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1 introduction

Global U(1) symmetry breaking plays a crucial role in many aspects of particle physics and

field theories. Cosmic strings are generated associated with the U(1) symmetry breaking in

the cosmic history and hence are the key solitons to probe information of the early universe

or to prove (or disprove) a phenomenological model [1].

One of the most important global U(1) symmetries is the U(1)R symmetry in super-

symmetric theories. Since supersymmetry (SUSY) is broken at low-energy scales, we must

live in a vacuum with nonvanishing potential energy, which requires exact U(1)R symme-

try if the vacuum is the global minimum. On the other hand, exact U(1)R symmetry

prohibits nonzero Majorana gaugino mass. In this reason, relatively complicated vacuum

structure that contains both true SUSY vacua and false vacua with approximate U(1)R
symmetry (broken explicitly or spontaneously) is now energetically studied for low-energy

model building in the phenomenological point of view. (See [2, 3] for reviews.) When

a false vacuum is selected in such models after inflation, the U(1)R symmetry is sponta-

neously broken and it gives rise to cosmic R-strings, which cannot be avoided in a high

scale inflation or a high reheating temperature scenario.

Cosmic strings in some models of this class have a peculiar feature. If a lower U(1)

preserving vacuum exists, the field configuration in the string core falls down to the lower

vacuum. Therefore, the strings have inner structure that is tube-like domain wall con-

figuration. Note that since the lower vacuum is energetically favored, the interior of the
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string core possibly starts to expand [4–9], and the Universe is eventually filled by the true

vacuum, where SUSY is recovered. This situation is inconsistent with our Universe.

Besides this extreme case, it has been also reported that there is parameter space where

the meta-stable tube-like strings exist [8]. However, naively thinking, such an object would

be unstable against any disturbance, and follow the same fate as the above case. Actually,

once multiple strings are formed by the breaking of U(1)R in the cosmic history, they

are inevitably affected by the violent dynamical processes like collision and reconnection.

Taking such kinds of dynamical processes of meta-stable R-strings into account, it is non-

trivial whether the tube-like strings become unstable or keep their stability throughout

their collision process. Thus, it is very important to study the collision dynamics and

figure out the (in)stability of the tube-like R-strings, which has a tight relationship with the

possibility to constrain the model building for realistic SUSY breaking and U(1)R breaking.

In this paper, we investigate the dynamical stability/instability for the strings under

the reconnection. For the sake of this study, we perform the field-theoretic simulations

of the collision of two meta-stable strings described as a solitonic solution in the model

of a classical complex scalar field with a potential including a true vacuum and a meta-

stable vacuum. For the simulations, we particularly focus on the two physical parameters

characterising the collision process; the relative velocity and the angle of two colliding

strings. As a result, we find that the stability of the system strongly depends on these

parameters and that surprisingly there is a wide parameter space where the system is

stable against the collision. This work implies the importance of taking into account the

dynamics of the meta-stable objects generated in the SUSY breaking and U(1)R breaking

models. Although this system cannot produce the cosmic string network via the Kibble

mechanism, the process of the string collision would catch up the feature of more realistic

situations. At any rate, it is very useful to reveal novel phenomena by exploiting a simple

model which would be shared by a wide class of theories.

The organization of this paper is as follows. In section 2, we set up the model and show

numerical solutions for static metastable strings. In section 3, by using approximations, we

estimate the maximum winding number of a metastable string and study analytically insta-

bility of colliding two strings. In section 4, we investigate the dynamics of colliding strings

by three-dimensional simulations. We survey parameter dependence of instability by vary-

ing the collision angle and the relative speed of strings. Section 5 is devoted to conclusions

and discussions. In appendix, we briefly explain our scheme for numerical studies.

2 Set-up of model and global string

To illustrate growing instability of metastable strings under reconnections and show gener-

ality of such phenomena, we consider a simple single field model with false and true vacua.

