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1 Introduction

One of the most significant progresses of scattering amplitudes in recent years is the dis-

covery of new amplitude relations. The new relation (BCJ relation) was firstly proposed

in Yang-Mills theory by Bern, Carrasco and Johansson [1]. Using BCJ relation in addition

with KK relation which was earlier suggested by Kleiss and Kuijf [2], one can simplify the

calculations on color-ordered amplitudes at tree level. In particular, these relations provide

a reduction of the basis of n-point tree-level amplitudes to a minimal basis of (n− 3)! in-

dependent ones [2]. Tree-level amplitude relations in Yang-Mills theory have been studied

in both string theory and field theory. In string theory, both KK and BCJ relations can
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be considered as so-called monodromy relations [3, 4]. In field theory, KK relation was

firstly proved via new color decompositions [5], while, both KK and BCJ relations have

been proved by BCFW recursion [6, 7](the proof of KK relation and fundamental BCJ

relation can be found in [8],1 the proof of general BCJ relation was given in [11]). The

minimal-basis expansion has been proved [11] via so-called general BCJ relation.

KK and BCJ relations in Yang-Mills theory can be regarded as results of color-

kinematic duality [1]. In [1], it was pointed that one could express the amplitudes by

Feynman-like diagrams with only cubic vertices and establish a duality between color fac-

tors and kinematic factors. Once the color factors satisfy some algebraic property (anti-

symmetry and Jacobi identity), so do the corresponding kinematic factors. In fact, KK

relation among color-ordered amplitudes can be considered as a result of antisymmetry of

kinematic factors, while, BCJ relation is a result of Jacobi identity. The kinematic fac-

tors in Yang-Mills theory can be constructed from pure spinor string theory [12]. They

can also be constructed by area-preserving diffeomorphism algebra [13, 14] or a more gen-

eral diffeomorphism algebra [15]. A further understanding of the kinematic algebra is the

construction of color-dual decomposition and trace-like objects [16–18].

It is interesting that KK and BCJ relations can be found not only in pure Yang-Mills

theory but also in other theories. For example, relations for amplitudes with gauge field

coupled with matter was investigated in [19]. In N = 4 super Yang-Mills theory, the

super-amplitudes are also proven to satisfy KK and BCJ relations [20]. In [21], the KK

and BCJ relations was proven to hold for color-scalar amplitudes. Though these amplitude

relations are found in different theories, they have similar forms with the relations in Yang-

Mills theory. This is because the color-kinematic duality implies that different theories

with color factors satisfying the same algebraic properties should have the similar form of

amplitude relations. When the algebraic properties are changed, the amplitude relations

should also be changed. This can be further supported by the amplitude relations in

three dimensional supper symmetric theory with 3-algebra [22]. In this case, the algebraic

properties of color factors are changed to the properties of 3-algebra, the form of amplitude

relations are also changed to agree with the algebraic structure.

Beyond the fundamental field theory, there are lots of interesting low energy effective

theories which are also widely used in the phenomenology of low energy physics. One of

them is the well-known SU(N) non-linear sigma model. This theory describes the low

energy dynamics of the Goldstone Bosons under the chiral symmetry breaking SU(N)L ×
SU(N)R → SU(N). In this paper, we focus on the relations of tree-level amplitudes in

U(N) non-linear sigma model. For on-shell amplitudes, the result can apply to the SU(N)

model directly. In recent works [23, 24], U(1)-decoupling identity was discussed via the

decoupling of U(1) field from interaction, and color-order reversed relation was also pointed

in [24]. These results encourage us to study the full amplitude relations in non-linear sigma

model systematically. We expect that there should be KK and BCJ relations, which share

the same forms with the relations in Yang-Mills theory. This is because the color factors2

1Other approaches to fundamental BCJ relation can be found in [9, 10].
2Although, in non-linear sigma model, one may use flavor factor instead of color factor, as was done

in [24] for physical reason, we will use color through this paper for convenience. We hope this will not

make any confusion.
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in these two cases satisfy the same algebraic properties. However, the kinematic factors

which share the same algebraic properties cannot easy to construct because of the infinity

of the number of vertices in non-linear sigma model. The general amplitude relations are

also not obvious along the decoupling argument in [23, 24]. In fact, the arguments on U(1)-

decoupling identity in [23, 24] are valid for only on-shell amplitudes. When we consider the

even-point off-shell currents constructed by Feynman rules, the U(1)-field under Cayley

parametrization [23, 24] do not decouple from interaction. This is quite different from in

case of Yang-Mills theory where both on-shell amplitudes and off-shell currents satisfy KK

relation (the KK relation in off-shell case in Yang-Mills theory was proven in the appendix

of [15]). Furthermore, the highly nontrivial relations-BCJ relations seem hard to obtained

from this argument. One may hope to prove the relations by using the nontrivial extension

of BCFW recursion in non-linear sigma model [23, 24] and follow the similar proof within

Yang-Mills case [8, 11], but it will be not easy to use the Even(odd)-shift form of the BCFW

recursion [23, 24] to prove even if the simple case-U(1) decoupling identity.

In this work, we will use Berends-Giele recursion3 under Cayley parametrization to

study the relations. Since the odd-point amplitudes vanish [23, 24], we only need to study

the relations for even-point amplitudes. We conjecture and prove U(1) identity4 and fun-

damental BCJ relation for even-point off-shell currents. We will find that, the left hand

side of the the U(1) identity and fundamental BCJ relation must equal to terms propor-

tional to (p21)
0, where p1 is the momentum of the off-shell leg. When we turn our attention

to on-shell amplitudes, we should multiply the current by p21 and take the on-shell limit

p21 → 0. Then we get the U(1)-decoupling identity and fundamental BCJ relations for

on-shell amplitudes. We will leave the proof of general off-shell relations in future work.

Though it will be hard to derive off-shell general BCJ relation from either Berends-Giele

recursion or BCFW recursion, [25] provides another method to prove the general KK and

BCJ relations. It was pointed out that all the on-shell general KK and general BCJ relations

can be generated by the fundamental BCJ relation as well as cyclic symmetry. In non-

linear sigma model, at on-shell case, both fundamental BCJ relation and cyclic symmetry

are satisfied, thus we also have general KK and general BCJ relations. Since the general

KK and BCJ relations are satisfied, consequent results such as minimal-basis expansion,

Del Duca-Dixon-Maltoni(DDM) color decomposition [5] and the (2n − 2)!-formula [28] of

Kawai-Lewellen-Tye(KLT) relation [29] for 2n-point amplitudes can be derived.

The structure of this paper is following. In section 2, we provide a short review of

Feynman rules and Berends-Giele recursion in non-linear sigma model. In section 3, we

will prove the off-shell U(1) identity. We first give some examples then the general proof.

