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1 Introduction

Random normal matrices are genuinely important in physics, especially in the light of their

connection to the Quantum Hall effect [1, 10, 11, 41, 42]. They are also extremely interesting

from the mathematical perspective, since they exhibit a rich geometric structure. In partic-

ular, they are related to the problem of laplacian growth and viscous flows [1, 24, 25, 36, 41],

conformal mappings in two dimensions and integrable hierarchies [17, 34, 39] and the

Bergman kernel theory [3, 4, 23].

In this paper we further explore the connection between random normal matrices and

complex geometry. The eigenvalues of normal matrices are complex-valued, which entails

the relevance of this model to the geometry of the complex plane C. In the series of pa-

pers [3]–[6] Berman proposed a generalization of normal matrix ensembles to the situation,

where C is replaced by a compact complex manifold M equipped with a line bundle Lk,

with k playing the role of the large parameter N . The “matrix” interpretation is then lost,

nevertheless the partition function has basically a similar recognizable form. The statistical

sum in his model at large k freezes on Kähler-Einstein metrics, which can be interpreted

as “emergence” of gravity from the underlying statistical mechanics ensemble [7]. This

observation led to many fruitful applications in the theory of Kähler-Einstein metrics [8].

Remarkably, relation to quantization of the graviton has been alluded to in previous work

on Quantum Hall effect in higher dimensions, on S4 [46, 47] and CPk [26–28]. The model we

study in this paper is, on the one hand, closely related to Berman’s model, and on the other
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hand is implicit already in the earlier work by Donaldson [15] on projective embeddings. In

the case of Riemann surfaces this model is also closely related to the one, studied by Zeitouni

and Zelditch, using large deviation techniques [43, 45]. Here we are interested in the struc-

ture of large k expansion in our model, and in particular in its connection to the work by

Wiegmann and Zabrodin on the large N expansion for random normal matrices [40, 42].

To explain our setup, recall that in [16] we studied the quantum mechanical problem

for a particle in a magnetic field on Kähler manifold, and derived the Bergman kernel ex-

pansion for the density matrix at the lowest Landau level. Here we construct the collective

wave function of these particles, considered now as non-interacting fermions, and study the

partition function of the system. We note that in the special case when M = CP 1 the par-

tition function can be represented as an integral over N copies of C with special boundary

conditions at infinity for the potential, thus making an explicit link with the normal matrix

model. For general Kähler manifolds the standard determinantal representation applied

to our partition function leads to the determinant of the so-called Hilb map, introduced

in [15], in the context of Yau-Tian-Donaldson program in Kähler geometry [14]. The two

leading terms in the large k expansion of det Hilb were already determined in [15], using

the Bergman kernel expansion. In this paper we pursue this analysis to higher orders in

1/k and make some intriguing observations on the form of this expansion to all orders.

In the random normal matrix case, corresponding to M = CP 1, the state-of-the-art

calculation of large N free energy expansion is due to Zabrodin and Wiegmann [42]. They

used the method of Ward identities to find the first three terms in the expansion in a more

general case of beta-ensemble. This is the case of interacting fermions - random normal

matrices correspond to β = 1. Here we reproduce their expansion rigorously for β = 1.

Our result automatically holds for any Riemann surface, in the situation where there is

no boundary. The Kähler parametrization turns out to be particularly convenient if one’s

goal is to understand the geometic meaning of various terms in this expansion. The first

three terms correspond to the Aubin-Yau, Mabuchi and Liouville functionals. All three

functionals play an important rôle in the problem of Kähler-Einstein metrics. Moreover,

these functionals, most famously the Liouville action, appear as gravitational effective

actions in two-dimensional quantum gravity coupled to matter [18, 20], thus providing a

link to the random Kähler metric program [19]. Furthermore, we argue that the remainder

term in the expansion of the free energy contains only action functionals, which are exact

one-cocycles on the space of metrics, i.e. can be expressed as a difference of integrals of local

density, depending on one metric. We support this conjecture by an explicit calculation

up to the fifth order, using the closed formula for the Bergman kernel expansion due to

Xu [38]. We stress that our method applies only to the pure bulk situation, i.e. when the

Quantum Hall droplet is supported everywhere on the manifold. One can see this as a

necessary payoff for being able to look deeper into the structure of the expansion.

The paper is organized as follows. We explain our physics setup and its relation to

the determinant of Hilb map in section 2. In section 3 we reduce our model to normal

matrix ensemble in the special case of sphere. In section 4 we explain the method to

derive the large k expansion of the free energy. In section 5 we derive the first four terms

in the expansion, explain their geometric meaning, relation to the Wiegmann-Zabrodin
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expansion, and make a conjecture about the status of the remainder terms. In section 6 we

check the conjecture for the order five term. As an application, we use the results of this

paper in order to construct a “quantized” (in the geometric quantization sense) version of

the Liouville action, restricted to the space of Bergman metrics.

