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Abstract: We study the evolution of an energetic jet which radiates gluons while propa-

gating through a dense QCD medium modeled as a random distribution of color sources.

Motivated by the heavy ion experimental program at the LHC, we focus on the medium-

induced radiation of (relatively) soft gluons, which are abundantly emitted at large angles

and thus can transport a small fraction of the jet energy far away from the jet axis.

We perform a complete calculation of the medium-induced gluon branching in the regime

where the gluons that take part in the branching undergo multiple soft scattering with the

medium. We extend the BDMPSZ theory of radiative energy loss by including the trans-

verse momentum dependence in the kernel that describes the branching and by analyzing

the correlations between the two offspring gluons. We demonstrate that these gluons lose

color coherence with respect to each other over a time scale that is comparable to the

duration of the branching. It follows that interference effects between successive emissions

are suppressed, a necessary ingredient for a description of multiple emission of soft gluons

by a probabilistic, branching process.
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1 Introduction

The LHC heavy ion program has produced a wealth of remarkable results [1–4] that mo-

tivate new theoretical efforts in the study of jet propagation in matter. For one thing,

these results confirm those obtained at RHIC [5–7], indicating that matter formed in the

collisions strongly suppresses the yield of high-pT hadrons as compared to the yield that

one deduces from proton-proton collisions after proper scaling by the number of binary

collisions in the nucleus-nucleus collision. This suppression of high-pT hadrons, referred to

as “jet-quenching”, is usually attributed to the energy loss of the leading partons caused

by the radiation of soft gluons induced by their collisions with the matter constituents.

The theory of radiative parton energy loss has been developed in late 90’s. It is commonly

referred to as BDMPSZ theory, from the names of the original authors [8–12]. Further

developments are presented in [13–20]. In this theory, the energy loss is characterized by

a single parameter, a transport coefficient called q̂ (the ‘jet quenching parameter’), which
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measures how much transverse momentum ∆k⊥ a given parton acquires through multiple

scattering as it travels through the medium over a distance ∆l: ∆k2
⊥ = q̂∆l.

However, the LHC experiments provide much more detailed information about what is

going on as the jet propagates through the medium, beyond the mere evidence for energy

loss. There is in particular clear evidence that the jet shape is affected with a large number

of soft particles being emitted at larger angles, i.e., outside the jet cone, and carrying a

small (some ten percent or so) of the total energy [2–4]. While these soft particles do not

contribute much to the energy loss, they carry important information, as we shall see, on

the basic microscopic mechanisms at work. In order to fully exploit this new available

information, a more complete description of exclusive jet observables (such as jet-shapes,

particle correlations, etc) is called for. This paper presents the first step towards such a

more complete theory of jet propagation in matter, which is valid in a specific regime that

we shall specify shortly.

In order to put our work into perspective, we need first to recall a few basic features of

the BDMPSZ theory [8–12]. When propagating through a medium in which it undergoes

multiple scattering, a high energy parton can radiate a gluon over a typical time scale

(“formation time”) τ
f

given by

1

τ
f

∼ k2
⊥

2ω
, (1.1)

where ω and k⊥ are respectively the energy of the radiated gluon and its transverse mo-

mentum (with respect to the parent gluon). The quantity 1/τ
f
, which, as suggested by

eq. (1.1) may be read as a non relativistic energy, with ω playing the role of a mass (the

relevance of this analogy will be clarified in the main text) is essentially the amount of

energy that is required to put the gluon on-shell. In the medium, such an energy is ob-

tained from multiple scattering with the plasma constituents, each collision providing the

colliding hard partons some transverse momentum. As mentioned earlier, the rate at which

transverse momentum is accumulated by a parton along its trajectory is given by q̂, that is

∆k2
⊥ = q̂∆t. One sees therefore that emission of a gluon of a given energy ω can take place

if the transverse momentum acquired during τ
f

matches 2ω/τ
f
, that is if 1/τ

f
∼ (q̂τ

f
/ω).

