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1 Introduction

Strong magnetic fields (MF) are expected to be present in the early universe [1–3], in

neutron stars (magnetars) [4–6], and also in non-central heavy-ion collisions [7, 8]. It is

very interesting how MF can modify strong interactions, deduced from QCD. In particular,

it was recently shown [9], how MF influence the asymptotic freedom behavior of the QCD

strong coupling constant and the gluon exchange interaction. The interplay of confinement

and MF in neutral mesons was studied in [10, 11], showing a dramatic change of masses

with growing MF in agreement with recent lattice data [12].

Of a particular interest is the influence of MF on the chiral symmetry breaking (CSB)

dynamics, and in a more general setting, on the symmetry breaking pattern in field theory.

It was shown in [13], that the GMOR relations in MF hold true for neutral chiral mesons,

while they are violated for the charged ones for eB > 0.2GeV2.

It was emphasized in [14–19], in the framework of the NJL model, that MF has the

tendency to strengthen the chiral condensate, the phenomenon called there the magnetic

catalysis, see [20] for a review. In [21] in the framework of the same model a possible new

effect of the magnetic inhibition was predicted.

The behavior of chiral condensate in MF was studied in the chiral perturbation theory

(χPT ) [22–28], in Nambu-Jona-Lasinio (NJL) [29] and in other models [30–32]. On the

lattice the corresponding analysis was done for the quenched QCD in [33, 34], in nf =

2 QCD in [35–37] and in nf = 4 SU(2) theory in [38, 39]. In all cases both in the models

and on the lattice the chiral condensate grows with MF, however in different ways.

Recently a comprehensive analysis of this problem on the lattice with physical quark

masses was performed in [40] and has shown a quadratic growth of condensate up to

eB ∼ 0.2GeV2 and approximately linear behavior above this value.

This behavior contradicts the (χPT ) results, see e.g. [22, 28], where a linear growth

was found with the slope almost twice as small as in [40], and also contradicts the NJL

quadratic growth at large eB [29].

As it was mentioned in [26, 27], the reasonable region of χPT application is for eB <∼
m2

π, where the quark condensate grows quadratically, in a qualitative agreement with lattice

data, however the linear behavior up to 1GeV2 is outside of the χPT reliable region.
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Indeed, the physical degrees of freedom in χPT are associated with the strucrureless

Nambu-Goldstone mesons, and not with quarks and antiquarks, the role of the latter

becomes more important with growing MF, and should be decisive for eB >∼ σ, where

σ = 0.18GeV2 is the string tension. As it was shown in [10, 11] quark and antiquark are

strongly attracted to each other in the plain perpendicular to MF, as it follows from the

linear growth of the corresponding probability: |ψqq̄(0)|2 ∼ eB.

This phenomenon was called in [41] the magnetic focusing, and is the origin of the

strong enhancement of the hyperfine interaction in MF [42]. Moreover, magnetic focusing

also can produce a linear amplification with MF of atomic, nuclear and hadronic reaction

yields, as shown in [43].

It seems reasonable, that some quantities in the chiral theory, like the chiral condensate,

are proportional to |ψqq̄(0)|2, and therefore should grow linearly with eB. Indeed, one can

write the quark condensate (in the Euclidean space-time)

|〈q̄q〉| = |〈Sq(x, x)〉| =
∣

∣

∣

∣

〈(

1

m+ D̂

)

xx

〉∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈

(

1

m+ D̂

)

xy

(

1

m− D̂

)

yx

(m− D̂)x

〉∣

∣

∣

∣

∣

= |〈Sq(x, y)Sq̄(y, x)(m− D̂)x〉| , (1.1)

and one can visualize the probability amplitudes of the qq̄ emission at the point x and

absorption at the point y, combining into the factor |ψqq̄(0)|2. This would bring us the

linear behavior

|〈q̄q〉| ∼ |ψqq̄(0)|2 ∼ eB, (1.2)

which is not connected to any chiral degrees of freedom. Therefore one can expect, that in

any model, which takes into account the general structure (1.1) of the quark condensate, one

would end up with the linear growth (1.2), and the main emphasis should be on the exact

quantitative form, i.e. on the coefficient in front of eB in (1.2). Here the recent accurate

lattice analysis in [40] gives a good check of analytic results, which will be used below.

It is the purpose of the present paper to study the quark condensate in MF starting

from the basic QCD equations, derived earlier without MF in [44–48]. It was shown there,

that GMOR relations and expressions for 〈q̄q〉 and fπ can be derived from the basic QCD

quantities: string tension, αs and current quark masses in good agreement with experiment

and lattice data.

