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1 Introduction

Holography is a remarkable concept that plays vital role to understand many features in

modern physics– starting from black holes and cosmology to AdS/CFT correspondence.

Historically it was first realized through the expression of black hole entropy [1, 2]

SBH =
Area(ΣH)

4GN
(1.1)

which was found surprisingly proportional to the horizon area and not the volume. It moti-

vates one to think that the bulk degrees of freedom somehow “holographically” mapped to

the surface/horizon degrees of freedom which results this non-extensive behavior in entropy.

Later on this enabled ’t Hooft, Susskind and others [3]–[6] to explain our Universe using

the concept of holography. Most recent additions to this list are AdS/CFT correspondence

and entanglement entropy.

AdS/CFT correspondence, first conjectured by Maldacena [8], is a realization of much

discussed proposition of ’t Hooft [7] on the large N limit of strong interactions. AdS/CFT

correspondence states that a supergravity theory in AdS5 × S5 is a “dual” description of

strongly coupled N = 4, SU(N) SYM theory “residing” in its boundary in the limit of

N → ∞. Here S5 is compactified to a radius L≫ ls (ls= string length) which is also the ra-

dius of curvature of AdS spacetime. Therefore effectively a five dimensional gravity theory

is “holographically” reduced to a four dimensional conformal field theory. This “duality”
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in two theories was quantified by Witten [9], by identifying the bulk field with boundary

operator and n point correlation functions in terms of derivatives of the gravitational par-

tition function with respect to the boundary value of that field. In support of this yet

unproven AdS-CFT correspondence, there exists many direct and indirect evidences, for

example–(i) the isometry group SO(4, 2) of AdS5 is isomorphic to the conformal group of

the SYM theory, (ii) matching of correlation functions calculated separately from CFT and

that using AdS/CFT tool and many others (for more see reviews [10]–[12]), which make

it robust. It is true that the exact reason/s why such two apparently different theories

should behave so cohesively is/are not known, but the role of holography is undeniable,

and therefore it needs further attention. The major applications of this correspondence

can be broadly classified in two parts: one which are in the context of QCD (for a review

see [13]) and the other in the context of condensed matter physics [14, 15]. It is the second

case which is our interest in this paper.

The role of holography in the much focussed issue of entanglement entropy has been

recently highlighted by Ryu and Takayanagi [16, 17]. If a system, described by certain

quantum field theory or some quantum many body theory, is divided into two parts, say

A and B, then entanglement entropy SA of the subsystem A is a non-local quantity which

measures how the above systems are correlated, quantum mechanically, with each other. In

defining SA one traces out the degrees of freedom of the space-like submanifold B which is

not accessible to an observer in A. Anyone familiar with the concept of black hole entropy

would find this definition very much analogous to the case where an observer outside the

black hole event horizon has no access to the information inside. Indeed this is one of the

motivation for the authors of [16, 17] to heuristically propose an “holographic” formula of

entanglement entropy, given by

SA =
Area(γA)

4GN
(1.2)

where γA is the d dimensional surface whose d − 1 dimensional boundary ∂γA matches

with the boundary ∂A of the field theory subsystem A (see figure 1). Of course the choice

for such a surface is not unique. In this context it is suggested that this surface, among

various choices, should be the minimal. This minimal surface is found by extremizing the

area functional and finding out the solution (in case there are more than one) whose area

takes the minimum value.

At the present status the HEE formula (1.2) is not conclusively proven.1 Nevertheless

there is a list of evidences which bolsters the robustness of this formula. One direct evidence

comes from the AdS3/CFT2 context where the CFT result of the entanglement entropy

SA = c
3 log

l
a , matches with the holographic calculation, in which l is the width of the

subsystem A and c = 3R
2GN

relates the central charge c with the radius of curvature R

of the AdS3 spacetime. Although this evidence has not been explicitly seen in higher

dimensional cases (AdSd+1/CFTd with d > 2), there are more compelling arguments which

put confidence on (1.2) ( for details see reviews [21, 22] and references therein). The

major usefulness of the HEE is the same as the basic principle of AdS/ CFT: overcoming

1Refer to [18] for an attempt and others [19, 20] for more details.
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Figure 1. Schematic diagram of the computational scheme of holographic entanglement entropy via

AdS/CFT. The field theory system “resides” on the planar portion, whereas, the minimal (entan-

gled) surface γA is extended inside the bulk (z axis) towards the horizon (not shown in the figure).

the computational difficulties of complex many body field theoretic calculations in terms

of much more simpler classical gravity calculations.