This is an ideal example to demonstrate various aspects of the collision dynamics of two

metastable solitons which would be common in a wide class of models. The Lagrangian of

a complex scalar field X which carries a charge of global U(1) symmetry is given by

L = |∂µX|2 + V (X). (2.1)
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Figure 1. The sixth order of potential eq. (2.2). On the false vacuum at X = Xmin, the global

U(1) symmetry is spontaneously broken.

We engineer a false vacuum and a true vacuum by employing the following sixth order of

the potential,

V (X) = µ2|X|2
(
δ +

1

M4
(|X|2 − η2)2

)
, (2.2)

where δ is a dimensionless constant determining the amplitude of a local minimum of V (X)

at X 6= 0. This potential has the global minimum at X = 0 where V = 0, a local maximum

at X = Xmax, and a local minimum at X = Xmin, which are given by

Vmin = V (Xmin) = η4
2ε2ζ4

27
(c+ 2)2(1− c),

Vmax = V (Xmax) = η4
2ε2ζ4

27
(c− 2)2(c+ 1),

|Xmin| = η

√
2 + c

3
,

|Xmax| = η

√
2− c

3
.

(2.3)

Here we introduced several dimensionless quantities, c =
√

1− 3δ/ζ4, ζ = η/M and ε =

µ/η. Figure 1 shows the schematic picture of this potential. The Euler-Lagrange equation

we solve in section 4 for simulations of colliding strings is given by

∂2X

∂t2
−4X +

dV

dX∗
= 0. (2.4)

In the false vacuum, the global U(1) symmetry is spontaneously broken. We simply

assume that a global string is formed. Consider a static cylindrical solution of the field

equation in the cylindrical coordinate, (r, θ, z). First we decompose X into the radial and

angular parts,

X = ηR(r)einθ (n = 1, 2, 3, · · · ). (2.5)

Then the explicit form of the equation of R(r) is obtained from eq. (2.4)

∂2R

∂x2
+

1

x

∂R

∂x
− n2

x2
R = (δ + ζ4)R+ ζ4(3R5 − 4R3), (2.6)
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Figure 2. The radial field configuration R(r) (left) and their potential energies (right) with ε = 0.1,

ζ = 4.0, and δ = 1.0.

where x = εrη. We look for the solution where the scalar field in the interior of the string

stays in the true vacuum, and that stays in the meta-stable vacuum at the exterior. That

is, such a solution should satisfy R = 0 at x = 0 and R→ Rmin at x→∞.

Here we emphasize that there can be a (meta)stable tube-like solution. Since the

string core has lower energy density than that of its exterior, larger string radius seems

to be favorable for the system, which predicts the roll-over process. However, there must

be the domain wall between its core and exterior, whose energy becomes larger for larger

string radius. As a result, there arises a (meta)stable tube-like solution, depending on the

parameters. We will see it in more detail in the next section.

The static axial-symmetric solutions can be obtained by solving eq. (2.6) with the

successive over-relaxation method with the relaxation factor ω = 1.0, 0.5 and 0.3 for n =

1, 2, 3, respectively. See the appendix for details of our numerical schemes. Using the

boundary conditions R(rb) = Rmin and R(0) = 0, we find stable solutions. In figure 2,

we plot the field configurations (left panel) and the potential energies (right panel) of the

numerical solutions with ε = 0.1, ζ = 4.0 and δ = 1.0 for n = 1, 2, 3. We confirmed that

the field configurations are insensitive to the position of boundary, rb, as long as it is

sufficiently far from the domain wall. At the region where the potential energy becomes

a peak, there is a domain wall which is the surface of the tube/cylinder. It is found that

the radius of the tube/cylinder depends on the winding number, n, and the higher-winding

solution tends to be thicker. Moreover, the thickness of the domain wall is quite insensitive

to the winding number.

3 Analytic estimations

3.1 A schematic illustration of stability of the tube-like string and bubble

In the previous section, we demonstrate numerical solutions for the static tube-like string.