2 Non-interacting fermions on a Kähler manifold

We consider a system of non-interacting fermions in a magnetic field on a compact Kähler

manifold M of complex dimension n. Our setup here follows [16]. The manifold is charac-

terized by the metric tensor gab̄ with the corresponding Kähler form ωφ = igab̄dz
a ∧ dz̄b,

being a positive-definite (1, 1)-form. We choose the particular magnetic field configuration

with the field strength proportional to the Kähler form

F = kωφ, (2.1)

where k is a big integer. While more general choices of the magnetic field configuration can

be considered in this context [30], this particular choice leads to a natural generalization

of the two-dimensional lowest Landau levels to higher dimensions [16]. Mathematically,

this setup corresponds to a choice of positive line bundle L, its tensor power Lk and a

hermitian metric hk, The curvature Rh = −i∂∂̄ log hk of the hermitian metric corresponds

to the magnetic field strength. At the same time by (2.1) it is proportional to the Kähler

metric kωφ = −i∂∂̄ log hk. The wave functions of particles on the lowest Landau level in

this background are constructed with the help of holomorphic sections si of Lk, weighted

by the metric on the line bundle

ψi(z, z̄) = si(z)h
k
2 (z, z̄), i = 1, . . . , Nk (2.2)

The normalization of wave functions will be chosen as follows. We assume that ωφ belongs

to the cohomology class [ω0] of some reference Kähler form ω0 with the magnetic potential

hk0, meaning

ωφ = ω0 + i∂∂̄φ, (2.3)

where the real-valued function φ is called the Kähler potential. Equivalently, for the Hermi-

tian metrics on the line bundle we have: hk = hk0e
−kφ. Now, we fix the normalization of the

wave functions ψ0, defined as in (2.2) with respect to the reference metric ω0, h
k
0. Namely,

〈ψ0
i , ψ

0
j 〉 =

1

V

∫
M
s̄isjh

k
0 ω

n
0 = δij . (2.4)

Here V =
∫
M ωn0 is the volume of M . It is easy to see that the volume is the same for

all metrics in the cohomology class [ω0]. In what follows we normalize it as V = (2π)n.

Let us stress, that the particular choice of the reference metric in the class [ω0] is of no

importance. The formulas below will depend on ω0 in a covariant way, so that one can

easily replace ω0 by any other metric from [ω0].

The collective wave function of Nk noninteracting fermions is given by the Slater de-

terminant

Ψ(z1, . . . , zNk) =
1√
Nk!

detψi(zj). (2.5)
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The partition function per volume is then the multiple integral over the manifold of the

squared norm of the wave function

ZNk =
1

V Nk

∫
M⊗Nk

|Ψ(z1, . . . , zNk)|2
Nk∏
i=1

ωnφ |zi

=
1

Nk!V Nk

∫
M⊗Nk

| det si(zj)|2e−k
∑Nk
i=1

(
φ(zi)−log h0(zi)

) Nk∏
i=1

ωnφ |zi ,

= det
1

V

∫
M
s̄isjh

k
0e
−kφ ωnφ . (2.6)

where we used Gram identity. Here i, j are matrix indices and k is an (integer) parameter

denoting the degree of the line bundle Lk. The matrix of the size Nk by Nk in the last line

was introduced in [15] and is usually denoted as

Hilbk(φ)ij =
1

V

∫
M
s̄isjh

k
0e
−kφ ωnφ . (2.7)

Let us quickly recall its rôle in the Kähler geometry.

Given the choice of the reference metric, the system (2.6) above is parameterized

essentially by a single function, the Kähler potential φ

ZNk = ZNk [ω0, φ]. (2.8)

The space of all Kähler potentials is in one to one correspondence with the space of all

Kähler metrics on M in the Kähler class [ω0]

Kω0 = {φ ∈ C∞(M)/R, ωφ = ω0 + i∂∂̄φ > 0}, (2.9)

if we mod out by constant potentials, since they do not change the metric. Note that

although the partition function depends on the constant mode φ = c, the dependence is

almost trivial

ZNk [ω0, c] = e−ckNk . (2.10)

Now, the holomorphic part of the wave functions (2.2), taken up to a overall scale, can

be thought of as defining the embedding of the manifold M to the projective space CPNk−1,

via z → si(z). The matrix Hilbk can be understood as a map from the infinite-dimensional

space K[ω0] of Kähler potentials to the finite-dimensional space Bk of norms on the vector

space of sections,

Hilbk : Kω0 → Bk. (2.11)

The latter space can be identified with positive hermitian matrices of the size Nk by Nk.