Our work in this paper is motivated by a recent study by Albash and Johnson [23, 24],

where it is argued that HEE might be an useful physical quantity for characterizing holo-

graphic superconductors. They found that the finite part of the HEE (Sf ) of supercon-

ducting and non-superconducting phases follow a pattern which enables one to identify the

phase of a system. For a given system size and for all temperatures below the critical value

Tc, Sf takes a lower value for the superconducting phase compared to its value for the cor-

responding non-superconducting (black hole) phase. Whereas for temperature higher than

Tc, where no superconducting state appears, Sf only exist for the latter phase. The reason

behind the smaller value of HEE for the superconducting state is explained in terms of num-

ber of the degrees of freedom that the system possesses. This number is higher in the black

hole phase but as the superconductor forms some of them are condensed and results into a

lower HEE. Further works in this direction are also reported in [25]–[28]. It should also be

mentioned that apart from the finite value of HEE given by Sf there is also a diverging part.

However, such a divergence is not the characteristic of the holographic calculation only, it

also appears in the continuum limit of the conformal field theory calculations. One can

avoid such diverging terms by introducing a UV cut off through the introduction of a lat-

tice spacing in the expression of entanglement entropy. In the holographic calculation, the

divergences can be avoided if the boundary of the minimal surface is chosen slightly away

from the asymptotic infinity by choosing the appropriate limit of the radial coordinate.

In this paper we explore the behavior of HEE in an imbalanced mixture of two fermionic

systems with a mismatch in their chemical potentials [29]. One motivation of choosing the

imbalanced system is that these are quite interesting in the condensed matter framework.

This is discussed in more detail in section (2.1). Our aim is to compute the HEE for two
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phases (black hole and superconducting phases) and compare their numerical values as a

function of the strip size. The gravitational system is considered to have the backreaction

term. We use numerical shooting method to find the hairy black hole solution for two

different values of chemical mismatch 0.01 and 0.02 and compare the results for HEE with

the black hole phase with same chemical potential and temperature. For both cases we

find that HEE for the superconducting phase stay below the black hole phase. On the

other hand the effect of the imbalance on HEE is exactly opposite for the superconducting

phase than the black hole phase. While HEE increases with the increase in imbalance

parameter for black holes it decreases when superconducting state forms. This demands a

more careful interpretation whether HEE can always be used for identifying the preferable

state or not. The reason being one expects that for increasing chemical imbalance the

superconducting state is hard to achieve and at a certain larger value this state disappears.

But from our study it appears that the gap of HEE between the black hole and supercon-

ductor only increases. Superconducting state is more and more stable with the increase in

chemical imbalance if one solely rely on HEE. And in that way one never gets rid of the

superconducting state. This contradicts the usual expectations.

We organize this paper in the following manner. In the next section we set the platform

by introducing the imbalanced system from condensed matter and holographic perspectives.

Section 3 is devoted for providing the equations of motion whose solutions are discussed in

next two sections (4, 5). In section 4 we consider the case where only RN-AdS black hole

solution exists and compute its HEE for various values of the imbalanced parameter. In

section 5 we consider the case where superconducting state appears. For that we make use

of numerical method and compute the hairy black hole metric. Then this metric is used

to compute the HEE for different chemical mismatches. In both cases we plot HEE with

respect to the system strip width l of the field theory subsystem and compare the values

of HEE for various cases. Finally we conclude in section 6.