This provides a self-consistency condition that determines, as a function of ω, the time

scale for in-medium splitting, that we shall denote by τ
br

:

τ
br

(ω) ∼
√

2ω

q̂
. (1.2)

Related to τ
br

, it is also convenient to define k
br

, the typical transverse momentum acquired

during the time τ
br

: k2
br

= q̂τ
br

, or k
br

(ω) ∼ (2ωq̂)1/4. Note that the time scale of the

branching process is larger for harder gluons, because it requires more collisions to put a

hard radiated gluon on-shell than a soft one (k
br

is as slowly growing function of ω). Note

also that the radiation is emitted with a characteristic angle θ
br
∼ k

br
/ω ∼

(
q̂/ω3

)1/4
. Thus

the softer the emission, the larger the emission angle, with all angles such that θ & θc, the

minimal angle θc =
(
q̂L3

)−1/2
corresponding to τ

br
= L, the length of the medium.
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The BDMPSZ energy spectrum of the radiated gluons is of the form

ω
dN

dω
' αsNc

π

√
ωc
ω
≡ ᾱ

√
ωc
ω
, (1.3)

for ω . ωc (and more strongly suppressed for ω > ωc). The frequency ωc is that for

which τ
br

(ωc) ∼ L, that is, ωc = 1
2 q̂L

2. The first factor in eq. (1.3) is the standard

bremsstrahlung spectrum for radiation by the parent gluon. The correction factor, which

we can write as
√
ωc/ω = L/τ

br
(ω), increases as ω decreases, and the spectrum (1.3)

should be cut-off at a minimal frequency ωBH , at which multiple scattering ceases to be

important and the radiation is produced by incoherent collisions (Bethe-Heitler spectrum):

ωBH is the frequency for which the formation time is of the order of the mean free path

` between successive collisions, that is τ
br

(ωBH) ∼ `. Thus, L/τ
br

(ω) is the number of

effective scattering centers, which is maximum for ω ∼ ωBH and is of order 1 in the vicinity

of ωc. The decrease of L/τ
br

(ω) as ω increases may be understood as a consequence of the

Landau-Pomeranchuk-Migdal (LPM) effect.

This mechanism for gluon production, and the approximations used to calculate it,

require the formation time to be much larger than the mean free path `, but smaller than

the size L of the medium, that is ωBH � ω . ωc. For energies within this range, there is a

large number of scattering centers, of order τ
br

(ω)/` � 1, which coherently contribute to

the emission process. This can be rephrased in terms of the typical transverse momentum

exchanged in one collision. Having in mind a picture of the medium where the typical

collisions are induced by a screened one gluon exchange, we call that typical momentum

mD (with mD the screening mass). Then, from the definition of q̂ given earlier, m2
D = q̂`,

and the condition ωBH � ω translates into k2
br

(ω)� m2
D.

The initial motivation for the BDMPSZ theory was to provide a framework for calcu-

lating the energy loss. An estimate of this energy loss can be obtained by integrating the

spectrum (1.3):

∆E =

∫ ωc

ω0

dω ω
dN

dω
∼ ᾱωc ∼ ᾱ q̂L2. (1.4)

This is dominated by the upper limit ω = ωc, the maximal energy that can be taken

away by a single gluon. Such emissions of hard gluons are rather rare: they occur with a

probability of order ᾱ. However, from the spectrum (1.3) one can also compute the average

number of gluons emitted with energies larger than a given value ω:

∆N(ω) =

∫ ωc

ω
dω′

dN

dω′
∼ ᾱ

L

τf (ω)
. (1.5)

As long as ∆N(ω) . 1 (that is, as long as ω & ᾱ2 ωc), it may be identified to the probability

to emit one gluon with energy ω′ ≥ ω. In such a case, the probability for multiple emissions

is small. This is the case of the relatively hard emissions that dominate the energy loss.

But for sufficiently soft gluon emissions, such that

ω . ωs ≡ ᾱ2 ωc , (1.6)
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one has ∆N(ω) & 1 and then the multiple emissions are clearly important. Note that these

multiple emissions are ‘large angle’ emissions, with θ ∼ ᾱ−3/2θc � θc. Of course this can

only occur if the medium is large enough, since the condition ωBH � ωs implies `� ᾱL.

To summarize, there is a regime, characterized by gluon energies in the range ωBH �
ω � ωc, were medium induced radiation dominates, and where multiple emissions are

important. This is the regime that we explore in this paper. Note that the conditions on ω

and L that characterize this regime are not very restrictive, and in fact they are expected

to be well satisfied in the LHC experiments. For a rough orientation, taking q̂ ∼ 1GeV2/fm

and L ∼ 6 fm, one finds ωc ∼ 100 GeV, while the typical energy of soft particles is in the

GeV range.