In section 4, we will prove the off-shell BCJ relation. We also give examples before general

proof. After taking the on-shell limits of the off-shell KK and BCJ relations, we can

obtain the U(1)-decoupling identity and fundamental BCJ relation for on-shell amplitudes

immediately. In section 5, we use the conclusions of the work [25] to state that all the

3Berends-Giele recursion was firstly given in Yang-Mills theory in [26]. The Berends-Giele recursion in

non-linear sigma model was proposed in the recent work [23, 24].
4In off-shell case, we use ‘U(1) identity’ instead of ‘U(1)-decoupling identity’ because in the off-shell case,

the U(1) gauge field in general cannot decouple. Only in the on-shell case, the U(1) gauge field decouples.
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on-shell general KK and BCJ relations can be generated by the on-shell fundamental BCJ

relation as well as cyclic symmetry. Thus the on-shell general KK and general BCJ relations

are naturally satisfied. We also point out that the minimal-basis expansion of color-ordered

amplitudes, DDM color decomposition and the (2m− 2)! formula of KLT relation for 2m-

point total amplitudes are also satisfied. In section 6, we summarize this work. Useful

diagrams and convention of notations are included in appendix.

2 Preparation: Feynman rules and Berends-Giele recursion

In this section, we review the Feynman rules and Berends-Giele recursion in non-linear

sigma model which are useful through this paper. Most of the notations follow the recent

works [23, 24].

2.1 Feynman rules

Lagrangian. The Lagrangian of U(N) non-linear sigma model is given as

L =
F 2

4
Tr(∂µU∂µU †), (2.1)

where F is a constant. As in [23, 24], we use Cayley parametrization. Under Cayley

parametrization U is defined as

U = 1 + 2
∞∑

n=1

(
1

2F
φ

)n

. (2.2)

Here φ =
√
2φata and ta are generators of U(N) Lie algebra.

Trace form of color decomposition. The total tree amplitudes can be given in terms

of color-ordered amplitudes by trace form of color decomposition

M(1a1 , . . . , nan) =
∑

σ∈Sn−1

Tr(T a1T aσ2 . . . T aσn )A(1, σ). (2.3)

Since the traces have cyclic symmetry, the color-ordered amplitudes also satisfy cyclic

symmetry

A(1, 2, . . . , n) = A(n, 1, . . . , n− 1). (2.4)

Feynman rules for color-ordered amplitudes. Vertices in color-ordered Feynman

rules under Cayley parametrization (2.2) are

V2n+1 = 0, V2n+2 =

(
− 1

2F 2

)n
(

n∑

i=0

p2i+1

)2

=

(
− 1

2F 2

)n
(

n∑

i=0

p2i+2

)2

, (2.5)

where momentum conservation has been considered.
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2.2 Berends-Giele recursion

In the Feynman rule given by the previous subsection, one can construct tree-level currents5

with one off-shell line through Berends-Giele recursion

J(2, . . . , n) (2.6)

=
i

P 2
2,n

n
∑

m=4

∑

1=j0<j1<···<jm−1=n

iVm(p1 = −P2,n, Pj0+1,j1 , · · · , Pjm−2+1,n)×

m−2
∏

k=0

J(jk + 1, · · · , jk+1),

where p1 = −P2,n = −(p2 + p3 + · · · + pn). The starting point of this recursion is J(2) =

J(3) = · · · = J(n) = 1.

There is at least one odd-point vertex for current with odd-point lines(including the

off-shell line) and the odd-point vertices are zero. As a result, we have

J(2, . . . , 2m+ 1) = 0, (2.7)

for (2m + 1)-point amplitudes. The currents with even-points in general are nonzero and

are built up by only odd numbers of even-point sub-currents. Since odd-point currents have

to vanish, in all following sections of this paper, we just need to discuss on the relations

among even-point currents.

3 Off-shell and on-shell U(1) identity from Berends-Giele recursion

In this section, we prove the U(1) identity satisfied by even-point currents. The identity is

given as

∑

σ∈OP ({α1}
⋃
{β1,...,β2m})

J({σ}) = 1

2F 2

∑

divisions{β}→{B1},{B2}

J({B1})J({B2}), (3.1)

where, on the left hand side, we sum over all the possible permutations with keeping the

relative orders in {β} set and there is only one element α1 in {α} set. On the right hand

side, we divide the ordered set {β1, . . . , β2m} into two nonempty subsets. In each subset,

there are odd number of β’s. For example, if there are six β’s, there are three possible

divisions {B1} = {β1}, {B2} = {β2, . . . , β6}; {B1} = {β1, β2, β3}, {B2} = {β4, β5, β6} and

{B1} = {β1, . . . , β5}, {B2} = {β6}.
When we want to get the on-shell relations between amplitudes from the identity (3.1),

we should multiply both sides of (3.1) by p21 = (pα1 + pβ1 + · · ·+ pβ2m)
2 and take the limit

p21 → 0. Since the right hand side are products of currents which are finite when p21 goes

to zero, after multiplied by p21, the right hand side has to vanish under p21 → 0. Then we

arrive at on-shell U(1)-decoupling identity immediately

∑

σ∈OP ({α1}
⋃
{β1,...,β2m})

A(1, {σ}) = 0. (3.2)

It is worth comparing the U(1) identities in non-linear sigma model and in Yang-

Mills theory. In Yang-Mills theory, U(1)-decoupling identities in both on-shell and off-shell

5In this paper, an n-point current is mentioned as the current with n−1 on-shell legs and one off-shell leg.
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cases have the same form. Thus, in both off-shell and on-shell cases, the identities can be

understood as the decoupling of U(1)-gauge field. However, in non-linear sigma model, the

U(1) field can only decouple in the on-shell case. In off-shell case, at least for the choice of

Cayley parametrization, we get sum of products of two sub-currents. In other words, only

when taking the on-shell limit, the U(1) field decouples.

Before proving the identity (3.1), let us have a look at two examples.

3.1 Four-point example

In four-point case, the U(1)-identity is

J(α1, β1, β2) + J(β1, α1, β2) + J(β1, β2, α1) =
1

2F 2
J(β1)J(β2) =

1

2F 2
. (3.3)

This is easy to prove by substituting the four-point vertex into the left hand side directly

J(α1, β1, β2) + J(β1, α1, β2) + J(β1, β2, α1)

= − 1

2F 2

i

p21
i
[
(p1 + pβ1)

2 + (p1 + pα1)
2 + (p1 + pβ2)

2
]

= − 1

2F 2

i

p21
i
[
p21 + p2α1

+ p2β1
+ p2β2

]

=
1

2F 2
. (3.4)

where 1 is the off-shell line and we have used the on-shell conditions p2α1
= 0, p2β1

= 0,

p2β2
= 0.

3.2 Eight-point example

Now let us skip the proof of six-point U(1) identity and show how to use lower-point identity

to prove eight-point U(1) identity. The eight-point U(1) identity is given as

∑

σ∈OP ({α1}
⋃
{β1,...,β6})

J({σ})

=
1

2F 2
[J(β1)J(β2, . . . , β6) + J(β1, β2, β3)J(β4, β5, β6) + J(β1, . . . , β5)J(β6)]

=
1

2F 2
[J(β2, . . . , β6) + J(β1, β2, β3)J(β4, β5, β6) + J(β1, . . . , β5)] . (3.5)

To prove this relation, we first show the explicit expression of figure 1 and figure 2.