Recently in [49] these results were extended to account for growing current quark

masses mq, and in particular the dependence of 〈q̄q〉 on mq was established to be in agree-

ment with lattice data [50–54].

In the present paper we follow the same line of the formalism of [44–48], but now adding

MF, we find the behavior of 〈q̄q〉 for u and d quarks and their average with growing MF.

As a result we observe in the resulting dependence of the average 〈q̄q〉 and 〈ūu〉, 〈d̄d〉,
the same features and good quantitative agreement with the lattice data obtained in [40].

The physical reason for this dependence of 〈q̄q〉 on eB is clarified below in the paper.

The paper is organized as follows. In the next section a general derivation of GMOR

relation and expressions for 〈q̄q〉 and fπ are given, in section 3 the MF dependence of basic

terms is established, in section 4 results are discussed and prospectives are given.
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Figure 1. The flux-tube operator M(x, y) in the Wilson loop.

2 Effective chiral Lagrangian and the quark condensate

We start with the situation without MF. In this case in [47, 48] the effective Lagrangian

for Nambu-Goldstone (NG) mesons with qq̄ degrees of freedom was obtained in the form

LECL = Nc tr log[(∂̂ +mf )1̂ +MÛ ], (2.1)

where

Û = exp(iγ5φ̂), (2.2)

and M(x) in the local limit is a quark confining interaction, M(x) ∼ σ|x| for |x| → ∞,

see figure 1, while φ̂ = φat
a, φa(x) is the octet of NG mesons.

It is important, thatM(x), appearing at the vertices of the Green’s function in figure 1,

are finite,

M(0) ∼= 2σλ√
π
(1 +O(σλ2),

where λ is the vacuum correlation length, λ ∼= (0.1÷ 0.15) fm [55–58].

Expanding (2.1) to the quadratic in φ terms, one obtains the GMOR relation, e.g. for

the pion

m2
πf

2
π =

m̄u + m̄d

2
|〈ψ̄ψ〉|, m̄ =

mu +md

2
, (2.3)

where the quark condensate 〈ψ̄ψ〉 is

〈ψ̄ψ〉M = i〈ψψ+〉E = −NctrΛ, Λ = (∂̂ + m̄+M)−1. (2.4)

It was also found in [45, 46], that trΛ can be expressed via the qq̄ Green’s function G(0)(k)

trΛ =

〈

tr
1

M +mq + ∂̂

〉

=

〈

tr

[

1

M +mq + ∂̂
(M +mq − ∂̂)

1

(M +mq − ∂̂)

]〉

= (M(0) +mq)

〈

tr

[

γ5
1

M +mq + ∂̂
γ5

1

M +mq + ∂̂

]〉

, (2.5)

and

trΛ = −(M(0) +m)G(0)(k = 0), (2.6)
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where the spectral decomposition is [45, 46]

G(0)(k) = −
∑

n=0

c2n
k2 +m2

n

(2.7)

and cn =
√

mn
2 ψn(0). Finally, the quark condensate for i = u, d, s quarks is

− 〈q̄q〉i = Nc(M(0) +mi)
N
∑

n=0

ψ2
n(0)

mn
e−mnλ, i = u, d, s (2.8)

eq. (2.8) expresses the quark condensate in terms ofM(0) and the reference spectrum in the

PS channel, i.e. the spectrum, where chiral symmetry is not taken into account, but only

confinement term M(x) is present, the corresponding masses mn, calculated in [45, 46] are

m0 = 0.4 GeV, m1 = 1.35GeV, m2 = 1.85GeV. Taking λ = 0.1 fm and M(0) = 0.15GeV,

one obtains (cf appendix of the second paper in [45, 46])

− 〈q̄q〉
nf

= (217MeV)3
M(0) + m̄

(150MeV)
, fπ = 96 MeV

M(0) + m̄

(150MeV)
. (2.9)

One can see, that our values are in the correct ballpark, close to average lattice and

phenomenological values.