We will later explain that at large k the space Bk approximates K[ω0] in a very strong sense.

Therefore we arrive at the following relation

ZNk = det Hilbk(φ), (2.12)
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where again the choice of ω0 is assumed. The normalization condition (2.4) then means

that the reference metric is mapped to the identity matrix in Bk: Hilbk(0) = I. Our goal

is to study the expansion of the free energy of the system (2.6)

F = logZNk =

∞∑
j=0

kn+1−jSj(ω0, φ) (2.13)

at large k. This particular form of the expansion will become obvious in what follows. In

the next section we show that for M = CP1 the system above reduces to the normal matrix

model.

3 Relation to normal random matrices

The simplest choice of the compact manifold is M = CP1. In this case the determinant of

the Hilb map is related to the partition function of the normal matrix model. Indeed, let

ω0 be the round metric on the sphere, and hk0 is the corresponding Hermitian metric on

the line bundle. In terms of the projective coordinate z we have

ω0 =
idz ∧ dz̄

(1 + |z|2)2
, hk0 = (1 + |z|2)−k, (3.1)

The area of CP1 in this metric equals A = 2π. The corresponding orthonormal basis of

holomorphic sections (2.4) can be constructed explicitly

si(z) =
√
NkC

i−1
k zi−1, i = 1, . . . , Nk = k + 1. (3.2)

Plugging this back to the partition function (2.6) we immediately get

ZNk =
1

(2π)NkNk!

∫
(CP1)Nk

|det si(zj)|2e−k
∑Nk
i=1

(
φ(zi)−log h0(zi)

) Nk∏
i=1

ωφ(zi)

=
1

(2π)NkNk!

∫
(CP1)Nk

|det si(zj)|2e
−k

∑Nk
i=1

(
φ(zi)−log h0(zi)− 1

k
log

ωφ
ω0
|zi
) Nk∏
i=1

ω0(zi)

=
1

πNk

Nk∏
i=1

(CiNk)

∫
CNk
|∆(z)|2e−k

∑Nk
i=1

(
Φ(zi)− 1

k
log ∂2Φ

∂z∂z̄
(zi)
) Nk∏
i=1

d2zi. (3.3)

Here ∆(z) =
∏
i<j(zi − zj) is the usual Vandermonde determinant. In the last line we

effectively changed the integration domain to the Nk copies of the complex plane. To this

end, we introduced the planar Kähler potential

Φ(z, z̄) = φ(z, z̄) + log(1 + |z|2), (3.4)

The corresponding Kähler form on C is just the Hessian

ωφ =
∂2Φ

∂z∂z̄
idz ∧ dz̄. (3.5)
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The representation (3.3) allows us to make an explicit link with the partition function of

the normal (or complex) matrix model for general eigenvalue potentials [11, 17, 24, 25, 40].

We see that our ZNk is proportional to the latter

ZNk [W ] = ck

∫
CNk
|∆(z)|2e−k

∑Nk
i=1 W (zi)

Nk∏
i=1

d2zi, (3.6)

where the normalization constant is

ck =
1

πNk

Nk∏
i=1

CiNk . (3.7)

If we identify

W (z) = Φ(z)− 1

k
log

∂2Φ(z)

∂z∂z̄
, (3.8)

then the formula (2.12) reduces to the usual determinantal representation of the matrix

integral

ZNk [W ] = det HilbCP 1

k (φ) = ck det

∫
C
zi−1z̄j−1e−kW (z)d2z, (3.9)

compare e.g. to [41]. In this light the relation (2.12) can be understood as a higher-

dimensional generalization of the determinantal formula.

A few comments are in order. In the case of the sphere there are several important

differences compared to the standard case of the fermions in the complex plane. First, in

the planar case the number of states on the lowest Landau level equals the total flux of the

magnetic field, while on the sphere the number of states is Nk = k+1 and the magnetic flux∫
F/2π = k is one unit less. This is due to the extra normalizable mode in the compact case.

Second, there is an order 1/k correction to the potential (3.8), which appears because of the

choice of nontrivial metric (2.1). Usually one assumes the euclidean metric on C and the

system is parameterized by the potential W . We will see that the parameterization by the

Kähler potential is much more convenient if one’s goal is to study 1/k expansion. However,

the requirement that φ is a Kähler potential on CP1 translates into the special boundary

conditions for the potential W . Namely, since φ shall be a bounded function everywhere on

M , the planar Kähler potential Φ (3.4) behaves at infinity as Φ ∼ log |z|2 +O(1). Therefore

the potential W has the following asymptotic behavior

W (z) =

(
1 +

2

k

)
log |z|2 +O(1), as |z| → ∞. (3.10)

Essentially, this growth at infinity is the slowest possible so that the partition func-

tion (3.6) converges. Usually in this context more general boundary conditions on the

potential [2, 4, 24, 25, 40] are considered

W (z) ≥ (1 + ε) log |z|2 +O(1), as |z| → ∞. (3.11)

With this growth conditions on the potential the fermions form droplets of the finite size

on the plane, with the density matrix uniformly constant inside and zero outside of the

– 6 –
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boundary of the droplet. The growth conditions (3.10), which we assume in this paper,

are too mild to hold the fermions together and they tend to spread out over the whole

manifold (C or CP1). In other words the droplet has the size of the manifold and boundary

does not appear. Thus we study only the bulk dynamics of the problem. The considerable

advantage is that it turns out to be possible to say much more about the structure of the

large k expansion of the free energy.