2 Imbalanced superconducting systems

2.1 Condensed matter description

Imbalance in the population of spin-up and spin-down fermions leads to exotic supercon-

ducting states. In the context of solid-state superconductors the existence of these exotic

superconducting states were theoretically proposed in 1960s by Sarma [33] and Maki [34] in

high magnetic field and low temperatures. Soon after Fulde and Ferrell [35] and Larkin and

Ovchhinikov [36] extended this proposal and predicted a spatially inhomogeneous supercon-

ducting state which is presently known as FFLO state. This exotic imbalanced supercon-

ducting state is unique as it has a spatially-modulated order parameter, while the standard

Bardeen-Cooper-Schrieffer(BCS) superconducting state has a spatially-homogeneous order

parameter. The existence of the FFLO state is surprising in the sense that it retains super-

conductivity overcoming the orbital and Pauli-paramagnetic pair-breaking effects, even at

very high magnetic fields. For this reasons the imbalanced systems has been studied vigor-

ously - both theoretically and experimentally. Theoretical studies on imbalanced systems

often focus on the possibility of exploring imbalanced superconducting states in different
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physical systems, for example, in population-imbalanced Ultracold atomic gases [38, 40–42],

optical lattices [43], heavy-fermionic superconductor CeCoIn5 [44], two-dimensional organic

superconductors [37, 39, 45, 46] and quark matter core of the neutron stars [47, 48]. The

experimental search is a topic of vigorous research till date as it is very hard to pinpoint

this state in the phase diagram. In an experiment involving an imbalanced system, one

can find the imbalanced state if: (i) the superconductor is in the clean limit and (ii)

the value of Maki parameter is greater than 1.8. The most promising experimental sys-

tems in this context are the heavy-fermionic superconductor CeCoIn5 [49–52] and quasi

two-dimensional(2D), organic superconductors like κ-(BEDT-TTF)2Cu(NCS)2, in which

BEDT-TTF is bisethylenedithio-tetrathiafulvalene [53, 54]. So, even 50 years after its pre-

diction, this field of imbalanced superconductivity remains an active field full of surprises

(For a review see [55] and references therein.).

2.2 Holographic description

More recently there has been a lot of effort [29, 30, 56–60] to understand the imbalanced su-

perconducting systems using holography and AdS/CMT. Generally, the bulk gravitational

Lagrangian which holographically describe an imbalanced superconductor is given by

L =

√−g
2k24

(

R+
6

L2
− 1

4
FabF

ab −−1

4
YabY

ab − V (|φ|)− |∂φ− iqAφ|2
)

(2.1)

which is comprised of the AdS gravity with Λ = − 6
L2 , two U(1) gauge fields with field

strengths

F = dA, Y = dB, (2.2)

and one scalar field (φ) with potential

V (|φ|) = m2φ†φ (2.3)

which is charged under UA(1) but uncharged with respect to the other.

As known from the AdS/CFT correspondence mass of the above bulk scalar field

dictates the conformal dimension (∆) of the dual field in the following manner

∆(∆− 3) = m2L2. (2.4)

This relation is particularly helpful to capture the physics of an field theory operator with

a conformal dimension of interest. For example to describe a Cooper pair type condensate

which has ∆ = 2, one fixes the mass of the bulk scalar field to be m2 = − 2
L2 . Note

that this choice does not violate the Brietelhoner-Freedman bound which for this case is

m2 ≥ − 9
4L2 . Since our interest lies in this theoretical aspect, in this paper, we will fix

the above mass value for the bulk scalar field in all our computations. For completeness it

should be mentioned that other than mass, the scalar field also has a charge q, and different

values of charge lead to different physical properties in the dual field theory.

The above description of the gravitational system has the minimal ingredients needed

to describe the superconductivity in the imbalanced systems. Starting from the equations
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of motion which include Einstein equations, Maxwell equations and a scalar field equation,

one looks for the cases where the scalar field is zero and non-zero. The vanishing of

the scalar field gives a normal Reissner-Nordström black hole phase. On the other hand,

if one finds a non-zero scalar field it is understood that a condensate has been formed

in the dual field theory. Of course this situation has a serious contradiction with the

black hole no-hair theorem that supports the vanishing scalar field, but the fact of getting

non-zero scalar field in the context of holographic superconductors hints that one needs

to re-examine the no-hair theorem itself [31, 32]. The above statement is true for any

holographic superconductor. For the imbalanced case, with two U(1) gauge fields with

unequal chemical potential, we have the following additional advantage.