Before we consider the detailed estimation of their structure, we here give a rough approx-

imation and clarify the stability of those solutions by using a simple thin-wall approxima-

tion. It is obvious that the stability of the tube-like string depends on the difference in the
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Figure 3. A string energy (left) and a bubble energy (right) as functions of the core radius w.

energy density of the true and false vacua

ε̃ = Vfalse − Vtrue = Vmin ' δµ2η2. (3.1)

When ε̃ = 0 (δ = 0), the vacua inside and outside the string have the same energy.

Then the tube-like string is stable because it is supported by the topological reason. On

the other hand, when ε̃ is large enough, the core energy density wins out and the string

grows and expands. Thus, one expects that there exists a metastable tube-like string in an

intermediate range for ε̃. Let us clarify this by using the thin-wall approximation where the

wall of the string is thin compared to the core and the exterior. The thin wall’s contribution

to the energy density can be approximated by the constant surface energy, σ. Then, the

tension of the string with radius w is estimated by

E(w) = n2C log
rc
w

+ σw − ε̃w2, (3.2)

where the first term is the contribution of the flux of the U(1) global current with rc being

a cutoff scale and C ' 2πη2 being a constant of a mass dimension 2, the second term is of

the wall and the last term is of the core of the tube-like string. Here we assume ε̃, σ, and

C are independent of w. The dependence of the string energy on ε̃ is shown in figure 3.

When ε̃ = 0, as we explained, there exists a local minimum, which implies that there exists

a stable tube-like string. In the region 0 < ε̃ < ε̃c with ε̃c = σ2

8Cn2 , there exist a local

minimum and a global maximum at

wmin =
σ −
√
σ2 − 8Cn2ε̃

4ε̃
, wmax =

σ +
√
σ2 − 8Cn2ε̃

4ε̃
. (3.3)

In this case the tube-like strings exist but they are metastable. The tube-like string whose

core radius is larger than wmax is unstable. When ε̃ exceeds the critical value, ε̃ > ε̃c, there

are no local minima at all. Namely, the string is unstable and the string core expands

infinitely. In this paper the metastable strings are concerned. Although they are metastable

as static configurations, they will become unstable in some dynamical processes such as

string collision, annihilation and reconnections.

From eq. (3.2) with n being zero, the fate of the two-dimensional bubble can be also

clarified. As shown in figure 3, the bubble never grows if ε̃ = 0. Once the positive ε̃ is
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turned on, the bubble becomes metastable. The critical radius of the bubble is wc = σ
2ε̃ .

The bubble lager than wc expands infinitely and the true vacua inside the core wins out.

There are no metastable tube-like solutions.

The thin-wall approximation explained above is simple and gives an insight about the

stability problem. Nevertheless, it is of only limited accuracy and we need a better analysis

to get more quantitative results beyond the qualitative properties. To go beyond the thin-

wall approximation, we will work out another analytical study in the next subsections.

3.2 Thickness of walls

Now let us go beyond the thin-wall approximation and consider the stability of the tube-

like solution in more detail. From the numerical calculations of stable static solutions, we

found that the tube-like solution is well characterized by the radius of cylinders, w, the

winding number, and the thickness of the walls, d. Since the thickness of the wall is quite

insensitive to other two parameters, it is possible to estimate d from the variation of the

total energy E with respect to d, and it can be done by considering only the case of n = 1.

We here simply approximate the solution with n = 1 as the following piecewise lin-

ear function

R(r) ≈


r

d
Rmin r < d

Rmin d < r
, (3.4)

where we set w = 0, see figure 2. Then, we approximate the volume integral of the potential

energy and gradient energies as

Epotential = πd2(Vmax − Vmin), (3.5)

Egrad,r = πη2R2
min, (3.6)

Egrad,θ = πη2R2
min

(
1 + 2 log

rc
d

)
. (3.7)

The derivative of the summation of these energy components with respect to d gives the

desired value of d,

∂E

∂d
= 2πd(Vmax − Vmin)− 2πη2

R2
min

d
= 0 =⇒ d =

ηRmin√
Vmax − Vmin

=
3

2ηεζ2

√
c+ 2

c3
.

