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Abstract: A classical computation of vector bremsstrahlung in ultrarelativistic

gravitational-force collisions of massive point particles is presented in an arbitrary number

d of extra dimensions. Our method adapts the post-linear formalism of General Relativity

to the multidimensional case. The total emitted energy, as well as its angular and frequency

distribution and characteristic values, are discussed in detail.

For an electromagnetic mediation propagated in the bulk, the emitted energy Eem

of scattering with impact parameter b has magnitude Eem ∼ e4e′2γd+2/(m2b3d+3), with

dominant frequency ωem ∼ γ2/b. For the gravitational force the charge emits via vector

field, propagated in the bulk, energy Erad ∼ [GDm
′e]2γd+2/b3d+3 for d > 2, with dominant

frequency ω ∼ γ2/b; and energy Erad ∼ [G5m
′e5]

2 γ3 ln γ/b6 for d = 1, with most of

the energy coming from a wide frequency region ω ∈ [O(γ/b),O(γ2/b)]. For the UED

model with extra space volume V = (2πR)d the emitted energy is EUED ∼ (bd/V )2Erad.

Finally, for the ADD model, including four dimensions, the electromagnetic field living on

3-brane, loses on emission the energy EADD ∼ [GDm
′e]2 γ3/(V b2d+3), with characteristic

frequency ωADD ∼ γ/b.

The contribution of the low frequency part of the radiation (soft photons) to the total

radiated energy is shown to be negligible for all values of d. The domain of validity of

the classical result is discussed. The result is analyzed from the viewpoint of the de Witt-

Brehme-Hobbs equation (and corresponding equations in higher dimensions). The different

frequency domains and their competition mentioned above, may be explained as coming

from different terms in this equation. Thus the whole emission process may be naturally

split in two sub-processes with drastically different spectral and temporal characteristics.
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1 Introduction

The first experiments of the Large Hadron Collider (LHC) at CERN have shown that

creation of Black holes is much less than predicted by theorists. When the discovery of

new physics at LHC associated with supersymmetry at low energies fails, the models of

TeV-scale gravity become of particular interest. The LHC can be used to test models with
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Large Extra Dimensions (LEDs) and set bounds on their parameters [1–6]. Initially pro-

posed as an alternative to supersymmetry in solving the hierarchy problem, such models

are motivated by string theory and open new interesting directions in cosmology. Inspired

by earlier ideas of the Universe as a topological defect in higher-dimensional space-time

and the TeV-scale supersymmetry breaking in heterotic string theory associated with com-

pactification [7, 8], they appeared in several proposals.

A conceptually and technically simple one is the Arkani-Hamed, Dimopoulos and Dvali

(ADD) scenario [9, 10], with the Standard Model particles living in the four-dimensional

space-time and gravity propagating in the D-dimensional bulk with the d = D − 4 flat

dimensions compactified on a torus. Gravity is strong with a corresponding Planck mass

M∗
Pl at the (presumably) TeV scale.

Other LED scenaria include the warped compactification Randall-Sundrum (RS) mod-

els [11, 12], which are based on an identification of the physical four-dimensional space-time

with a 3-brane embedded into a five-dimensional bulk endowed with the cosmological con-

stant, in which case the fifth dimension may be infinite. The model known as “Universal

Extra Dimensions” [13–16] (UED) allows all fields to propagate through the bulk.

The common feature of all these models is the existence of a large (in Planck units)

length LPl, which may appear either via a compactification radius, or via inverse powers

of curvature of the infinite bulk. If the quantum gravity scale happens to be of order of

TeV, the LHC, expected to reach center of mass energies one order of magnitude higher,

will be able to study information about gravity at ultraplanckian energies [17–21]. The

gravitational radius associated with the center of mass collision energy increases with en-

ergy, and in the transplanckian regime becomes larger than the Planck length, indicating

that gravity behaves classically at least for some region of momentum transfers [22]. Thus

the transplanckian gravity is believed to be adequately described by the classical Einstein

equations [23, 24]. This, presumably, allows one to make reliable theoretical predictions of

gravitational effects without entering into the complications related to quantum gravity.

Black Hole production is arguably the most exciting inelastic process in the context

of the TeV-gravity. Apart from the creation of black holes, another inelastic gravitational

process is radiation. Bremsstrahlung itself represents the natural process to test the exis-

tence of extra dimensions and probe them. Colliding ultrarelativistic particles will radiate

and the number of dimensions can easily be determined by the dependence of the radiated

energy from the Lorentz factor γ≫1 of collision.

Bremsstrahlung is characterized by the only one length parameter of experiment —

the impact parameter b. To keep gravity classical, it is expected to be much greater than

the Schwarzschild radius rS , associated with the energy E ≃ √
s, where s stands for the

Mandelstam s-variable:

b≫ γ1/(d+1)rS ∼
(
κ
2
Dγ

√
s
)1/(d+1)

. (1.1)

However, the calculation of classical ultraplanckian gravitational bremsstrahlung in

the context of the ADD model [37, 38] predicts strong enhancement of radiation losses

as compared to theories without extra dimensions already for large values of the impact
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parameter. These extreme losses possibly originate from the large number of light Kaluza-

Klein (KK) modes [25–33]. Our estimate shows that transplanckian collisions should be

heavily damped by radiation, and classical radiation reaction has to be taken into account

in the study of gravitational collapse and BH production in colliders.

On the other hand, the theory of electromagnetic radiation (both classical and quan-

tum) has been developed to much greater extent than gravitational radiation. The same

applies to the corresponding detectors of the emitted waves. Thus it is natural to include

vector bremsstrahlung among the realistic inelastic problems, where the force causing the

acceleration may be either gravitational or non-gravitational.

Nevertheless the problem of radiation reaction is far from solved, even in electrody-

namics. Inspired by the pioneering work of Dirac [43], it was developed by Rohrlich and

Teitelboim in flat space-time [44–47], adapted by deWitt and Brehme for curved back-

ground [48] and generalized to curved background in higher dimensions in [50].

Some attempts to include radiation reaction in QED have been made during the last

thirty years [51, 53–57]. However, the number of physical cases where these attempts have

succeeded in producing a closed form result, is quite modest [49].

Thus electromagnetic bremsstrahlung in an external gravitational field (generated by

the partner particle) represents a process of particular theoretical interest in the context

of another application of tail appearance coming from the non-local part of the Green’s

function in curved background.

It actualizes the purposes of this paper. Furthermore, the synchrotron radiation shows

that within some region of parameters, the electromagnetic field can be also treated clas-

sically, accurately matching the result of quantum electrodynamics.

Thereby, in addition, to make the scheme self-consistent, one has to demand also the

classicality of the particles’ trajectory and classicality of the electrodynamics.

Perturbation theory over the gravitational constant κD will be of usage in the compu-

tation presented here. Given as a zeroth-order solution, Minkowski space-time will be used

as an effective background for the wave propagation. The significance of such a choice is

highlighted by the following facts: (i) it ensures the asymptotically flat space-time, (ii) one

considers tensors and their variations as tensors in flat space with simple raise/lowering

indices and (iii) it allows the freedom to use Fourier-transforms.

Thus one considers the Minkowski space-time as the background, while the direct

nature of modes (Kaluza-Klein modes for toroidal extra dimensions or curvature-mediated

modes in cosmological models with no compactification, like RS2) should be taken into

account as a correction due to the curvature. Depending on the choice of model, the vector

field can either propagate through the bulk, or not, even though the charges are confined

on the 3-brane. Thus we generically consider Minkowski space-time as the background

with arbitrary dimensionality D > 4, while all interesting cases can be obtained as limiting

cases of the generic calculation.

This work continues a series of papers [34–38]: pure gravitational transplanckian brem-

sstrahlung is considered in [37, 38], the classical scalar bremsstrahlung in [35], while [36]

is devoted to the scalar emission in the gravity-mediated bremsstrahlung. Mathematically,

in the ADD model the Minkowski limit appears as the reduction of summation over KK-
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modes into the integration, as long as the restriction on the large size of extra dimensions

holds. Therefore, one has to assume

b≪ R (1.2)

to have large number of KK-quanta, for each model to be applied to.

Most of the previous works on classical bremsstrahlung were concerned with grav-

itational radiation: for reviews see [37, 38] and references therein, and [41] among the

most recent.

Among the previous works in four dimensions on the electromagnetic radiation caused

by gravitational force, one emphasizes the papers by Peters [42], by Matzner and Nutku [58]

and the work by Gal’tsov, Grats and Matyukhin [59]. In [42] the post-linear formalism

is used in the coordinate space for Schwarzschild background, considering bremsstrahlung

near the vicinity of black hole.

Some qualitative arguments and estimates are given in [61]. In [58] the equivalent-

photons method was adapted for gravitons. This approach was criticized in [59], who

found that this method is of limited range when the frequency range is decreased γ times,

and thereby inappropriate.

In [59] the iteration scheme accompanied by the perturbation theory is used — as well

as in the present work, while mathematical techniques are different: contour integration

in [59] versus expansion of Macdonald functions here. The similar features are: (i) the

damping of radiation amplitude at high frequencies ω ∼ γ2/b (at Lab frame), (ii) the

significant frequency ω ∼ γ/b, coming from the partial cancelation of local and non-local

currents, and (iii) the final power of Lorentz factor:

Erad ∼ (Gem′)2

b3
γ3 .

The difference is related with the erroneous neglect of the local current (which turns out

to be significant) at the dominant frequency ω ∼ γ/b in [59], whereas it has the same

magnitude as the non-local part which is retained. Because of this, the total coefficient is

determined with an error, as well as the small- and medium-frequency behavior. Thus our

answer in four dimensions corrects the overall coefficient obtained in [59], and generalizes

it to the higher dimensions. Furthermore, we show that in higher dimensions the higher-

frequency regime

ω ∼ γ2/b

dominates over the domain ω ∼ γ/b, due to the volume factors in the momentum space.

Taking into account some similar features appearing in these works [36–38], we mini-

mize the derivations and refer to the previously derived ones, when it is possible. Meanwhile

we would like to emphasize the features not observed in previous works: conservation of

source (validity of the gauge condition), influence of self-action, the bremsstrahlung of two

charges, the length of the emitted wave formation (coherence length), etc.

In order to distinguish vector radiation by gravitational scattering from pure electro-

magnetic bremsstrahlung (which is expected to represent much larger effect due to the

values of couplings in 4D), we charge only one particle in the most of the paper, while a
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subsection in the Discussion section is devoted to the radiation effects coming from the

scattering of two charges.

The paper is organized as follows: the model, approximation method and formulae

necessary for subsequent computation of the emitted energy, including the polarization

vectors, are described in the section 2. The local and non-local amplitudes, their combina-

tion and the amplitude damping at high frequencies (the destructive interference effect) are

derived in section 3. Section 4 is devoted to the computation of total emitted energy. Some

additional aspects (zero-frequency limits) are discussed. Particular attention is paid to the

emission in the ADD model. Possible cut-offs, the comparison of electromagnetic brems-

strahlung by gravitational and non-gravitational forces, the conclusions and prospects are

presented in the Discussion section. Finally, some necessary formulae for computation and

the simple proof of the destructive interference phenomenon in the vector case, dealing

with just the integration-by-parts technique, are given in three appendices.

2 The model

We compute here a classical spin-one bremsstrahlung in ultra-relativistic gravity-mediated

scattering of two massive point particlesm andm′. The space-time is assumed to beM1,D−1

with coordinates xM , M = 0, 1, . . . , D− 1, with the mostly minus signature (+,−, . . . ,−).

The units we use are c = ~ = 1.

Particles are localized on the observable 3-brane and interact via the gravitational field

gMN , which propagates in the whole space-time M1,D−1. We also assume the existence of

a massless bulk vector field AM , which interacts with m, but not with m′. Thus only m

has an electromagnetic charge e.

2.1 Setup and Equations of motion

The action of the model is symbolically of the form

S ≡ Sg + SA + Sm′ + Sm + SmA ,

and explicitly, in an obvious correspondence, in the reparametrization-invariant form

S = −
∫

dDx
√

|g|
[

R

κ2
D

+
1

4
gMNgRSFMRFNS

]

−
∫

m′
√

gMN ż′M ż′N dτ ′

−
∫ [

m
√

gMN żM żN − eAM ż
M
]

dτ (2.1)

with1 κ
2
D ≡ 16πGD where GD stands for the D-dimensional Newton’s constant. FMN

is the field strength defined as usual: FMN = ∇MAN − ∇NAM . Our convention for

the Riemann tensor is RB
NRS ≡ ΓB

NS,R − ΓB
NR,S + ΓA

NSΓ
B
AR − ΓA

NRΓ
B
AS , with ΓA

NR =

(1/2) gAB(gBR,N + gNB,R − gNR,B). Finally, the Ricci tensor and curvature scalar are

defined as RMN ≡ δBA R
A
MBN and R ≡ gMN RMN , respectively.

1We do not deal with massless particles. Thus the Polyakov form of the mechanical action is not required.
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In the sequel we deal with the affine parameter of the both particles’ worldline,

so gMN ż
M żN = gMN ż

′M ż′N = 1. Thus we consider only that class of the worldline

reparametrizations, which maintains the natural (affine) parametrization of the trajectory.

Variation of (2.1) with respect to zM and z′M gives the particles’ equations of motion

in the covariant form

mDżM = e FMN żN , D′ż′M = 0 , (2.2)

where the covariant derivative is defined as

DπM ≡ ∂πM

∂τ
+ ΓM

RS π
RżS . (2.3)

Variation over AM leads to

∇NF
MN = −JM , JM (x) = e

∫

żM (τ)
δD
(
x− z(τ)

)

√

|g|
dτ . (2.4)

Finally, varying the action with respect to the metric gMN , one obtains the

Einstein equations

RMN − 1

2
gMNR =

κ
2
D

2
TMN , (2.5)

where TMN is a total matter of the system-at-hand.

In order to resolve the equations of motion we use perturbation theory with respect to

the gravitational coupling and the electromagnetic coupling.

As was argued in the Introduction, one expands the metric as a perturbation on the

Minkowski background:

gMN = ηMN + κDhMN

and then finds the solution of equations of motion in each order iteratively. Respectively,

all tensors are to be considered as tensors in flat space-time, as well as raising/lowering of

their indices.

2.2 Approximation method

We intend to use an approximation technique that relies on the fact that the deviation from

the Minkowski metric is small i.e. κDhMN ≪ 1. In particular, we have to evaluate κDhMN

at the location of the charge, i.e. considering m′ as the source of an external gravitational

field. In what follows:

b≫ rg , r′g
d+1

=
8Γ
(
d+3
2

)

π(d+1)/2(d+ 2)
GDm

′ . (2.6)

The possible restrictions due to the charge do not affect the perturbative approximation

we use and their discussion is postponed to the Discussion section.

As mentioned above we will be solving the equations of motion iteratively. Therefore

all fields and kinematical quantities are to be expanded as follows:

φ = 0φ+ 1φ+ 2φ+ . . . , (2.7)
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where φ can be hMN , TMN , AM , zM and z′M as well as their derivatives. Thus the left

superscript is used to denote the order of iteration.

Next, to perform the iterations, it is more useful to work with a flat-derivative inter-

pretation of the EoM (2.4):

1
√

|g|

(√

|g| gMLgNRFLR

)

,N
= −JM , FMN = ∂MAN − ∂NAM (2.8)

and to rewrite it, introducing “new” current2 J̃M :

∂N

(√

|g| gMLgNRFLR

)

= −J̃M , J̃M (x) = e

∫

żM (τ) δD
(
x− z(τ)

)
dτ . (2.9)

Finally, one has to explicitly manifest the matter sources of the generic equations to vary

them in the sequel: the mechanical energy-momentum tensor of two particles and the

stress-tensor of the bulk vector field are given by corresponding action variation over the

total metric gMN and read (in the gauge gMN ż
M żN = 1)

TMN
m = m

∫
żM żNδD

(
x− z(τ)

)

√−g dτ TMN
m′ = m′

∫
ż′M ż′NδD

(
x− z′(τ ′)

)

√−g dτ ′, (2.10)

and

TMN
em = FMLFL

N +
1

4
gMNFLPF

LP , (2.11)

respectively.3

Zeroth order. To zeroth order one expects the flat space with no fields in it:

0hMN = 0 , 0AM = 0 .