• figure 1 can be expressed as

figure 1

= −
1

2F 2

i

p21
i
[

p
2
1 + p

2
α1

+ p
2
B1

+ p
2
B2

]

J({B1})J({B2})

=
1

2F 2
J({B1})J({B2}) +

1

2F 2

1

p21

[

p
2
B1

J({B1})
]

J({B2}) +
1

2F 2
J({B1})

1

p21

[

p
2
B2

J({B2})
]

=
1

2F 2
J({B1})J({B2})
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Figure 1. Sum of diagrams with α1 connected with the off-shell leg directly via four-point vertex

in U(1) identity.

Figure 2. A diagram with lower-point substructure of U(1) identity.

+
1

p21

∑

divisions{B1}→{B11
}...{B12i+1

}

(

−
1

2F 2

)i+1

V2i+2(−PB11
,B12i+1

, PB11
, . . . PB1i

)

× J({B2})J({B11}) . . . J({B12i+1
})

+
1

p21

∑

divisions{B2}→{B21
}...{B22i+1

}

(

−
1

2F 2

)i+1

V2i+2(−PB21
,B22i+1

, PB21
, . . . PB2i

)

× J({B1})J({B21}) . . . J({B22i+1
}), (3.6)

where we have used the on-shell condition p2α1
= 0. pBi

denotes the sum of momenta

of the on-shell lines in the set {Bi}.

• figure 2 can be expressed explicitly by using lower-point U(1) identities

figure 2 =
∑

divisions{Bi}→{Bi1
}{Bi2

}

(

−1

2F 2

)M
1

p21
V (p1, pB1

, . . . , pBi−1
, pBi

, pBi+1
, . . . , pB2M−1

)

× J({B1}) . . . J({Bi−1})J({Bi1})J({Bi2})J({Bi+1}) . . . J({B2M−1}). (3.7)

By Berends-Giele recursion, we can express the left hand side of eight-point U(1) iden-

tity (3.5) by sum of the diagrams in figure 7. We can always use (3.7) to reduce sum

of the terms with sub-currents containing both α1 and elements in {β} into products of

currents with only β element. Thus the left hand side of (3.5) can be expressed in terms of

J({B1}) . . . J({B2M}), where {B1} . . . {B2M} is an nontrivial division of {β}. Each subset

of this division must containing odd number of β elements because the odd-point current

must vanish. We can classify the products of sub-currents into three categories according

to different number of sub-currents

– 7 –



J
H
E
P
0
1
(
2
0
1
4
)
0
6
1

• six sub-currents: J(β1) . . . J(β6)

• four sub-currents: J(β1)J(β2)J(β3)J(β4, β5, β6), J(β1)J(β2)J(β3, β4, β5)J(β6),

J(β1)J(β2, β3, β4)J(β5)J(β6) and J(β1, β2, β3)J(β4)J(β5)J(β6)

• two sub-currents: J(β1)J(β2, . . . , β6), J(β1, β2, β3)J(β4, β5, β6) and

J(β1, . . . , β5)J(β6).

Now let us discuss these contributions one by one.

(i) Six sub-currents: J(β1)J(β2)J(β3)J(β4)J(β5)J(β6) = 1. There are three parts of

contributions A, B and C in this case.

A part is (A.1) in figure 7 and can be given as

A = i
i

p21

(

−
1

2F 2

)3
[

(pα1
+ pβ2

+ pβ4
+ pβ6

)2 + (pβ1
+ pβ2

+ pβ4
+ pβ6

)2 + (pβ1
+ pα1

+ pβ4
+ pβ6

)2

+(pβ1
+ pβ3

+ pβ4
+ pβ6

)2 + (pβ1
+ pβ3

+ pα1
+ pβ6

)2 + (pβ1
+ pβ3

+ pβ5
+ pβ6

)2

+(pβ1
+ pβ3

+ pβ5
+ pα1

)2
]

. (3.8)

B part is sum of (B.5), (B.6), (B.7), (B.8) and (B.9) in figure 7. Using the prop-

erty (3.7), this part can be given as

B =

(

1

2F 2

)3

i
i

p21

[

(pα1
+ pβ1

+ pβ2
+ pβ4

+ pβ6
)2 + (pβ1

+ pβ4
+ pβ6

)2 + (pβ1
+ pα1

+ pβ3
+ pβ4

+ pβ6
)2

+(pβ1
+ pβ3

+ pβ6
)2 + (pβ1

+ pβ3
+ pα1

+ pβ5
+ pβ6

)2
]

. (3.9)

C part gets contributions from the diagrams (C.1) and (C.3). Particularly,

we apply the property (3.6) to these two diagrams, then we find that the di-

vision {β2, β3, β4, β5, β6} → {β2}, {β3}, {β4}, {β5}, {β6} of (C.1) and the division

{β1, β2, β3, β4, β5} → {β1}, {β2}, {β3}, {β4}, {β5} of (C.3) contribute to this case. C can be

expressed as

C =
i

p21
i

(
1

2F 2

)3

(pβ2 + pβ4 + pβ6)
2 +

i

p21
i

(
1

2F 2

)3

(pβ1 + pβ3 + pβ5)
2. (3.10)

Considering all three parts, we find that

A+ B+ C =
1

p21

(
1

2F 2

)3

p2α1
= 0, (3.11)

where we have used the on-shell condition of α1.

(ii) Four sub-currents: there are four different products of sub-currents

J(β1, β2, β3)J(β4)J(β5)J(β6), J(β1)J(β2, β3, β4)J(β5)J(β6), J(β1)J(β2)J(β3, β4, β5)J(β6)

and J(β1)J(β2)J(β3)J(β4, β5, β6). Now let us consider J(β1, β2, β3)J(β4)J(β5)J(β6) as an

example. The contributions of this case can also be classified into three parts A, B, C.

A part is given by (B.1) in figure 7 and can be expressed explicitly

A = i
i

p21

(

1

2F 2

)2
[

(pα1
+ pβ4

+ pβ6
)2 + (pβ1

+ pβ2
+ pβ3

+ pβ4
+ pβ6

)2 + (pβ1
+ pβ2

+ pβ3
+ pα1

+ pβ6
)2

+(pβ1
+ pβ2

+ pβ3
+ pβ5

+ pβ6
)2 + (pβ1

+ pβ2
+ pβ3

+ pβ5
+ pα1

)2
]

. (3.12)
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B part get contributions from (C.4), (C.11) and (C.12) in figure 7. Particularly, we

apply the property (3.7) to (C.4), (C.11) and (C.12). Then (C.11), (C.12) and the division

{β1, β2, β3, β4, β5} → {β1}, {β2}, {β3}, {β4}, {β5} of (C.4) contribute to B. Thus B can be

given as

B = −

(

1

2F 2

)2

i
i

p21
(pα1

+ pβ1
+ pβ2

+ pβ3
+ pβ4

+ pβ6
)2 −

(

1

2F 2

)2

i
i

p21
(pβ6

+ pβ1
+ pβ2

+ pβ3
)2

−

(

1

2F 2

)2

i
i

p21
(pβ1

+ pβ2
+ pβ3

+ pα1
+ pβ5

+ pβ6
)2. (3.13)

C part gets contributions from (C.2) and (C.3). Particularly, when applying (3.6)

to (C.2) and (C.3). The divisions {β4, β5, β6} → {β4}, {β5}, {β6} of (C.2) and

{β1, β2, β3, β4, β5} → {β1, β2, β3}, {β4}, {β5} of (C.3) contribute to this case. Thus C part

is given as

C = −i
i

p21

(
1

2F 2

)2 [
(pβ4 + pβ6)

2 + (pβ1 + pβ2 + pβ3 + pβ5)
2
]
. (3.14)

Taking all three parts into account, we get

A+ B+ C = 0, (3.15)

where we have used on-shell condition of α1. Following a similar way, we find that the

other products of four sub-currents also cancel out.