(3.8)

3.3 Upper bound of winding number

We consider how the radius of the cylinder is determined and the upper limit of the winding

number with which the static solution exists. As shown in figure 2, for n ≥ 2, there are

two parameters characterizing a cylinder, the radius w and the thickness d of the surface.

However, as shown in the previous subsections, the latter one is not sensitive to the winding

number and is determined from Vmax − Vmin. Hence we here focus on the radius w of the

cylinder while the width of the wall d is assumed to be the same as one given in eq. (3.8).
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We simply approximate the solution and the potential as

R(r) ≈


0
r − w
d

Rmin

Rmin

, V (r) ≈


0 r < w

Vmax w ≤ r < w + d

Vmin w + d < r

. (3.9)

The volume integral of the potential energy is approximated as

Epotential = −Vminπw
2 + πd(2w + d)(Vmax − Vmin), (3.10)

where we considered only the deviation from Vmin. On the other hand, that of the gradient

energy can be divided into the radial and angular parts,

Egrad,r = 2πη2
∫ ∞
0
R′(r)2 rdr = πη2R2

min

(
2
w

d
+ 1

)
, (3.11)

Egrad,θ = 2πn2η2
∫ ∞
0

R2

r2
rdr = 2πn2η2R2

min×

×
[

1

2
− w

d
+
w2

d2
log

(
1 +

d

w

)
+ log

(
rc

w + d

)]
, (3.12)

where rc is the cut-off length, rc → ∞, and it should be properly regularized. Then the

total energy becomes

E = Epotential + Egrad,r + Egrad,θ. (3.13)

Let us look for the values of w to minimize the total energy. One can easily see that there

is no global minimum of E since the term proportional to −w2 in eq. (3.10) implies that

E → −∞ for w → ∞. Instead, we investigate whether there is a local minimum in the

region, w > 0. The derivative of E with respect to w is calculated as

dE

dw
=

2πη2R2
min

d
G(w),

G(w) ≡ −2p
w

d
+ 2 + 2n2

[
−1 +

w

d
log

(
1 +

d

w

)]
,

(3.14)

where

p ≡ d2Vmin

2η2R2
min

=
Vmin

2(Vmax − Vmin)
. (3.15)

What we have to do is to find w to satisfy G(w) = 0 for w > 0. We plot E(w) and G(w)

with specific values of ε, ζ and δ in figure 4. From the right panel of this figure, it is found

that there are two zero-points for n ≤ 6, and the smaller one is the desired value of w, at

which E is locally minimized, and the other zero-point gives the local maximum of E (see

the corresponding lines in the left panel). Note that the local minimum of n = 1 is w = 0,

which is consistent with the numerical solution in figure 2.

In order for these zero-points to exist, the local maximum of G(w) should be positive.

Actually, G(w) for n = 7 is always negative, and in the left panel of figure 4 the line for

E(w) with n = 7 has no local minimum, which indicates the cylinder solution with n = 7

– 7 –
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Figure 4. An example of E(w)/(2πη2R2
min) (left) and G(w) (right) with specific values of ε =

0.1, ζ = 4.0, and δ = 1.0.

is unstable. To proceed this calculation, we assume d/w � 1 to expand the logarithm

function. Then we find that G(w) has a local maximum,

G(wc) ' 2− 2n
√

2p, wc '
nd√
2p
. (3.16)

Therefore the condition on the winding number required for the local minimum of E is

G(wc) > 0 =⇒ n <
1√
2p

=

√
Vmax − Vmin

Vmin
. (3.17)

3.4 Instability of spherical bubble and critical volume

In subsection 3.1 we have seen that the two-dimensional bubble is unstable and it shrinks

(expands) when its radius is smaller (larger) than the critical value. Here, we study the

spherically symmetric configuration (three-dimensional bubble) of the scalar field separated

by the domain wall. It is also expected to be always unstable. After two cylinders collide

with each other, there appears a spherical object at the impact point. To study the

instability of such an object, we consider the following ansatz in the spherical coordinate,