In what follows, to this order both particles move freely:

0z̈M = 0z̈ ′
M

= 0

with constant velocities 0żM ≡ uM and 0ż′M ≡ u′M .

Furthermore we will be working in the Lorentz frame where the uncharged particle m′

is at rest (at zeroth order): in addition, we set the origin of coordinate system to coincide

with its zeroth-order location.

u′
M

= (1, 0, . . . 0) , 0z′
M

= u′
M
τ ′ . (2.12)

The charged particle m is ultra-relativistic and moves along the 3-brane with high-speed

v . 1 and large Lorentz factor γ ≡ (1 − v2)−1/2 ≫ 1. We choose the spatial direction of

zeroth-order motion as the z−axis, while the vector of closest proximity bM between the

2It represents the vector density with respect to the total metric, but each term of expansion of it will

represent the vector in flat background.
3Raising/lowering of indices here is performed using the total metric, gMN . Parallel displacement bi-

vectors ḡMA(x, z) are assumed in (2.4), (2.10) and omitted, due to the coincidence limit δD(x− z).
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two particles is chosen to coincide with the x−axis. Finally we choose the time of scattering

to be zero. In what follows

uM = γ(1, 0, 0, v, 0 . . . 0) , 0zM = 0uM τ + bM , bM = (0, b, 0, . . . , 0) .

(2.13)

Thus γ = u·u′ represents the Lorentz factor of collision, b > 0 represents the impact param-

eter of this scattering, while both uM and bM lie on the brane and are mutually orthogonal.

Finally, vectorial and tensorial sources coming from equations (2.9) and (2.10) are

given by

0J̃M (x) = e uM
∫

δD
(
x− 0z(τ)

)
dτ (2.14)

and

0TMN = muMuN
∫

δD
(
x− 0z(τ)

)
dτ , 0T ′MN

= mu′
M
u′

N
∫

δD
(
x− 0z′(τ)

)
dτ ,

(2.15)

respectively, while 0TMN
em = 0.

First order. The zeroth-order sources produce corresponding first-order fields. Namely,

from the Einstein equations (2.5) one expects to get the equation for 1hMN .

Consecutively computing the first-order variations4

g
(1)
MN = hMN Γ

(1)R
MN = (hRM ,N + hRN ,M − hMN

,R)/2

g(1)MN = −hMN R
(1)
MN =

1

2

(

hRN ,MR + hRM ,NR −✷hMN − h,MN

)

(2.16)

ξM ≡ Γ
(1)M
NR ηNR R(1) = −✷h+ hMN

,MN −R
(1)
MNh

MN

✷ ≡ ηMN∂M∂N G
(1)
MN =

1

2

(

−✷hMN +
✷h

2
ηMN − ξ ,L

L ηMN + ξM,N + ξN ,M

)

,

one introduces

ψMN = hMN − 1

2
ηMN h, h ≡ hPP (2.17)

and sets the flat deDonder gauge

∂Nψ
MN = 0 , ∂Nh

MN =
1

2
h ,M , (2.18)

which leads to

R
(1)
MN = −1

2
✷hMN , R(1) = −1

2
✷h , G

(1)
MN = −1

2
✷ψMN . (2.19)

4Notice, here hMN represents the entire tower of its iterations. In these notations with right superscript

we follow Weinberg [65].
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We note that the gauge fixation (2.18) implies

∂N
kψMN = 0 , kψMN ≡ khMN −

khLP η
LP

2
ηMN . (2.20)

Eventually, substituting hMN = 1hMN + 2hMN + . . . and taking into account the

gauge (2.20), one obtains the first-order variations corresponding to our iteration scheme:

1RMN = −1

2
✷

1hMN , 1R = −1

2
✷

1h , 1GMN = −1

2
✷

1ψMN . (2.21)

In what follows the first-order Einstein equation (2.5) reads

✷
1ψMN = −κD

0TMN , ✷
1hMN = −κD

(

0TMN − ηMN
0T

D − 2

)

, (2.22)

where 0T ≡ ηLR
0TLR .

Substituting the zeroth-order matter part (2.15) one obtains 1hMN as a sum

1hMN = 1hMN
m + 1hMN

m′ (2.23)

due to linearity of the first order, where each term represents a solution of (2.22) with

source by the corresponding particle separately.

Furthermore, the first order of (2.9) reads

∂N
1FMN = − 0J̃M (2.24)

with source given by (2.14).

Impose the flat Lorentz gauge for all orders5

∂M
kAM = 0 , kFMN ≡ kAN,M − kAM,N (2.25)

to derive

✷
1AM = 0J̃M (2.26)

as also a d’Alembert equation.

Now consider the first-order equations of motion for two particles: making use of (2.2),

one derives the electromagnetic part of a force, acting on the charge as

m 1z̈Mem = e 1FMN uN . (2.27)

Whereas 1FMN is produced by the same particle m, and one has to consider 1FMN

as external field and omit the self-action of fields in this order6.

5Take into account, it differs from the originally covariant ∇MAM = 0.
6The account of self-action in coordinate representation leads to the renormalization of mass, radiation

and radiation reaction phenomena [43–47, 50] but these effects are proportional to z̈M and its derivatives,

and do not appear in the first order of PT, because of 0z̈ = 0 found above. The appearance of self-action

terms in higher orders will be discussed below.
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In what follows, to first order, both particles move along the geodesics created by the

gravitational field produced by the partner particle, that we denote schematically

gMN = ηMN + κD
1hMN

m′ +O(κ2
D) , g′MN = ηMN + κD

1hMN
m +O(κ2

D) . (2.28)

Thus only the gravitational part of force survives7 and the total first-order EoMs for the

acceleration (2.2) represent a motion in the external linearized gravitational field and read

1z̈M = −κD

(

1hML,R
m′ − 1

2
1hLR,M

m′

)

uLuR ,

1 z̈ ′
M

= −κD

(

1hML,R
m − 1

2
1hLR,M

m

)

u′Lu
′
R . (2.29)

For a more complete derivation of this gravitational part see [37]. It justifies our model as

“radiation under gravity-mediated collisions”.

Second order equation for A−radiation. The solution of linear equation (2.26) is the

field generated by an uniformly moving charge and represents the boosted Coulomb field.

Hence it does not contribute to radiation. In four dimensions it explicitly follows from the

Larmor formula for the electromagnetic radiation by an accelerated charge. In arbitrary

dimension it implicitly follows from the Equivalence principle. We will discuss this more

thoroughly later.

The second order of our scheme leads to the radiation. For the vector emission in the

bremsstrahlung process it is enough to consider only the correction to electromagnetic field
2AM and its source.

Taking the next order of (2.9) together with the Lorentz gauge fixing, one obtains

✷
2AM = jM (x) , jM (x) ≡ ρM (x) + σM (x) , (2.30)

where

ρM (x) ≡ 1J̃M (x) = e

∫ (
1żM − uM 1zN∂N

)

δD
(
x− 0z

)
dτ (2.31)

and

σM (x) = −κD ∂N

(

1hML
1FLN + 1hNL

1FML − 1

2
1h 1FMN

)

, (2.32)

respectively.

We will refer to the first term as the local term since it is fixed on the trajectory of

particle m, while the second term will be referred to as the non-local current8, as it comes

7We remind that this phenomenon is a direct consequence of the fact that only one particle is charged

in the model-at-hand.
8Note that there is some ambiguity with regard to the definition of the local and the non-local part:

indeed, if both sides of (2.8) are not multiplied by the factor
√

|g| and if vary it instead (2.9), the variation

of this factor will remain in the r.h.s. and will be identified as local. Nevertheless, for the source of 2nd-

order field one needs the sum of ρM and σN and, of course when such a factor disappears from one term, it

resurrects in another hand side variation — hence the sum is insensitive to such algebraical transformations.
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from the left-hand side of (2.9) and represents the non-linear terms of the vector field

with gravity.

A note to be added: in fact, we use the perturbation theory only over the gravitational

coupling κD. This is achieved by the fact that only the gravitational force acts on the

particles up to the first order. Because of this fact, both terms in (2.31) are proportional

to żM and zM , respectively, and thus contain κD as a pre-factor.

2.3 The radiation formula

Here we highlight the basic steps to derive the momentum radiated in the form of an

electromagnetic field. A flat space world tube W with a boundary of two space-like hy-

persurfaces, Σ±∞ defined at t → ±∞, as well as a time-like cylindrical surface C located

at infinite distance is considered. Spatially, both particles are located within the volume

or order bD−1, due to the small scattering angle, while with respect to time the process

is restricted by the characteristic time of collision, where both fields in the source (2.32)

are of equal significance. Thus one considers the source of emission to be restricted by the

characteristic space-time volume V . Integrating the flux through the two hypersurfaces

with the time-positive normals, we write the emitted momentum PM , using the flat-space

background concept:

PM =

∫

Σ+∞

TMN dS+
N −

∫

Σ−∞

TMN dS+
N

=

∫

∂W
TMN dSN =

∫

W
∂NTMN dDx = −

∫

W
FMNJN dDx , (2.33)

where TMN and JM are flat analogues of (2.11) and (2.4), respectively. Here one uses

the Gauß’s theorem and the Maxwell equations and implies the cancelation of the surface

integral over C due to the fact that it corresponds to the retarded moment t → −∞ of

emission, where the motion was free.

Performing a Fourier-transformation9, substituting FMN by its retarded solution via

the Green’s function and making use of current transversality (k · j = 0) with the fact that

jM (x) is a real-valued function, we obtain

PM =
i

(2π)D

∫

dDk kM Gret(k) j
∗(k) · j(k) , (2.34)

where Gret(k) = −P
(
1/k2

)
+iπ sgn(k0) δ(k2). The real part −P

(
1/k2

)
does not contribute

to the integral due to imparity over time integration. Finally, transforming the integral

into positive values of k0 and integrating over |k| with δ(k2), one finally obtains

PM = − 1

2(2π)D−1

∫
kM

|k| j
∗
N (k)jL(k) η

NL dD−1k , (2.35)

9Our convention on the Fourier-transforms is

ϕ(x) =
1

(2π)D

∫

ϕ(k) e−ikxdDk , ϕ(k) =

∫

ϕ(x) eikxdDx .
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where k is an absolute value of (D−1)-dimensional spatial part of kM . Taking into account

the transversality and the on-shell condition k2 = 0 of the emitted wave, one can replace

the Minkowski metric in ηMN by

∆MN ≡
(

gΠ
M

L

) (

k′Π
LN
)
= ηMN +

kMkN − 2(kg) k(MgN)

(kg)2
, (2.36)

with any time-like unit vector g, where gΠ = 1− g ⊗ g and k′Π = 1 + k′ ⊗ k′/(kg)2 are

projectors onto subspaces transverse to g and k′ ≡ gΠk = k − (kg)g, respectively. Since

k′ · g = 0, the projectors gΠ and k′Π commute. Their product ∆MN is then a symmetric

projector onto the subspaceMk,g, perpendicular to k and g. By construction, the projector

∆ is idempotent (∆2 = ∆), thus it acts on Mk,g as the unit operator. In what follows, we

will conveniently choose gM = u′M and calculate the flux in the Lorentz frame (referred to

as the Lab frame further) with u′M = (1, 0, . . . , 0).

We arbitrarily choose the orthonormal basis {εMi } on Mk,g and set the resolution

of identity

∆MN = −
∑

i

εMi εNi , εMi εjM = −δij , i = 1, 2 . . . , D − 2 .

Finally, setting M = 0 for the energy, the radiation formula reads

Erad =
1

2 (2π)D−1

∑

i

∫
∞

0
ωD−2 dω

∫

SD−2

dΩ |J · εi|2 (2.37)

as sum over polarizations, where ω ≡ k0 while dΩ stands for the measure on unit sphere

SD−2 in R
D−1.

Polarization vectors. Polarization vectors are mutually orthogonal and satisfy

εi · k = εi · u′ = 0. It is convenient to choose the first D − 4 vectors εα to be orthogo-

nal to the collision space ({scattering plane} × {time}), defined by the linear shell of uM ,

u′M and bM . Thereby they satisfy the relations εα · k = εα · u′ = εα · u = εα · b = 0,

where α = 3, . . . , D − 2. Choosing the D-dimensional unit antisymmetric tensor to be

ǫ0xyz3,...(D−2) = 1, we define the remaining two polarization vectors as

εM1 = N−1

[

(ku)u′M −
(
ku′
)
uM +

(

u · u′ − k · u
k · u′

)

kM
]

(2.38)

and

εM2 = N−1ǫMM1M2...MD−1 uM1u
′
M2
kM3 ε3M4 . . . ε(D−2)MD−1

, (2.39)

respectively, where N is a normalization constant given by

N2 = −
[(
ku′
)
u− (ku)u′

]2
. (2.40)

By construction, it is easy to verify that ε1 · u′ = ε2 · u = ε2 · u′ = 0 and ε1 · k = ε2 · k =

ε1 · ε2 = 0.
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Figure 1. The angles in the lab frame used in the text. Vector k is split onto brane and bulk

components as k = (k‖,kT ).

Introducing the angles according to figure 1 (for additional info see appendix A), the

normalization factor reads N = γv sinϑ(ku′) and the following products do not vanish:

(e1b), (e1u) and (e2b), respectively. The values of these contractions are given by

ε1 · b = −b cosϑ cosφ , ε1 · u = γv sinϑ , ε2 · b = −b sinφ . (2.41)

For the derivation, see [37]. Thus the “bulk” polarizations do not contribute into radiation;

thereby in addition, one can introduce chiral polarization vectors in a usual way as

εM± =
εM1 ± iεM2√

2
. (2.42)

To summarize this section: the formula for emitted radiation (2.37) and the appropriate

polarization states of massless D-dimensional photon are derived, and for the problem-at-

hand only two polarizations given in the covariant form (2.38), (2.39), contribute into the

total emitted energy, as it is proper in four dimensions.

The source of the emitted field is to be computed within the iteration scheme based

on the perturbation theory over gravitational constant κD.

Notice, JM in (2.37) represents the total source of the total AM as a solution in flat

space-time, and thus in our iteration scheme it is given by the series

JM (k) = 0JM (k) + jM (k) + . . . . (2.43)

Here the 0JM given by (2.14) is a source of boosted Coulomb field, and its square does

not contribute to the radiation. It will be shown below that the contribution of product
0J∗ · j + 0J · j∗ also vanishes, and

∑ |j · εi|2 becomes the first surviving order which

contributes to the total emitted energy.

Thereby jM (k) (2.30) as well as its constituents becomes of particular significance and

we concentrate on its evaluation. Looking at σM (k) (2.32), it is enough to restrict ourselves

on the first-order perturbation of the gravitational field 1hMN = 1hMN
m + 1hMN

m′ . Thus in

order to simplify notations, we keep hMN as a simplified notation of 1hMN
m and denote,

respectively, h′MN ≡ 1hMN
m′ .
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3 The radiation amplitudes

The first-order fields, discussed above, in the momentum space are given by

hMN (q) =
2πκDm

q2
eiqb δ(qu)

(

uMuN − 1

d+ 2
ηMN

)

,

h′MN (q) =
2πκDm

′

q2
δ(qu′)

(

u′Mu
′
N − 1

d+ 2
ηMN

)

,

1AM (q) = −2π e

q2
eiqb δ(qu)uM ,

1FMN (q) = i
2π e

q2
eiqb δ(qu)

[

qMuN − qNuM
]

. (3.1)

Respectively, the Fourier-transform of 0J̃(x) = 0J(x) reads

0JM (q) = 2π e eiqb δ(qu)uM . (3.2)

Now we proceed to compute the two parts of the radiation amplitude.

3.1 Local amplitude

The Fourier transform of (2.31) reads

ρM (k) = e ei(kb)
∫ [

1żM + i(k 1z)uM
]

ei(ku)τ dτ . (3.3)

The first order correction to the trajectory is computed in [36] and we quote that result here.