In imbalanced superconducting systems Cooper pair forms between two fermionic

species with unequal chemical potentials (say µ1 and µ2). Now to capture this behav-

ior in the dual gravitational theory, one needs two U(1) bulk fields (say UA(1) and UB(1))

with field strengths Aa which accounts total chemical potential 2µ = µ1+µ2 and Ba which

accounts the mismatch 2δµ(= βµ) = µ1−µ2 of those fermionic species in boundary theory.

With these preliminaries we now move to the next sections to deal with the equations

of motion and to compute the HEE separately for black hole and superconducting phases.

3 Equations of motion

Extemizing the Lagrangian (2.1) with respect to various fields one has the following set of

equations:

Einstein equation,

Gab +
1

2
Λgab = −1

2
Tab (3.1)

where the energy-momentum tensor of the matter field is defined as Tab =
2√
−g

δLmatter

δgab
.

Maxwell equations for Aa and Ba fields reads

1√−g∂a(
√−ggabgcdFbc) = iqgdc[φ†(∂cφ− iqAcφ)− φ(∂cφ

† + iqAcφ
†)] (3.2)

1√−g∂a(
√−ggabgcdYbc) = 0 (3.3)

where the scalar/gauge coupling takes place only in UA(1) sector.

In addition there is also a scalar field equation given by

1√−g∂a[
√−ggab(∂bφ− iqAbφ)] + iqgabAb(∂aφ− iqAaφ) +

φ

2|φ|V
′(|φ|) = 0 (3.4)

In order to proceed further we consider the follwing background metric

ds2 = −g(r)e−χ(r)dt2 +
r2

L2
(dx2 + dy2) +

dr2

g(r)
(3.5)

where χ(r) accounts for the backreaction due to matter fields. For a case where backreaction

is negligible one sets χ = 0. For all matter fields, the anstaz is assumed to be homogeneous

φ = φ(r), Aadx
a = ψ(r)dt, Badx

a = v(r)dt (3.6)
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Now one finally unwind all field equations by substituting the ansatz. The final set of

equations now have two independent Einstein equations

1

2
φ′2 +

eχ(ψ′2 + v′2)

4g
+
g′

gr
+

1

r2
− 3

gL2
+
V (φ)

2g
+
eχq2φ2ψ2

2g2
= 0 (3.7)

χ′ + r

(

φ′2 +
eχq2φ2ψ2

g2

)

= 0 (3.8)

two Maxwell equations for ψ and v fields

ψ′′ + ψ′
(

2

r
+
χ′

2

)

− 2q2φ2

g
ψ = 0 (3.9)

v′′ + v′
(

2

r
+
χ′

2

)

= 0 (3.10)

and a scalar field equation

φ′′ + φ′
(

g′

g
+

2

r
− χ′

2

)

− V ′(φ)

2g
+
eχq2φ2ψ2

2g2
= 0. (3.11)

In the remaining part of our work we will look for the simultaneous solution of the above

set of equations to compute the HEE. From now on we set 2k24 = 1, L = 1.

4 HEE for the normal (black hole) phase with varying β

At high temperature (above Tc), when no superconductivity appears, one has a vanish-

ing bulk scalar field. For such a case the right hand side of the Maxwell equation (3.2)

vanishes and the resulting solution of the set of field equations is a doubly charged Reissner-

Nordström black hole given by the metric

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dx2 + dy2), (4.1)

f(r) = r2
(

1− r3H
r3

)

+
µ2r2H
4r2

(

1− r

rH

)

(1 + β2) (4.2)

β =
δµ

µ
(4.3)

where the gauge fields are

ψ(r) = µ

(

1− rH
r

)

= µ− ρ

r
, (4.4)

v(r) = δµ

(

1− rH
r

)

= δµ− δρ

r
. (4.5)

Hawking temperature of this RN-AdS spacetime is given by

Tbh =
rH
16π

[12− µ̃2(1 + β2)], (4.6)

µ̃ =
µ

rH
. (4.7)
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To compute HEE we change the radial coordinate from r to z = rH
r . This redefinition

has some computational convenience. In the t, z, x, y system the metric looks like

ds2 = −r2He−χg(z)dt2 +
dz2

z4g(z)
+
r2H
z2

(dx2 + dy2), (4.8)

g(z) =
1

z2
−
[

1 +
µ̃2

4
(1 + β2)