(iii) Two sub-currents: there are three non-vanishing products of sub-currents

J(β1)J(β2, . . . , β6), J(β1, β2, β3)J(β4, β5, β6) and J(β1, . . . , β5)J(β6). They can only get

contributions from the three diagrams (C.1), (C.2) and (C.3). Particularly, we apply the

property (3.6) to (C.1), (C.2) and (C.3). In this case, we need to keep the terms that of

(p21)
0 in these three diagrams. Then we get

1

2F 2
[J(β1)J(β2, . . . , β6) + J(β1, β2, β3)J(β4, β5, β6) + J(β1, . . . , β5)J(β6)] , (3.16)

which is just the right hand side of the U(1) identity for eight-point currents.

Therefore, after considering all the cases (i) (ii) and (iii), we get the U(1) identity (3.5)

for eight-point currents.

3.3 General proof

Having shown the proof of the eight-point example, let us extend the proof to the general

form of U(1) identity. In general, one can always express the left hand side of (3.1) by

lower-point sub-currents via Berends-Giele recursion (2.6). As in the eight-point examples,

we can collect the diagrams with same off-shell momenta of sub-currents together. Then

we can use the property (3.7) to reduce the diagrams containing a substructure of U(1)

identity (as shown in figure 2). After these reductions, the sub-currents containing both

α1 and {β} elements are reduced to products of sub-currents with only elements in {β}
set. Furthermore, we can apply (3.6) to a four-point structure in figure 1. After these
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p2α1
p2B2i+1

p2B2i
sα1B2i+1

sα1B2i
sB2i+1B2j+1

sB2iB2j
sB2i+1B2j

Type-A (M + 1) 2(M − i) 2i M − i i
{ 2(M − j) (i < j)

0 (Otherwise)

{ 2i (i < j)

0 (Otherwise)

{ 2(j − i) − 1 (i < j)

0 (Otherwise)

Type-B −M −2(M − i) + 1 −2i + 1 −M + i −i
{ −2(M − j) + 1 (i < j)

0 (Otherwise)

{ −2i + 1 (i < j)

0 (Otherwise)

{ −2(j − i) + 1 (i < j)

0 (Otherwise)

Type-C 0 -1 -1 0 0
{ −1 (i < j)

0 (Otherwise)

{ −1 (i < j)

0 (Otherwise)
0

Table 1. Coefficients of J({B1}) . . . J({B2M}) in U(1) identity. Here sα1Bu
denotes 2pα1

·(
∑

βp∈{Bu}

pβp

)
,sBuBv

denotes 2

(
∑

βp∈{Bu}

pβp

)
·
(

∑
βq∈{Bv}

pβq

)
, u, v can be 2i or 2i + 1. For

B2i+1, i runs from 0 to M − 1, while for B2i, i runs from 1 to M .

reductions, we should read out the coefficients of J({B1}) . . . J({B2M}) for an arbitrary

nontrivial division {β1, . . . , β2m} → {B1} . . . {B2M}.
For M > 1, as shown in the eight-point case, there are always three types of

contributions Type-A, Type-B and Type-C in figure 8. The notations in these diagrams

are defined by figure 5.

For Type-A diagrams in figure 8, we can always use Feynman rules and momentum

conservation to avoid the appearance of the momentum of the off-shell leg 1 and express

the coefficient of J({B1}) . . . J({B2M}) by the on-shell momenta.

For Type-B diagrams in figure 8, as have mentioned, we should substitute (3.7)

into these diagrams to reduce them and keep the right divisions that can produce

J({B1}) . . . J({B2M}). For example, we should keep the division {B1, B2} → {B1}, {B2}
in the first diagram and keep the division {B2, B3} → {B2}, {B3} in the second diagram,

and so on. For convenience, we also express the vertices in Type-B diagrams by the on-shell

momenta via momentum conservation.

For Type-C diagrams in figure 8, we should apply (3.6). For the first diagram of Type-

C, we should keep the division {B2, . . . , B2M} → {B2} . . . {B2M} while, for the second

diagram we should keep the division {B1, . . . , B2M−1} → {B1} . . . {B2M−1}.
Then we can collect all the coefficients in the three types in table 1. In

table 1, we have left a total factor i
p21
i
(
− 1

2F 2

)M
apart. Thus, the total coef-

ficient of J({B1})J({B2}) . . . J({B2M}) is i
p21
i
(
− 1

2F 2

)M
p2α1

. Since p2α1
= 0, the

J({B1})J({B2}) . . . J({B2M}) must vanish.

For M = 1, there are only two sub-currents in the products. In this case, we only

need to consider the terms with (p21)
0 in the diagrams of the form in figure 1. We should

sum over all the possible {B1} and {B2} and get

p21
i

p21
i

(
− 1

2F 2

) ∑

divisions{β}→{B1},{B2}

J({B1})J({B2}), (3.17)

which is just the right hand side of the off-shell U(1) identity (3.1).
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4 Off-shell and on-shell fundamental BCJ relation from Berends-Giele

recursion

Having proven the U(1) identity, let us consider a more nontrivial relation-fundamental

BCJ relation- in non-linear sigma model. Since the odd-point currents and amplitudes

must vanish, we only need to consider the relations for even-point currents and am-

plitudes. Being different from U(1) identity, fundamental BCJ relation has non-trivial

coefficients accompanying with the currents or amplitudes. The general formula of off-shell

fundamental BCJ relation is given as

∑

σ∈OP ({α1}
⋃
{β1,...,β2m−1})

∑

ξσi<ξα1

sα1σi
J({σ}, β2m)

= − 1

2F 2

∑

divisions{β}→{B1},{B2}



∑

βi∈{B2}

sα1βi
J({B1})J({B2})


 , (4.1)

where we use ξi to denote the position of the leg i in permutation σ, we define ξ1 = 0, thus

we always have a sα11 in the coefficients for each currents on the left hand side. On the

right hand side, we sum over all the possible divisions of the ordered set {β} into two sub-

ordered sets {B1} and {B2}. Since J({B1}) or J({B2}) must vanish when {B1} or {B2}
have even number, the divisions that survive are those with both odd number of elements

in {B1} and {B2}. Since the right hand side is finite under p21 → 0, after multiplying p21
and taking the on-shell limit p21 → 0 we get the on-shell relation for amplitudes

∑

σ∈OP ({α1}
⋃
{β1,...,β2m−1})

∑

ξσi<ξα1

sα1σi
A(1, {σ}, β2m) = 0. (4.2)

The left hand side of fundamental BCJ relation can be understood as following. We

move one external leg α1 from the position next to the leg 1 to the position in front of the leg

β2m. For each position, we can write down a corresponding current(or amplitude) accompa-

nied by a kinematic factor
∑

ξσi<ξα1

sα1σi
. Then we sum over all the currents with coefficients.