1zM (τ) = − im′
κ
2
D

(2π)D−1

∫

dDq
δ(qu′)

q2(qu)
e−iqb

(

e−i(qu)τ − 1
)[

γu′M − 1

d+ 2
uM − γ2∗

2(qu)
qM
]

,

(3.4)

where γ2∗ ≡ γ2− (d+ 2)−1. We drop all the terms containing u′M since they are transverse

to the polarization vectors and thus will not contribute to the radiation. After integrating

with respect to τ we obtain

ρM(k) = −em
′
κ
2
D ei(kb)

(2π)D−2

[

γ I

(

u′
M − ku′

ku
uM
)

− γ2∗
2(ku)

IM +
γ2∗ k · I
2(ku)2

uM
]

, (3.5)

where the integrals I and IM are defined by

I =

∫
δ(pu′) δ(ku− pu) e−i(pb)

p2
dDp , IM =

∫
δ(pu′) δ(ku− pu) e−i(pb)

p2
pM dDp .

(3.6)

These integrals have been computed in [35] in terms of Macdonald functions (modified

Bessel functions of 3rd kind):

I = −(2π)d/2+1

γv bd
K̂d/2(z) , IM =

(2π)d/2+1

γvbd+1

[

z K̂d/2(z)
uM −γu′M

γv
− iK̂d/2+1(z)

bM

b

]

,

(3.7)
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with

z ≡ (ku)b

γv
, z′ ≡ (ku′)b

γv
, (3.8)

where we use the more economic, non-conventional notation K̂ν(x) ≡ xνKν(x), in order to

simplify the explanation of estimates making use of slowly altering at [0,O(1)] function.

Substituting (3.7) into (3.5) one obtains

ρM(k) =
λ ei(kb)

v

[(

1− γ2∗
2γ2v2

)(

u′M − z′

z
uM
)

K̂d/2(z)

+
iγ2∗

2γ2vz

(
(kb)

γvz
uM − bM

b

)

K̂d/2+1(z)

]

, (3.9)

with

λ ≡ em′
κ
2
D

(2π)d/2+1 bd
. (3.10)

Here we have restored the dependence on u′M in order to make obvious the conservation

of the current (subsection 3.5).

The local current ρM (k) contains Macdonald functions Kν(z) and, combined with the

volume factor ωd+2 sind+1ϑ, gives dominant contribution in the region ω ∼ γ2/b, ϑ ∼ γ−1

(i.e. z ∼ 1), as was argued in [35] and will be discussed later in subsection 5.1. In this

region for the usage below we expand ρM (k) in powers of γ:

ρM(k) =
λ ei(kb)

2

[

−z
′

z
K̂d/2(z)u

M − i

(
z′ sinϑ cosφ

z
uM +

bM

b

)
K̂d/2+1(z)

z

+
d+ 1

d+ 2

z′

γ2z
K̂d/2(z)u

M +O(γ−2)

]

, (3.11)

where the first term in the parenthesis is of order O(γ), the square-bracket-term has order

O(1), while the last term is of order O(γ−1) and the rest represents all subleading terms.

3.2 Non-local (stress) amplitude

The Fourier transform of (2.32) is given by

σM(k) =
κ
2
D em

′ ei(kb)

(2π)2

[

(ku′)
(

(ku′)uM − (ku)u′M
)

J +

(

γ
(
ku′
)
− (ku)

d+ 2

)

JM (3.12)

+

(
uM

d+ 2
− γu′M

)

k · J +
(

(ku)u′M − (ku′)uM
)

u′ · J
]

,

where10

J(k) ≡
∫
δ(pu′) δ(ku− pu) e−i(pb)

p2 (k − p)2
dDp , JM (k) ≡

∫
δ(pu′) δ(ku− pu) e−i(pb)

p2 (k − p)2
pM dDp ,

(3.13)

10We denote these double-propagator Fourier integrals as J and JM , the same letter as vectorial source

introduced in the section 2, in order to keep notation and contact with [37], so we hope, this will not bring

a reader to some misleading.
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which have been computed in [37, 38] as integrals over Feynman parameter x. We

keep (3.12) for the proof of gauge conservation and further suppress terms proportional to

u′M , as they do not contribute to the radiation. From this definition (3.13) it follows that

u′ · J = 0, thus σM (k) reads:

σM(k) =
λ ei(kb)

2γv

∫ 1

0
dx e−i(kb)x

{

i

[
(kb)

d+ 2
uM +

(

γ2vz′ − γzv

d+ 2

)
bM

b

]

K̂d/2(ζ) (3.14)

+

[
β − xξ2

d+ 2
−
(

γz′ − z

d+ 2

)(

(1− x) z + γz′x
)

+ γ2v2z′
2
]

K̂d/2−1(ζ)u
M

}

,

with

ξ2 ≡ 2γzz′ − z2 − z′
2
, β ≡ γzz′ − z2 , ζ2(x) ≡ z′

2
x2 + 2γzz′x (1− x) + z2 (1− x)2 .

The non-local amplitude has now been written in terms of three scalar integrals of the

following type:

J(σ,τ) ≡
∫ 1

0
xσ e−i(kb)x K̂d/2+τ (ζ) dx , (σ, τ) = (0,−1), (0, 0) and (1,−1) . (3.15)

These integrals have been studied in details in [37]: introducing parameter ̺ ∼ ωbϑ, (3.15)

is expanded as series over 1/̺. Thus in the high-frequency region (or z−region, for brevity)

ω ∼ γ2/b, ϑ ∼ γ−1 the dominant contribution comes from small x = 0 . . .O(γ−2) and all

integrals (3.15) are to be expanded in terms of Macdonald functions with argument ζ(0) =

z, with expansion parameter 1/γ. In the large-angle region (or z′−region) ω ∼ γ/b, ϑ ∼ 1

the dominant contribution comes from the values of x near 1: x = 1−O(γ−2) . . . 1 and all

such integrals are to be expanded in terms of Macdonald functions with argument ζ(1) = z′.

In the transition region (ω ∼ γ/b, ϑ ∼ γ−1) the exponential in (3.14) does not oscillate

rapidly and the whole domain x = [0, 1] contributes equally. The series with Macdonald

functions Kν(z) and Kν′(z
′) is also valid (see appendix C) but converges very slow since

no small factor is available: ̺ ∼ 1. Finally, in the ultimate region (ω ∼ γ2/b, ϑ ∼ 1) the

whole integral is exponentially suppressed by O(eγ).

Next we consider more thoroughly the high-frequency behavior of local and non-

local amplitudes.

3.3 Destructive interference

We now proceed to demonstrate the cancelation of the two leading orders of σM and ρM

in powers of γ in the z−region, which leads to the strong damp of the amplitude by O(γ2)

and the emitted energy by four orders of γ. We will refer to this effect as destructive

interference. The same effect for gravity was described in [36–38] by means of the same

representation via Macdonald functions. In another representation it appeared in [59]

dealing with only four dimensions.

We follow [37] and sketch the procedure for showing this: in the z−region (z ∼ 1, z′ ∼
γ) the integral J(1,−1) is suppressed by two orders of γ with respect to the J(0,−1) and J(0,0)
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as it was implicitly mentioned in the previous subsection and proved in [37, eq. (3.28)]. We

now keep only the terms that will give us the first three orders of (3.14):

σM(k) ≈ λ ei(kb)z′γ

2

∫ 1

0
dx e−i(kb)x

[

z′K̂d/2−1(ζ)u
M +

i

b
K̂d/2 (ζ) b

M

−
(
d+ 1

d+ 2

z

γ
+
z′

γ2
+ z′x

)

K̂d/2−1(ζ)u
M

]

. (3.16)

Finally we substitute the approximation [37, eq. (B.10)], appropriately simplified here

neglecting the exponentially suppressed Macdonalds Kν′(z
′) (a ≡ z/sinϑ):

∫ 1

0
dx e−i(kb)xK̂ν−1(ζ) (3.17)

≈ β

a2ξ2

[

K̂ν(z)− i
kb

β
K̂ν+1(z)−

2ν +1

a2
K̂ν+1(z)+

sin2φ

a2
K̂ν+2(z)

]

≈ K̂ν(z)

γzz′
− i

(kb) K̂ν+1(z)

(γzz)2
+

1−γ2ψ
γ3z′z

K̂ν(z)

− sin2ϑ

γz3z′

[

(2ν +1)K̂ν+1(z)− sin2φ K̂ν+2(z)
]

.

For J(1,−1)-type integral [37, eq. (3.28)] we retain only the leading terms:

∫ 1

0
dxx e−i(kb)xK̂ν−1(ζ) ≈ − 1

(γz′)2
K̂ν(z)−

(2ν + 1)

(γzz′)2
K̂ν+1(z) +

1

(γzz′)2
K̂ν+2(z) .

Thus upon substitution of the latter two into (3.16) and retaining the first three orders,

one obtains:

σM ≈ λ ei(kb)

2γ

[

γz′

z
K̂d/2 (z)u

M + i

(

γ
bM

b
− (kb)

z
uM
)
K̂d/2+1(z)

z

−d+ 1

d+ 2
K̂d/2(z)u

M − (d+ 1)

(

1− sin2ϑ

ψ

)
K̂d/2+1(z)

z2
uM

+

((
sin2ϑ sin2φ

ψ
− 1

)

uM +
(kb)

z′
bM

b

)
K̂d/2+2(z)

z2

]

.

The first two orders of this expression exactly cancel with the first two orders of (3.11),

leaving us with

jM ≈ λ ei(kb)

2γ

[

d+ 1

d+ 2

(
1

γ2ψ
− 1

)

K̂d/2(z)u
M − (d+ 1)

(

1− sin2ϑ

ψ

)
K̂d/2+1(z)

z2
uM

+

((
sin2ϑ sin2φ

ψ
− 1

)

uM +
(kb)

z′
bM

b

)
K̂d/2+2(z)

z2

]

. (3.18)

We note that even though the current will finally be projected on the two polarization

vectors, this will not change our conclusion, as the contractions (2.41) add no powers of γ

at the region of interest.
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3.4 The total radiation amplitude

In order to compute the total radiation energy, we will need to study the following three

regions. The z-type radiation emitted for angles ϑ ∼ 1/γ and ω ∼ γ2/b, the region with

frequency ω ∼ γ/b again for small angles and finally the radiation at angles ϑ ∼ 1 at

medium-frequencies.

High frequency regime. The radiation amplitude in z−regime after the destructive

interference was derived in the previous subsection. Projecting (3.18) on (2.42), the chiral

amplitudes j± ≡ j · ε± read:

j±(k) ≈
λ ei(kb) sinϑ

2
√
2

[
d+ 1

d+ 2

1− γ2ψ

γ2ψ
K̂d/2(z)−

d+ 1

z2

(
sin2ϑ

ψ
− 1

)

K̂d/2+1(z)

+
sin2φ

z2

(
sin2ϑ

ψ
− 1

)

K̂d/2+2(z)± i
sin 2φ

2 z2
K̂d/2+2(z)

]

. (3.19)

All terms in the parenthesis (3.19) are of order O(1) (in λ = 1 units) within z−regime,

hence the whole amplitude goes like O(γ−1) due to the common pre-factor sinϑ.

Large angle regime. In this region of the parameters (z′−regime) z is of order O(γ), so

the Macdonald functions that have z as their argument are exponentially suppressed. Thus

we ignore the local part of the current and consider only the non-local part. To repeat, in

this regime the main contribution of the integrals with respect to x comes from the area

near x = 1, and the integrals J0,τ − J1,τ , which are of the form 1 − x, are suppressed by

a factor of O(γ−2) with respect to both J0,τ and J1,τ . We rewrite (3.14) in a way where

we are expanding both with respect to γ but also with respect to 1 − x. Taking also into

account that uM is perpendicular to the second projection, while it gives us an order of γ

when projected on the first polarization, while bM gives no additional powers of γ when

projected on either polarization, we write the two leading orders:

jM(k) ≈ λ ei(kb)

2γ

∫ 1

0
dx e−i(kb)x

{[(

γ2z′
2 − d+ 1

d+ 2
γzz′

)

(1− x) +
z′2

d+ 2

]

K̂d/2−1(ζ)u
M

+ i

[
(kb)

d+ 2
uM +

(

γ2z′ − γz

d+ 2

)
bM

b

]

K̂d/2 (ζ)

}

. (3.20)

Since no destructive interference is expected, we retain only the leading terms of integrals,

and set x = 1 inside the integrand of (3.20). These integrals have been computed in [37]

and give, to the leading order,

∫ 1

0
ei(kb)x K̂τ (ζ) dx ≈ e−i(kb)

z′2γ2ψ
K̂τ+1(z

′) . (3.21)

Eventually, the entire first line in (3.20) turns out to be subleading with respect to the

second one, and, upon substitution (3.21) jM reads:

jM(k) ≈ λ i

2γψ

[
(kb)

γ2z′2(d+ 2)
uM +

(
1

z′
− z

γz′(d+ 2)

)
bM

b

]

K̂d/2+1(z
′) . (3.22)
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Finally projecting on ε± (2.42) the two significant radiation amplitudes in z′−region are

given by

j±(k) ≈
λ i

2
√
2γψ

[

−sin2ϑ cosφ

z′(d+ 2)
+

(
ψ

d+ 2
− 1

z′

)

cosϑ cosφ (3.23)

±i
(

ψ

d+ 2
− 1

z′

)

sinφ

]

K̂d/2+1(z
′) .

In what follows, the amplitudes are of order O(γ−1).

Transition regime. In this region, the projection of the current on the polarization

vectors will once more not add any powers of γ. We have z ∼ 1/γ and z′ ∼ 1. Looking at

expressions (3.9) and (3.14) we see that they are of the same order O(γ) in any dimension

in units λ = 1.

3.5 Conservation of current and validity of gauge fixation

In the above analysis, the following gauges were fixed:

• the affine parametrization of the trajectories along the worldlines of the

scattered particles:

gMN ż
M żN = gMN ż ′

M
ż ′

N
= 1 ; (3.24)

• the deDonder gauge on the gravitational field:

∂M
kψMN = 0, k = 1, 2, . . . ; (3.25)

• the Lorentz gauge on the vector field:

∂M
kAM = 0, k = 1, 2, . . . . (3.26)

To verify self-consistency of our scheme (at least to the lowest orders of interest), we show

it explicitly.

To zeroth order, (3.24) degenerates into u2 = 1 and u′2 = 1 which is trivially satisfied.

In the first order, variation of (3.24) reads

κDh
′
MN ( 0z)uMuN + 2 ( 1ż · u) = 0 , κDhMN ( 0z′)u′

M
u′

N
+ 2 ( 1 ż ′ · u′) = 0 ,

(3.27)

respectively. From (3.1) the value of h′MN (x) at the location ofm−particle x = 0z(τ) reads

hMN ( 0z) =
κDm

′

(2π)D−1

∫

dDq
δ(qu′)

q2

(

u′Mu
′
N − 1

d+ 2
ηMN

)

e−iqz0 . (3.28)

Contracting it with uM uN and substituting 0zM (τ) = uM τ + bM one obtains

hMN ( 0z)uM uN =
κDm

′

(2π)D−1

∫

dDq
δ(qu′)

q2

(

γ2 − 1

d+ 2

)

e−iq ·(uτ+b). (3.29)
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Differentiating (3.4) and contracting with uM one obtains

(
1ż(τ) · u

)
= − m′

κ
2
D γ

2
∗

2(2π)D−1

∫

dDq
δ(qu′)

q2
e−iqb e−i(qu)τ . (3.30)

Multiplying it by 2 and combining with (3.29) one gets the cancelation and thereby veri-

fies (3.27) to the first order. The gauge on the trajectory ofm′−particle is checked similarly.

Next, proceeding to the deDonder gauge on 1ψMN : one rewrites (3.1):

1ψMN (q) =
2π κDm

q2
eiqb δ(qu)uMuN .

The divergence in Fourier space reads

qN
1ψMN (q) =

2π κDm

q2
eiqb (qu) δ(qu)uM = 0 ,

by virtue of distributional identity x δ(x) = 0.

The divergence of 1AM (the first order of (3.26)) vanishes due to the same reason:

qM
1AM (q) = −2π e

q2
eiqb δ(qu) (qu) = 0 . (3.31)

Let also verify the gauge on 2AM : in the momentum space

2AM (k) = −
2jM (k)

k2
,

where jM (k) is the full Fourier-transform taken off-shell k2 = 0 and with no terms neglected

due to polarizations. Thus Lorentz gauge of 2AM is equivalent to k · j = 0.