4 Bergman kernel method

In the case of Kähler manifolds there exists a nice method to study the asymptotic expan-

sion of the free energy (2.13), or equivalently the logarithm of det Hilbk, which we recall

here, following [15]. Consider the variation of the free energy with respect to φ

δF = δ log det Hilbk(φ) = Tr Hilb−1
k (φ) δHilbk(φ)

=
1

V

∫
M

Nk∑
i,j=1

Hilbk(φ)−1
ij s̄jsih

k
(
−k + ∆)δφ ωnφ

=
1

V

∫
M

(
−kρk + ∆ρk

)
δφωnφ . (4.1)

Here Hilbk(φ)−1 is the inverse of the matrix Hilbk(φ) and the laplacian ∆ is minus one-half

of the ordinary riemmanian laplacian, taken in the metric ωφ. The sum in the second line

ρk(z) =

Nk∑
i,j=1

Hilbk(φ)−1
ij s̄jsih

k (4.2)

is known as the Bergman kernel, in this case restricted to the diagonal. This is the key

object of our study. There exists [9, 31, 37, 44] the following asymptotic large k expansion

ρk(z) = kn +
1

2
kn−1R+ kn−2

(
1

3
∆R+

1

24
|Riem|2 − 1

6
|Ric|2 +

1

8
R2

)
+O(kn−3), (4.3)

see also [32, 33] for a review. The expansion on the r.h.s. depends only on the Riemann,

Ricci tensors and the scalar curvature and their covariant derivatives, all these quantities

taken in the metric ωφ. We adopt here standard conventions in Kähler geometry

Riemij̄lm̄ = ∂l∂̄m̄gij̄ − gpq̄∂lgiq̄∂̄m̄gpj̄
Rij̄ = −∂i∂̄j̄ log det g, R = gij̄Rij̄ . (4.4)

In this conventions R is one half the scalar curvature in riemannian geometry.

By construction, the integral over the Bergman kernel over M gives the total number

of sections, which is a polynomial in k of degree n given by the Riemann-Roch formula

Nk =
1

V

∫
M
ρk(z)ω

n
φ =

1

V

∫
M

ch(Lk)Td(M)

= kn +
1

2
kn−1c1(M) + . . . = kn +

1

2
kn−1R̄+ . . . (4.5)
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We introduced the average curvature of the manifold as R̄ = 1
V

∫
M Rωnφ . It is an invariant

for all metrics in K[ω0], and thus is a φ-independent constant.

Now we can plug the Bergman kernel expansion to eq. (4.1) and integrate the varia-

tional formula order by order in 1/k, taking into account the base-point condition

det Hilbk(0) = 1. (4.6)

This method essentially is a covariant generalization of the Bergman kernel method in the

normal matrix model. Recall that in the latter case it is customary to work with the den-

sity ρ(z) = 1
N

∑
δ(z − zi). Its average equals the variation of the free energy with respect

to the potential W

〈ρ(z)〉 = N2 logZN
δW (z)

. (4.7)

Our definition of the kernel ρk(z) differs from 〈ρ(z)〉, but the analogy with (4.1) is clear. The

advantage of the Kähler potential parameterization of the free energy is in the availability of

an independent method to extract the large k expansion (4.3) of ρk(z). In the next section

we apply the Bergman kernel method in order to determine the structure of large k expan-

sion of the free energy in complex dimension one, i.e. on any compact Riemann surface.

5 Large k expansion in complex dimension one

Let us return to complex dimension one, which is where the original problem of non-

interacting fermions takes place. In this case we can go a few orders higher in the 1/k

expansion. For n = 1 the Bergman kernel expansion involves only the scalar curvature and

its derivatives. We list all the terms in the expansion up to the fifth term

ρk(z) = k +
1

2
R+

1

3k
∆R+

1

k2

(
1

8
∆2R− 5

48
∆(R2)

)
(5.1)

+
1

k3

(
a1∆(R3) + a2∆2(R2) + a3∆3R+ a4∆(R∆R)

)
+O(1/k4).