R(r) ≈


0
r

d
Rmin

Rmin

, V (r) ≈


0 r < w

Vmax w < r < w + d

Vmin d < r

, (3.18)

with assuming that d is given by eq. (3.8). We simply assume that the field is homogeneous

in the azimuthal and the polar directions.1 The potential and radial gradient energy are

approximated as

Epotential = −4

3
πw3Vmin +

4

3
π{(w + d)3 − w3}(Vmax − Vmin), (3.19)

Egrad,r =
4

3
π

(
Rmin

d

)2

{(w + d)3 − w3}η2, (3.20)

1Strictly speaking, the separation of variables is not justified, since it is impossible to expand X in the

spherical harmonics because of the nonlinear terms in the potential.
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Figure 5. The volume colliding with another cylinder.

and thus the total energy becomes

E(w) =
4

3
π
[
−w3Vmin + 2{(w + d)3 − w3}(Vmax − Vmin)

]
, (3.21)

where we used eq. (3.8) to eliminate Rmin. The function E(w) has the only peak at w = wc
in w > 0, and the critical radius wc is given by solving dE/dw = 0,

wc =
1 +
√

1 + p

p
d, (3.22)

where p is defined in eq. (3.15). For w < wc the radius of the sphere starts to shrink since

dE/dw > 0. On the other hand, for w > wc the radius goes to the positive infinity since

dE/dw < 0. That is, if the volume of the spherical object is larger than the critical volume

4πw3
c/3, this grows infinitely.

Now we give an analytical estimate of the (in)stability of the colliding cylinders. Let

us consider the situation that two cylinders collide with the collision angle α as shown

in figure 5. Assuming that a spherical object is produced via the fusion of two cylinders

after collision and its volume is equal to the total volume of the two colliding segments of

cylinders, 2Vseg, the initial volume of the spherical object is calculated as

Vtotal = 2Vseg =
4πw3

sinα
. (3.23)

Then the condition for the sphere to grow infinitely is given by

4π

3
w3
c < Vtotal =⇒ sinα < 3

(
w

wc

)3

, (3.24)

where w is obtained by solving G(w) = 0 in eq. (3.14), and hence assuming d/w � 1, this

is calculated as

w =
1−

√
1− 2n2p

2p
d. (3.25)

– 9 –
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As a result, we obtain the upper limit of the collision angle so that the spherical object

created at the impact point can grow infinitely,

sinα <
3

8

(
1−

√
1− 2n2p

1 +
√

1 + p

)3

. (3.26)

For example, ε = 0.1, ζ = 4.0 and δ = 1.0 give the upper limit, α < 7.78× 10−6, for n = 2,

and α < 2.50× 10−2 for n = 6.

4 Simulation setup

We explore the (in)stability of collision processes of two meta-stable strings. The individual

string is given by the axial-symmetric solution which is numerically obtained by solving

eq. (2.4) without the time-derivative term, corresponding to eq. (2.6). This procedure

is nothing but the one-dimensional boundary value problem, and is carried out with the

Gauss-Seidel method. Each of the resultant strings is put on the x-z surface parallel to

each other separated a bit. The strings are Lorentz-boosted to collide with each other at

an angle with α measured on the x-z surface including the origin (to be the impact point

when colliding). The free model parameters are ε and ζ, which control the strength of

the self-coupling and the energy scale of the phase transition, respectively. The fiducial

parameters are listed in table 1. Note that we choose ζ = 2.2 for numerical simulations,

while ζ = 4.0 has been used so far, to enhance the instability.

The initial separation between the strings is fixed to be 20η−1, while the radius of

the string is about 5η−1 for the fiducial choice of parameters. According to ref. [1], the

superposition of the two strings is given by

X =
X1X2

ηRmin
, (4.1)

where the denominator is determined by the dimension analysis and the fact that |X| →
ηRmin far away from two strings.