The constituents of jM (k) are given by (3.5), (3.9) and (3.12). Projecting both on kM

one concludes k · ρ(k) = 0 and k · σ(k) = 0. Thus both

∂M ρM (x) = 0 , ∂M σM (x) = 0

conserve separately, as well as their sum.

Finally, one has to point out, that the conservation of 2AM on flat background

represents the same effect as conservation of JM (2.4) (continuity equation) in the

curved background:

∇MJ
M (x) = 0 . (3.32)

Explicitly the latter reads

∇MJ
M = ∂MJ

M + ΓN
N,M JM . (3.33)

The zeroth-order variation coincides with the conservation of 0JM = 0J̃M discussed above.

The first-order variation of (3.33) is given by

1
[
∇MJ

M
]
= ∂M

1JM + 1ΓN
N,M

0JM . (3.34)
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These terms read

∂M
1JM = e ∂M

∫ (

1żM − uM 1zN∂N − κD

2
huM

)

δD
(
x− 0z

)
dτ

1ΓN
N,M

0JM =
eκD

2
h,M

∫

uM δD
(
x− 0z

)
dτ , (3.35)

thus their sum equals

e

∫
(
1żM − uM 1zN∂N

)
∂M δD

(
x− 0z

)
dτ = e

∫

d
(

1zM ∂M δD
(
x− 0z

))

= 0 (3.36)

as a total derivative. The latter represents the proof in coordinate-space of the property

∂M
1J̃M (x) = ∂M ρM (x) = 0, discussed above.

Thus the iteration scheme we use is compatible with the gauge we fix, and gives the ap-

parent way to compute radiation amplitude and, eventually, the flux of emitted momentum.

4 The emitted energy

In order to compute the emitted energy, we take the zeroth component of the emitted

momentum (2.37):

E =
1

2 (2π)d+3

∑

i

∫
∞

0
ωd+2dω

∫

dΩ |j i(k)|2, (4.1)

First we summarize the radiation amplitudes derived in the previous section and

overview the corresponding contributions to the total flux. In table 1 we present the

energy emitted in the several relevant regimes of frequency and angle, where the estimates

of contribution to the total emitted energy are deduced from (4.1) with the estimate of

j i(k) and the characteristic value of ϑ and ω following immediately from the corresponding

table’s entry.

Now we illustrate qualitatively the effects described above and based on the derivation

in previous section.

On figure 2 we plot a characteristic picture of the behavior of local and non-local

amplitudes and their sum (the radiation amplitude) for the case d = 0 at characteristic

value of ϑ and some common value of φ.

The qualitative features deserving attention are the following:

• At ω → 0 Im ρ(k) goes like 1/ω and dominates in total j, in figure 2 it corresponds

to the asymptote with tangent −1 on green (dot-dashed) curve. This property is

valid for all d > 0 and will be of usage further, when the zero-frequency limit is to

be computed;

• At x → −∞ (ω → 0) |Reσ| ≪ |Re ρ| hence Re j ≈ Re ρ. At this limit ω → 0 |Reσ|
goes like ω0 (black, dotted line in figure 2) for d = 0, like ω1 for d = 1 and like ω2 for

d > 2, as it follows directly from (3.14) and behavior of hatted Macdonald functions.
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❅
❅
❅ϑ

ω
ω . 1/b ω ∼ γ/b ω ∼ γ2/b ω ≫ γ2/b

γ−1

j ∼ Im ρ

Erad ∼ γ2

(subleading by

phase space)

j ∼ O(γ), from ρ and σ

x ∈ [0, 1],

medium regime

no destructive interference

Erad ∼ γ3

j ∼ O(γ−1), from ρ+ σ(z)

x ∈ [0,O(γ−2)]

z − regime

destructive interference

Erad ∼ γd+2

negligible

radiation –

exponential

fall-off

1

j ∼ ρ

Erad ∼ γ0

(subleading by

phase space)

j ∼ O(γ−1), from σ(z′)

x ∈ [1−O(γ−2), 1]

z′ − regime

Erad ∼ γd+1

negligible radiation —

exponential fall-off

negligible

radiation —

exponential

fall-off

Table 1. The behavior of radiation amplitudes and contribution to the emitted energy of each of

the several characteristic regions of angle and frequency. The values are normalized as λ = b = 1.

Figure 2. Radiation amplitudes of first polarization for d = 0 and γ = 103 in logarithmic scales

x = logγ ωb and y = logγ |amplitude|, evaluated at ϑ = 1/γ, φ = π/4. The plots are given for

−Re ρ(k) (red, dashed), Im ρ(k) (green, dot-dashed), Reσ (black, dotted) and Re j (cyan, solid).

The common phase factor ei(kb) is neglected. At x ≈ 1 the curve logγ |Re j| in logarithmic scale

has discontinuity y = −∞ related with the fact that corresponding original amplitude Re j changes

its sign.

• At x > 2 each curve has rapid fall-off at y = −∞, corresponding to the strong

exponential decay of an amplitude at ω & γ2/b;

• At x > 1 Reσ ≈ −Re ρ, so their sum (difference of absolute values in the plot) Re j

(cyan, solid) is much smaller. At x ≈ 2 the difference of Re j and Re ρ is ∆y ≈ 2, so

j is damped by γ2 with respect to Re ρ. This illustrates the destructive interference

– 22 –



J
H
E
P
0
1
(
2
0
1
4
)
1
1
1

at γ2/b > ω ≫ γ/b, that can be rewritten as

j(ω) ∼ j(ω0)
ω2
0

ω2
, ω0 ∼

γ

b
;

• At x ≈ 2 the values of logarithms of Re ρ > Im ρ > Re j differ by ∆y ≈ 1, that

confirms the expansion in power of γ made in (3.11);

• In the region x = (1, 2) logγ |Re j| represents straight-line piece with tangent −2, what

corresponds to the destructive interference region ω = (γ/b, γ2/b). Thus the radiation

amplitude itself goes like ω−2 at this region. Being averaged over angles (with some

average angle ϑ̄ = O(γ−1)), the same is valid for the frequency distribution. For

higher dimensions the corresponding behavior of the latter dE/dω ≡ F is

F (ω) ∼ (ωϑ̄)d+2j2(ω) ∼ j2(ω0)ω
4
0

γd+2
ωd−2 ∼ γ4−d ωd−2, (4.2)

in this region (γ/b < ω < γ2/b);

• |Im ρ| is subleading with respect to |Reσ| but larger than |Re j| (at x > 1) on this

plot. It is damped by |Imσ| not presented here, so their sum |Im j| becomes much

smaller than |Re j|.

Thus in fact, we have two radiation amplitudes instead of a single one in [36], with

obvious identification f → e, f ′ → e′. In other words our primary problem now is to derive

the final overall coefficient.

4.1 Total radiated energy

As can be seen from table 1, the dominant radiation comes from different regimes depending

on the number of extra dimensions, d. Indeed, as it follows from (4.2),

E ∼
∫

∼γ2/b

∼γ/b

dE

dω
dω ∼ 1

γd−4

∫ γω0

ω0

ωd−2 dω , (4.3)

so the dominant contribution comes from the upper limit ω ∼ γ2/b for d > 2, from the

lower limit ω0 ∼ γ/b for d = 0 and from the whole domain for d = 1, respectively.

According to this argument, we need to consider separately the cases where the number

of extra dimensions are d = 0, d = 1 and d > 2. We start with studying the d > 2 case.

d> 2. In this case, as can be seen in the table, the radiation with frequency in the area

of ω ∼ γ2/b dominates. In the case of interest here, R≫ b, we can replace the summation

by integration and use the uncompactified formula for the emitted energy.

The next step is to substitute the expression we have already found for (2.42), which

will give the dominant contribution in this case. We notice that when squaring the two

amplitudes we will have products of the Macdonald functions. In order to perform the
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integration over ω, we will change variable to z and the radiated energy will take the

following form:

dE

dΩ
=

λ2 sind+3 ϑ

8 (2π)d+3 bd+3ψd+3

2∑

a,b=0

C
(d)
ab D

(d)
ab (ϑ, φ) , (4.4)

with11 C
(d)
ab ≡

∫
K̂d/2+a(z)K̂d/2+b(z) z

d+2(δ0a+δ0b−1) dz. We are now left with the integra-

tion over ω. The expressions for j±(k) (3.19) are accurate for high frequencies, however

it has been shown [36] that for d > 2 it is possible to expand the integration domain

z = (∼ 1/γ,∞) up to z = (0,∞), with the relative error O(γ−1). Computing C
(d)
ab with

help of [66]

∫
∞

0
Kµ(z)Kν(z) z

α−1dz =
2α−3Γ

(α+µ+ν
2

)
Γ
(α+µ−ν

2

)
Γ
(α−µ+ν

2

)
Γ
(α−µ−ν

2

)

Γ (α)
, (4.5)

(α > µ + ν) and summing up the contributions of two chiral polarizations, the angular

part reads

D
(d)
00 =

(
d+ 1

d+ 2

)2( 1

γ4ψ2
− 2

γ2ψ
+ 1

)

, D
(d)
11 = (d+ 1)2

(
sin2ϑ

ψ
− 1

)2

,

D
(d)
22 = sin4φ

(
sin2ϑ

ψ
− 1

)2

+
sin22φ

4
, D

(d)
01 = −(d+ 1)2

d+ 2

(
sin2ϑ

ψ
− 1

)
1− γ2ψ

γ2ψ
,

D
(d)
02 =

d+ 1

d+ 2

(
sin2ϑ

ψ
− 1

)
1− γ2ψ

γ2ψ
sin2φ , D

(d)
12 = − (d+ 1)

(
sin2ϑ

ψ
− 1

)2

sin2φ .

(4.6)

By virtue of summation, we can integrate each D
(d)
ab (ϑ, φ) separately. The integration over

the φ is trivial using the following relations
∫

Sd+1

dΩd+1 = Ωd+1 ,

∫

Sd+1

sin2φ dΩd+1 =
1

2
Ωd+1 ,

∫

Sd+1

sin4φ dΩd+1 =
3

8
Ωd+1 .

(4.7)

with the volume of unit sphere of dimensionality n− 1 (in Euclidean R
n) given by

Ωn−1 =
2πn/2

Γ(n/2)
. (4.8)

Making use of

∫ π

0

sinn ϑ

ψm
dϑ =

2m−1Γ
(
n+1
2

)
Γ
(
m− n+1

2

)

Γ (m)
γ2m−n−1 , (4.9)

(valid for 2m > n+1, for derivation see appendix A.2), we integrate over ϑ to end up with

the expression

E =
e2m′2

κ
4
Dγ

d+2

22d+8π (3d+7)/2Γ
(
d+5
2

)

2∑

a,b=0

C
(d)
ab D

(d)
ab , (4.10)

11We omit overall pre-factors v ≃ 1 where it is unambiguous.
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where now

D
(d)
00 =

(
d+ 1

d+ 2

)2

, D
(d)
11 = (d+ 1)2 , D

(d)
22 =

d+ 6

8
,

D
(d)
01 =

(d+ 1)2

d+ 2
, D

(d)
02 = −d+ 1

d+ 2
, D

(d)
12 = −d+ 1

2
.

and summing up in (4.10), we arrive at the following expression:

E ≈ Cd

(
em′

κ
2
D

)2

b3d+3
γd+2 . (4.11)

We give here the values of Cd for several values of the number of extra dimen-

sions: C2 = 4.39 · 10−6, C3 = 1.12 · 10−6, C4 = 5.63 · 10−7, C5 = 4.35 · 10−7 and

C6 = 4.62 · 10−7, respectively.

d = 1. We now focus our attention to the cases d = 0, 1. Here we also can use the high-

frequency approximation as for d > 2, but it does not represent the main contribution

now. On the other hand, in the transition region ω ∼ ω0 the phase of an exponential in

the integrand is of order O(1), thereby the integrand does not strongly oscillate and can

be easily computed numerically. So we revert to numerical methods.

The radiated energy will mostly come from the small angle regime, i.e. θ . 1/γ. As

mentioned, in 5D the frequency distribution of the emitted energy falls as 1/ω in the

regime between O(γ/b) and O(γ2/b). Thus the dependence on γ following from (4.3), is

determined by

E ∼ γ3
∫ γω0

ω0

dω

ω
∼ γ3 ln γ .

We have computed this result numerically12 to deduce:

E = C1

(
em′

κ
2
5

)2

b6
γ3 ln γ , C1 = 1.34 · 10−4 . (4.12)

d = 0. As can be seen from the tables, the radiation mainly comes from the transi-

tion regime (θ . 1/γ and ω ∼ γ/b). As it follows from (4.2), at higher frequencies the

frequency-distribution curve decays as 1/ω2, and according to (4.3), the estimate of emitted

energy reads:

E ∼ γ4
∫ γω0

ω0

dω

ω2
∼ γ4

ω0
∼ γ3 ,

in agreement with the table 1.

Hence we once more use numerical methods to compute the energy:

E ≈ C0

(
em′

κ
2
4

)2

b3
γ3 , C0 = 1.36 · 10−4 . (4.13)

The frequency distribution in four dimensions is given in figure 4(b).

12Numerical computation is performed for following values of γ: 103, 5 ·103, 104, 5 ·104, 105. The relative

error in 90%-level of confidence probability is 5%.
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(a) (b)

Figure 3. Frequency distribution of emitted energy in linear (a), normalized by a factor δ =

Γ4
(
d+1
2

)
, and logarithmic (b) y-scale as function of logγ(ωb) for γ = 103. The dimensions are:

d = 0 (green, solid), d = 1 (red, dashed), d = 3 (b) and d = 5 (a) (both — black, dot-dashed).

Spectral-angular characteristics. The frequency distribution curves in logarithmic

x−scale are presented in figure 3: in linear scale of dE/dω (a) and, to illustrate the rate

of growth/fall, in logarithmic y−scale (b). Curves at the destructive-interference region

x ∈ (1, 2) on the subfigure (b) represent straight lines with integer tangents d−2, confirming

the general idea (4.2), while at low frequencies (x < 0) any curve has an asymptote with

integer tangent d, to confirm an idea of (4.21).

The angular distribution dE/dϑ curves are presented on figure 4(a).

4.2 The ADD bremsstrahlung

Among the higher-dimensional scenarios the models with direct Kaluza-Klein modes,

where the bulk represents compactification on a torus T d, are of particular history

and significance. Here the transformation between D−dimensional couplings and their

four-dimensional colleagues can be established directly, via the dimensional reduction

of an action.

The D−dimensional propagator is split on the corresponding tower of KK modes:

1

qMqM
→ 1

V

∑

l∈Zd

1

qµqµ − l2/R2
µ = 0 . . . 3 ,

where R stands for the compactification radius and V = (2πR)d is a volume of extra

dimensions.

Thus, concerning our computation, the momentum integrals I, IM , J and JM intro-

duced above, arise as a sum over integer-valued momentum inside the argument of the

Macdonald functions. The summand represents (3.7) with d = 0 and the argument of the

Macdonald functions zl =
(
z2 + l2b2/R2

)1/2
, both divided by a normalizing factor V . Thus

upon the transfer from summation to integration according to the Euler — Maclaurin rule

1

V

∑

l∈Zd

K̂λ

(√

z2 + l2b2/R2
)

→ 1

V

∫

K̂λ

(√

z2 + l2 b2/R2
)

dd l =
1

(2π)d/2bd
K̂λ+d/2(z)

(4.14)

(for derivation see [35]) in the final result one restores the expression (3.7) with “actual” d.
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(a) Angular distribution dE/dϑ of the emitted en-

ergy (γ = 103) for d = 0 (green, solid), d = 1 (red,

dashed) and d = 5 (black, dot-dashed), normalized

by the total emitted energy E.

(b) Frequency distribution plots for ADD-

bremsstrahlung for d = 0 (green, solid), d = 2

(red, dashed) and d = 5 (black, dot-dashed)

(γ = 103), normalized by the ZFL factor

∆ = Γ2(d/2 + 1)/(3 · 25πd+4).

Figure 4. Angular and frequency distributions.