Now we turn to the case of a nonzero MF. In this case one should replace ∂µ → Dµ ≡
∂µ− iefA(e)

µ and therefore Λ+/− = 1
m+M+D̂+/−

, where D̂+/− = ∂̂∓ief Â(e). Also one should

introduce Λ̄+/− = 1
m+M−D̂+/−

, so that the quark condensate now contains contribution of

both quarks and antiquarks,

〈ψ̄ψ〉M,i = −Nc(M(0) +mi)trΛ+Λ̄−

= −Nc(M(0) +mi)tr(Λ+γ5Λ−γ5) = −(M(0) +m)G(B)(k). (2.10)

Moreover, MF destroys both spin and isospin quantum numbers of the meson, and

therefore one must distinguish in the Green’s function of our neutral qq̄ system not only

(uū) and (dd̄) components separately, but also the qq̄ spin projections (+−) and (−+),

since they correspond to different mass eigenvalues.

As a result eq. (2.8) in case of MF can be rewritten for each flavor separately,

|〈q̄q〉i| = Nc(M(0) +mi)
∞
∑

n=0

(

1
2 |ψ

(+−)
n,i (0)|2

m
(+−)
n,i

+
1
2 |ψ

(−+)
n,i (0)|2

m
(−+)
n,i

)

(2.11)

where i = u, d, s and the superscripts (+−) and (−+) refer to the quark and antiquark

spin projections on the MF B, and the coefficients 1
2 are due to γ5 in the vertices of the

Green’s function G(0)(k), 〈γ5| → 〈+−|−〈−+|√
2

.

The main problem reduces to the calculation of the spectrum of eigenvalues and eigen-

functions ψn,mn, which are to be found from the Hamiltonian H containing MF B, and

derived from the path integral Hamiltonian [10, 11]

H0 =
2
∑

i=1

(

(pi − eiA
(e))2

2ωi
+
m2

i + ω2
i

2ωi
− eiσiB

2ωi

)

(2.12)
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which can be rewritten in the form (i = u, d, s)

Hi =
1

2ω̃

(

− d2

dη2
+

(

ei(η ×B)

2

)2
)

+ Vconf(η)−
∑

k=1,2

eiσkB

2ωk
, (2.13)

where ω̃ = ω1ω2
ω1+ω2

.

The eigenvalues m̃n,i of Hi depend on ω1, ω2, and the final eigenvalues mn,i entering

in (2.11) are obtained as stationary points in variation over ω1, ω2

∂m̃n,i

∂ω1,2

∣

∣

∣

∣

ω
(0)
1,2

= 0, e.g. m̃
(+−)
n,i (ω

(0)
1 , ω

(0)
2 ) ≡ m

(+−)
n,i . (2.14)

To avoid purely numerical calculations, one can simplify the hamiltonian (2.13), re-

placing linear confinement Vconf(η) in (2.13) by a suitable quadratic form, with coefficient

found from the stationary point condition

V
(lin)
conf = ση → V

(quadr)
conf =

σ

2

(

η2γ +
1

γ

)

,
∂m̃n,i

∂γ

∣

∣

∣

∣

γ=γ0

= 0 (2.15)

To check the accuracy of this replacement, one can compare the lowest mass eigenvalues

and ψn(0) first without MF. In particular, m
(quadr)
0 = 2

√
3σ, while mlin

0 = 4
√
σ
(

2.338
3

)3/4
,

and these two figures differ by 4.5%.

For ψn(0) the corresponding results are

|ψn(0)|2lin =
0.82σ3/2

4π
= 0.065σ3/2;

|ψ0(0)|2quadr =
σ3/2( c04 )

3/4

π3/2
= 0.065σ3/2 (c0 ≡ 1) (2.16)

This coincidence of |ψ0(0)|2 will be of special importance in what follows, since the

main effect of MF, as will be seen, is the increase of |ψn(0)|2 in (2.11) due to MF. It is clear,

that with growing B the size of meson is decreasing, and the difference between V
(lin)
conf and

V
(quadr)
conf will be even more suppressed, since these both interactions vanish simultaneously,

V
(lin)
conf (r → 0) = V

(quadr)
conf (r → 0) = 0.

For us it will be most important how |ψn(0)|2 depends on MF, and especially, how

MF enters in the expansion of |ψn(0)|2 in powers of B. To this end one can see in the

Hamiltonian (2.13), that MF enters via the term VB ≡ η2
⊥

2ω̃

(

eiB
2

)2
. It is clear, that in the

perturbative series expansion the MF enters as (eiB)2

ψn(0)B = ψn(0)0 +O((eiB)2) + . . . (2.17)

As a result of (2.15) one can immediately write the analytic expressions for ψn(0) and

mn of the following form, e.g.

|ψn(0)|2 =
1

π3/2r2⊥r3
, r2⊥ = 2

(

(eqB )2 + σ2c
)−1/2

, r3 =

(

σ2c

4

)−1/4

(2.18)

– 5 –
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where c = 4ω̃
γσ , and

mn⊥,n3 = εn⊥,n3 +
m2

1 + ω2
1 − eqBσ1

2ω1
+
m2

2 + ω2
2 + eqBσ2

2ω2
(2.19)

where

εn⊥,n3 =
1

2ω̃

[

√

e2qB
2 + σ2c(2n⊥ + 1) +

√
σ2c

(

n3 +
1

2

)]

+
γσ

2
(2.20)

Expressions (2.11), (2.18), (2.19), (2.20) contain all information necessary to compute

the quark condensate for a varying MF.

