIR are significantly larger

thanMPl. The first possibility appears more plausible. Note that for large β relation (B.28)

implies that λ4 ≈ λIR µ2, indicating that increasing β by lowering the curvature parameter

k does not affect the relation between λ4 and λIR in a significant way.

C Case of two different Yukawa matrices

We briefly discuss the generalization of our results to the case where the two Yukawa

couplings in (3.4), involving products of Z2-even and Z2-odd fermion profiles, are associated

with different Yukawa matrices, such that

gumn =

√
2π

Lǫ

∫ 1

ǫ
dt δη(t− 1)

[
a(U)†
m C(Q)

m (t)Y C
u C(u)

n (t) a(u)n + a(u)†m S(u)
m (t)Y S †

u S(Q)
n (t) a(U)

n

]
.

(C.1)

At the level of the gluon fusion amplitude (3.8), the above modification is implemented by

the substitution

1√
2

(
0 Yq

Y
†
q 0

)
→ 1√

2

(
0 Y C

q

Y
S †
q 0

)
PR +

1√
2

(
0 Y S

q

Y
C †
q 0

)
PL . (C.2)
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This generalization is only allowed if the Higgs boson is localized on the IR brane. For a

bulk-Higgs field, it is forbidden by 5D Lorentz invariance, since iγ5 is one of the 5D Dirac

matrices γa.

The equations of motion (4.5) for the propagator functions must now be generalized to

p2∆q
LL(t, t

′;−p2)−MKK

(
∂

∂t
+Mq(t)

)
∆q

RL(t, t
′;−p2) = δ(t− t′) ,

∆q
RL(t, t

′;−p2)−MKK

(
− ∂

∂t
+M†

q(t)

)
∆q

LL(t, t
′;−p2) = 0 ,

(C.3)

where

Mq(t) =
1

t

(
cQ 0

0 −cq

)
+

v√
2MKK

δηv (t− 1)

(
0 Y C

q

Y
S †
q 0

)
(C.4)

replaces the generalized mass matrix in (4.2). The coupled set of first-order differential

equations in (C.3) can be combined to yield the second-order equation

[
∂2

∂t2
−Mq(t)M†

q(t)−
dM†

q(t)

dt
+
(
Mq(t)−M†

q(t)
) ∂

∂t
−p̂2E

]
∆q

LL(t, t
′ −p2) =

1

M2
KK

δ(t−t′) .

(C.5)

In the bulk region t < 1− η, where the profile δηv (t− 1) of the Higgs vev vanishes and the

mass matrix is hermitian, this equation reduces to the original equation (4.8). However,

its structure becomes much more complicated for t > 1 − η. We have not succeeded to

derive the general solution in that region.

In the case of infinitesimal η (at fixed p2), however, it is consistent to only keep the

terms in (C.3) that are enhanced by 1/η for 1 − η < t < 1. Taking t′ < 1 − η in the bulk

region, squaring the resulting differential operators, and adopting the Higgs profile given

in (4.9), we thus need to solve

[
∂2

∂t2
− v2

2M2
KKη

2

(
Y C
q Y

S†
q 0

0 Y
S †
q Y C

q

)]
∆q

RL(t, t
′;−p2) = 0 + . . . ,

[
∂2

∂t2
− v2

2M2
KKη

2

(
Y S
q Y

C†
q 0

0 Y
C †
q Y S

q

)]
∆q

LL(t, t
′;−p2) = 0 + . . . ,

(C.6)

where the dots denote subleading terms. The solutions to these equations involve hyperbolic

trigonometric functions, whose arguments contain the matrices

Xq =
v√

2MKK

√
Y C
q Y

S †
q , X̄q =

v√
2MKK

√
Y

S †
q Y C

q (C.7)

and their hermitian conjugates. It is then not difficult to show that, in the limit η → 0,

the boundary conditions given in (5.19) still hold, provided we use Xq as defined here

instead of the original definition in (4.12), and Ỹq as shown in (5.34) instead of the original

definition in (5.20). Solving the bulk equations of motion for the propagator functions with

these boundary conditions, we recover our previous solutions with the substitutions just

described.
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D Perturbativity bounds on the Yukawa couplings

One can impose an upper bound on the size of the 5D Yukawa couplings by requiring

that the Yukawa interactions remain perturbative up to the cutoff of the RS model under

consideration (see e.g. [9, 57]). In 5D language, NDA estimates of the one-loop corrections

to the Yukawa interactions in a model with brane-localized Higgs sector hint at a quadratic

divergence. One thus obtains a condition of the form [68]

cg

(
|Y 5D

q |√
2

)2
l4
l25

M2
Pl =

cg|Yq|2
18π4

(
ΛTeV

MKK

)2
!
< 1 , (D.1)

where |Y 5D
q | = 2|Yq|/k sets the scale of the dimensionful 5D Yukawa couplings, l4 = 16π2

and l5 = 24π3 are appropriate 4D and 5D phase-space factors, MPl is the physical UV cutoff

of the RS model, and in the last step we have used that ΛTeV = MPlǫ and MKK = kǫ.