When multiple emissions become important, i.e., when ∆N(ω) & 1, the whole calcula-

tionnal setting needs to be revised. In technical terms, when ᾱL/τ
br
∼ 1 , the perturbative

expansion breaks down, and powers of ᾱL/τ
br

have to be resummed. (For instance, the

longitudinal phase-space for two independent successive branchings goes like L2 and the

process is of order (ᾱL/τ
br

)2.) The treatment of multiple emission is a priori complicated

by interferences between various high order processes. Various aspects of interference phe-

nomena for medium-induced gluon radiation have been recently studied, but only for the

case of a frozen configuration of the emitters (a pair of partons forming a ‘colour an-

tenna’) [21–25]. However, in the soft regime of interest for us here, these interferences turn

out to be negligible. Indeed, as we shall see, color correlations between the offspring gluons

disappear on the same time scale τ
br

at which the splitting occurs. As a consequence, the

newly formed gluons propagate independently from each other except for a relatively small

period τ
br
� L. Subsequent emissions from these gluons can interfere with each other

only if they occur during that period of order τ
br

where color coherence is still present.

This implies that the longitudinal phase space for interference effects is smaller, by a factor

τ
br
/L� 1, than the corresponding phase space for independent emissions. Note that these

features are specific to medium induced radiation.1 By contrast, in vacuum, color is con-

served along the parton shower, which implies coherence of successive parton branchings,

that is responsible for angular ordering [26–29].

The argument of the previous paragraph suggests that multiple emissions could be

treated as a probabilistic cascade of independent branchings, since this naturally resums

the terms with maximal powers of (ᾱL/τ
br

). There is however a limit to this argument, since

successive emissions may overlap with each other when the energies of the produced gluons

become too soft. Consider indeed the probability for emitting one gluon with frequency

ω ≥ ω0 during an interval ∆t. In the regime where this probability is small, this may be

estimated from the BDMPSZ spectrum, eq. (1.3), and is (see eq. (1.5))

P (∆t;ω0) ∼ ᾱ
∆t

τ
br

(ω0)
. (1.7)

1In fact, the same estimate for the color decoherence time, that is, a time scale of order τbr(ω), would

also follow from the previous analyses of a quark-antiquark color antenna in refs. [21, 23] provided in these

analyses one identifies the angular opening of the antenna with the formation angle θbr ∼
(
q̂/ω3

)1/4
.
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This becomes of order unity when ∆t = τrad(ω0) with

τrad(ω0) =
1

ᾱ
τ

br
(ω0) =

1

ᾱ

√
2ω0

q̂
. (1.8)

This quantity τrad(ω0) may be understood as the typical time interval that a gluon with

energy ω can survive without emitting any gluon with energy ω′ within the interval ω0 <

ω′ < ω. Note that it is the emission of the softest allowed gluons which controls the size

of this interval. Because of the inverse power of ᾱ in eq. (1.8), τrad(ω0) is parametrically

larger than the formation time of the radiated gluon. This property would hold all along the

cascade if produced gluons are emitted with comparable frequencies: successive emissions

remain well separated, the phase-space for overlapping emissions is small and successive

emissions can be treated as independent. This is what is implicitly assumed in the previous

paragraph. Under these conditions, the whole branching process reduces to a classical

stochastic process obtained by iterating the elementary building block corresponding to

one single splitting of a gluon into two gluons. This is the process that will be studied in

detail in this paper.

However, one cannot exclude a priori the situation where a very soft gluon is emitted,

with τrad(ω0) comparable to the formation time of the parent gluon (with energy ω). The

condition τrad(ω0) & τ
br

(ω) holds if ω0 & ᾱ2ω. Thus, if ω0 is parametrically smaller than

ω (by two powers of ᾱ), the interval τrad(ω0) between two successive emissions becomes

of the order of the duration of the branching process that has produced the gluon ω in

the previous step, and then the argument of independent emissions breaks down. This

particular issue related to the role of very soft emissions in an actual cascade will be

discussed in a forthcoming publication.

The assumption of factorization of succesive emissions has already been used in dif-

ferent BDMPSZ inspired phenomenological studies [30–32] and in particular Monte Carlo

codes developed in refs. [33–35]. Our conclusion shows how this approach is justified theo-

retically in the desired kinematical regime where multiple emissions are indeed important.

The calculation to be presented in this paper is technically involved, but conceptually

simple. We consider a high energy gluon propagating in a quark-gluon plasma. The

medium is modeled by a random color field whose fluctuations account for collisions with

plasma constituents and determine q̂. In section 2, we present the general strategy of the

calculation by discussing the well known phenomenon of momentum broadening. Then, in

section 3 we discuss the general structure of the gluon splitting amplitude and probability.