]

z + z2
µ̃2

4
(1 + β2). (4.9)

(4.10)

The HEE expression (1.2) now simplifies to

SE =
1

4

∫ Ly

0

∫ l/2

−l/2

√
h dxdy (4.11)

=
LyrH
4

∫ l/2

−l/2

1

z2

(

r2H +
z′2

z2g(z)

)1/2

dx (4.12)

where ‘h’ is the determinant of the induced metric of the codimension 2 hypersurface and in

the second equality prime denotes derivative with respect to x. Equation (4.12) also tells us

that the system is equivalent to one defined by the Lagrangian L = 1
rHz2

(

r2H + z′2

z2f(z)

)1/2
.

In order to take into accout that the surface is minimal, we extremize the Lagrangian.

This extremization problem has a constant of motion which is nothing but the canonical

Hamiltonian. In this way we obtain a measure of how the entangling surface is extended

within the bulk (towards the horizon) and gives an infrared cut-off (z0) on the integrating

variable, given by

1

z20
=
rH
z2

1
√

r2H + z′2

z2g(z)

(4.13)

Then converting the integrating variable from x to z the final expression of HEE reads as

SE =
Lyr

2
H

2

∫ z0

ǫ

z20
z3

1
√

(z40 − z4)g(z)
(4.14)

= Sf + Sdiv, (4.15)

where Sf and Sdiv parts denote the finite and diverging part of the entanglement entropy

as discussed earlier.

On the other hand the width of the subsystem ‘A’ is expressed as

l

2
=

∫ l/2

0
dx (4.16)

=
1

rH

∫ z0

ǫ

zdz
√

g(z)(z40 − z4)
(4.17)

So finally to explore the behavior of the HEE, one now needs to evaluate the expres-

sions (4.14) and (4.17). For this we need to find the metric function g(z) for different cases

— namely for the AdS-RN black hole and the imbalanced superconductor, set the UV
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Figure 2. (Color Online) Plot of holographic entanglement entropy as a function of the system’s

strip width l for the AdS-RN black hole with different values of the imbalanced parameter β. Here

we have also set µ = 1 and temperature Tbh = 0.13. Since µ and β are fixed we adjust the horizon

radius rH to keep the temperature constant.

cut-off ǫ to a small value and consider z0 near to the horizon. We note that by changing

z0 it is possible to study the behavior of Sf as a function of the strip width l.

Doing this is easy for the black hole phase since we know the black hole metric explic-

itly. In figure 2 we show the variation of HEE with respect to the strip width for a fixed

temperature Tbh = 0.13 and for different values of the imbalance parameter β. The larger

l corresponds to the infra-red limit [23]. In addition to conforming the earlier results [23],

from this set of plots we find that if one keeps the system-size as well as temperature con-

stant, HEE for RN-AdS phase increases with the increase in chemical potential imbalance

β. This has the following important physical consequence: if one considers HEE as a mea-

sure of the number of degrees of freedom of a system, the plots in figure 2 tell us, that, for

a system of given width and temperature, larger β corresponds more degrees of freedom.

Now we move to the next section where we examine the superconducting case. We

shall approach the problem in a complete numerical set up.

5 HEE for the superconducting phase with varying β

We now intend to calculate the HEE when the black hole has developed a scalar hair,

in other sense, a superconducting state has been formed in the boundary field theory. It

is not possible to compute the hairy black hole metric by staying within analytical limit.

Therefore we approach this problem with the help of numerics.