Then we solve eq. (2.4) in the three-dimensional cartesian coordinate with the Neu-

mann conditions on the boundaries, ∂X/∂ni|boundary = 0, where ni is the normal vector to

each boundary. We use the Leap-frog method for the time domain and approximate the

spatial derivatives by the 2nd-order central finite difference. The simulations are stopped

at t = L/2, when the information at the impact point arrives at the nearest boundary of

the computational domain.

5 Results

Through the numerical simulations, we find that the collision processes end up with either

simply reconnecting and going away from each other, or creating unstable objects with a

higher winding number at the impact point. Figures 6–11 show the snapshots of the compu-

tational domain during simulations, the leftmost panel is at the initial time t = 0, and the

rightmost one at the final time t = tf . The surfaces in them represent X = Xmax given in

– 10 –
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model parameters

ε 0.1

ζ 2.2

δ 1.0

n1 1

n2 1

simulation parameters

grid size N 4803

box size L 240η−1

time interval ∆t 0.2η−1

total steps Ns 600

simulation time tf 120η−1

Table 1. The fiducial parameters.

Figure 6. [P1] Failed reconnection of parallel string pair with (v, α) = (0.82c, 0.02π). See [10] for

full animations.

Figure 7. [P2] Successful reconnection of parallel string pair with (v, α) = (0.90c, 0.02π). See [10]

for full animations.

eq. (2.3), and hence in the interior of them the field X lies in the true vacuum. The first four

figures, figures 6–9, are the cases of parallel strings with relatively small α, and the remain-

ing ones, figures 10 and 11, are those of anti-parallel strings with α ∼ π. Moreover, we plot

the field configurations and those phases on the surface at z = L/2 and t = tf in figures 12

and 13. In the unstable cases, P1, P3, P4 and A1, we find that the true vacuum homoge-

neously spreads over the interior of the bubbles. As for the phases, one can observe that

the winding number is conserved. For the parallel pairs, one can find that the total winding

number is n = 1 + 1 = 2 (two sets of blue→green→red→blue), if one follows the trajectory

around the bubble. In the interior, there seems to be a large number of points around which

the phase is rotated, although the winding vanishes if one follows the trajectory around

the impact point. On the other hand, for the anti-parallel pairs, the total winding number

around the bubble becomes n = 1− 1 = 0 (green→blue→green→red→blue→red→green.)

The (in)stability of a resultant string after collision depends on the velocity of two

cylinders, v, and the collision angle between them, α. We surveyed the parameter space

(α, v) to check the stability. Figure 14 shows the stability of parallel string pairs, and

figure 15 that of anti-parallel pairs where α is close to π. In order to systematically judge

the resultant stability, we calculate two quantities and set a criterion for each. One is the

– 11 –
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Figure 8. [P3] Failed reconnection of parallel string pair with (v, α) = (0.94c, 0.02π). See [10] for

full animations.

Figure 9. [P4] Failed reconnection of parallel string pair with (v, α) = (0.95c, 0.10π). See [10] for

full animations.

Figure 10. [A1] Anti-parallel string pair with (v, α) = (0.62c, 0.94π). Most of segments are

annihilated. See [10] for full animations.

Figure 11. [A2] Anti-parallel string pair with (v, α) = (0.90c, 0.94π). After collision, the true

vacuum region is created around the impact point, and it starts to grow exponentially. See [10] for

full animations.

growth rate of the volume of the true vacuum region during simulation,

κ1 =
Vtrue(t = tf )

Vtrue(t = 0)
, (5.1)

and the other is the ratio of time when the true vacuum region grows to the total simula-

tion time,

κ2 =
tgrow
tf

, tgrow = ∆t× ]

{
tm

∣∣∣∣∣ dVtruedt

∣∣∣∣
t=tm

> 0

}
, (5.2)

where ] denotes the number of elements, ∆t is the time interval, and tm represents the

discrete time, tm = m∆t. If and only if both κ1 > κ1c and κ2 > κ2c are satisfied,

– 12 –
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Figure 12. The field configurations of [P1]-[P4] on z = L/2 (upper panels), and those of [A1], [A2]

on y = L/2(lower panels) at t = tf . The colour contour represents |X|/Rmin. The white colour

indicates the overshoot, |X| > Rmin.