Before giving the general proof of the relation (4.1), let us have a look at two examples.

4.1 Four-point example

The simplest example is the four-point fundamental BCJ relation

sα11J(α1, β1, β2) + (sα11 + sα1β1)J(β1, α1, β2) = −
(

1

2F 2

)
sα1β2J(β1)J(β2). (4.3)

To see this, we write the currents on the left hand side of BCJ relation (4.3) explicitly via

Feynman rules

sα11J(α1, β1, β2) + (sα11 + sα1β1)J(β1, α1, β2)

= −
(

1

2F 2

)
i
i

p21

[
sα11(pα1 + pβ2)

2 + (sα11 + sα1β1)(pβ1 + pβ2)
2
]
J(β1)J(β2)
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Figure 3. Sum of diagrams with α1 connected with the off-shell leg directly via four-point vertex

in BCJ relation.

= −
(

1

2F 2

)
sα1β2J(β1)J(β2)

= −
(

1

2F 2

)
sα1β2 , (4.4)

where we have used momentum conservation and on-shell conditions of α1, β1 and β2.

Thus we have proved the fundamental BCJ relation (4.3) at four-point.

4.2 Eight-point example

The four-point example in above subsection just provides a starting point of an inductive

proof. In this subsection, we skip the proof of fundamental BCJ relation at six-point and

assume that the relation (4.1) is satisfied at both four- and six- points. We will show how

to prove the eight-point relation recursively.

Fundamental BCJ relation for eight-point currents is given as

∑

σ∈OP ({α1}
⋃
{β1,...,β5})

∑

ξσi<ξα1

sα1σi
J({σ}, β6)

= − 1

2F 2

∑

divisions{β1,...,β6}→{B1},{B2}



∑

βi∈{B2}

sα1βi
J({B1})J({B2})


 , (4.5)

where, on the right hand side, we sum over three nonzero divisions {β1, . . . , β6} →
{β1}{β2, β3, β4, β5, β6}, {β1, . . . , β6} → {β1, β2, β3}{β4, β5, β6} and {β1, . . . , β6} →
{β1, β2, β3, β4, β5}{β6}.

To prove this relation, we first show the explicit expressions of figure 3 and figure 4:

• We first consider the sum of the two diagrams in figure 3. If we divide the ordered

set {β1, . . . , β2m} into two ordered subsets {B1} and {B2}, then figure 3 is given as

figure 3

=
1

2F 2

1

p21

[

sα11(pα1
+ pB2

)2 + (sα11 + sα1B1
)(pB1

+ pB2
)2
]

J({B1})J({B2})

=
1

2F 2

1

p21
(sα11p

2
B2

− sα1B2
p
2
1)J({B1})J({B2})

= −
1

2F 2

1

p21
sα1B2

p
2
1J({B1})J({B2})
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Figure 4. A diagram with lower-point substructure of BCJ relation.

+
1

2F 2

1

p21
sα11

∑

divisions{B2}→{B21
}...{B22i+1

}

(

−
1

2F 2

)i

V2i+2(−PB21
,B22i+1

, PB21
, . . . PB22i+1

)

× J({B1})J({B21}) . . . J({B22i+1
}). (4.6)

• Now let us consider figure 4. The left hand side of figure 4 can be reexpressed by

the right hand side of figure 4 by considering momentum conservation and on-shell

condition of α1. Since the first and second terms of the right hand side of figure 4

have substructures of fundamental BCJ relation and U(1) identity respectively, we

can further reduce them by lower-point relations. Then we have

figure 4 =
1

2F 2

∑

divisions{Bi}→{Bi1
}{Bi2

}

(

−1

2F 2

)M−1
1

p21
(sα1Bi2

+ sα1Bi+1
+ · · ·+ sα1B2M−1

)

× V (p1, pB1
, . . . , pBi−1

, pBi
, pBi+1

, . . . , pB2M−1
)

× J({B1}) . . . J({Bi−1})J({Bi1})J({Bi2})J({Bi+1}) . . . J({B2M−1}). (4.7)

A special case is i = 2M − 1. In this case, αi cannot be moved to the position

next to the last element of {B2M−1}. This case can also be included in figure 4

by considering momentum conservation and on-shell condition of α1. Thus the

property (4.7) also holds.

With the above two properties, one can prove the eight-point fundamental BCJ rela-

tion (4.5). We can write the left hand side of eight-point fundamental BCJ relation by lower-

point currents via Berends-Giele recursion (2.6). The left hand side of (4.5) is given as sum

of the diagrams in figure 7. For the diagrams in figure 7, we can apply (4.7) to (B.5)-(B.9),

(C.4)-(C.12) and apply (4.6) to (C.1), (C.2), (C.3). It is easy to see that the left hand side of

eight-point fundamental BCJ relation can be expressed in terms of products of currents of

the form J({B1})J({B2}) . . . J({B2M}) after considering the property (4.7) and J(α1) = 1,
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where {B1} . . . {B2M} are non-vanishing divisions of the ordered set {β1, . . . , β6}. Then we

can read off the coefficients for each division and prove the relation.

The divisions can be classified in following cases

• six sub-currents: J(β1) . . . J(β6)

• four sub-currents: J(β1)J(β2)J(β3)J(β4, β5, β6), J(β1)J(β2)J(β3, β4, β5)J(β6),

J(β1)J(β2, β3, β4)J(β5)J(β6) and J(β1, β2, β3)J(β4)J(β5)J(β6)

• two sub-currents: J(β1)J(β2, . . . , β6), J(β1, β2, β3)J(β4, β5, β6) and

J(β1, . . . , β5)J(β6).

We can calculate the coefficients for these divisions one by one:

(i) Six sub-currents: J(β1)J(β2)J(β3)J(β4)J(β5)J(β6) = 1. This case get contribu-

tions from three parts A, B and C.

A part is (A.1) in figure 7 and can be given as

A = i
i

p21

(
− 1

2F 2

)3 [
sα11(pα1 + pβ2 + pβ4 + pβ6)

2 + (sα11 + sα1β1)(pβ1 + pβ2 + pβ4 + pβ6)
2

+(sα11 + sα1β1 + sα1β2)(pβ1 + pα1 + pβ4 + pβ6)
2

+(sα11 + sα1β1 + sα1β2 + sα1β3)(pβ1 + pβ3 + pβ4 + pβ6)
2

+(sα11 + sα1β1 + sα1β2 + sα1β3 + sα1β4)(pβ1 + pβ3 + pα1 + pβ6)
2

+(sα11 + sα1β1 + sα1β2 + sα1β3 + sα1β4 + sα1β5)(pβ1 + pβ3 + pβ5 + pβ6)
2
]
. (4.8)

B part is the sum of (B.5), (B.6), (B.7), (B.8) and (B.9) in figure 7. Using the

property (4.7), we get

B =

(
1

2F 2

)3

i
i

p21

[
−(sα1β2 + sα1β3 + sα1β4 + sα1β5 + sα1β6)(pα1 + pβ1 + pβ2 + pβ4 + pβ6)

2

−(sα1β3 + sα1β4 + sα1β5 + sα1β6)(pβ1 + pβ4 + pβ6)
2

−(sα1β4 + sα1β5 + sα1β6)(pβ1 + pα1 + pβ3 + pβ4 + pβ6)
2

−(sα1β5 + sα1β6)(pβ1 + pβ3 + pβ6)
2 − sα1β6(pβ1 + pβ3 + pα1 + pβ5 + pβ6)

2
]
. (4.9)

C part is the division {β2, β3, β4, β5, β6} → {β2}, {β3}, {β4}, {β5}, {β6} of (C.1). Particu-

larly, this part is given as

C=− i

p21
i

(
1

2F 2

)3

(sα1β1+sα1β2+sα1β3+sα1β4+sα1β5+sα1β6)(pβ2+pβ4+pβ6)
2. (4.10)

Considering momentum conservation and on-shell condition p2α1
= 0, we can see

A+ B+ C = 0.