Apart from the features common to higher-dimensional models, the ADD scenario has

some particular properties:

• the SM fields and massive particles live on the 3-brane, while gravity is essentially

higher-dimensional;

• ADD is initially proposed as linearized theory of gravity.

Thus in order to evaluate electromagnetic bremsstrahlung by gravity-mediated colli-

sions we can not apply some special cases among those derived before: indeed, D = 4 does

not allow for gravity to propagate in the bulk, while D > 4 does allow for the vector field

to live in the bulk.

Meanwhile, the linearized action for gravitational part

Sg =

∫ [

−1

4
hMN

✷hMN +
1

4
h✷h− 1

2
hMN h,MN +

1

2
hMN hPN,MP

]

dDx , (4.15)

and corresponding spin-zero (spin-one) field lead to the essentially same picture after

KK-summation, as initially D-dimensional gravity with D−dimensionally massless pho-

ton (graviton), as it was shown in [36–38].

In what follows we have to take a D−dimensional source jM and substitute it into the

radiation formula (2.37) for d = 0, where we vanish the bulk components M = 4 . . . D− 1.

Thus the photon wave vector is parametrized by kM = (kµ, 0, . . . , 0), with

kµ = ω (1, sin θ cosϕ, sin θ sinϕ, cos θ) . (4.16)

Thereby, two KK propagators, corresponding to the interaction in a source, sit inside

theD−dimensional amplitudes j and j∗, while a third propagator from the Green’s function

in (2.34) appears with normalization factor. Meanwhile, the model allows for the emitted
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photon to propagate only along the brane, that implies only zeroth emitted mode. Thus

the sum degenerates into a single term while the normalizing factor survives. Eventually,

the formula for the emitted energy via the electromagnetic field in ADD reads

EADD = − 1

16π3V

∫
∞

0
ω2 dω

∫

S2

dΩ j∗µ(k) j
µ(k) =

1

16π3V

∑

i=1,2

∫
∞

0
ω2 dω

∫

S2

dΩ
∣
∣jµ(k) ε

µ
i

∣
∣
2
.

(4.17)

In other words, we take the four-dimensional formula for radiation (normalized

by V ) and put a D−dimensional source projected on the four-dimensional sector:

jµ(kν) = jM (k) δMµ
∣
∣
ki=0

.

Thus we use the four-dimensional coordinate system (figure 1, b) (with angles θ, ϕ)

for parametrization of the emitted photon and keep D−dimensional angles ϑ, φ (figure 1,

c) for the parametrization of interaction graviton.

The on-shell condition now reads kµk
µ = 0; taking into account, that basis vectors

uM , u′M and bM do not contain bulk components, it is enough to take higher-dimensional

amplitudes ρ(k) and σ(k) and two polarization vectors (2.38) and (2.39)

εµ1 =
1

γvz′ sin θ

[

zu′µ − z′uµ +
(

γ − z

z′

) b kµ

γv

]

, εµ2 =
b

γ2v2z′ sin θ
ǫµνλρ uνu

′
λkρ , (4.18)

where in addition, contractions (2.41) hold under appropriate substitutions ϑ→ θ, φ→ ϕ.

To iterate, one takes ρ(k) by (3.9) plus σ(k) in the integral representation (3.14),

square and integrate with measure ω2. Thus all notes on the destructive interference are

still valid. Eventually, multiplying by ω2 leads to the same behavior as in four dimensions,

due to the hatted Macdonald function K̂ν(x) goes like O(1) at the range x = 0 . . .O(1) for

any non-negative index ν. So the four-dimensional behavior of the frequency distribution

is reproduced, with some numerical corrections. Respectively, we repeat the strategy of

computation in 4D presented above.

Thus the characteristic frequency and angle are given by

ωADD ∼ ω0 =
γ

b
, θ ∼ ϑ̄ =

1

γ
, (4.19)

i.e. one has beaming in forward direction with respect to the charged particle’s motion.

The total emitted energy reads

EADD = C̄d
(em′

κ
2
D)

2

b2d+3V
γ3 , (4.20)

with coefficient C̄d to be defined numerically. The results of numerical computation (overall

coefficients C̄d) are listed here: C̄1 = 4.90 · 10−5, C̄2 = 2.54 · 10−5, C̄3 = 1.77 · 10−5,

C̄4 = 1.52 · 10−5, C̄5 = 1.55 · 10−5, C̄6 = 1.85 · 10−5, while the frequency distribution plots

are shown in figure 4(b).

ZFL of the frequency distribution. Given that the stress part (3.14) of the radia-

tion amplitude is finite (for d = 0) and vanishes for d > 0 at the limit ω → +0, the
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zero-frequency limit of dEADD/dω is determined by the imaginary part of the local ampli-

tude (3.11): indeed

jµ(k) = −i λ e
i(kb)

2

(
z′ sin θ cosϕ

z
uµ+

bµ

b

)
K̂d/2+1(z)

z
∼ 1

ω
, (4.21)

while the other terms are regular or diverge logarithmically (for d = 0) at ω → 0. Such a

behavior in ω is reminiscent of the infrared divergence of the corresponding Feynman dia-

grams. However, upon multiplication by ω2 from the measure of integration, it contributes

a finite amount to the radiation loss.

Taking the finite limit of hatted Macdonald K̂n(z) = 2n−1Γ(n) (for n > 0) and omitting

the phase factors

jµ(k) ≃ λΓ(d/2 + 1)

21−d/2ωbψ

(
sin θ cosϕ

γψ
uµ+

bµ

b

)

, (4.22)

with ψ ≡ 1− v cos θ now.

Squaring it and substituting into the first formula (4.17), one has

dEADD

dω

∣
∣
∣
∣
ω=0

=
(em′

κ
2
D)

2 Γ2(d/2 + 1)

28πd+5b2d+2V

∫

dθ dϕ
sin θ

ψ2

(

1− sin2θ cos2ϕ

γ2ψ2

)

, (4.23)

Consecutively integrating over ϕ with help of (4.7), and over θ via (1.9), the ZFL in ADD

bremsstrahlung reads

dEADD

dω

∣
∣
∣
∣
ω=0

=
Γ2(d/2 + 1)

3 · 25πd+4

(em′
κ
2
D)

2

b2d+2V
γ2 . (4.24)

Notice, that this formula is still valid in four dimensions.

Going back and taking into account that destructive interference suppresses not only

the radiation amplitude at frequencies ω > O(γ/b) — but also the flux, one concludes

that frequency

ωADD ∼ ω0 =
γ

b

gives the effective cut-off for all cases of ADD, as well as to four-dimensional bremsstrah-

lung. Thereby the realistic estimate is

EADD ∼ dEADD

dω

∣
∣
∣
∣
ω=0

× ωADD =
Γ2(d/2 + 1)

3 · 25πd+4

(em′
κ
2
D)

2

b2d+3V
γ3 . (4.25)

Such an approach is used by Smarr [60] to estimate four-dimensional gravitational

bremsstrahlung.

Therefore, the vector bremsstrahlung in ADD case repeats the four-dimensional pic-

ture, up to numeric coefficient.
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4.3 The UED bremsstrahlung and average number of Kaluza-Klein modes

Through the entire text we implied that (1.2) is satisfied and one has large number of KK-

modes, that allows to pass from KK-summation to the continuous integration and that

eventually leads to the enhancement of γ−factor power.

Meanwhile, for the UED models, where the vector field can propagate through the

bulk, the contemporary constraints [13–16] on the size of the extra dimensions, coming

from the experimental data (including the recent ATLAS and CMS experiments), give the

following bound:

1/RUED ∼ 300− 3000GeV , RUED ∼ 10−16 cm . (4.26)

In this case the inequality b < R (1.2), combined with b≫ rcl, to have a charge point-like,

does not hold. Does it imply that the whole derivation presented above, fails?

Consider the situation more thoroughly: we first restore the original KK-summations,

before switching to integration. The analogue of (2.37) reads:

E =
1

16π3V

∑

i

∑

n∈Zd

∫
∞

0
̟2 d̟

∫

S2

dΩ |ji(k)|2
∣
∣
∣
k0=

√
̟2+n2b2/R2

̟2 =
3∑

a=1

(ka)2, (4.27)

with ̟ = |k| being a continuous frequency in four-dimensional sector.

The local current is given by (3.5), after the corresponding change of the integrals I

and IM in (3.6), given in [36], to:

I = − 2π

γvV

∑

l∈Zd

K0(zl) , IM = − 2π

γvb2V

∑

l∈Zd

(

bzK0(zl)
γu′M − uM

γv
+ iK̂1(zl) b

M

)

,

(4.28)

respectively, with z2l ≡ z2 + l2b2/R2. A similar summation arises in the stress integrals.

When b ≫ R, one passes in (4.28) to integration according to (4.14), and the expres-

sions (3.7) are restored. The stress amplitude is split into the KK-sum in a similar way,

for more information see [36].

Such a summation appears inside the amplitude jM (k) and corresponds to the KK-

compactification of the interaction graviton. So the effective number of KK-modes of

interaction is determined by the exponential decay of Macdonald function (l2b2/R2 . 1)

and reads

Nint ≡ lmax = [L/b] + 1 , (4.29)

independent of the value 0 6 z . 1.

In the ADD-case the bound on the compactification radius is RADD ∼ 10−2 cm (for

d = 2), and (1.2) is well satisfied, thus one has a large number of the interaction KK-modes.

In the case of UED, one has RUED < lC and one has to revisit the computation. The

above condition implies that the interaction has only zeroth KK-mode.
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Thus the sum in (4.28) degenerates into

I = − 2π

γvV
K0(z) , IM = − 2π

γvb2V

(

bzK0(z)
γu′M − uM

γv
+ iK̂1(z) b

M

)

, (4.30)

plus exponentially-suppressed terms, and the radiation amplitude represents the expres-

sions derived in section 3 for d = 0, but normalized by the factor V .

Therefore, the emission modes are determined by the exponential decay of Macdonalds

K0(z) and K1(z). In the original KK-treatment the argument z becomes dependent upon

the number of emission KK-quantum as

z ≡ (ku)b

γv
≃
√

̟2b2 + n2b2/R2 −̟bv cos θ (4.31)

In the total absence of emission KK-modes, the characteristic frequency is given by its

d = 0−value ̟ ∼ ω0 (4.19), thus the typical value of ̟b is at least ̟b & γ. Assume that

b < Rγ , (4.32)

that is reasonable for R given by (4.26) and γ ∼ 1014. Then the first massive KK-mode is

available, and some number n < Nemit of first KK-modes satisfy nb/R < γ. In this case

one expands the radical in (4.31) to obtain

z ≈ ̟b+
n2b

2̟R2
−̟bv cos θ = ̟bψ +

n2b

2̟R2
(4.33)

Thus the effective number of emission KK-modes

Nemit ≡ nmax(̟) =

√

2̟R2

b
, (4.34)

becomes dependent on the frequency. In the most favorable case the maximal frequency

is determined from the first term of the r.h.s. of (4.33), which should be less than unity

independently [35]: ̟ ∼ ψ−1/b ∼ γ2/b. Thus

Nemit ∼
γR

b
> 1 , (4.35)

according to the necessary condition (4.32).

In addition, now assume the stronger condition:13

γR

b
≫ 1 , (4.36)

Then Nemit ≫ 1, so the modes are quasi-continuous, and we combine quasi-continuous

momenta with continuous ̟ into single ω, shift angles (θ, ϕ) → (ϑ, φ) and we return to

the case (4.1), where we integrate the square of radiation amplitude with volume measure

Vd =
1

2(2π)d+3
ωd+2 sind+1ϑ dω dϑ dΩd+1 . (4.37)

13We will return to the validity of this condition in the subsection 5.3.
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Given that the hatted Macdonald function K̂ν(z) alters slowly with the change of

index ν > 0, the integration should be performed along the same lines as in subsection 4.1.

Namely, for d > 2 the high-frequency regime dominates, and for the radiation amplitudes

one has instead (3.19) and (3.10), the following one:

j±(k) ≈
λ0 e

i(kb) sinϑ

2
√
2

[
d+ 1

d+ 2

1− γ2ψ

γ2ψ
K0(z)−

1

z2

(
sin2ϑ

ψ
− 1

)

K̂1(z)

+
sin2φ

z2

(
sin2ϑ

ψ
− 1

)

K̂2(z)± i
sin 2φ

2 z2
K̂2(z)

]

, (4.38)

with14 λ0 ≡ em′
κ
2
D/2πV .

Again, we split the integrals on frequency and angular parts, as in (4.4):

dEUED

dΩ
=

λ20 sin
d+3ϑ

8 (2π)d+3 bd+3ψd+3

2∑

a,b=0

C̃
(d)
ab D̃

(d)
ab (ϑ, φ) , (4.39)

where C̃
(d)
ab ≡

∫
K̂a(z)K̂b(z) z

d+2(δ0a+δ0b−1) dz . As before, these integrals are to be com-

puted with help of (4.5).

Comparing (4.38) with (3.19), one concludes that the angular coefficient functions D̃
(d)
ab

have the corresponding changes with respect to those ones D
(d)
ab given in (4.6):

D̃
(d)
01 =

D
(d)
01

d+ 1
, D̃

(d)
11 =

D
(d)
11

(d+ 1)2
, D̃

(d)
12 =

D
(d)
12

d+ 1
.

The same relations exist for the integrated over all angles constants. Combining them

all and substituting to (4.39), one obtains the energy loss

EUED ≈ C̃d

(
em′

κ
2
D

)2

V 2bd+3
γd+2 . (4.40)

The values of C̃d for small values of the number of extra dimensions are listed as:

C̃2 = 7.8 · 10−6, C̃3 = 1.5 · 10−6, C̃4 = 4.5 · 10−7, C̃5 = 1.7 · 10−7.

d = 1. Repeating the same arguments, we compute the total radiation numerically:

E = C̃1

(
em′

κ
2
5

)2

V 2b4
γ3 ln γ , C̃1 = 2.74 · 10−5 . (4.41)

The spectral characteristics in UED bremsstrahlung are the same as in higher-dim-

ensional case (subsection 4.1), while the angular characteristics are similar to all cases

considered above.

A summary. In table 2 we summarize the ultimate cases of an ultrarelativistic bremsst-

rahlung from the viewpoint of average numbers of the Kaluza-Klein modes excited in the

bremsstrahlung process.

14The numeric coefficient before K̂1(z) is related with the index of Macdonald function in the series (3.17)

and corresponds to the same expression as in (3.19), with d = 0 is fixed. The numeric coefficient before

K0(z) is coming from the D-dimensional h′

MN and keeps d−dependence inside itself.
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❍❍❍❍❍❍❍Nemit

Nint Nint . 1 Nint ≫ 1

Nemit . 1

space-time model =

characteristic frequency =

radiation amplitude =

phase volume =

KK modes =

emitted energy =

M1,3

ω ∼ ω0

j = j0
V = V0

Nint = Nemit = 1

γ3

ADD

ω ∼ ω0

j = jd
V = V0/V

Nemit = 1

γ3/V

Nemit ≫ 1

space-time model =

characteristic frequency =

radiation amplitude =

phase volume =

KK modes =

emitted energy =

UED

ω ∼ γω0

j = j0/V

V = Vd

Nint = 1

γd+2/V 2

M1,d+3

ω ∼ γω0

j = jd
V = Vd

Nemit = γNint

γd+2

Table 2. The qualitative relation between the cases of gravity-mediated vector bremsstrahlung

from viewpoint of number of KK-modes. The values are normalized as λ = b = e = 1. N = 1

implies that only the zeroth KK-mode is actual. The measure of the phase volume integration is

defined by (4.37).

5 Discussion

According to the computation presented above, we overview possible effects and give the

estimates on them.

5.1 Scattering of two charges

When both particles are charged by the vector field AM then the direct electromagnetic

interaction is expected to be the dominant force. Then the acceleration (and, being inte-

grated, the trajectory deflection) represents (to first order of PT) the sum of two contri-

butions of electromagnetic and gravitational nature, respectively. In turn, these addenda

to trajectory may lead to radiation via vector and tensor fields. We do not consider gravi-

tational waves in this work, and thus focus here to the pure vector bremsstrahlung.

A similar approach (i.e. bremsstrahlung without accounting for gravity) was considered

in [35] for the scalar bremsstrahlung, so it is not necessary to reproduce that computation

in details. Instead of the detailed computation, we highlight the main steps and overview

the results.