Figure 13. The phases of [P1]-[P4] on z = L/2 (upper panels), and those of [A1], [A2] on y = L/2

(lower panels) at t = tf .

we decide that the resultant strings become unstable, and thus the true vacuum region

grows exponentially. We set κ1c = 10 and κ2c = 0.8. The second quantity, κ2, measures

how monotonic the instability grows. After all, however, most of (in)stabilities can be

determined by the first one, κ1.

In figures 14 and 15, we plot red filled circles for unstable pairs, and green crosses

for stable pairs. We find that the slow collision with small α results in the failure of the

reconnection and thus being unstable, and quite high-speed collision can also make the

system unstable in both cases with small (parallel pair) and large α (anti-parallel pair). In

these figures, we also plot black circles labelled as P1,2,3,4 and A1,2. The corresponding
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figures were already shown in figures 6–11, which are the typical examples of several regions

leading to stable and unstable processes in figures 14 and 15.

We explain in detail the mechanism of stable/unstable reconnection processes using

figures 6–11. Firstly, for the parallel pairs, our findings are followings.

P1 (relatively slow collision): two strings merge at the instance of impact and cannot

be separated from each other because of a small collision velocity. Then the effective

volume of the merged strings around the impact point exceeds the critical volume

mentioned in section 3, thus making the system unstable.

P2 (moderate-speed collision): two strings can safely reconnect with each other. As

shown in the middle panel and its right neighbour, a small bubble is created at the

impact points of the strings. However, since the reconnected strings rapidly go away

from the bubble and the volume of the bubble is relatively small, the bubble finally

shrinks. As a result, the system becomes stable.

P3 (high-speed collision): because of the large collision velocity, the kinetic energy in-

duced to the bubble at the impact point is large enough to inflate the bubble until

its volume exceeds the critical one. Finally the system becomes unstable.

P4 (large angle high-speed collision ): since the collision angle is large, the initial impact

of strings cannot create a larger bubble at the impact point than the critical volume.

However, kinetic energy induced to the bubble is too large, and then the bubble can

rapidly expand (the third panel). At the same time, the reconnected strings also

rapidly go away from the impact point. As a result, the bubble is about to break up

(forth panel). Finally, the expansion rate of the bubble overcomes (last panel).

As for the anti-parallel pairs, they annihilate with each other in most of cases owing

to the cancellation of their winding numbers [A1]. It is, however, surprising that the high-

speed collision makes the system unstable. Actually, after the collision, a bubble with no

windings is excited at the impact point, and it grows exponentially.

6 Conclusion

We have studied the dynamical (in)stabilities of metastable strings after their collision in

the model where the potential of a complex scalar field has a false vacuum state corre-

sponding to a SUSY breaking vacuum in realistic SUSY models.

Before performing numerical simulations for the collision, we analytically investigated

in a simplified model the thickness of the domain wall constituting the surface of strings,

and the existence of static solutions with large winding numbers from the viewpoint of

energetics. As a result, we found that the thickness of wall is determined from the shape of

given potential, being independent of the winding number of strings, and there exists the

upper bound of winding number for the stable solutions. Furthermore, in the same manner,

we investigated the collision process of two metastable strings with some approximations

neglecting the details of dynamics. Then we found that there is the critical volume of the

– 14 –
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Figure 14. The parameter region for stable/unstable collision process for string-string collision.
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Figure 15. The parameter region for stable/unstable collision process for string-antistring collision.

true vacuum region in a string as indicated in eq. (3.22) so that the instability grows, and

thus in some cases with a small collision angle, the reconnection is failed.