(ii) Four sub-currents: there are four different products of sub-currents

J(β1, β2, β3)J(β4)J(β5)J(β6), J(β1)J(β2, β3, β4)J(β5)J(β6), J(β1)J(β2)J(β3, β4, β5)J(β6)

and J(β1)J(β2)J(β3)J(β4, β5, β6). Let us take J(β1, β2, β3)J(β4)J(β5)J(β6) as an exam-

ple. J(β1, β2, β3)J(β4)J(β5)J(β6) gets contributions from three parts A, B and C.
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A part is the contribution of (B.1) in figure 7 and given as

A = i
i

p21

(

1

2F 2

)2
[

sα11(pα1
+ pβ4

+ pβ6
)2 + (sα11 + sα1β1

+ sα1β2
+ sα1β3

)(pβ1
+ pβ2

+ pβ3
+ pβ4

+ pβ6
)2

+(sα11 + sα1β1
+ sα1β2

+ sα1β3
+ sα1β4

)(pβ1
+ pβ2

+ pβ3
+ pα1

+ pβ6
)2

+(sα11 + sα1β1
+ sα1β2

+ sα1β3
+ sα1β4

+ sα1β5
)(pβ1

+ pβ2
+ pβ3

+ pβ5
+ pβ6

)2
]

. (4.11)

B is the sum of the (C.11), (C.12) in figure 7 and the division {β1, β2, β3, β4} →
{β1, β2, β3}, {β4} of (C.4) in figure 7. Particularly, we have

B = −

(

1

2F 2

)2

i
i

p21

[

−(sα1β5
+ sα1β6

)(pβ6
+ pβ1

+ pβ2
+ pβ3

)2 − sα1β6
(pβ1

+ pβ2
+ pβ3

+ pα1
+ pβ5

+ pβ6
)2

−(sα1β4
+ sα1β5

+ sα1β6
)(pα1

+ pβ1
+ pβ2

+ pβ3
+ pβ4

+ pβ6
)2
]

. (4.12)

C part gets contribution of division {β4, β5, β6} → {β4}, {β5}, {β6} of (C.2). This part

is given as

C = −i
i

p21

(
1

2F 2

)2 [
−(sα1β1 + sα1β2 + sα1β3 + sα1β4 + sα1β5 + sα1β6)(pβ4 + pβ6)

2
]
. (4.13)

After some calculations and considering momentum conservation and on-shell conditions

of the on-shell external lines, we get A + B + C = 0. Following similar calculations, we

find that coefficients for the other products of four-currents also vanish.

(iii) Two sub-currents

In this case, only the terms that of (p21)
0 in (C.1), (C.2) and (C.3) contribute and the

sum of these contributions is given as

1

2F 2

[
−(sα1β2 + sα1β3 + sα1β4 + sα1β5 + sα1β6)J(β2, . . . , β6)

−(sα1β4 + sα1β5 + sα1β6)J(β1, β2, β3)J(β4, β5, β6)

−sα1β6J(β1, . . . , β5)
]
. (4.14)

After considering all the cases (i), (ii) and (iii), we find that only the productions of two

sub-currents are left and this part is just the right hand side of eight-point fundamental

BCJ relation.

4.3 General proof

Now let us consider the general proof of fundamental BCJ relation (4.1). As shown in

the eight-point example, we can always express the left hand side of the relation (4.1) by

Berends-Giele recursion (2.6) and collect the diagrams with same off-shell momenta of sub-

currents(e.g., for eight point case the diagrams are given by figure 7). After applying (4.6)

and (4.7), the left hand side of (4.1) can be written in terms of J({B1}) . . . J({B2M}),
where {B1} . . . {B2M} are nontrivial divisions6 of the ordered set {β}. To prove the rela-

tion (4.1), we should read off the coefficient for each division. Then we should show that

6Since the odd-point current must vanish, the number of elements in each subset must be odd so that

the product is nonzero.
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sα1B2i+1
× k2B2j+1

sα1B2i+1
× k2B2j

sα1B2i
× k2B2j+1

sα1B2i
× k2B2j

Type-A
{−2(i− j) (i > j)

0 (i ≤ j)

{ −2j (i ≥ j)

−(2i+ 1) (i < j)

{−(2i− 2j − 1) (i > j)

0 (i ≤ j)

{−2j (i > j)

−2i (i ≤ j)

Type-B
{ 2(i− j) (i > j)

0 (i ≤ j)

{ 2j − 1 (i ≥ j)

2i (i < j)

{ 2i− 2j − 1 (i > j)

0 (i ≤ j)

{ 2j − 1 (i > j)

2i− 1 (i ≤ j)

Type-C 0 1 0 1

Table 2. Coefficients of J({B1}) . . . J({B2M}) in fundamental BCJ relation: coefficients of the

form sα1Bi
× p2Bj

with arbitrary i and j.

the coefficients must vanish for divisions with M > 1 and must give the right hand side

of (4.1) for divisions with M = 1.

For given M (M > 1), the diagrams contribute to J({B1}) . . . J({B2M}) can be classi-

fied into three types (this is similar with the eight-point example) Type-A, Type-B and the

first diagram of Type-C in figure 8. The notations in these diagrams are defined by figure 6.

For Type-A diagram in figure 8 we can use momentum conservation and on-shell con-

dition of α1 to rewrite the coefficient in each term into a form independent of momentum

of the off-shell line 1. For example, if we consider the diagram with α1 between {Bi} and

{Bi+1}, the coefficient is rewritten as

sα11 + sα1B1 + · · ·+ sα1Bi
= −(sα1Bi+1 + · · ·+ sα1B2M

). (4.15)

The vertex is also written in the form independent of the momentum of off-shell leg.

For Type-B diagrams in figure 8, we should write down the expression of each diagram

by (4.7) and pick out the appropriate division such that we can get {B1} . . . {B2M}. For

example, for the first diagram in Type-B in figure 8, we should keep the division {B1, B2} →
{B1}{B2} , for the second diagram we should keep the division {B2, B3} → {B2}{B3} and

so on. We also write the coefficients and vertices as forms independent of the momentum

of the off-shell leg 1 via momentum conservation and on-shell condition of α1.

For Type-C diagrams in figure 8, we should write down the expression of each diagram

by (4.6) and keep the divisions such that we can get {B1} . . . {B2M}. Only the first diagram

of Type-C contributes. We should keep the division {B2, . . . , B2M} → {B2} . . . {B2M}
of the first diagram of Type-C. We also use momentum conservation to rewrite sα11 as

− (sα1B1 + · · ·+ sα1B2M
) and write the vertices in (4.6) by functions of momentums of

on-shell legs.