The proof of factorization of the splitting probability requires a special study of a 4-point

function, that we shall be able to explicitly compute only in the limit of a large number

of colors Nc � 1. The corresponding analysis is presented in section 4. However, the

physical argument for the color decoherence between the offspring gluons is quite general

and we expect it to remain valid for any value of Nc. Section 5 is devoted to the calculation

of the splitting kernel and the completion of the formula for the splitting probability. In

the conclusion we summarize the results and their range of validity. Technical material

is gathered in the appendices. Appendix A reviews general features of gluon propagation

in a specific background field. Appendix B is devoted to the calculation of specific path
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integrals that enter the n-point functions that are studied in the text. Finally appendix C

provides details on the color algebra that is needed to calculate the 4-point function.

2 Setting up the calculation with a simple example

We shall set up formalism, and fix the notation, by reviewing the well known phenomenon

of momentum broadening of a parton traveling through a quark-gluon plasma. This will

also give us the opportunity to present our main results concerning the medium-induced

gluon branching, anticipating on the detailed calculations to be done in the forthcoming

sections.

We consider an energetic parton propagating through a quark-gluon plasma. For

simplicity, we restrict ourselves to the case where this energetic parton is a gluon. The

extension to the case where it is a quark is straightforward. The gluon is produced inside

the medium, via some hard scattering process, and then it propagates along a distance L

until it escapes into the vacuum. During this propagation, the gluon interacts with the

medium, and exchanges with it color and transverse momentum.

We assume that the energetic parton propagates at nearly the speed of light along the

x3 axis and we use light-cone coordinates, e.g. xµ = (x+, x−,x), with2

x+ =
1√
2

(x0 + x3) , x− =
1√
2

(x0 − x3) , x = (x1, x2) , (2.1)

together with the light-cone gauge A+
a = 0. We describe the medium as a random color

field with correlation function

〈A−a (x+, x−,x)A−b (y+, x−,y)〉 = δabδ(x
+ − y+) γ(x− y), (2.2)

where the angular brackets denote the medium average. More general situations may

be considered, e.g. we may allow γ to depend on x+, but we shall not consider such

straightforward extensions here.

In writing eq. (2.2), we have made implicitly several simplifications. The coupling of

the energetic gluon with the medium is described in the eikonal approximation, i.e., we

assume that it couples only to the component A− of the gauge field. Furthermore, this field

is probed only at small values of x− (closed to the trajectory of the gluon x− ' 0), and we

can ignore its dependence on x−. In other words, we assume that the + component of the

gluon momentum is conserved during the propagation through the medium. Furthermore,

because of Lorentz time dilation, the hard gluon has a very poor resolution in x+, and the

medium correlations, that have a finite extent in x+, appear to it as effectively local : this

is the origin of the δ-function δ(x+ − y+) in the correlator (2.2). By the same token, the

field of the medium, which has a finite longitudinal extent L, appears frozen during the

time when the hard gluon traverses it. That implies that the average over the medium

will be done after squaring the amplitudes. We take this average over the fields to be

2From now on, we renounce to the subscript ⊥ on transverse components, that is, we write e.g. x⊥ ≡ x

to alleviate notations.
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Gaussian, assuming that the corrections to this approximation are of higher order in the

coupling strength. Finally, as obvious in eq. (2.2) we assume homogeneity in the transverse

plane, i.e., the correlation γ is a function of x − y alone. In summary, the problem that

we address is the propagation of an energetic gluon in a random background A− field that

is independent of x−, with Gaussian correlations. Technical aspects of this problem are

studied in detail in appendix A.

Although this will not enter explicitly in our derivations, it is perhaps useful to have in

mind a specific model for the medium. We then briefly discuss the case where this medium

is a weakly coupled quark-gluon plasma in thermal equilibrium at high enough temperature

T . In this case, the medium constituents are quarks and gluons with energies and momenta

p ∼ T . Assuming that the charge carriers are correlated over distances determined by

the screening length (inverse Debye mass) m−1
D

, one can estimate the correlator of field

fluctuations:

γ(x− y) = g2n

∫
d2q

(2π)2
eiq·(x−y) 1

(q2 +m2
D

)2
, (2.3)

where n ∝ T 3 is the density of (point-like) color charges (weighted with appropriate color

factors), and 1/(q2 +m2
D

) is the screened Coulomb propagator. In fact, the quantity which

will enter our analysis is not γ itself, but the difference γ(0)− γ(r),

γ(0)− γ(r) = g2n

∫
d2q

(2π)2

1− eiq·r

(q2 +m2
D

)2
. (2.4)