The first three terms here can be immediately read off from (4.3), taking into account

that in n = 1 one has |Ric|2 = |Riem|2 = R2. The fourth term (order kn−3 in the expan-

sion (4.3)) was computed for any n in [31]. Here we present it in the form, specified to

n = 1. Note that the terms with negative powers of k must be full derivatives since the

Riemann-Roch formula (4.5) counting the number of sections terminates at the order k0.

This explains the structure of the fifth term in the expansion above. At this order there

exists only four independent metric invariants. We choose here a convenient basis for these

invariants, with corresponding numerical coefficients ai to be determined later. Also for

simplicity we normalize the area of the metrics in K[ω0] as A =
∫
M ω0 = 2π, and explain

the convertion back to arbitrary A in the appendix.

Plugging the expansion (5.1) in the formula (4.1) we then integrate out the variational

formula taking into account the base-point condition (4.6). We then get the first four terms

in the asymptotic expansion of the free energy

F = log det Hilbk(φ)

– 8 –
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= −2πkNkSAY (ω0, φ) +
k

2
SM (ω0, φ) +

1

12π
SL(ω0, φ)

− 5

96πk

(∫
M
R2 ωφ −

∫
M
R2

0 ω0

)
+O(1/k2). (5.2)

Let us now explain the ingredients that enter on the right hand side. The number of

sections Nk (4.5) for a Riemann surface of genus h is simply

Nk = k + 1− h. (5.3)

It follows that the average curvature is R̄ = 2(1 − h). Note that we rearranged the order

k2 and order k terms to get the Nk structure in front of the first term. The first two

functionals here are known in Kähler geometry as the Aubin-Yau and Mabuchi actions,

correspondingly. In dimension one they read

SAY (ω0, φ) =
1

(2π)2

∫
M

(
1

2
φ∆0φ+ φ

)
ω0, (5.4)

SM (ω0, φ) =
1

2π

∫
M

R̄

2
φ∆0φω0 + φ

(
R̄ω0 − Ric(ω0)

)
+ ωφ log

ωφ
ω0
, (5.5)

where Ric(ω0) = Riczz̄(ω0)idz∧dz̄ = R0ω0 is the Ricci form in the metric ω0 and R0 is the

scalar curvature of ω0. Note that the leading term for constant Kähler potentials equals

SAY (ω0, c) = c/2π, (5.6)

in complete agreement with (2.10).

While the variation of the Aubin-Yau functional is just the volume form, the variation

of the Mabuchi functional gives the constant scalar curvature condition

δSM (ω0, φ) =
1

2π

∫
M

(R̄−R) δφωφ. (5.7)

The third functional in (5.2) is the Liouville action

SL(ω0, φ) =

∫
M

1

2

(
Ric(ωφ) + Ric(ω0)

)
log

ωφ
ω0
. (5.8)

This functional is more familiar in physics when written in terms of the conformal Weyl

field σ, which can be identified with the Kähler potental as e2σ = 1 + ∆0φ. In this

parametrization of the metric we have

SL(ω0, σ) =

∫
M

(
−2σ∂∂̄σ + 2Ric(ω0)σ

)
=

∫
M

(
gij0 ∂iσ∂jσ + 2R0σ

)√
g0d

2x (5.9)

Note that the identification between the conformal and Kähler fields above implies the

constant area constraint for the cosmological term
∫
M e2σω0 = A = 2π, since all Kähler

metrics have the same area. Therefore (5.9) is written by default in the fixed area gauge.

The variation of the Liouville action with respect to Kähler potential

δSL(ω0, φ) =

∫
M

(∆R) δφωφ (5.10)
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in the compact case reproduces the constant scalar curvature equation on the metric ωφ

R = R̄, (5.11)

which is the same equation of motion as for the Mabuchi action.

It is instructive to think of the functionals above as depending on a pair of metrics

ω0, ωφ in K[ω0]. The only caveat here is that one has to keep in mind that the Aubin-Yau

action depends on the constant mode of φ in a simple way (5.6). Tautologically, we have

S(ω0, φ) ≡ S(ω0, ωφ). (5.12)

Then an interesting property of the expansion can be immediately pointed out. All the

functionals entering the expansion (5.2) satisfy the so-called cocycle identity. Namely, for

any triplet of metrics ω0, ω1, ω2 ∈ K[ω0] we have

S(ω0, ω2) = S(ω0, ω1) + S(ω1, ω2), (5.13)

and also the antisymmetry S(ω0, ω1) = −S(ω1, ω0). One can verify this property for the

Aubin-Yau, Mabuchi and Liouville actions independently by an explicit, if tedious, calcu-

lation. Formally it follows immediately from the fact that the variation (4.1) depends only

on the metric ωφ and not on ω0, and from the base-point condition (4.6), which imposes

antisymmetry. For the fourth term the Eq. (5.13) holds trivially, since it is an explicit

difference S(ω0, ω1) = S(ω1) − S(ω0). It follows that the cocycle property holds for the

free energy as whole, meaning

F(ω0, ω2) = F(ω0, ω1) + F(ω0, ω2). (5.14)

In particular, one can use this relation in order to replace the reference metric ω0 in the

definition of the free energy by another reference metric ω1 in a controlled fashion. In the

context of 2d gravity this property of gravitational effective actions is important ingredient

behind the background independence [20].