Making use of perturbation theory over e and considering (2.2) on the flat background

with FMN (3.1) generated by charge e′, the acceleration on trajectory reads:

1z̈Mem(τ) = i
e′e

(2π)d+3m

∫

dDq
δ(qu′)

q2
e−iqbe−i(qu)τ

[

γ qM − (qu)u′M
]

. (5.1)

– 33 –



J
H
E
P
0
1
(
2
0
1
4
)
1
1
1

The scattering angle, computed along the same lines as in [34], is given by

αem ∼ e e′

mγ bd+1
∼
[√

rclr
′
cl

b

√
m′

√
m

]d+1
1

γ
<

(m′/m)
d+1
2

γ
. (5.2)

Performing the perturbation-theory scheme (with the obvious restriction b > rcl), one

obtains the following second-order source valid in all frequency regimes:

jM (k) ∼ i ei(kb)
e2 e′

mγbd

(
sinϑ cosφ

γψ
uM +

bM

b

)
K̂d/2+1(z)

z
. (5.3)

It is produced by the fast particle, while the corresponding terms due to the target and

the interference give subleading in γ contribution.

As was mentioned above, such an argument of the Macdonald function leads to the

dominance of z−region in the entire spectrum. Thus in the Lab frame the characteristic

spectral-angular values are:

ωem ∼ γ2

b
, ϑem ∼ 1

γ
, (5.4)

On the other hand we see that such a behavior at low frequencies leads to the finite ZFL

of frequency distribution, which for the case of non-compactified extra dimensions reads

(
1

ωd

dE

dω

)

ω=0

∼ (e2 e′)2

b2d+2
γ−d . (5.5)

Here no process which drastically changes the amplitude (like destructive interference)

occurs in the whole frequency domain ω ∈ [0, ωem], and one applies ZFL-approximation

with maximal frequency given by (5.4):

Eem ∼
(

1

ωd

dE

dω

)

ω=0

× ωd+1
em ∼ e4 e′2

m2b3(d+1)
γd+2 . (5.6)

Roughly speaking, the total emitted energy carried by the vector field is twice that of

the scalar situation due to the two polarization states, after making the identifications

f → e, f ′ → e′, respectively. Therefore most of emitted waves are beamed into the cone

with characteristic angle 1/γ.

The efficiency is given by

ǫem ∼
(

γ
r3cl
b3

)1+d

. (5.7)

Taking into account that when interacting gravitationally, the charge emits Erad ∼ γ3

in four dimensions, while only Eem ∼ γ2 in Coulomb-field collision, it seems intriguing to

derive that value of γ, for which the two contributions become comparable.
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Correction to gravity-mediated vector bremsstrahlung. The acceleration of both

particles in the first order of PT represents the sum of gravitational and Lorentz-force

parts. The electromagnetic part causes e2 e′−contribution to the vector current and leads

to the pure electromagnetic bremsstrahlung reviewed above in this subsection.

The appearance of a second charge e′ (with mass m′) adds some terms to the radiation

amplitudes: namely, local (3.11) and non-local (3.12) parts will acquire addenda ρ′(k) and

σ′(k), based on the integrals (3.6) and (3.13) where primed and unprimed quantities are

mutually interchanged. These terms also can be derived in the same way in the Lorentz

frame associated with e−charge (comoving frame), and then Lorentz-transformed into the

Lab frame. With e and e′ to be of the same order, in the comoving frame the emission is

dominant due to these new terms, and governed by Macdonald function Kν(z
′). Hence in

this frame the emission is beamed inside the cone ϑ′ . 1/γ with respect to u′. Being trans-

formed to the Lab frame, these terms remain to be Kν(z
′) since z′ is a Lorentz-scalar (3.8).

Thus these addenda are not important in higher frequencies and represent subleading, by

an order of γ terms (with respect to the terms we keep) due to the Lorentz transformation,

with a corresponding interchange of primed and unprimed couplings in (4.11).

The conservation of these terms is easily verified using the same strategy as for the

basic terms. The self-action terms appearing here, are discussed in appendix B.

5.2 Coherence length

In this subsection we consider qualitatively the effects arising in the bremsstrahlung process,

and the spectrum of emitted waves, from the viewpoint of coherence length, coming from

consideration of the particle’s equation of motion in the presence of external field.

While accelerating, the particle emits radiation. Its spectral characteristics are trans-

lated from the corresponding temporal ones, related with the duration of accelerated mo-

tion, and with the value of acceleration and type of external force.

Apart from the formulae for the total energy loss on radiation in the coordinate and

momentum representations given in subsection 2.3, the intensity of electromagnetic emis-

sion can be characterized by the square of the incomplete Fourier-transform of AM (x)

considered as an integral over the particle’s classical trajectory zM (τ):

AM (ω, r) ∼ e

ρ

∫

uM (τ) ei(ωt−kz) dτ , ρ ≡ |r− z| .

Being squared, the combination |AM (ω, r)|2 contains a double integral over τ1τ2 with

eik ·∆z in the integrand.

Expanding ∆zM = uM + z̈Mτ +
...
zMτ2/2+ . . ., where τ ≡ τ2− τ1, the difference in the

phases of the two waves emitted by a charge in the same direction n at close moments τ1
and τ2 of proper time, is determined by

∆ϕ = k ·∆z = ω
[

t− n∆z(t)
]

, t ≡ τ2 − τ1 .

In addition, in ultrarelativistic motion the transverse component of the force acts much

more effectively than the longitudinal one. Because of this, one can transit from D−di-
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mensional expansions to their spatial sector, and the latter equation can be rewritten as

∆ϕ = ωt

(

1− nv − t

2
nv̇ +

t2

6
v̇2 + . . .

)

Thus to the leading order ∆ϕ ≈ ωt(1 − nv) = ωt(1 − v cosϑ) = ωtψ . When ∆ϕ

becomes of order O(1), the waves with antiphase are present in the spectrum, so they

annihilate and decoherence happens.

Thus the maximal duration of coherence is given by

tcoh ∼ 1

ωψ
, τcoh ∼ tcoh

γ
∼ 1

ωγψ
. (5.8)

Let us consider the wave formed within the coherence length (during the coherence

time) and emitted in the angle ϑ with respect to u. The characteristic duration of this

signal in the Lab frame is determined by the difference of distances covered by two waves,

emitted at the start and finish of the coherence interval and received far from the particle’s

location. Computing it, one obtains tLab = (1−v cosϑ) tcoh = ψtcoh. Going back to all cases

of bremsstrahlung, most of the emitted radiation is beamed inside the cone ϑ . ϑ̄ = 1/γ,

that is confirmed by the curves in figure 4(a).

Given that at coherence interval the deflection angle should be α < γ−1, the Lab-frame

duration is estimated as

tLab ≃ ϑ2 + γ−2

2
tcoh . (5.9)

Finally, using (5.8) one has:

ωcom ∼ 1

tcoh
, ω ∼ 1

tcohψ
∼ 1

tLab
∼ γ2ωcom . (5.10)

The frequency in the Lab frame is, thereby, γ2 larger than the frequency in the comoving

frame, ωcom, according to the Doppler effect.

Therefore we analyze the average time of accelerated motion.

Classical electrodynamics. Expanding (5.1) near τ = 0 one deduces that the acceler-

ation is determined by the transverse component 1z̈ xem with characteristic value

1z̈ xem(0) ∼
ee′

m

γ

bd+2
. (5.11)

The duration of the accelerated motion is characterized by that interval, for which the

trajectory is deflected on an angle, comparable to the total deflection angle αem given

by (5.2):

τem ∼ b

γ
, tem ∼ b . (5.12)

For details, see [72]. Next, consider the radiative part of the Lorentz-Dirac force in higher

dimensions: it is determined by averaging over angles of the corresponding part of energy-

momentum tensor, the latter reads T emit
em ∼ e2/rd+2, where r stands for the retarded

Lorentz-invariant distance parameter (for construction see [67]).
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For instance, in four dimensions it represents well-known (relativistic) Larmor formula

for the emission intensity (in the units we use)

dErad

dt
= − 1

6π
e2z̈ 2em , Ėrad = − 1

6π
e2z̈ 2emż

0 .

In even higher dimensions the analogue of the Larmor formula can be computed in a closed

form and reads schematically (in the gauge ż2 = 1)

Ėrad ∼ e2γ

[

B(2,2;2...2)
︸ ︷︷ ︸

d+2

(z̈ 2em)
d/2+1 + . . .+B(D/2,D/2)

(

z(D/2)
em · z(D/2)

em

)
]

. (5.13)

with some positively defined form in the parenthesis. Here B(αk...) is a constant with list of

orders of derivatives, constituting the corresponding scalar products, while dots represent

all intermediate scalar terms with the same dimensionality of mass ([m] = cm−1).

Taking into account that for higher derivatives

dD/2

dτD/2
1zMem ∼ 1zxem

(D/2) ∼ 1z̈xem
γd/2

bd/2
,

that follows from (5.1), and substituting (5.11), one obtains the estimate

1zxem
(D/2) ∼ ee′

m

γd/2+1

b3d/2+2
. (5.14)

Given that all terms in the parenthesis have the same total dimensionality cm−(d+2), and

that each derivative adds γ/b, one concludes that all terms have the same order of γ−factor.

In what follows, the leading term is determined by the perturbation theory, and given by the

term with minimal number of scalar products, namely, the last term in (5.13)15. From the

dimensional analysis it is easy to see that all other terms contain more than two first-order

kinematical quantities.

Thus the total emitted energy during the whole bremsstrahlung process is given by

Eem ∼ e2
[
1zxem

(D/2)
]2
tem ∼ e4e′2

m2

γd+2

b3d+3
, (5.15)

in agreement with (5.6). Thus the estimate of vector bremsstrahlung as induced emission

of a charge in the external Coulomb field is valid within the same perturbation theory.

15According to the affine parametrization, (i) one can exclude velocity from such scalar products and (ii)

terms with scalar products of the form, for instance
(

z(D/2+1), z(D/2−1)
)

, are equivalent to the retained
(

z(D/2), z(D/2)
)

by virtue of relation

(

z(D/2+1), z(D/2−1)
)

=
d

dτ

(

z(D/2), z(D/2−1)
)

−
(

z(D/2), z(D/2)
)

,

where the full derivative does not contribute to the radiation and can be dropped. The same concerns the

other scalar products
(

z(D/2+k), z(D/2−k)
)

.

– 37 –



J
H
E
P
0
1
(
2
0
1
4
)
1
1
1

Finally, (5.12) represents the coherence length of emitted waves in the comoving

Lorentz frame — the characteristic length of the trajectory, where the signal is formed.

Applying (5.12) to (5.10), one obtains

ωem ∼ 1

temψ
∼ γ2

b
, (5.16)

in agreement with (5.4).

Classical electrodynamics in external curved background. The deflection angle

in a static gravitational potential in D dimensions is given by [34]

αgr ∼
r′g

d+1

bd+1
≪ 1 , (5.17)

and, according to the Equivalence principle, does not depend upon the energy of the

scattered particle.

Double-differentiating (3.4) one obtains the estimate of the transverse component of

an acceleration caused by the gravitational force:

1z̈xgr(0) ∼
r′g

d+1γ2

bd+2
, (5.18)

while the characteristic time of acceleration is governed, essentially, by the same factors as

before and reads

τgr ∼
b

γ
, tgr ∼ b . (5.19)

Nevertheless, the dominant contribution into z̈ 2(τ) is given by domains τ ∼ b/γ and

τ ∼ −b/γ where | 1z̈0gr| reaches its maximum16, despite the fact that at τ = 0 it vanishes:

1z̈0gr(±τgr) ∼
r′g

d+1

bd+2
γ2 , 1ż0gr(±τgr) ∼

r′g
d+1

bd+1
γ ∗17. (5.20)

If the space-time had been flat, the direct application of estimate (5.15) would lead to

the result

Eem/curve ∼ e2
[
1zxgr

(D/2)
]2
tgr ∼ e2G2m′2 γ

d+4

b3d+3
. (5.21)

However, not only is this result overestimated — it totally vanishes due to the follow-

ing reasoning.

The analogue of Larmor formula in four dimensions in a fixed curved space-time is

given by the finite part of formula by deWitt and Brehme [48], corrected by Hobbs [52]:18

f 0
em(τ) =

e2

4π

[

Π0ν

(
2

3
D2żν +

1

3
Rνλ ż

λ

)

+ żν(τ)

∫ τ

−∞

(

v0λ′;ν − vνλ′
;0
)

żλ
′

(τ ′) dτ ′
]

,

Πµν ≡ gµν − żµżν

ż2
, (5.22)

16In four dimensions see (5.33) for the components of velocity and its derivatives.
17In what follows the validity of perturbation theory to this order: sup 1ż0

gr ≪ u0 if b ≫ r′g holds.
18Here and below the lower-case Greek indices emphasize the fact, that contraction of indices is performed

in the curved background.

– 38 –



J
H
E
P
0
1
(
2
0
1
4
)
1
1
1

Here vνλ
′

represents the non-local part of the vectorial Green’s function in a curved back-

ground in terms of bi-tensor quantities, evaluated at points zµ(τ) and zµ
′

(τ ′).

In flat background one has gµν → ηMNδ
M
µ δNν , Dżµ → z̈MδµM , D2żµ → ...

zMδµM etc.,

and (5.22) passes into the Lorentz-Dirac equation, there the radiative part is constituted

from the radiation part ∼ z̈2 żM and radiation-reaction (”Schott”) part ∼ ...
zM .

The “Larmor” part here is given by

1

6π
e2Π0ν D2żν =

1

6π
e2
[

DżνDż
ν ż0 +D2ż0

]

. (5.23)

But the charge is moving across the geodesics, hence the covariant acceleration Dż µ and

its covariant derivatives vanish. The local term with Ricci-tensor of the exact metric also

vanishes outside the source. Thus in the total-metric description all radiation effects come

from the tail term in (5.22). The same structure of tail term appears in any dimensionality.

First we check that DżM is still zero in the first order: indeed, as it follows from (2.3),

the flat derivative 1̈zM is given by double derivative of (3.4), while the Christoffel part is

given by (2.16) and (3.1). Roughly speaking, their sum is (3.27,b) contracted with u′N

and thus vanishes. The next orders do not affect on the order (r′g/b)
2 we need. The same

concerns the covariant derivatives of covariant acceleration in higher dimensions.

Next, proceed to the last, tail, term in (5.22): it comes from the modification of the

self Coulomb field of a particle, by the weak curved background. Instead of derivation of

tail integral according to the total metric, we consider the perturbation theory and give a

direct correspondence to reconcile with what we do. In fact, we have been computing the

lower orders of constituents of equation (5.22).

Now one has to estimate the tail function in (5.22) as tensor in Minkowski space-time,

for the weak Newton field. The basic step in four dimensions was made in [49], and applied

to the non-relativistic motion. The first order of this expression:

1Ėtail(τ) =
e2

4π
uνuλ

′

∫ τ

−∞

[
1vνλ′,0

(
0z(τ), 0z(τ ′)

)
− 1v0λ′,ν

(
0z(τ), 0z(τ ′)

)]

dτ ′ (5.24)

represents the full derivative over τ and, being integrated further from τ = −∞ to τ = +∞,

vanishes. A more detailed derivation is to be given in [73]. The second-order (m′2) is given

by six terms

4π

e2
2Ėtail(τ) = uν

∫ τ

−∞

(
1vνλ′,0 − 1v0λ′,ν

)
1żλ

′

(τ ′) dτ ′+ 1żν(τ)uλ
′

∫ τ

−∞

(
1vνλ′,0 − 1v0λ′,ν

)

dτ ′

+ uνuλ
′ 1zσ(τ)

∫ τ

−∞

(
1vνλ′,0σ − 1v0λ′,νσ

)

dτ ′

+ uνuλ
′

∫ τ

−∞

(
1vνλ′,0σ′ − 1v0λ′,νσ′

)
1z′σ

′

(τ ′) dτ ′

+ uνuλ
′

∫ τ

−∞

(
2vνλ′,0 − 2v0λ′,ν

)

dτ ′

− uνuλ
′

∫ τ

−∞

(
1Γ0

σν
1vσλ′ + 1Γσ

ν 0
1vσλ′

)

dτ ′ (5.25)
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where the integrals are to be evaluated on the unperturbed trajectory. The first line is the

variation of żν żλ
′

, the second and third ones represent a first term of Taylor expansion of
1vµν ′,λ, the fourth line contains the second-order vµν ′,λ, while the last line is constituted

from Γ−terms coming from covariant differentiation of vµν ′ , respectively.