The integral over q in eq. (2.4) is dominated by q . 1/r, and in the relevant case where,

typically, 1/r � mD , it is logarithmically sensitive to all the scales within the range

mD � q � 1/r. To leading logarithmic accuracy, it can be evaluated by expanding the

complex exponential to second order. One gets

γ(0)− γ(r) ' 1

4
g2n r2

∫
d2q

(2π)2

q2

(q2 +m2
D

)2
≈ 1

16π
g2n r2 ln

1

r2m2
D

. (2.5)

In the context of the present calculation the relevant values of r are typically fixed by

transverse momentum broadening. In the regime dominated by multiple scattering, one

often uses the harmonic approximation, where one ignores the weak dependence on r of

the logarithm, and set

g2Nc

[
γ(0)− γ(r)

]
≈ 1

4
q̂ r2, (2.6)

with the jet quenching parameter q̂ (evaluated at the typical scale 1/r̄) given by

q̂ ≈ 4πα2
sNc n ln

1

r̄2m2
D

. (2.7)

Parametrically, we have, mD ∼ gT , ` ∼ 1/g2T , q̂ ∼ g4T 3, and ωBH ∼ T .

We now return to our main discussion. We assume that the energetic gluon is created

inside the medium at time x+ = t0 by some local current J(t0), and then propagates up

– 7 –
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to time x+ = tL, when it escapes the medium. Note that, as mentioned already in the

introduction, we ignore in our calculation the ‘vacuum radiation’ that would be associated

with the possible virtuality of the energetic gluon. (In what follows we shall often denote

the light-cone time x+ simply as t, to alleviate the notation. Note that tL =
√

2L.) The

probability amplitude for finding the (on-shell) gluon at tL, with momentum kµ = (k− =

k2/2k+, k+,k), colour b, and polarization λ, can be obtained from a standard calculation,

as explained in appendix A (see also refs. [21, 23, 36] for previous applications of a similar

formalism). One gets

Mb
λ(k+,k) = ei

k2

2k+ tL

∫
d2p0

(2π)2
(k b| G(tL, t0) |p0 a) εiλ (p+

0 p0 a|J i(t0)|0), (2.8)

with (p+
0 p0 a|J i(t0)|0) the matrix element of the current creating the gluon from the vac-

uum, with momentum (p+
0 = k+,p0) and color a. Summation over repeated discrete indices

is implied. Here, (k| Gba(tL, t0) |p0) = (k b| G(tL, t0) |p0 a) (we use indifferently both nota-

tions) is the effective propagator that describes the (non relativistic) motion of the gluon

in the transverse plane under the influence of the time dependent background field A−.

This propagation preserves k+, as already mentioned, and G depends on k+, but we shall

generally not indicate this dependence explicitly. Note also that the propagator G do not

carry any Lorentz indices. This is because, as shown in appendix A, the propagation in

the background field preserves the (transverse) polarization of the gluon.

It is shown explicitly in appendix A that G is the propagator of a Schrödinger equation

in two dimensions (the transverse plane) for a non relativistic particle of mass k+ moving

in a time dependent potential A−(x+,x), with x+ playing the role of the time. That is, it

satisfies the equation[
iD− +

∇2
⊥

2k+

]
ac

(x| Gcb(x+, y+; k+) |y) = iδabδ(x
+ − y+)δ(x− y), (2.9)

with iD− = i∂− + gA− and ∂− = ∂/∂x+. The solution can be written as a path integral

(x| G(x+, y+; k+) |y) =

∫
Dr ei

k+

2

∫ x+

y+ dt ṙ2

Ũ(x+, y+; r), (2.10)

with r(y+) = y, r(x+) = x, and Ũ is a Wilson line evaluated along the path r(t) in the

adjoint representation

Ũ(x+, y+; r) = T exp

{
ig

∫ x+

y+

dt A−a (t, r(t))T a

}
. (2.11)

Note that we work in a regime dominated by multiple scattering, so that the accumulated

phase over a typical interval ∆t is large, i.e., gA−∆t ∼ 1. It follows that the exponential

cannot be expanded in general (as done for instance in the opacity expansion [14, 16]).

The probability to find the gluon with momentum k is obtained by taking the modulus

squared of the amplitude in eq. (2.8), summing over the final color indices, and then

averaging over the color background field. Since the distribution of gauge fields is taken

– 8 –
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t0 tL

a b

ā b̄

J

J∗

Figure 1. Amplitude (upper part of the diagram) and complex conjugate amplitude (lower part)

describing the propagation of a gluon in the medium from time t0 to time tL when it leaves the

medium. The horizontal wavy lines represent the gluon propagator or its complex conjugate. Note

that we use a bar to indicate color indices in the conjugate amplitude. At time t = tL, b = b̄.