5.1 Field equations and the bulk/boundary expansions

We rewrite the equations of motion ((3.7) to (3.11)) by expressing g(z) =
r2H
z2

+ h(z) which

is helpful for further computations [29]. In terms of h(z) (and rescaled φ = zφ) these look

like:

φ
′2

2
+
φφ′

z
+

φ2

2z2
+
eχ(ψ

′2 + v
′2)

4(r2H + z2h)
− h′

z(r2H + z2h)
+

m2r2Hφ
2

2z2(r2H + z2h)

– 9 –
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+
1

z4
− r2H
z4(r2H + z2h)

+
eχr2Hq

2ψ2φ2

2(r2H + z2h)2
= 0 (5.1)

χ′ − zφ2 − z3eχr2Hq
2ψ2φ2

(r2H + z2h)2
− 2z2φφ′ − z3φ

′2 = 0 (5.2)

ψ′′

r2H
+
ψ′χ′

2r2H
− 2q2ψφ2

r2H + z2h
= 0 (5.3)

v′′

r2H
+
v′χ′

2r2H
= 0 (5.4)

φ′′ +

(

2

z
− 2r2H
z(r2H + z2h)

− χ′

2
+

h′z2

r2H + z2h

)

φ′ − r2Hm
2φ

2z2(r2H + z2h)

+

(

− 2r2H
z2(r2H + z2h)

+
q2eχr2Hψ

2

(r2H + z2h)2
− χ′

2z
+

h′z

r2H + z2h

)

φ = 0. (5.5)

In order to set the stage one needs to translate the problem of finding the hairy black hole

into a boundary value problem by using Taylor series expansion of various fields. Near the

horizon zH = 1 they are expanded as

hH(z) = −r2H + hH1(1− z) + hH2(1− z)2 + · · · (5.6)

χH(z) = χH0 + χH1(1− z) + χH2(1− z)2 + · · · (5.7)

ψH(z) = ψH1(1− z) + ψH2(1− z)2 + · · · (5.8)

vH(z) = vH1(1− z) + vH2(1− z)2 + · · · (5.9)

φH(z) = φH0 + φH1(1− z) + φH2(1− z)2 + · · · (5.10)

Note that in the Taylor expansion of hH(z), we set the first term as −r2H to fulfill the re-

quirement that the metric coefficient g(z) vanishes at the horizon. Also, in order to prevent

the gauge fields from acquiring infinite norm at the horizon one needs ψH(z = 1) = 0 =

vH(z = 1). Therefore, upto a second-order expansion, one has twelve unknown coefficients

in the Taylor expansions. However not all of them are independent, they are related by five

equations (5.1 to 5.5) and one needs to substitute the field expansions in these equations.

This gives a set of algebraic equations which relate various Taylor coefficients in different

orders of expansion. Finally one is left with six independent coefficients and all others are

expressible in terms of them. We choose these coefficients to be φH0, χH0, ψH1, vH1, q, rH .

The next step is to find the expressions of dependent Taylor coefficients appearing in the

near horizon expansions in terms of these independent parameters. Some of them with

relatively simpler expressions are:

hH1 = −1

4
eχH0(v2H1 + ψ2

H1) + r2H(1 + φ2H0) (5.11)

χH1 = − 16r2H(r2H + eχH0q2ψ2
H1)φ

2
H0

(eχH0(v2H1 + ψ2
H1)− 4r2H(3 + φ2H0))

2
(5.12)

φH1 = φH0 +
4r2HφH0

eχH0(v2H1 + ψ2
H1)− 4r2H(3 + φ2H0)

(5.13)

– 10 –
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ψH2 =
4r2HψH1φ

2
H0

(

−eχH0q2v2H1 + r2H
(

1 + 4q2
(

3 + φ2H0

)))

(

eχH0

(

v2H1 + ψ2
H1

)

− 4r2H
(

3 + φ2H0

))2 (5.14)

vH2 =
4r2HvH1

(

eχH0q2ψ2
H1 + r2H

)

φ2H0
(

12r2H − eχH0v2H1 − eχH0ψ2
H1 + 4r2Hφ

2
H0

)2 . (5.15)

The others are more complicated having a large number of terms. We prefer not to write

them here explicitly.

Now let us write down the ultraviolet (UV) asymptotic (boundary) behavior of all

fields near the AdS boundary z = 0:

hb(z) = − ǫ

2rH
z + · · · (5.16)

χb(z) = log(1 + a) = 0 (5.17)

ψb(z) = µ− ρ z

rH
+ · · · (5.18)

vb(z) = δµ− δρ z

rH
+ · · · (5.19)

φb(z) =
C1

rH
+
C2

r2H
z + · · · (5.20)

where ǫ is the mass of RN-AdS black hole defined at the spatial asymptote. As usual, both

C1 and C2 cannot be nonzero at the same time. Here our aim is to solve the boundary

value problem with C1 = 0 but C2 6= 0. The reason behind this is that C2 has conformal

mass dimension 2 which corresponds to ∆ = 2 of the Fermionic operator representing the

condensate.