Let us now comment on the relation between the expansion (5.2) and the work [42],

where first three terms in the large N expansion of the free energy of the Dyson gas were

derived. In order to compare the answers we should express our result in terms of W by

solving the relation (3.8) for φ order by order in 1/k

φ = W + log h0 +
1

k
(log ∆0W + 2 log h0) +

1

k2

1

∆0W

(
∆0 log ∆0W − 2

)
+ . . . (5.15)

and plug it back to the expansion (5.2). We get

F = − k
2

2π

∫
W∆0Wω0 +

k

4π

∫ (
R̄W −∆0W log ∆0W

)
ω0 +

1

12π
SL(ω0,∆0W )+ . . . (5.16)

The first two terms here coincide with the corresponding terms in [42], for β = 1 and

assuming no boundary. To compare the last term, recall that the Liouville action is related

to the determinant of laplacian (conformal anomaly) as follows

log
det ∆e2σω0

det ∆0
= − 1

12π
SL(ω0, σ). (5.17)
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Therefore this term corresponds to the logarithm of the determinant of the laplacian in [42].

Thus our method here provides a first rigorous derivation of this term.

Finally, a few comments on the relation of the above expansion to two-dimensional

gravity, alluded to already in [42]. The free energy F can be thought of as a generating func-

tion for the geometric functionals, appearing as gravitational effective actions in 2d gravity.

The Liouville action appears in the Polyakov 2d quantum gravity coupled to conformal mat-

ter. The Mabuchi functional, implicit already in [42], appears when the matter theory is

disturbed by the mass term [20] (the Aubin-Yau action is just a part of the Mabuchi action).

The quadratic curvature term has also been considered in quantum 2d gravity in [29].

6 The remainder term as an exact one-cocycle

Another interesting feature of the expansion (5.2) is that the order 1/k term turns out to

be a exact one-cocycle in K[ω0]. We say that the one-cocyle is exact, or equivalently, is a

coboundary, if it can be written as a difference

S(ω0, ωφ) = S̃(ωφ)− S̃(ω0), (6.1)

for a local functional S̃(ω) of the metric, i.e. a single integral of a local density, depending

only on curvature invariants of the metric ω, and on the covariant derivatives thereof. For

instance, the Liouville action on C can be written as a difference (6.1), but only with the

nonlocal Polyakov action S =
∫∫

R 1
∆R. Therefore it is not an exact cocycle.

This special structure of the order 1/k term in the expansion (5.2) can be traced

back to a particular combination of 1/k and 1/k2 order terms in the expansion of the

Bergman kernel (4.3), which together produces a simple R2 structure in the free energy

expansion. It is natural to conjecture, that all of the remainder terms, i.e. terms in the

expansion (2.13) starting from order 1/k, are exact one-cocycles. The terms with j > 2 in

the expansion (2.13) (in dimension n = 1) should then be the differences of the type (6.1)

of integrals over various curvature invariants

S̃j(ωφ) =

∫
M

(
b1R

j+1 + b2R
j−1∆R+ . . .

)
ωφ (6.2)

This condition leads to some new constraints on the coefficients of the Bergman kernel ex-

pansion (5.1), mixing different coefficients in its expansion. For instance, the most general

local functional, which can appear at the order 1/k2 in the free energy expansion, is the

sum of only two terms

S̃2 =

∫
M

(
b1R

3 + b2R∆R
)
ωφ, (6.3)

with two unknown coefficients b1, b2, whereas the Bergman kernel expansion at this order

depends on four coefficients a1, a2, a3 and a4 (5.1). Therefore if true, our conjecture leads

to the following apriori constraints on these coefficients

3

2
a1 = a2 +

5

48
, a3 = a4 +

1

8
. (6.4)

– 11 –



J
H
E
P
0
1
(
2
0
1
4
)
1
3
3

In order to check our conjecture for the next order term we computed the fourth-order

coefficients of the Bergman kernel expansion in complex dimension one using the graph-

theoretic formula [38]. One has to sum up the contributions from the corresponding Feyn-

man graphs listed in the appendix of [38]. The calculation greatly simplifies for n = 1 due

to small number of curvature invariants. Here we present the final result, writing down the

Bergman kernel expansion to this order in complex dimension one

ρk(z) = k +
1

2
R+

1

3k
∆R+

1

k2

(
1

8
∆2R− 5

48
∆(R2)

)
(6.5)

+
1

k3

(
29

720
∆(R3)− 7

160
∆2(R2) +

1

30
∆3R− 11

120
∆(R∆R)

)
+O(1/k4).