The (Gaussian) medium average generates instantaneous contractions that are depicted as vertical

dotted lines, or as dotted circles.

to be Gaussian, cf. eq. (2.2), the medium averaging amounts to contracting pairs of fields

from the Wilson lines in the two propagators representing the gluon in the direct and the

complex conjugate amplitudes, respectively. These contractions can either connect the two

gluon lines, or they can be ‘tadpoles’ with both endpoints on a same gluon line. It is

convenient to represent the amplitude together with its complex conjugate on the same

diagram, with time flowing from left to right. (This is somewhat analogous to the close

time path technique, although we shall not explicitly use this particular formalism here.)

The ensuing diagram, shown in figure 1, displays typical contractions. This representation

makes it easier to discuss color and momentum flows.

Let us consider first the color structure. At time tL, the system formed by the gluons

in the amplitude and its complex conjugate is clearly in a color singlet state: both gluons

carry the same color index b (i.e., b = b̄ in figure 1), which is summed over since we do

not observe the color of the final gluon. The field contractions involved in the medium

averaging do not change the overall color state of the two gluon system, which remains

therefore a color singlet at any intermediate time between t0 and tL. This implies that

the medium averaged squared amplitude depicted in figure 1 contains a contribution of the

form (as we shall see shortly k̄ = k)〈
(k|Gba(tL, t0)|p0)(p̄0|G† āb(t0, tL)|k̄)

〉
= δaā(k; k̄|S(2)(tL, t0)|p0; p̄0), (2.12)

where the sum over the repeated color index b is implied, and

(k; k̄|S(2)(tL, t0) |p0; p̄0) =
1

N2
c − 1

〈
Tr (k| G(tL, t0) |p0)(p̄0| G† (t0, tL)|k̄)

〉
, (2.13)

where the trace Tr concerns color indices. The quantity S(2), referred to as a 2-point

function, is the simplest of several n-point functions that we shall have to consider in this

– 9 –



J
H
E
P
0
1
(
2
0
1
3
)
1
4
3

paper, and which are calculated explicitly in appendix B. Note that, in defining S(2), we

choose to keep the time ordering given by the propagator in the amplitude, and to put all

the momentum variables at the final time in the bra, and the ones at the initial time in

the ket. The variables corresponding to the conjugate propagator are denoted by a bar,

and are separated from the variables of the propagator by a semicolon. This notation will

be used throughout (see also appendix B).

Similarly, since the correlator of the background field is invariant under translations

in the transverse plane, the medium does not change the overall transverse momentum of

the pair of gluons: whichever momentum is picked up from the medium by the gluon in

the amplitude is compensated at the same time by a similar transfer to the gluon in the

complex conjugate amplitude. Thus, if one chooses the final momentum to be the same

in the amplitude and the complex conjugate amplitude, i.e., k = k̄ (as we need to do if

we consider the production of a gluon with a given transverse momentum) then, at each

instant of time, the momenta remain equal in the amplitude and its complex conjugate. In

coordinate space, as shown explicitly in appendix B, this corresponds to the two gluons in

the amplitude and its complex conjugate propagating with a fixed separation. The medium

average of the Wilson lines in the pair of propagators is then of the form

C(2)
g (tL − t0; r) ≡ 1

N2
c − 1

〈
Tr Ũ(tL, t0;x)Ũ †(tL, t0; x̄)

〉
,

= exp
{
−g2Nc(tL − t0)

[
γ(0)− γ(r)

]}
,

= exp

[
−Ncn

2
(tL − t0)σ(r)

]
, (2.14)

where r ≡ x − x̄ is the constant distance between the two gluons. This is recognized as

the forward scattering amplitude for a color dipole which propagates through the medium.

This is of course a fictitious dipole, which is formed with the gluon in the direct amplitude

and that in the complex conjugate amplitude, which in the calculation of the probability

group together in an overall color singlet state — the ‘dipole’. The expression in the third

line of the above equation, which features the dipole cross-section σ(r), will often be used

to simplify writing in what follows.