5.2 Numerical scheme for finding the hairy black hole

Here we look for the solution of the above set of equations in order to compute the hairy

black hole metric. Our focus thus is on getting the solution for h(z). We use the shooting

method for this purpose. Here the basic idea for solving the boundary value problem

is to first express various boundary parameters in terms of near horizon fields and their

derivatives. For that one inverts the above set of equations to write

µ = ψb(z)− zψ′
b(z), (5.21)

ρ = −rHψ′
b(z), (5.22)

C1 = φb(z)rH − φ′b(z)rHz, (5.23)

C2 = φ′b(z)r
2
H , (5.24)

a = e−χb(z) − 1, (5.25)

ǫ = −2rHh
′
b(z), (5.26)

δρ = −rHv′b(z), (5.27)

δµ = vb(z)− zv′b(z). (5.28)

The temperature of this superconducting state is also given in terms of near horizon ex-

pressions, given by [29]

Tsc =
rH
16π

(

(12 + 4φ2H0)e
−χH0

2 − 1

r2H
e

χH0

2 (ψ2
H1 + v2H1)

)

. (5.29)
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Figure 3. (Color Online) Plot of the hairy black hole metric function with respect to the

radial coordinate z as obtained from numerical computations. As expected g(z) vanishes at the

horizon and diverges at asymptotic infinity. Different curves in this plot correspond to different

characteristic temperature.

The critical temperature corresponds to the smallest possible value of φH0 such that the

hair is just developed.

In the numerical scheme we set a very small value for φH0 and all other parameters are

fixed by hand and they are provided as the input seed to solve the set of coupled differential

equations. Then in the following step we make a very small increment for the seed of φH0

and that will determine other near horizon parameters which, together, will set the input

values for the second step. Moreover, at every step, one finds the values of various UV pa-

rameters (5.21 to 5.28) as a part of the output. In this way one generates a set of data of so-

lutions by implementing this iteration for a number of times. For each iteration one has nu-

merical values for–(i) near-horizon parameters and (ii) boundary parameters as a function of

that. It is then trivial to reproduce h(z) as well as the metric g(z). Furthermore at each step

we get a temperature given by eq. (5.29). As we mentioned earlier that our aim is to find the

hairy black hole solution so that we can use that for the further computation of the HEE.

In figure 3 we plot the family of hairy black hole metrics g(z) for two cases with

β = 0.01 and β = 0.02. For a fixed imbalanced parameter, different plots correspond to

distinct temperatures which in our case are very close to each other. Subsequently we

shall choose one of these metrics with a particular temperature and compute the HEE to

compare with the black hole phase.

Before going further some words about our code are in order. As usual, while solving

the boundary value problem the issues with divergences are tackled by propagating the

near horizon solutions from ǫH = 0.00001 away from the horizon (z = 1) to ǫb = 0.000001

near the boundary (z = 0). As the boundary conditions we have set C1 = 0, a = 0, µ = 1

and δµ = 0.01 for one case while δµ = 0.02 for the other. In all cases we have set q = 2.

Now we move to the final part where we calculate the HEE for the superconducting

phase and compare with the black hole phase.

– 12 –
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Figure 4. (Color Online) Plot of holographic entanglement entropy of AdS-RN black hole (solid

lines) and imbalanced superconductors (dashed lines) at Tbh = Tsc = 0.13 for β = 0.01 and

β = 0.02. The results remain similar if we choose any other temperature and g(z) from figure 3.

For other details refer to text.

5.3 HEE for the superconducting phase and comparison with the black hole

phase

Having found the metric functions g(z) and corresponding temperatures we are free to

choose one entry of this set and use eq. (4.14) and eq. (4.17) with varying z0 to obtain

the list required for plotting Sf as a function of l. In order to compare with the AdS-RN

black hole phase we fix the black hole temperature Tbh (4.6) to be equal to the preassigned

temperature for the superconducting phase (given by eq. (5.29)) by suitably adjusting its

horizon radius (since µ and δµ are already fixed). With this new horizon radius then we

use the black hole metric to calculate the list for the required plot.