3 The MF dependence of quark condensates

We are interested in eigenfunctions and eigenvalues of (+−) and (−+) states both for u

and d quarks. For the (+−) state, one can see in (2.20), (2.19) that at large B, m
(+−)
0,n3

tends to a constant limit, together with ω1 = ω2. In this case the parameter c in (2.18)

and (2.20) can be expressed in general as

c+− =
4ω̃

γσ
=
(a

2

)4/3
4/β; γ(B) = β(B)(σω̃)−1/3, ω(B) = a(B)

√
σ (3.1)

and β(B), a(B) are changing in finite limits and one obtains that c+−(B) ≈ 1, for all B,

and m+− tends to a constant limit for B → ∞. Hence one can write for lowest levels

n3 = 0, 1, 2, . . .

|ψ(+−)
n⊥=0,n3

(0)|2 ∼=
√
σ
√

e2qB
2 + σ2

(2π)3/2
. (3.2)

Note, that in the limit B → 0 this expression for |ψ(0)|2 yields equal values for n3 = 0, 1, 2

as it should be for pure linear confining interaction.

For the (−+) case the situation is different, and at large B the stationary point value

ω
(−+)
0 ≈

√

2|eq|B + σ
4 , and the parameter c−+ is increasing with B:

c−+(B) =

(

1 +
8eqB

σ

)2/3

. (3.3)

As a result, the |ψ(−+)
n (0)|2 can be written as

|ψ(−+)
n3

(0)|2 = (σ2c−+)
3/4

√

1 +

(

eqB

σ

)2 1

c−+
. (3.4)

Moreover, m
(−+)
n3 ≈ 2

√

2|eqB|+ σ
4 , and

(σ2c−+)3/4

m
(−+)
0 (B)

= σ at large B.

Combining (2.20) and (3.4) we therefore can write

|〈q̄q〉i(B)| = |〈q̄q〉i(0)|
1

2







√

1 +

(

eqB

σ

)2

+

√

1 +

(

eqB

σ

)2 1

c−+







(3.5)

where c−+ is given in (3.3).
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eB 0 0.2 0.4 0.6 0.8 1

(GeV2)

∆
∑

u 0 0.156 0.48 0.865 1.273 1.65

this paper

∆
∑

u [21] 0 0.185 0.51 0.86 1.235 1.60

lattice

∆
∑

d 0 0.048 0.158 0.308 0.48 0.67

this paper

∆
∑

d [21] 0 0.095 0.23 0.40 0.57 0.73

lattice

Table 1. Values of ∆
∑

i
(B), i = u, d given by (3.5) in comparison with lattice data from [40]

We shall be using notations of [40] for the increment of the quark condensate as a

function of MF (denoted τi(B) in [14–19])

∆
∑

i

(B) =
|〈q̄q〉i(B)| − |〈q̄q〉i(0)|

|〈q̄q〉i(0)|
. (3.6)

The resulting values of ∆
∑

i(B) from (3.5), (3.6) are compared in table 1 with the

corresponding lattice calculations in [40].

One can see a reasonable agreement between our theory and lattice data. One can

simplify the B dependence of eq. (3.5), writing

|〈q̄q〉i(B)| = |〈q̄q〉i(0)|
√

1 +

(

eiB

M2
i

)2

. (3.7)

The form (3.7) also satisfactorily describes data of [36, 37] and [40], taking Mi as a

fitting parameter. In the case of [36, 37]the fitted values of Mi are approximately

M2
u ≈ 0.35GeV2, M2

d ≈ 0.27GeV2, (3.8)

i.e. are 2 and 1.5 times larger, than σ (the corresponding c = c+− = c−+
∼= 4 and 4.25

for u and d cases), however the agreement with lattice data is worse. Qualitatively the

same situation (with even larger M2
i )takes place in comparison with [33, 34].