After that, we performed three-dimensional field-theoretic simulations of two colliding

metastable strings. The initial condition is given as the superposition of two Lorentz-

boosted strings obtained in another numerical way. We surveyed the (in)stabilities of the

collision processes on the parameter space (v, α), where v is the velocity of strings and α

is the collision angle.

Consequently, we found that the instability cannot always be observed for the string-

string pairs. We fixed the winding number of strings as n = 1 and tuned the parameters

controlling the shape of potential, ε, ζ and δ, so that the static solution with n = 2 does not

exist. Nevertheless the strings with most of combinations (v, α) lead to successful recon-
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nection, or, in other words, the parameter region in the (v, α) space where the instability

grows is highly restricted.

We briefly explain the unstable cases. For small α, we confirmed that the reconnection

is failed owing to the rapid expansion of the overlap region just after the collision, shown

in figure 6 [P1] and figure 8 [P3], as discussed in the static analysis mentioned above. In

addition to this case, we found that the kinetic energy injected into the impact point can

leads to failure reconnection. In fact, although the strings with a large velocity seem to

succeed in reconnecting safely, the whole system becomes eventually unstable owing to

the rapid growth of a true vacuum bubble created at the impact point after the collision,

as shown in figure 8 [P3] and figure 9 [P4]. Surprisingly, this is also the case for the

anti-parallel pair, as shown in figure 11 [A2], although one would envisage that they can

pair-annihilate. This result would be explained by the shorter time scale of the expansion

of the zero-winding bubble created at the impact point than that of pair-annihilation.

At first, we had a naive expectation such that the instability would grow because of

the temporal formation of unstable n = 2 strings at the moment of impact, and the anti-

parallel pairs always annihilate after collision. Our numerical studies, however, clarified

that this is not true story. Instead of the winding number iteself, it is confirmed that the

volume of true vacuum at the impact point and the collision veclocity are responsible for the

(in)stability of the colliding strings. Particularly, it should be stressed that the numerical

studies presented here are crucial to find the latter fact, dependence on the velocity or

kinetic energy of strings.

Our numerical study has shown the relatively complicated parameter dependence on

the stability of tube-like strings against collisions, and will help to constrain the viable

parameter space on concrete SUSY breaking models with spontaneous U(1)R symmetry

breaking and also their cosmological history.
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A Numerical schemes

To find the static configuration of an axially symmetric metatable string, we solve eq. (2.6)

with the succesive over-relaxation method.
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First of all, we discretise the coordinate such as xj = j∆x for j = 0, 1, . . . , N , and

represent the discretised R(x) as a vector Rj ≡ R(xj). The spatial derivatives in the

left-hand side of eq. (2.6) is replaced by the corresponding 2nd-order finite differences,

d2R

dx2

∣∣∣∣
x=xj

≈ Rj+1 − 2Rj +Rj−1
∆x2

,
dR

dx

∣∣∣∣
x=xj

≈ Rj+1 −Rj−1
2∆x

. (A.1)

We denote the other terms depending on R(x) in eq. (2.6) by S[R(x)] and those evaluated

at x = xj by Sj [R] ≡ S[R(xj)]. Then the equation to be solved becomes

Rj+1 − 2Rj +Rj−1
∆x2

+
Rj+1 −Rj−1

2xj∆x
= Sj [R]. (A.2)

Solving this equations with respect to Rj in the first term, we find trial values of Rj denoted

by R∗j ,

R∗j =
Rj+1 +Rj−1

2
− ∆x2

2

(
Sj [R]− Rj+1 −Rj−1

2xj∆x

)
. (A.3)

Notice that Rj in Sj [R] is not R∗j . On each stage of iterations, we update Rj so that

R
(n+1)
j = ωR∗j + (1− ω)R

(n)
j . (A.4)

This scheme with ω = 1 is equivalent to the Gauss-Seidel method. When we solve eq. (2.6)

for ζ = 4.0 in section 2, we set ω = 1, 0.5 and 0.3 for n = 1, 2, 3, respectively. For ζ = 2.2

in section 4, we set ω = 1.
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