In figure 4 we compare the relative values of the HEE between the black hole and

superconducting states for fixed (i) chemical potential µ = 1, (ii) imbalance parameter

β = 0.01, 0.02 respectively and (iii) identical values of temperatures Tbh = Tsc for each β.

From both of these plots we note that the superconducting state has a lower HEE than

the normal (RN-AdS) state. This, as explained by Albash et al. [23], represents the fact

that the degrees of freedom have condensed from the RN-AdS case to the superconducting

state and may serve the purpose of signaling the preferable state.

5.4 Variation of HEE with β for the holographic superconductor

Finally we are in a position to compare the change in HEE for the superconducting phase

for different imbalances while all other parameters are kept fixed. For this we do not need

to perform anymore computations, rather, we compare the superconducting phase plots

from figure 4. This is depicted in figure 5 which shows that with the increase in chemical

imbalance HEE decreases. Notably this behavior is exactly opposite to the RN-AdS phase

as shown in figure 2.

In order to understand this difference physically one should consider the fact that

thermodynamics of AdS black holes may differ substantially from a physical system like

superconductors. For example if we, keeping the horizon radius constant, increase β then

temperature of the RN-AdS black hole as given by eq. (4.6) becomes smaller. On the other

hand one can check that HEE increases with the increase β for constant horizon radius.
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Figure 5. (Color Online) Plot of holographic entanglement entropy of the superconducting phase

for two different chemical imbalances. In these plots µ = 1 and Tsc = 0.13 for both cases. The results

remain similar if we choose any other temperature and g(z) from figure 3. Details are given in text.

Since HEE in certain cases resembles with the black hole entropy [22] one can roughly

interpret this behavior in terms of the negative specific heat of black holes. It is known

that in certain cases AdS black holes do have negative specific heat [61]. On the other

hand one expects a superconducting system to have a positive heat capacity and therefore

the difference with the black hole phase is natural.

On the other hand this behavior might challenge the HEE to correctly identify the

preferable state. The fact that HEE for black hole phase increases while it decreases for the

superconducting state implies that for larger chemical potential imbalance superconducting

state will be more probable. Of course this goes against the fact that with arbitrarily

large imbalance one cannot achieve superconductivity. Therefore one should be careful in

interpreting physics of holographic superconductors only by looking at the HEE.

6 Conclusions and discussions

In this paper we computed Holographic entanglement entropy (HEE) starting from a fully

back-reacted gravitational theory which describes imbalanced superconductivity below the

critical temperature and and doubly-charged RN-AdS black hole at temperature higher

than the critical temperature. We chose the strip geometry for the entangled surface and

compute the HEE as a function of strip size. The hairy black hole metric was found by using

the numerical shooting method. Results showed that HEE for the superconducting state is

lower than the black hole/normal phase for the values of the imbalance parameter (β) con-

sidered in this work. It was also shown that the effect of the imbalance is exactly opposite

for black hole and superconducting phases. For the AdS-RN black hole phase HEE increases

with the increase in the imbalance in two chemical potentials. Whereas for holographic

superconductor HEE decreases. The fact that HEE for imbalanced holographic supercon-

ductor (also for other cases reported earlier [23]–[28]) is less than the black hole might insist

one to consider this as a good physical parameter to identify the preferable state below Tc.

The present study also raises a question whether or not HEE alone can always correctly

identify the preferable state for physical systems like imbalanced mixtures. The fact that
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HEE increases for the black hole phase and decreases for superconducting phase with

respect to increasing imbalance implies that superconducting state will be more and more

preferable as imbalance increases. But, as known from physical considerations, this is not

the case with imbalanced systems. So clearly HEE fails to serve this purpose in this context.

Usually for a condensed matter system one uses free energy in order to say anything about

the preferable state. With the concern we mentioned it is unlikely that HEE alone could

serve the purpose of free energy for holographic superconductors.
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