Among these terms after the substitution of exact expressions, we can rearrange terms

according to leading power of γ and ability to be integrated over τ ′. Namely, some terms of
2v correspond to the second-order expansion of Ricci tensor in whole space (i.e. with a source

and thereby non-vanishing) plus another quadratic on 1h combination, to be integrated

over volume with the flat-space Green’s functions DG. Denote such a combination as

R̃: R̃ = O(h2).

Below we show (5.31) that by virtue of symmetry, the differentiations ∂µ and ∂µ′

(µ = t, z), with x, x′ taken on the unperturbed trajectory, add uµ(τ − τ ′)/|τ − τ ′|2. Using
the deWitt — deWitt coordinates [49, eq.A.1] and integrating by parts over volume and

over τ ′, these terms in the force read schematically

R̃να;βγδ...
︸︷︷︸

d

u0uνuαuβuγ . . .
︸ ︷︷ ︸

d+3

.

Looking at the second-order-expansion of Ricci-tensor (see e.g. [37, eq.A.4]), one no-

tices that these terms correspond to the quadratic on 1h part and not to the ✷
2h−part.

In other words, if one takes the first-order post-linear metric as exact and computes

Ricci-tensor according to it, then Ricci-tensor of this fictitious metric well survives and

schematically reads

Rλλ

[
ηµν + κD

1hµν
]
= O

(
r′g

2/r4
)
.

Going back to (5.22) one concludes that such a term corresponds to the Ricci-term if

consider such incomplete metric, with a significant note that it comes purely from tail and

does not come from the true Ricci-tensor, since the latter vanishes in all orders.

The analogue of (5.22) in six dimensions is given in [50]. One can show directly, that

radiative part in even dimensionality coincides with its flat-space analogue, with obvious

generalization of derivatives from common to the covariant. Thereby on the geodesic

motion this part vanishes by the same reason.

The curved local part (constituted from the single Ricci-term in four dimensions)

comes from the derivative of the Heaviside of Synge function, accompanying the vµν ′ , and

from the coinciding-point limit of the covariant expansions of bi-tensor quantities [63].

Given that the dimensionality of e2 is [e2] = cmd, the curved local term in D dimensions

(D = even) is constituted from combinations of Ricci- and Riemann tensors with Dkżν

of total dimensionality cm−(d+2). Among these terms, taking into account 0z̈ µ = 0, the

maximal in γ order has a term of the following type:

Π0νRνα;βγδ...
︸︷︷︸

d

żαżβ żγ . . . ∼ Rνα;βγδ... ż
0żν żαżβ żγ . . .
︸ ︷︷ ︸

d+3

,

with positive coefficient of proportionality in even d, coming from the construction of curved

Green’s functions.
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Given that for Newton field in first non-vanishing order Rλλ ∼ (r′g)
2d+2/r2d+4 (for

b≫ r′g) and that ż0 and żz give γ−factor each, the local curvature term is of order

Ėcurv(τ) ≡ −f 0
curv(τ) ∼ −e2Rνα;βγδ...

︸︷︷︸
d

u0uνuαuβuγ . . .
︸ ︷︷ ︸

d+3

(5.26)

Since the metric is static and spherically-symmetric, only the radial derivatives of Ricci-

tensor appear. Finally among R00 and Rrr the latter is dominant:

Rrr ∼ −
r′g

2(d+1)

r2(d+2)
+O

(

r′g
3(d+1)

/r3d+5
)

, r =
√

b2 + γ2v2τ2 .

Substituting it into (5.26) and taking care of the sign, one has:

Ėcurv(τ) ∼ −e2Rrr;rrrr...
︸ ︷︷ ︸

d

u0 uzuzuzuz . . .
︸ ︷︷ ︸

d+2

∼
r′g

2(d+1)

r3d+4
γd+3 > 0 . (5.27)

The characteristic spatial distance, where the curvature alters significantly across the

particle’s trajectory, is of order O(b), thus the mean time and mean proper time are given

by (5.19), in what follows that r ∼ b and the relative contribution reads

Ecurv(τ) ∼ Ėcurv(τ) τgr ∼ e2m′2G2
D

b3d+3
γd+2 . (5.28)

The characteristic times (5.19) find a reflection in the characteristic frequencies for this

partial process. These frequencies are given by ω ∼ γ2/b as a full analogy with (5.16).

Looking at the table 1, one concludes that this sub-process corresponds to the high-

frequency entry, with the proper estimate of partial contribution into the total emitted

energy. To repeat, the local curvature terms coming from tail, structurally correspond to

Ricci-tensor term constructed from incomplete metric, considered as exact.

A tail. Now consider the terms which can not be converted to the local ones. Direct

application of the PT gives 1vµν ′ as some combination of the second-order derivatives of

generic integral

I(x, x′) =

∫

δ(d/2)
(
(x′ − x′′)2

)
δ(d/2)

(
(x− x′′)2

) dDx′′

r′′d+1
, x′′ = (t′′, r′′) , (5.29)

which can be interpreted as a matrix element of Newtonian potential from initial state

| in〉 = DG|x〉 to the final |out〉 = DG|x′〉, with DG is a Green’s function in flat D−dimen-

sional space-time.

In particular, the consistent account of the non-relativistic limit leads to the Smith–

Will force in higher dimensions19. The discussion of all terms in (5.25) and all derivatives

of (5.29) goes beyond our primary goal here. We will highlight here the four-dimensional

19In fact, Smith and Will [62] have shown that the four-dimensional result by deWitt and deWitt for

newtonian (weak) field [49] is still exact in the total Schwarzschild metric even for the case of strong field.
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estimate, with generalization to be done in forthcoming publication: the integral I(x, x′)

in (5.29) is computed in [49] and reads

I(x, x′) =
1

|r− r′|

[

θ(r + r′ − t+ t′) ln
r + r′ + |r− r′|
r + r′ − |r− r′|

+ θ(t− t′ − r − r′) ln
t− t′ + |r− r′|
t− t′ − |r− r′|

]

. (5.30)

The third-order derivatives over t and z have maximal value only if one keeps θ(t −
t′ − r − r′) and differentiates the logarithm, otherwise for τ, t′ ≫ b/γv δ(k)(t− t′ − r − r′)

contains γ inside an argument and γ goes to denominator.

Thereby

vµν ′,λ(x, x
′) ∼ r′g θ(t− t′ − r − r′)

(x− x′)µ(x− x′)ν ′(uλ/γ)

[(x− x′)2]3
. (5.31)

For x and x′ are taken on the unperturbed trajectory, (x − x′)µ = uµ (τ − τ ′) contains γ

(for µ = 0, z), while (x− x′)2 = (τ − τ ′)2 — does not, thus the typical term reads

vµν ′,λ(x, x
′) ∼ r′g

θ(t− t′ − r − r′)

γ

uµuν ′uλ
(τ − τ ′)4

∼ γ2
θ(t− t′ − r − r′)

(τ − τ ′)4
. (5.32)

The solution for 1z0 coming from (3.4) is given by

1ż0(τ) =
m′

κ
2
4

8π2
γ

√

b2 + (γvτ)2
, 1żz(τ) = − d+ 4

2(d+ 1)
1ż0(τ) (5.33)

According to θ(t − t′ − r − r′), t − t′ = γ(τ − τ ′) ≡ γξ is larger than r + r′ > 2b.

Thus ξ > 2b/γ. Substituting r =
√

b2 + γ2v2τ2 and r′ =
√

b2 + γ2v2(τ − ξ)2, such an

argument of Heaviside function has a solution only if τξ > b2. Taking into account the

double τξ-integration and that integration ranges of both ξ and τ are equally important,

one expects the domination from the range

|τ | ∼ ξ ∼ b . (5.34)

Therefore the typical term of the total energy associated with a tail, reads

2Etail ∼ e2 (r′g)
2γ4

∫
∞

−∞

dτ

∫
∞

b2/τ

dξ

ξ4
1

√

b2 + (γvτ)2
(5.35)

Substituting the estimate (5.34), one obtains finally

2Etail ∼ e2 (r′g)
2γ4

τξ

ξ4
1

√

b2 + (γvτ)2

∣
∣
∣
∣
τ∼ξ∼b

∼
e2 (r′g)

2

b3
γ3 , (5.36)

in agreement with (4.13)20.

20From the consideration made above we can say nothing about a sign of this expression. The main goal

of this subsection is to qualitatively explain the spectral characteristic of this process arising do to the tail.

However, giving the direct correspondence to the positively-defined expression in the text, we hope that a

consistent accounting of all terms in (5.25) will lead to the conclusion concerning the sign.
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Thus, despite the rapid decrease of 1żM at τ > b/γ, the main contribution comes from

τ ∼ b due to the fact that 1v alters slowly.

According to (5.34), the characteristic duration in the comoving and in the Lab frames,

due to the Doppler effect, are given by

τtail = b = γτem ttail = γ τtail = γ b tLab,tail ∼
tem
γ2

∼ b

γ
, (5.37)

respectively, while applying the same deduction as in (5.10) one obtains the characteristic

frequencies of this tail effect:

ωcom,tail ∼
1

ttail
∼ 1

γ b
, ωtail ∼

1

tLab,tail
∼ γ

b
= ω0 , (5.38)

in agreement with (4.19), taken for d = 0.

Thus we arrive at the conclusion, that, at least in four dimensions, the transition region

in the table 1 corresponds to the tail effects of non-linearity in deWitt–Brehme sense. The

generalization into higher dimensions represents the goal of forthcoming work.

Comparing with the bremsstrahlung by non-gravitational force, we conclude that in

gravity the Lorentz transformation of frequency is determined not only by simple ultrarela-

tivistic consideration of Doppler effect, but also by curved geometry and non-linear effects.

Thus we arrive at the following scheme:

tail in curved space → local curvature-term in fictitious first-order metric (ωcurv ∼ γ2/b)

+ non-local tail terms for v treated perturbatively (ωtail ∼ γ/b) .

Thereby, to conclude: the contribution coming from a tail in the curved-space concept

reappears as local curvature terms. This phenomenon is directly related with PT over

Minkowski background, and with ultrarelativistic character of a motion. In our scheme it

represents the same effect as the effective delocalization of the second-order-field source in

the flat space.

The analogy of such a resurrection was proposed by [49] for the opposite ultimate case

of non-relativistic motion along a bounded orbit, where originally-tail contribution (with

respect to the total metric) reappeared as non-conservative non-relativistic Larmor energy.

5.3 Restrictions and possible cut-offs

Here we assume that mγ ≫ m′ and the emitted energy is determined by those values

obtained in the section 4. Thereby the total initial energy is essentially the energy of the

fast particle: E0 ≈ mγ . Our goal here is to set bounds on the minimal value of an impact

parameter b and to confirm the validity of the classical approach applied above.

The condition on the weakness of gravitational field, b ≫ r′g, has been discussed

in (2.6). The condition b≪ R (1.2) is related with the treatment of space-time as higher-

dimensional. Additionally, in the ADD model, it is directly related to the pass from

KK-mode-summation to the quasi-continuous integration. Finally, the condition on the

classicality of the emitted vector field obviously reads

b > rcl = (e2/m)d+1. (5.39)

– 43 –



J
H
E
P
0
1
(
2
0
1
4
)
1
1
1

Next consider the conditions which do not follow from the classical theory but are

necessary for the classical result to fit the quantum one.

The simple quantum-mechanical restrictions

ωmax ≪ Erad , Erad < E0 ≈ mγ (5.40)

reflect the fact that the particle can not lose energy more than it had initially (being free at

infinity). The ultimate situations of hard bremsstrahlung, when the charge emits almost all

its energy, are admissible in QED [39, 40]. Next, for the treatment of the emitted photons

as classical, we need a large number of their quanta, which implies the weak particle-recoil.

For the radiation problem at hand, the weak particle-recoil condition due to the emission

of photons with frequency ω is satisfied if the momenta of the emitted photons are much

smaller than the momentum transfer of the elastic collision. For the hard-photon emission

with ω < E the latter condition is satisfied if the emission angle ϑ is less than the deflection

angle αgr, while for ω ≪ E this condition can be relaxed.

Substituting the characteristic emission angle ϑ ∼ ϑ̄ = 1/γ into (5.17) one obtains

b > r′gγ
1

d+1 . ∗21 (5.41)

This condition differs from the one, (1.1), given in the Introduction for gravitational

bremsstrahlung. It is stronger than the weak-field condition (2.6) but weaker than (1.1).

Indeed, according to the iteration scheme, the ultrarelativistic charge emits the en-

ergy after its trajectory is gravitationally perturbed, so we do not need to accounting

for the back-reaction of the gravitational field due to the fast charge, on the uncharged,

target, particle.

Moreover, the experience from analogous computations of the total energy of syn-

chrotron radiation shows that this condition can be relaxed and replaced, instead, by the

weaker ω ≪ E0 without restriction on the angles of the emitted photon. When the emitted

energy E is of order E0, this condition also guarantees a large number of emitted quanta,

and justifies further the description of radiation with a classical field.

Estimating the efficiency of the emitted energy in four dimensions according to (4.13),

one gets

ǫ0 ≡
Erad

E0
∼ e2m′2G2

4

mb3
γ2 ∼ rcl

b

(
γr′g
b

)2

< 1 , (5.42)

by virtue of restrictions (5.39), (5.41).

For the ADD bremsstrahlung (4.20), with the same characteristic frequency ω ∼ γ/b,

the efficiency reads

ǫADD ∼ e2m′2G2
D

mV b2d+3
γ2 ∼

(rcl
b

)d+1
(
b

R

)d
(

γ
1

d+1 r′g
b

)2(d+1)

< 1 , (5.43)

if one also takes into account (1.2).

21The latter quantity coincides with the energy-associated Schwarzschild radius r′S of m′ in the comoving

(with m) Lorentz frame and approximately equals rS (of m) in the Lab frame for comparable m ∼ m′.
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In higher dimensions with characteristic frequency ω ∼ γ2/b the direct application22

of the above estimates gives ǫd ≪ γd−1. Thereby this might lead to the efficiency catastro-

phe for d > 1.

The possible resolutions of this paradox may be related with:

• A small pre-factor, of order of Cd ∼ 10−5, in (4.11);

• Frequency ω ∼ γ2/b is incompatible with the requirement m < M∗. Thereby one

needs a cut-off on the frequency;

• The possible Vainshtein limit of the process in a space with compactified radii;

• Combination of (5.39) with (5.41) gives

b > max
{

(e2/m)d+1, r′gγ
1

d+1

}

.

Let us consider the latter possibility in practice.

For instance, for the scattering of protons on neutrons with γ = 1014, available at the

LHC, the classical radius of a proton and γ r′g for neutron are given (d = 0) by

rcl = 1.53 · 10−16 cm, γ r′g = 2.48 · 10−38 cm, (5.44)

respectively, while in higher dimensions the ratio rcl/r
′
g γ

1/(d+1) is even larger. Thus the

restriction on b is determined, essentially, by rcl. Moreover, the latter is less than the actual

size of a proton lp and its Compton wavelength lC of it:

lp = 0.84 · 10−13 cm, lC = 2.10 · 10−14 cm.

The scattering of nuclei present similar features.

On the other hand, the radiated energy efficiency coming from (4.11) can be pre-

sented as

ǫd ∼ e2m′2G2
D

mb3d+3
γd+1 ∼

(
rcl
b

)d+1(√
γ r′g
b

)2(d+1)

, (5.45)

and, by virtue of b > rcl > γr′g >
√
γ r′g, easily becomes smaller than unity. This practically

resolves the efficiency paradox. The same argument makes the dominance of gravitational

radiation over the electromagnetic, almost impossible, an issue raised above according to

the naive comparison of the power of γ.