The coefficient cg accounts for the multiplicity of fermion generations and is chosen such

that cg = 1 for the case of one generation. In general, for Ng fermion generations, its value

cg = 2Ng − 1 is determined by the relation

〈(
YqY

†
q Yq

)

ij

〉
= (2Ng − 1) |Yq|2 (Yq)ij , (D.2)

which holds in the sense of an expectation value for a large sample of anarchic, complex

random matrices. It is instructive to reproduce condition (D.1) by employing a 4D picture

in terms of KK modes, where the quadratic behavior on the cutoff arises from a double

sum over the NKK levels of states with masses below the cutoff ΛTeV [9]. This leads to the

condition

cg

( |Yq|√
2

)2 1

l4
N2

KK ≈ cg|Yq|2
32π4

(
ΛTeV

MKK

)2
!
< 1 , (D.3)

where we have used that the masses of the KK modes are determined by the zeroes of

some Bessel functions, such that the states in the N th KK level have masses approximately

given by NπMKK (valid for large N), and hence NKK ≈ ΛTeV/(πMKK). The two estimates

in (D.1) and (D.3) differ by a harmless O(1) factor but are parametrically equivalent

(including factors of π) as NDA estimates. Employing (6.11) and solving for y∗, we find

the condition y∗ < ymax, with the upper bounds ymax = (6π2/
√
cg)MKK/ΛTeV derived

from (D.1) and ymax = (8π2/
√
cg)MKK/ΛTeV derived from (D.3). Assuming as before

that ΛTeV ∼ 10MKK, one obtains ymax ≈ 2.6 in the first case and ymax ≈ 3.5 in the

second. These estimates are somewhat more refined than those presented elsewhere in the

literature (because we include the dependence on Ng), but they are compatible with the

conventional choice ymax = 3 adopted in most phenomenological analyses of RS models.

Using the more stringent upper bound derived from (D.1), and assuming that the Yukawa

couplings are not much smaller than the values given by the perturbativity bound, we can

rewrite condition (6.12) in the form

ceff ≪ 3π2

2

N2
g

2Ng − 1
≈ 27 , (D.4)
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which is now independent of the value of the ratio MKK/ΛTeV. This argument shows

that, even if the UV completion of the RS model is strongly coupled and ceff = O(1),

the contributions from higher-dimensional operators are expected to be numerically much

smaller than the KK loop effects, provided that the Yukawa couplings are not much smaller

than the perturbativity bounds.

Repeating the same argument for the case of an RS model in which the Higgs sector

lives in the bulk, we obtain from relation (B.33) in appendix B the condition

cg

(
|Y 5D

q |√
2

)2
1

l5
MPl =

cg|Yq|2
48π3

(2 + β)2

1 + β

ΛTeV

MKK

!
< 1 , (D.5)

which translates into y∗ < ymax with ymax =
√
96π3/cg

√
1+β
2+β

√
MKK/ΛTeV. Here β ∼ 1/η

is related to the width of the Higgs profile. Note that in the bulk-Higgs case the suppression

in the ratio MKK/ΛTeV is parametrically weaker than in the case of a brane-localized Higgs

field. In practice, with ΛTeV ∼ 10MKK, this effect is not too important, however. Even

for a very broad bulk Higgs with β → 0, we obtain ymax ≈ 3.9, which is of the same order

as the bound in the brane-Higgs case. In the present work we are only interested in a

narrow bulk-Higgs scenario, for which η = 1/β ≪ 1 is a small parameter (see table 1). We

can then simplify ymax =
√
96π3/cg

√
ηMKK/ΛTeV ≈ 7.7

√
η. This formula can only be

trusted as long as η & MKK/ΛTeV ≈ 0.1. For smaller η, the relevant bound is that found

in the brane-Higgs case, ymax ≈ 2.6. From a practical point of view, there is no significant

difference between the two bounds.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[9] C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs,

JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

[10] S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor Physics in the

Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests,

JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].

[11] M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ∆ F=2 Observables and

Fine-Tuning in a Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 001

[arXiv:0809.1073] [INSPIRE].

[12] M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B Decays in a

Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 108

[arXiv:0812.3803] [INSPIRE].

[13] M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor Physics in the

Randall-Sundrum Model: II. Tree-Level Weak-Interaction Processes, JHEP 09 (2010) 017

[arXiv:0912.1625] [INSPIRE].