One can immediately check that the last term is in a perfect agreement with the con-

straints (6.4). The free energy expansion to this order reads

F = log det Hilbk(φ)

= −2πkNkSAY (ω0, φ) +
k

2
SM (ω0, φ) +

1

12π
SL(ω0, φ)

− 5

96πk

(∫
M
R2 ωφ −

∫
M
R2

0 ω0

)
(6.6)

+
1

2880πk2

(∫
M

(29R3 − 66R∆R)ωφ −
∫
M

(29R3
0 − 66R0∆0R0)ω0

)
+O(1/k3),

in perfect agreement with our conjecture.

Let us now comment on the situation in complex dimension n. The natural extension

of the conjecture to dimension n is that the terms with negative powers of k, i.e. terms

with j > n + 1 in the expansion (2.13) shall be exact one-cocycles. The expansion starts

at the order kn+1. From this we deduce that the first n+ 2 terms must be some nontrivial

action functionals. It would be interesting to identify the set of relevant functionals, e.g.

in terms of the known Chen-Tian energy functionals on K[ω0], see [13]. Let us compute the

expansion up to the order kn−1. We get

δF = δ log det Hilbk(φ) = −2πkNkδSAY (ω0, φ) +
kn

2
δSM (ω0, φ)

+kn−1

∫
M

(
1

6
∆R− 1

8
R2 +

1

6
|Ric|2 − 1

24
|Riem|2

)
δφωnφ +O(kn−2) (6.7)

The first two terms here were computed already in [15]. They are the Aubin-Yau and

Mabuchi functionals, defined in dimension n by the following variational formulas

δSAY (ω0, φ) =
1

2πV

∫
M
δφωnφ (6.8)

δSM (ω0, φ) =
1

V

∫
M

(R̄−R)δφωnφ . (6.9)

For explicit formulas in complex dimension n we refer the reader to [35]. The order kn−1

term in (6.7) involves four different curvature structures. The combination of ∆R, R2 and
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|Ric|2 enters the E1 and E2 functionals in [13]. However, the last term is a new functional

in Kähler geometry

δSRiem =
1

V

∫
M
|Riem|2 δφωnφ (6.10)

Therefore we conclude that the known set of energy functionals may be insufficient for the

reconstruction of the free energy expansion in complex dimension n.

7 Liouville action restricted to the Bergman metrics

Another application of the expansion (6.6) is its relation to the random Kähler metrics

program [18]–[21]. Recall that the matrix Hilbk(φ) can be thought of as a map (2.7) from

the space of Kähler potentials K[ω0] to the positive definite hermitian matrices Bk. Given

a matrix P from Bk, there exists a map in the opposite direction FSk(P ) : Bk → K[ω0],

which is constructed as follows

φ(P ) = FSk(P ) =
1

k
log s̄iP

−1
ijsjh

k
0, (7.1)

and the corresponding Kähler metric

ωφ(P ) = ω0 + i∂∂̄FSk(P ) =
1

k
i∂∂̄ log s̄iP

−1
ijsj (7.2)

is called the Bergman metric. These two maps are in general not mutually inverse. How-

ever, the composition of the two maps

FSk ◦Hilbk(φ) = φ+
1

k
log ρk (7.3)

is very close to identity in the sense that

ωφ(Hilbk(φ)) − ωφ = O(1/k2) (7.4)

as follows from the expansion (4.3) of the Bergman kernel. Therefore for any Kähler po-

tential φ and the corresponding Kähler metric ωφ, there exists a Bergman metric asymp-

totically close to ωφ as k →∞. This is the metric (7.2) with the matrix P = Hilbk(φ). In

other words, any metric from K[ω0] can be approximated by Bergman metrics with arbitrary

precision at large k. This statement, known as the Tian-Yau-Zelditch theorem [37, 44], es-

sentially means that K[ω0] = limk→∞ Bk.
In one of the approaches to random Kähler metrics (the bottom-up approach), formu-

lated in [19] we suggest to treat the positive hermitian matrix

P = Hilbk(φ)

as a random (matrix) variable. One particularly nice feature of this approach is the fact

that the natural Mabuchi-Semmes-Donaldson metric on K[ω0] turns out to correspond sim-

ply to the pull-back of the simplest possible invariant metric on Bk. The hard part is then

to construct approximations to geometric action functionals such as Mabuchi and Liouville

actions. Donaldson [15] used the formula (6.7) to build the approximaion to the Mabuchi

– 13 –
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functional on the space of Bergman metrics. Indeed, from (7.3) it follows immediately,

that the functional

Sk(P ) = 2πkNkSAY (ω0, φ(P ))− log detP =
kn

2
SM (ω0, φ(P )) +O(kn−1) (7.5)

approximates the Mabuchi energy, restricted to the space of Bergman metrics. The func-

tional Sk is called the balancing energy. Recall, that the critical point of the Mabuchi

functional corresponds to the constant scalar curvature metric (5.7). The critical point

of the balancing energy is the balanced metric, which, when it exists, approximates the

constant scalar curvature metric [14] at large k. The convergence of the Hessian of the

balancing energy was established in [22].