For the scattering of electrons one takes the Compton length. Thereby there is no

the efficiency catastrophe in the problem-at-hand, but one sets the following bound on the

value of the impact parameter:

lC < b . (5.46)

In UED, from (4.40) one obtains:

ǫUED ∼
(
em′

κ
2
D

)2

mV 2bd+3
γd+1 ∼

(
b

R

)2d(rcl
b

)d+1(√
γ r′g
b

)2(d+1)

. (5.47)

22We neglect here the ln γ in (4.12).
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Taking into account b > lC > RUED (4.26), one rewrites (5.47) as

ǫUED <

(
b

R

)2(d+1)(rcl
b

)d+1(√
γ r′g
b

)2(d+1)

∼
(
rcl
b

)d+1(√
γ r′g
R

)2(d+1)

≪ 1 , (5.48)

if directly compare
√
γ r′g ≪ γ r′g ≪ RUED by values (4.26) and (5.44).

Now return to the large-modes condition (4.36): substituting RUED by (4.26) and

comparing with (5.46) one concludes that for γ = 1014 the condition

γR ∼ 10−2 cm ≫ b > 10−14 cm ∼ λC , (5.49)

is well satisfied and a large number of the emission modes are excited, that gives the

enhancement of the bremsstrahlung radiation.

Going back to the spectrum we see that if b > 1/m holds, then

ωmax = E0 = mγ >
γ

b
= ω0 .

Thus the maximal value of the frequency lies inside the domain (γ/b, γ2/b), so the part

of destructive interference region, the main point of our computation, can be detected in

practice in all kinds of the extra dimensions and corresponding gravity models.

Despite the radiation efficiency being tiny, one can expect that absolute amounts of

the emitted radiation, due to the relatively large rcl with respect to rg, can be determined

(for instance, for heavy nuclei) and can give information on the (possible) size and number

of extra dimensions.

5.4 Results and conclusions

A detailed study of classical electromagnetic (vector) radiation emitted in ultra-relativistic

collisions of massive point-like particles was presented. The space-time was assumed to

have an arbitrary number of toroidal or non-compact extra dimensions and the post-linear

approximation scheme of General Relativity was employed for the computation. The an-

gular and frequency distributions of radiation, as well as the total emitted energy were

studied in detail up to leading ultra-relativistic order.

Three characteristic frequency regimes (1/b, γ/b and γ2/b) of the emitted radiation

were identified and the characteristics of the dominant contribution was determined in

various dimensions, depending on the gravity model.

In particular, in any number of dimensions the soft component of radiation is mainly

due to the scattered particles, with negligible contribution coming from the cubic graviton-

graviton-photon interaction term.23 In all cases of bremsstrahlung most of the emitted

waves are beamed (in the Lab frame) inside a narrow cone with angle 1/γ and along the

spatial direction of fast-particle’s motion.

Among the notable features we would like to mention, are the following:

23In four dimensions this is a well-known fact, verified easily also in the context of Feynman diagram

infrared graviton summation.
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• The radiation amplitude is damped by the factor (ω0/ω)
2 at the frequency region

γ/b . ω . γ2/b:

j(ω) ∼ j(ω0)
ω2
0

ω2
, ω0 ∼

γ

b
;

Thus at ω ∼ γ2/b the amplitude j(ω) is suppressed by γ2 with respect to j (O(γ/b)),

that represents the destructive interference (DI) effect;

• The frequency distribution goes like

dErad

dω
∼ γ4−d ωd−2

inside this frequency regime. Hence for d = 0 and in the ADD-case most of the

radiation has characteristic frequency ω ∼ ω0, for d > 1 the dominant frequency

is ω ∼ γω0 while in the transition case d = 1 the entire domain γ/b . ω . γ2/b

contributes equally to add a logarithm of γ into the total emitted energy;

• ZFL gives qualitatively adequate result for the ADD bremsstrahlung (where DI hap-

pens beyond ωADD ∼ γ/b) and for pure electromagnetic bremsstrahlung (where no

DI occurs and the amplitude has the same behavior up to ωem ∼ γ2/b) in the small-

angle region;

• No efficiency catastrophe for reasonable values of the Lorentz factor and charges;

• The applicability of perturbation theory is essentially determined by the Compton

length of a charge:

b≫ lC ;

• The coherence length argument gives an adequate explanation of the frequency-

angular characteristics of the radiation amplitude but does not predict which fre-

quencies will dominate in spectrum.

However, in contrast to the four-dimensional case, in any number of extra dimensions

d > 0 the frequency spectrum of the emitted radiation vanishes as ω → 0 and the total

emitted energy in soft gravitons is negligible.

Also, contrary to what happens with soft radiation emission, the cubic graviton-

graviton-photon interaction and the scattered particles themselves are equally important

as sources of radiation with high frequency. In fact it was shown that in any dimension

they lead to partial cancelation (destructive interference) of the total beamed radiation

amplitude in the high frequency domain, as a result of which the emitted energy in the

γ2/b− frequency regime is reduced by two powers of the Lorentz factor γ in the Lab frame.

The relevance of the classical analysis to the full quantum radiation problem was also

discussed. The classicality conditions, necessary for the classical treatment to be a good

approximation to the full quantum problem were derived and the radiation efficiency ǫ, i.e.

the fraction of the initial energy which is emitted in gravitational radiation, was computed

for values of the parameters within the region of validity of our classical computation.
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Thus one concludes that the gravitational scattering of charges and corresponding

bremsstrahlung, at least classically, is a more reliable scheme to detect extra dimensions

already in contemporary colliders, though, of course the quantum-field treatment of this

process (at least for the vector field) is necessary and represents the direct prospect of

further study.

Finally, the spectral characteristics are qualitatively discussed in the context of coor-

dinate-space equation of a charge in dimensions of the even space-time dimensionality

(Lorentz–Dirac and deWitt–Brehme–Hobbs types of equations). The pure vector brems-

strahlung is qualitatively described by the radiative part of the higher-dimensional Lorentz

–Dirac equation in flat space. For the vector bremsstrahlung under the gravity-mediated

collision it was found that the observable competition of frequencies originates from the

different terms of the deWitt–Brehme–Hobbs equation, describing the motion of a charge

in the fixed external curved background.

Thus one concludes that as qualitative argument, the concept of coherence length is

valid and directly corresponds to the similar behavior of amplitudes at ultrarelativistic

characteristic frequency regimes ω ∼ γ/b and ω ∼ γ2/b. Nevertheless, as a quantitative

argument, coherence length is much less useful when the total physical process is split into

some sub-processes. Coherence length consideration does not predict which frequency will

dominate in the spectrum, since it does not take into consideration inside itself the possible

competition between the spectral-angular characteristics of a source and volume factor in

the integration measure when the flux is computed.

However, the implementation of this interpretation and the proper treatment of this

classical computation have to be confirmed by the corresponding quantum approach. Mean-

while, even low- and medium-frequency parts of the spectral distribution, which are defi-

nitely in agreement with the quantum case, contain some distinctive features for the possible

presence of extra dimensions to be detected.
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A Useful kinematical formulae

A.1 Notations

The angles in the formulae below are defined in figure 1.

uµ ≡ γ(1, 0, 0, v) , u′ ≡ (1, 0, 0, 0) , ψ ≡ 1− v cosϑ ,

z′ ≡ (ku′)b

γv
=
ωb

γv
, z ≡ (ku)b

γv
=
ωb

v
ψ = z′γψ ,

ξ2 ≡ 2γzz′ − z2 − z′
2
= (γvz′ sinϑ)2 , β ≡ γzz′ − z2 = γ2z′

2
ψ(1− ψ) ,

(kb) = −γz′v sinϑ cosφ = −ωb sin θ cosϕ , a ≡ z/sinϑ .

A.2 Beaming angular integrals

In the main text the following angular integrals over ϑ were needed for integer m and n

V n
m ≡

∫ π

0

sinnϑ

(1− v cosϑ)m
dϑ . (1.1)

Consider small-angle contribution, corresponding to the beaming of emitted quanta. For

γ ≫ 1 and ϑ . γ−1 the numerator and denominator go like

sinnϑ ≃ γ−n , (1− v cosϑ)m ≃ γ−2m , (1.2)

respectively, thus if 2m > n+ 1 one expects the dominance of small-angle region over the

other integration domain.

Expanding

sinϑ = ϑ+O(ϑ2) , 1− v cosϑ =
ϑ2 + γ−2

2
+O(ϑ4) , (1.3)

the integral (1.1) reads

V n
m = 2m

∫
∼1/γ

0

ϑn

(ϑ2 + γ−2)m
dϑ . (1.4)

Rescaling ϑ→ ϑ/γ leads to

V n
m = 2mγ2m−n−1

∫
∼1

0

ϑn

(ϑ2 + 1)m
dϑ . (1.5)

This integral (without pre-factor) is of order O(1). Due to the integrand in (1.5) falls

rapidly at ϑ ≫ 1 one expands the upper-limit to infinity. Indeed, for any a ≫ 1

the contribution
∫

∞

a

ϑn

(ϑ2 + 1)m
dϑ ≃

∫
∞

a
ϑn−2m dϑ ∼ a−(2m−n−1) ≪ 1 . (1.6)
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Thus both the initial integral (1.1) and modified one (1.5) have subleading contribution

from large values of an integration argument due to the rapid fall of integrands.

Thus

V n
m = 2mγ2m−n−1

∫
∞

0

ϑn

(ϑ2 + 1)m
dϑ . (1.7)

Introducing new integration variable y according to 1+ ϑ2 = 1/y, the (1.7) is presented as

V n
m = 2m−1γ2m−n−1

∫ 1

0
(1− y)

n−1
2 y

2m−n−3
2 dϑ , (1.8)

that is exactly the Euler’s Beta-function B
(
n+1
2 , 2m−n−1

2

)
. Rewriting it via Gamma-

functions, we finally arrive at

V n
m =

2m−1 Γ
(
n+1
2

)
Γ
(
2m−n−1

2

)

Γ(m)
γ2m−n−1 . (1.9)

In [35], with another derivation of the above integral via Legendre functions, it was shown

that first correction to the (1.9) is of relative order O(γ−2).

In the case 2m = n+ 1 an expansion of the integral is logarithmic.

B Self-action account

We have already discussed the reason we do not consider the self-action as far as radia-

tion is concerned. It is however useful to show that including the self-action leads to a

conserved current.

When one includes the self-action, the equations of motion change are of the same

form but we should substitute h and h′ with h + h′. This produces some extra terms in

the local and non-local currents. We write here the extra terms in the local current:

ρMself(k) = −emκ
2
D ei(kb)

(2π)2

∫
δ(qu) δ(ku− qu)

q 2

[
d+ 1

2 (d+ 2)

(kq)uM

(qu)
− d+ 1

2 (d+ 2)

qM

(qu)

]

dDq

(2.1)

Making use of delta function and contracting with kM , one obtains zero in what immedi-

ately follows that the above expression is a conserved quantity.

Similarly for the non-local part,

σMself(k) =
eκ2

Dm

(2π)2

∫ [
ku

d+ 2
qM − ku

d+ 2
uM +

d+ 1

2 (d+ 2)

(
kq uM − ku qM

)
]

× δ(qu) δ(ku− qu) e−i(q·b)

q2(k − q)2
dDq (2.2)

Integration of both (2.1) and (2.2) over q0 gives

ρMself(k) ∼ δ(ku)

∫
1

(q z)2/γ2 + q2
⊥

[
d+ 1

2 (d+ 2)

(kq)uM

(qu)
− d+ 1

2 (d+ 2)

qM

(qu)

]

dqz dD−2q⊥ . (2.3)
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Thus the account of self-terms leads to the terms proportional to δ(ku). These terms

are analogous to the Fourier-transforms of Coulomb field which does not contribute to

the radiation.

The conservation of additional terms concerned with the appearance of second charge

and the self-action terms is analogous to the proof presented in the subsection 3.5.

C An alternative proof of destructive interference

We provide another proof for destructive interference in the z−region, with ϑ < 1/γ.

This differs from the method followed in the main part of a paper, which covered the full

angular range. In angular region discussed here, we show the destructive interference effect

rigorously, by the integration-by-parts technique.

We begin with (3.14). First of all we will perform a variable change from x to ζ, where

dx =
ζ(x)

f(x)
dζ , f(x) =

(

z2 + z′
2 − 2γzz′

)

x+ γzz′ − z2 . (3.1)

We will also be using the identity

ζK̂ν(ζ) = −K̂ ′
ν+1(ζ) . (3.2)

Integrating the expression (3.14) by parts we obtain the following:

σM (k) =
λ

2γv

{(

K̂d/2(z)

γzz′ − z2
ei(kb) −

K̂d/2(z
′)

z′2 − γzz′
+

∫ 1

0
K̂d/2(ζ)

(
ei(kb)(1−x)

f(x)

)′

dx

)

uM

×
[

β

d+ 2
− γz′ +

z2

d+ 2
+ γ2v2z′

2
]

+ i

[
(kb)

d+ 2
uM +

(

γ2vz′− γzv

d+ 2

)
bM

b

]

×
(

K̂d/2+1(z)

γzz′ − z2
ei(kb) −

K̂d/2+1(z
′)

z′2 − γzz′
+

∫ 1

0
K̂d/2+1(ζ)

(
ei(kb)(1−x)

f(x)

)′

dx

)

+

[
ξ2

d+ 2
+

(

γz′− z

d+ 2

)

(γz′ − z)

](

K̂d/2(z
′)

z′2 − γzz′

+

∫ 1

0
K̂d/2(ζ)

(
x ei(kb)(1−x)

f(x)

)′

dx

)

uM

}

.

Further integration by parts gives

σM (k) =
λ

2γv

{(

K̂d/2(z)

γzz′−z2 −
K̂d/2(z

′)

z′2−γzz′
− i q0

K̂d/2+1(z)

(γzz′−z2)2
+ i q1

K̂d/2+1(z
′)

(
z′2 − γzz′

)2 +R0

)

uM

×
[
β + z2

d+ 2
− γz z′ + γ2v2z′

2
]

+ i

[
(kb)

d+ 2
uM +

(

γ2vz′ − γzv

d+ 2

)
bM

b

]

×
(

K̂d/2+1(z)

γzz′−z2 −
K̂d/2+1(z

′)

z′2−γzz′
+ i q0

K̂d/2+2(z)

β2
− i q1

K̂d/2+2(z
′)

(
z′2−γzz′

)2 +R0

)
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+

[
ξ2

d+ 2
+

(

γz′ − z

d+ 2

)

(γz′−z)
](

K̂d/2(z
′)

z′2−γzz′
−

K̂d/2+1(z)

(γzz′−z2)2

+ (iq1 + 1)
K̂d/2+1(z

′)
(
z′2−γzz′

)2 +R1

)

uM

}

.

with notations K̂τ (z) ≡ ei(kb) K̂τ (z) and

q0 = (kb)− i
z2 + z′2 − 2γzz′

γzz′ − z2
, q1 = (kb)− i

z2 + z′2 − 2γzz′

z′2 − γzz′

and residues

Rσ ≡
∫ 1

0
dx K̂d/2+1(ζ(x))

[(

xσ
e−ix(kb)

f(x)

)′

1

f(x)

]′

.

Thus the boldface hatted Macdonald functions emphasize the fact that after each iteration

of integration by parts, Macdonalds of z come with phase ei(kb) from boundary x = 0, while

those ones with argument z′ come with phase 1 from boundary x = 1.

If keep on integrating by parts, we will obtain an expansion. In the region that we

are interested in, i.e. the z−region, we have z ∼ 1, z′ ∼ γ, so that ξ2 ∼ β ∼ γ2 ∼
(β−ξ2), q0 ∼ q1 ∼ γ. From this we see that the expansion parameters are: q0β

−1 ∼ γ−1 ≪
1, q1(β − ξ2)−1 ∼ γ−1 ≪ 1. With this accuracy one can set q0 = q1 = (kb), β = γzz′ the

leading part is then:

σM(k) =
λ

2γ

[

γ
z′

z
K̂d/2(z)u

M − i

(
(kb)

z
− γ

bM

b

)
K̂d/2+1(z)

z

]

, (3.3)

which exactly cancels with the leading part of (3.9), leaving only the subleading terms.

The series converges thus establishing further the effect of destructive interference.
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