[14] A. Djouadi and G. Moreau, Higgs production at the LHC in warped extra-dimensional

models, Phys. Lett. B 660 (2008) 67 [arXiv:0707.3800] [INSPIRE].

[15] A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion,

Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].

[16] G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Higgs → γγ beyond the Standard Model,

JHEP 06 (2009) 054 [arXiv:0901.0927] [INSPIRE].

[17] G. Bhattacharyya and T.S. Ray, Probing warped extra dimension via gg → h and h → γγ at

LHC, Phys. Lett. B 675 (2009) 222 [arXiv:0902.1893] [INSPIRE].

[18] C. Bouchart and G. Moreau, Higgs boson phenomenology and VEV shift in the RS scenario,

Phys. Rev. D 80 (2009) 095022 [arXiv:0909.4812] [INSPIRE].

[19] S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The Custodial

Randall-Sundrum Model: From Precision Tests to Higgs Physics, JHEP 09 (2010) 014

[arXiv:1005.4315] [INSPIRE].

[20] A. Azatov, M. Toharia and L. Zhu, Higgs Production from Gluon Fusion in Warped Extra

Dimensions, Phys. Rev. D 82 (2010) 056004 [arXiv:1006.5939] [INSPIRE].

[21] A. Azatov and J. Galloway, Light Custodians and Higgs Physics in Composite Models,

Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].

[22] F. Goertz, U. Haisch and M. Neubert, Bounds on Warped Extra Dimensions from a Standard

Model-like Higgs Boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].

[23] M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs Production in a

Warped Extra Dimension, JHEP 08 (2012) 156 [arXiv:1204.0008] [INSPIRE].

[24] A. Azatov, M. Toharia and L. Zhu, Higgs Mediated FCNC’s in Warped Extra Dimensions,

Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].

[25] C. Delaunay, J.F. Kamenik, G. Perez and L. Randall, Charming CP-violation and Dipole

Operators from RS Flavor Anarchy, JHEP 01 (2013) 027 [arXiv:1207.0474] [INSPIRE].

– 58 –

http://dx.doi.org/10.1103/PhysRevD.71.016002
http://arxiv.org/abs/hep-ph/0408134
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0408134
http://dx.doi.org/10.1088/1126-6708/2008/09/008
http://arxiv.org/abs/0804.1954
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1954
http://dx.doi.org/10.1088/1126-6708/2008/10/094
http://arxiv.org/abs/0807.4937
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4937
http://dx.doi.org/10.1088/1126-6708/2009/03/001
http://arxiv.org/abs/0809.1073
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.1073
http://dx.doi.org/10.1088/1126-6708/2009/03/108
http://arxiv.org/abs/0812.3803
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3803
http://dx.doi.org/10.1007/JHEP09(2010)017
http://arxiv.org/abs/0912.1625
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1625
http://dx.doi.org/10.1016/j.physletb.2007.11.034
http://arxiv.org/abs/0707.3800
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.3800
http://dx.doi.org/10.1103/PhysRevD.77.055018
http://arxiv.org/abs/0711.0828
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0828
http://dx.doi.org/10.1088/1126-6708/2009/06/054
http://arxiv.org/abs/0901.0927
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0927
http://dx.doi.org/10.1016/j.physletb.2009.03.069
http://arxiv.org/abs/0902.1893
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.1893
http://dx.doi.org/10.1103/PhysRevD.80.095022
http://arxiv.org/abs/0909.4812
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4812
http://dx.doi.org/10.1007/JHEP09(2010)014
http://arxiv.org/abs/1005.4315
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4315
http://dx.doi.org/10.1103/PhysRevD.82.056004
http://arxiv.org/abs/1006.5939
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5939
http://dx.doi.org/10.1103/PhysRevD.85.055013
http://arxiv.org/abs/1110.5646
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5646
http://dx.doi.org/10.1016/j.physletb.2012.05.024
http://arxiv.org/abs/1112.5099
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5099
http://dx.doi.org/10.1007/JHEP08(2012)156
http://arxiv.org/abs/1204.0008
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0008
http://dx.doi.org/10.1103/PhysRevD.80.035016
http://arxiv.org/abs/0906.1990
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1990
http://dx.doi.org/10.1007/JHEP01(2013)027
http://arxiv.org/abs/1207.0474
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0474


J
H
E
P
0
1
(
2
0
1
4
)
1
7
3

[26] K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision

tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

[27] C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless

electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038]

[INSPIRE].

[28] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zbb̄,

Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

[29] M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza Klein States in

Randall-Sundrum Models with Custodial SU(2), Nucl. Phys. B 759 (2006) 202

[hep-ph/0607106] [INSPIRE].
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