Having established the formula (6.6), we can now construct the balancing energy for

the Liouville functional by analogy with the balancing energy (7.5) for the Mabuchi func-

tional. In complex dimension one we have

SL,k(P ) = 2πkNkSAY (ω0, φ(P ))− log detP − k
2
SM (ω0, φ(P )) =

1

12π
SL(ω0, φ(P ))+O(1/k)

(7.6)

Essentially the Liouville balancing energy is the difference between the balancing energy

and the Mabuchi action, restricted to the Bergman metrics.

SL,k(P ) = Sk(P )− k

2
SM (ω0, φ(P )). (7.7)

Thus we managed to construct the approximation on Bk to the Liouville action in terms of

more simple functionals, whose behavior on the space Bk is understood much better [35].

8 Discussion

The main technical result of this paper is the rigorous derivation of expansion (6.6) of the

free energy of non-interacting fermions on compact Riemann surfaces with Kähler poten-

tial φ. For the sphere the first three terms agree with the previous result by Zabrodin and

Wiegmann [42] for beta-ensembles (at β = 1). For general Kähler manifolds this expansion

is related to the determinant of the Donaldson’s Hilb map, which plays an important rôle

in Kähler geometry [15]. It would be extremely interesting to generalize our results to

general beta-ensembles, in order to understand their interplay with geometry, see [7] for

the first steps in this direction.

We also argued that the remainder term in the free energy expansion in dimension

n = 1 contains only exact one-cocycle functionals, and checked this by an explicit calcula-

tion up to the order 1/k2. This observation imposes new constraints on the coefficients of

the Bergman kernel expansion. Let us also point out, that using the relation (4.1) between

the free energy and the Bergman kernel, we have at least in principle a hold on the free

energy expansion to all orders, given the Xu’s closed formula [38] for all-order Bergman

kernel expansion via Feynman diagrams. The situation here is somewhat similar to the

Hermitian 1-matrix model, where the free energy can be determined to all orders also by

diagrammatic techniques [12].

On the conceptual level, we hope our results shed a new light on the relation between

large N matrix models and complex geometry.
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A Dependence on the area

In the main text we work for simplicity with the fixed area A = 2π. To facilitate the dimen-

sional analysis and for future applications it is instructive to restore the dependence on A in

the main formulas. Here we assume that the metrics inK[ω0] have an arbitrary area A. Then

ωφ = ω0 +Ai∂∂̄φ, (A.1)

and φ is now a dimensionless variable. The Bergman kernel expansion reads

ρk(z) = k +
A

4πk
R+

1

3k

(
A

2π

)2

∆R+
1

k2

(
A

2π

)3(1

8
∆2R− 5

48
∆(R2)

)
(A.2)

+
1

k3

(
A

2π

)4( 29

720
∆(R3)− 7

160
∆2(R2) +

1

30
∆3R− 11

120
∆(R∆R)

)
+O(1/k4),

The free energy in complex dimension one reads

F = log det
1

A

∫
M
s̄isjh

k
0e
−2πkφ ωφ = −2πkNkSAY (ω0, φ) +

k

2
SM (ω0, φ) +

1

12π
SL(ω0, φ)

− 5

96πk

A

2π

∫
M

(
R2 ωφ −R2

0 ω0

)
(A.3)

+
1

2880πk2

(
A

2π

)2 ∫
M

(
(29R3 − 66R∆R)ωφ − (29R3

0 − 66R0∆0R0)ω0

)
+O(1/k3),

where the Aubin-Yau and Mabuchi action functionals are now given by

SAY (ω0, φ) =

∫
M

(
1

2
φ∆0φ+

φ

A

)
ω0,

SM (ω0, φ) =

∫
M

1

2
AR̄φ∆0φω0 + (R̄ω0 − Ric(ω0))φ+

ωφ
A

log
ωφ
ω0

(A.4)

and now AR̄ = 4π(1− h), and the Liouville action has exactly the same area-independent

form (5.8). In order the restore the fixed-area results, one should put A = 2π and rescale

φ→ φ/2π in the formulas above.
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