As a whole the behavior (3.5), (3.7) correctly reproduces the main qualitative features

of the quark condensate as a function of eB: the quadratic behavior proportional to (eiB)2

at small B and linear behavior ∼ |eiB| at large B. It differs from the results of others

approaches. In particular, χPT [22–25, 28] predicts linear behavior in eB with the slope

much smaller, than in lattice data [40].

As it was mentioned in [36, 37], for ∆
∑

u and ∆
∑

d there is a simple relation

∆
∑

u

(

B

2

)

= ∆
∑

d

(B), (3.9)

which is satisfied in lattice data, and, of course, is trivially satisfied in our definitions.

Writing for large B ≫ σ, that ∆
∑

i(B) ∼= aiB, one immediately obtains from (3.9),

that au = 2ad. This relation is approximately satisfied in lattice data [36, 37, 40], and in

our expression (3.5), (3.7).

– 7 –



J
H
E
P
0
1
(
2
0
1
4
)
1
1
8

4 Discussion and conclusions

We have used our formalism for the chiral dynamics, presented in [44–49], which is derived

not from purely symmetry considerations, but from the QCD quark dynamics, where chiral

symmetry appears approximately in the smallmq limit of the effective QCD Lagrangian. In

this way all basic degrees of freedom are connected to the confined quarks, and it is finally

the confinement, which dictates the properties of fundamental chiral quantities 〈q̄q〉, fπ etc.,

and gives them numerical values, expressed via σ. This is in contrast with standard chiral

ideas, where chiral Lagrangian is derived on the basis of the chiral symmetry breaking,

however the final results, like GMOR relations are the same.

Actually our reasoning for the calculation of quark condensate is very simple. After

one derives scalar confining interaction M(x), which acts on each quark or antiquark, one

can write quark condensate 〈q̄q〉 = −NctrΛ as

trΛ =

〈

tr
1

M +mq + ∂̂

〉

=

〈

tr

[

1

M +mq + ∂̂
(M +mq − ∂̂)

1

(M +mq − ∂̂)

]〉

= (M(0) +mq)

〈

tr

[

γ5
1

M +mq + ∂̂
γ5

1

M +mq + ∂̂

]〉

, (4.1)

since the term with ∂̂ is odd and vanishes.

The last quantity on the r.h.s. of (4.1) is the qq̄ Green’s function, proportional to ψ2
n(0)

for each n state. The only difference in presence of MF is the replacement ∂̂ → (∂̂−ieÂ(e)),

which immediately gives the proportionality 〈q̄q〉 ∼ ψ2(r = 0; eB). This latter quantity

is linearly rising with |eB|, since MF is “focusing” the quark-antiquark system at small

distances. Note the similarity of (4.1) and (1.1).

This phenomenon of the “magnetic focusing” is of a general character and in the case

of the chiral condensate it actually explains dynamically its growth with eB, which was

named before in [14–20] “magnetic catalysis”. Recently the effect of “magnetic focusing”

in the hyperfine interaction in hydrogen was studied in [41], and in the case of molecular,

nuclear and hadronic processes in [43].

External magnetic field is here crucial for our understanding of chiral dynamics, and

using MF one may decide, what is the role of quark dynamics in the chiral phenomena. In

this respect the comparison of the behavior of quark condensate (or ∆
∑

(B)) as a function

of B in different models and lattice data is showing the following:

1. Standard chiral theory at large B ∼ σ gives linear behavior (qualitatively correct)

but with the wrong slope.

2. Our approach, eq. (2.11) predicts quadratic behavior at small B B <∼ σ and linear

at larger B with slopes different for u and d quarks, both in agreement with existing

lattice data.

3. The PNJL model as shown in [40], is also in disagreement with lattice data at

larger eB.
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Physically, it is clear, that MF, acting on quark charges, discloses the internal quark

structure of PS mesons, while the effective chiral Lagrangian, as in [22–25], describes only

internal multipionic degrees of freedom. The latter can be important only for B ≪ 1/r20,

where r0 ≈ 0.6 fm is the pionic radius, i.e. for B ≪ 0.1GeV2, while for large B the standard

chiral picture is irrelevant, as it is confirmed by lattice data.

These considerations suggest the idea, that the true chiral dynamics can be derived e.g.

from the effective Lagrangian (2.1), and should finally display coexisting quark and chiral

symmetric degrees of freedom, demonstrating how the latter are disappearing (suppressed)

for growing quark masses. How it happens with the pionic spectra, was explained in [49],

demonstrating the unifying spectrum based on chiral and quark degrees of freedom at the

same time.
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