After these steps, we can read off the coefficient of J({B1}) . . . J({B2M}) explicitly.

They are shown in tables 2, 3, 4. The columns of tables 2, 3, 4, except for the second

column of table 3 and the first column of table 4, are canceled out. The sum of the second

column of table 3 is given as

{
0 (i ≥ j)

−1 (i < j)
, (4.16)

– 16 –



J
H
E
P
0
1
(
2
0
1
4
)
0
6
1

sα1B2i+1
×sα1B2j+1

sα1B2i+1
×sα1B2j

sα1B2i+1
×sB2j+1B2l+1

sα1B2i+1
×sB2jB2l

sα1B2i+1
×sB2j+1B2l

Type-A
{ −(i − j) (i > j)

0 (i ≤ j)

{ −j (i ≥ j)

−(i + 1) (i < j)

{ −2(i − l) (j < l < i)

0 Otherwise

{ −(2i + 1) (i ≤ j < l)

−2j (j < l, j < i)

{ −2(i − j) (j < i < l)

−(2l − 2j − 1) (j < l ≤ i)

0 Otherwise

Type-B
{ i − j (i > j)

0 (i ≤ j)

{ j (i ≥ j)

i (i < j)

{ 2(i − l) (j < l < i)

0 Otherwise

{ 2i (i ≤ j < l)

2j − 1 (j < l, j < i)

{ 2(i − j) (j < i < l)

(2l − 2j − 1) (j < l ≤ i)

0 Otherwise

Type-C 0 0 0 1 0

Table 3. Coefficients of J({B1}) . . . J({B2M}) in fundamental BCJ relation: coefficients of the

form sα1B2i+1
× . . . .

sα1B2i
×sα1B2j+1

sα1B2i
×sα1B2j

sα1B2i
×sB2j+1B2l+1

sα1B2i
×sB2jB2l

sα1B2i
×sB2j+1B2l

Type-A
{ −(i−j−1) (i>j+1)

0 Otherwise

{ −j (i > j)

−i (i ≤ j)

{ −(2i−2l−1) (j<l<i)

0 Otherwise

{ −2i (i ≤ j < l)

−2j (j < l, j < i)

{ −(2i − 2j − 1) (j < i ≤ l)

−(2l − 2j − 1) (j < l < i)

0 Otherwise

Type-B
{ i − j (i > j)

0 (i ≤ j)

{ j (i > j)

i (i ≤ j)

{ 2i − 2l − 1 (j < l < i)

0 Otherwise

{ 2i − 1 (i ≤ j < l)

2j − 1 (j < l, j < i)

{ 2i − 2j − 1 (j < i ≤ l)

2l − 2j − 1 (j < l < i)

0 Otherwise

Type-C 0 0 0 1 0

Table 4. Coefficients of J({B1}) . . . J({B2M}) in fundamental BCJ relation: coefficients of the

form sα1B2i
× . . . .

while, the sum of the first column of table 4 is given as
{
1 (i > j)

0 (i ≤ j)
. (4.17)

Since sα1β2i+1 × sα1β2j and sα1β2i × sα1β2j+1 can be related by i ⇔ j, we should interchange

i and j in the first column of table 4. Then we can see these two nonzero contributions

cancel with each other. Therefore, all the contributions of divisions with M > 1 at last

must vanish.

For division with M = 1, the ordered set {β} is only divided into two ordered subsets.

In this case, we only need to consider the terms of (p21)
0 in diagrams shown in figure 4

(which is the first term of the second line of (4.6)) with all the possible nontrivial divisions

{β} → {B1}{B2}. The sum of these terms precisely gives the right hand side of the

fundamental BCJ relation (4.1).

5 General KK, BCJ relations, minimal-basis expansion and formulations

of total amplitudes

Having proven the U(1)-decoupling identity and fundamental BCJ relation in non-linear

sigma model, let us now extend these relations to more general cases. In this section, we

first state that the general KK and BCJ relations as well as minimal-basis expansion are all

satisfied by color-ordered tree amplitudes. Then we will show that tree-level total ampli-

tudes satisfy DDM form of color decomposition and KLT relation.7 All these discussions

are parallel within Yang-Mills theory, thus we will only present the main points of the

statements. Details can be found in the works [5, 11, 25] and [21].

7We emphasize that the consequent relations that will be derived in this section are all for on-shell

amplitudes. General KK and BCJ relations for off-shell currents will be discussed in future work.
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5.1 General KK, BCJ relations and minimal-basis expansion

General KK and BCJ relations. KK relation and general BCJ relation can be consid-

ered as extensions of U(1)-decoupling identity and fundamental BCJ relation. In non-linear

sigma model, KK relation for 2m-point amplitudes is given as

∑

σ∈OP ({α1,...,αr}
⋃
{β1,...,βs})

A(1, {σ}, 2m) = (−1)rA(1, {β}, 2m, {α}T ), (5.1)

where r + s = 2m− 2. General BCJ relation is given as

∑

σ∈OP ({α1...αr}
⋃
{β1,...,βs})

r∑

l=1

∑

ξσi<ξαl

sαlσi
A(1, {σ}, 2m) = 0. (5.2)

From (5.1) and (5.2), we can see, if there is only one element in {α}, the relations turns

back to the U(1)-decoupling identity (3.2) and the fundamental BCJ relation (4.2) with

2m → β2m.

In principle, one can follow the similar steps in sections 3 and 4 to prove the general

KK , BCJ relations (5.1), (5.2) for off-shell currents and then take on-shell limits to get the

relations among color-ordered on-shell amplitudes. However, it is not easy to generalize the

off-shell KK and BCJ relations in this way. This is because there are nontrivial products of

sub-currents on the right hand side of the relations. When there are more elements in {α}
set, the forms of the right hand side may containing both divisions of {α} set and divisions

of {β} set. Thus the formulations may become highly complicated.

Fortunately, once we know the fundamental BCJ relation (4.2) in addition with

cyclic symmetry (2.4), we have another way to prove the on-shell general KK and BCJ

relations. This method was firstly proposed in [25] where general KK and BCJ relations

in Yang-Mills theory are generated by so-called primary relations. The main point is that

once the amplitudes satisfy a)cyclic symmetry as well as b)fundamental BCJ relation, all

the general KK and BCJ relations can be reexpressed as linear combinations of a set of

fundamental BCJ relations, and thus the general KK, BCJ relations must hold. Though

the discussions in [25] was firstly found by monodromy relations in string theory, as stated

in [25], all these arguments can be extended to field theory. Since the fundamental BCJ

relation (4.2) in non-linear sigma model has the same form within Yang-Mills theory, all

the steps in [25] are also valid in non-linear sigma model. Thus the KK and BCJ relations

must be satisfied by color-ordered tree amplitudes in non-linear sigma model. Details of

this proof can be found in [25].