Altogether, the medium averaging of the squared amplitude will therefore generate a

2-point function of the form (see appendix B for details)

(k;k|S(2)(tL, t0)|p0; p̄0) = (2π)2δ(2)(p0 − p̄0) P(k − p0, tL − t0), (2.15)

where

P(∆p,∆t) =

∫
d2r e−i∆p·r C(2)

g (∆t; r), (2.16)

can be interpreted as the probability that a gluon acquires a transverse momentum ∆p

while traversing the medium during a time ∆t. This is best seen by using the harmonic

approximation (2.6), where

Ncnσ(r) ≈ 1

2
q̂ r2 . (2.17)
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t0

p0 k

tL

Figure 2. Diagrammatic illustration for the process in which a gluon of momentum (p+
0 ,p0) is

produced via a hard process (represented by the circled cross) and acquires transverse momentum

k − p0 in its propagation though the medium (the thick wavy line). The + component of the

momentum is conserved in this propagation, i.e., k+ = p+
0 .

Then we get

C(2)
g (∆t; r) = exp

(
− q̂∆t

4
r2

)
, (2.18)

and

P(∆p,∆t) =

∫
d2r eir·∆p− q̂∆t

4
r2

=
4π

q̂∆t
e
− (∆p)2

q̂∆t . (2.19)

This formula confirms the physical interpretation of q̂: q̂∆t is the transverse momentum

squared acquired by a gluon after it has traveled through the medium for a duration ∆t. In

fact, in the harmonic approximation, P(∆p,∆t) solves the diffusion equation with initial

condition P(∆p,∆t = 0) = (2π)2 δ(2)(∆p), with q̂ playing the role of a diffusion coefficient.

Note also that this probability is independent of the gluon longitudinal momentum k+. This

is to be expected from the formal analogy of the present problem with the 2-dimensional

diffusion of a non relativistic particle with mass k+.

The exponential factor in eq. (2.18) reflects a general feature of the interaction of color

objects with the medium: the propagation of the color dipole (formed by the gluons in the

amplitude and its complex conjugate) is not affected by the interaction as long as its size

is small enough to be ‘viewed’ by the medium as a color singlet, but it is strongly damped

as soon as the size of the dipole exceeds 2/
√
q̂∆t.

We are now in a position to calculate the differential cross section to observe a gluon

with transverse momentum k and arbitrary color and spin at time tL, after its production

through some hard process at time t0. This is given by3

dσ0

dΩk
=

∫
d2p0

(2π)2
P(k − p0, tL − t0)

dσhard

dΩp0

, (2.20)

where dΩk ≡ (2π)−3d2k dk+/2k+ is the invariant phase-space element, and dσhard/dΩp0 =

|Ja(p0)|2 is the ‘hard cross section’ for producing the gluon (the sum over color a is under-

stood — we also assume that all kinematical factors necessary to build a cross section are

3The subscript 0 on this cross-section refers to the fact that the process considered here involves no gluon

branching. Similarly, the quantity σ1 in eq. (2.21) below refers to a process which involves one branching.
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t0 tL

ka

kb

p0 q

p

q − p

t

Figure 3. Graphical illustration of the equation (2.21). The thick wavy lines represent the proba-

bility P for transverse momentum broadening, the black dot is the splitting probability K, and the

circled cross is the cross section of the hard process producing a gluon of momentum p0.

included in the current J). In deriving this result, we have summed over the polarization

vectors with the help of the completeness relation
∑

λ ε
i
λ(k)ε∗jλ (k) = δij . This process,

depicted in figure 2, has a probabilistic interpretation, with the wavy line representing the

probability (2.19).

It will be our main goal in this paper to show that the cross section for the process

where one gluon splits into two gluons under the effect of medium interactions can be

given an analogous probabilistic interpretation. Our subsequent calculations will lead to

the following estimate for producing soft gluons (k+
a , k

+
b � ωc)

d2σ

dΩkadΩkb

= 2g2z(1− z)

×
∫ tL

t0

dt

∫
p0,q,p

P(ka − p, tL − t)P(kb − q + p, tL − t)

×K(p− zq, z, p+
0 )P(q − p0, t− t0)

dσhard
dΩp0

, (2.21)

and it is understood that z = k+
a /p

+
0 . This result can be interpreted as a classical branching

process, illustrated in figure 3: after propagating from t0 to t, during which it acquires a

transverse momentum q−p0, the original gluon splits into gluons a and b with a probability

∼ αsK(p− zq, z, q+) that depends upon the longitudinal momentum q+ of the parent par-

ton, the longitudinal momentum fraction z = p+/q+ carried by gluon a, and the transverse

momentum difference p−zq. (The conservation of longitudinal momentum implies of course

p+
0 = q+ = k+

a +k+
b with k+

a = p+ = zq+.) After the splitting, the two gluons a and b prop-

agate through the medium from t to tL, and thus acquire some extra transverse momentum.