Minimal-basis expansion. Since KK and general BCJ relations are both satisfied by

even-point color ordered tree amplitudes. We are ready now for reduce the number of inde-

pendent even-point color ordered tree amplitudes as in Yang-Mills theory. Apparently, one

can use KK relation in addition with cyclic symmetry to reduce the number of independent

2m-point amplitudes to (2m− 2)!. As in Yang-Mills theory, BCJ relations provide further

constraints. One can use general BCJ relations to express the amplitudes in KK basis by

only (2m−3)! independent amplitudes. The explicit formation of minimal-basis expansion
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is eq. (4.22) in [1] with 2m external legs. One can follow the same recursive procedure

that given by section 4 of the paper [11] to prove the minimal-basis expansion, because we

have the general BCJ relation (5.2) of the same form within Yang-Mills theory.

5.2 Formulations of total amplitudes

In Yang-Mills theory, amplitude relations imply various formations of total amplitudes. As

we have discussed, in non-linear sigma model, event-point color ordered tree amplitudes

satisfy KK and BCJ relations, which have the same formations within Yang-Mills theory.

Thus we expect that the total amplitudes can have the same expressions within Yang-Mills

theory. Particularly, the total amplitudes should satisfy DDM color decomposition as well

as KLT relation.8

DDM form of color decomposition. An immediate result of KK relation is that the

total amplitudes satisfy Del Duca-Dixon-Maltoni(DDM) form of color decomposition which

was firstly proven in Yang-Mills theory [5]

M(1, . . . , 2m) =
∑

σ∈S2m−2

fa1aσ2ai1 . . . fai2m−3
aσ2m−1a2mA(1, σ, 2m). (5.3)

The main points to prove DDM form of color decomposition are a) KK relations(5.1) and

b) the following relations between trace factors and color factors in DDM form

fa1aσ2ai1 . . . fai2m−3
aσ2m−1a2m = Tr(T 1[T σ2 , [. . . , [T σ2m−1 , T 2m] . . .]]). (5.4)

We can express any color-ordered amplitude in (2.3) by KK relation, and collect the color

coefficients of each amplitude in KK basis. Using the above relation between traces and

the color factors in DDM form, we can prove the DDM form of color decomposition (5.3).

Details of the proof can be found in [5].

KLT relation. Another result is Kawai-Lewellen-Tye(KLT) relation [29]. In non-linear

sigma model, total amplitudes can be expressed in terms of products of two color-ordered

tree amplitudes A and Ã, where A denote the color-ordered tree amplitudes in non-linear

sigma model and Ã denote the color-ordered tree amplitudes of scalar with cubic vertex

fabc. As in Yang-Mills theory, the KLT relation has many formations [28, 30].

For example the formulation manifests (2m− 2)! symmetries is given as

M(1, 2, . . . , 2m) =
∑

γ,φ∈S2m−2

A(2m, γ, 1)S[γ|φ]Ã(1, φ, 2m)

s12...(2m−1)
. (5.5)

This relation can be proved by following the same steps within the subsection 6.3 of the

paper [21]. This is because that the two critical points-the DDM color decomposition and

the generalized BCJ relation for color scalar theory-are all satisfied.

Another formulation which manifests (2m− 3)! symmetries is given as

M(1, 2, . . . , 2m) = (−1)
∑

γ,φ∈S2m−3

A(1, γ, 2m− 1, 2m)S[φ|γ]1Ã(2m− 1, 2m,φ, 1), (5.6)

8KLT relation in Yang-Mills theory was suggested in [31] and the general proof can be found in [21].
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or equivalently

M(1, 2, . . . , 2m)=(−1)
∑

γ,φ∈S2m−3

A(1, γ, 2m− 1, 2m)S[γ|φ]pn−1Ã(1, 2m− 1, φ, 2m). (5.7)

This formulation seems not easy to prove along the same line in Yang-Mills theory (See

section 6.1 of [21]), because the boundary behavior of the amplitudes of non-linear sigma

model is not good enough. However, we also expect that the (2m − 3)! formulation have

the same form within Yang-Mills theory. In this paper, we just take the four-point KLT

relation as an example

M(1, 2, 3, 4) = −A(1, 2, 3, 4)s21Ã(4, 2, 1, 3). (5.8)

To prove this relation, we express Ã(4, 2, 1, 3) explicitly by Feynman rules in color scalar

theory. Thus the right hand side is expressed as

−A(1, 2, 3, 4)s21

[
f13efe42

s13
+

f21efe34

s12

]
. (5.9)

Using antisymmetry of fabc as well as four-point BCJ relation s12A(1, 2, 3, 4) + (s12 +

s23)A(1324) = 0 which have been proven in the previous sections, we reexpress the right

hand side as

f12efe34A(1, 2, 3, 4) + f13efe24A(1, 3, 2, 4). (5.10)

This is just the DDM form of color decomposition of four-point total tree amplitude.

Thus the four-point KLT relation manifest (4− 3)! = 1 symmetry is proved. We leave the

general proof of this formula for future discussion.

Though KLT relation was suggested in gravity and then in Yang-Mills theory, it is

not surprising that the double-copy formula can also exist in a scalar theory such as

non-linear sigma model. An example for KLT relation of scalar amplitudes can be found

in bosonic string theory where the closed string tachyon amplitudes at tree level can be

expressed by double copy of open string tachyon amplitudes [29]. Actually, the non-linear

sigma model also have the similar double-copy structure when considering the color part

and the kinematic part as the two copies.

6 Conclusion

In this work, we have discussed the tree-level amplitude relations in non-linear sigma

model. We have proven the off-shell version of U(1) identity and fundamental BCJ relation

under Cayley parametrization. After taking on-shell limits, we got the U(1)-decoupling

identity and the fundamental BCJ relation for on-shell amplitudes. We stated that

the general KK and BCJ relations were also satisfied by even-point tree amplitudes in

non-linear sigma model. Two consequent results of KK and BCJ relations were given
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Figure 5. Convention in section 3.

as the minimal-basis expansion for color-ordered amplitudes and KLT relation for total

amplitudes. Though the procedure of proof in this work seems complicated, the relations

are quite consistent with the color algebra. We hope these results can be useful in

particle phenomenology. The algebraic interpretation of these relations and the dual

decompositions of amplitudes deserve further work.
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A Convention of notation

In this paper, we use a diagram containing a curved arrow line to denote sum of diagrams

for short. Since we encounter similar structures when considering U(1) identity and funda-
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Figure 6. Convention in section 4.

mental BCJ relation, we only use the same diagrams expressions but let the curved arrow

line have different meanings for convenience. The meaning of curved arrow line for section

3 and section 4 are given by figure 5 and figure 6 respectively.

B Eight-point diagrams

The left hand side of eight-point U(1) identity and eight-point fundamental BCJ relation

can be expressed by figure 7 with the convention of notation defined by figure 5 and figure 6.
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Figure 7. Diagrams for eight-point U(1) identity(with curved arrow line defined by figure 3) or

fundamental BCJ relation(with curved arrow line defined by figure 4).

C Diagrams contribute to J({B1})J({B2}) . . . J({B2M})

The diagrams contribute to J({B1})J({B2}) . . . J({B2M}) in U(1) identity and fundamen-

tal BCJ relation are given by figure 8.
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Figure 8. The three types of diagrams contribute to JB1
JB2

. . . JB2M
.
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