Note that, in eq. (2.21), the splitting occurs instantaneously at time t, that is, the

effective splitting vertex K(p − zq, z, q+) is local in time. Moreover, the transverse mo-

mentum is conserved at the splitting, meaning that one neglects the additional momentum
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transferred from the medium to the gluons during the branching process. These are of

course approximations, which are correct so long as the duration of the branching process,

τ
br

, is much shorter than the medium size4 L. Previously, in eq. (1.2), we have estimated

this time τ
br

for the case of asymmetric branchings, where one of the daughter gluons is

much softer than the other one (say z � 1). An estimate valid for arbitrary values of z

can be obtained by considering ∆E, the change in the light-cone energy (the minus com-

ponent of the 4-momentum, or equivalently the change in the energy in the equivalent non

relativistic 2-dimensional problem), at the splitting vertex:

∆E =
p2

2p+
+

(q − p)2

2(q+ − p+)
− q2

2q+
=

(p− zq)2

2z(1− z)q+
. (2.22)

The inverse of this energy is the formation time, which gives access to the duration of

the branching process. To get this, all what one needs to do is, as in eq. (1.2), relate

p − zq to the transverse momentum acquired by multiple scattering during τ
br

. That is,

(p − zq)2 ' q̂τ
br

, which together with the above expression for ∆E = 1/τ
br

provides an

estimate for the corresponding branching time:

τ
br

=

√
z(1− z)q+

q̂
, (2.23)

which generalizes eq. (1.2) by the replacement of ω ≡ zp+ by z(1−z)p+ (note that the latter

quantity can be interpreted as the reduced mass for the effective non-relativistic motion of

the two produced gluons in the transverse plane). This makes it clear that eq. (1.2) holds

only for asymmetric splitting with z � 1. A slightly more precise estimate for τ
br

will be

given in section 5 (eq. (5.5)).

3 General structure of the in-medium gluon branching

In this section we analyze the main structure of the calculation of the gluon branching, and

show how it can be conveniently divided into three main stages: (i) production of the gluon

at time t0 via some local (hard) process, followed by the propagation of the gluon in the

medium; (ii) the process where the gluon splits into two gluons; (iii) finally the propagation

of the two new gluons until the end of the medium at coordinate x+ = tL ≡
√

2L.

3.1 The amplitude

The amplitude for the branching process is illustrated in figure 4: a gluon is created at time

t0 with color c0 and momentum (p+
0 ,p0) out of the current Jc0(p+

0 ,p0) = (p0 c0|J(t0)|0); it

then propagates in the medium where it acquires a transverse momentum q1−p0, changes

color form c0 to c1, and eventually splits into two gluons at time t1. The newly produced

gluons then propagates through the medium until the time tL, where they are observed

with momenta ka,kb, colors a, b and polarization λa, λb. Using the elements described

4In the presence of multiple emissions, the correct reference scale for τbr is not L, but the typical time

interval between two successive emissions. We shall return to this issue in the concluding section.
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tLt1t0

J

(ka, a)

(kb, b)

(q1, c1)

(p1, a1)

(p′
1, b1)

(p0, c0)

Figure 4. Graphical illustration of the amplitude for one gluon splitting. The initial gluon produced

at time t0 with momentum p0 and color c0 splits at time t1 into two gluons with momenta p1 and

p′1 (= q1 − p1) respectively. Note that the + component of the momenta is conserved both in the

propagation and in the splitting, so that k+
a = zp+

0 , k+
b = (1− z)p+

0 .

in appendix A, together with compact, matrix, notations similar to those already in the

previous section (cf. eq. (2.8)) one easily gets the following expression for this amplitude:

Mab
λa,λb

(k+
a ka, k

+
b kb) =

ei(k
−
a +k−b )tL

2p+
0

∫
p0,p1,q1,p

′
1

εjλb(kb) ε
i
λa(ka)

×
∫ tL

t0

dt1 (ka a;kb b|G(tL, t1)G(tL, t1) |p1 a1;p′1 b1)

×(p1 a1;p′1 b1|Γijl |q1 c1)(q1 c1| G(t1, t0)|p0 c0) J l,c0(p+
0 ,p0) ,

(3.1)

with k−a = k2
a/(2k

+
a ), k−b = k2

a/(2k
+
b ) and z = k+

a /p
+
0 . A summation over repeated discrete

indices is implied. We have defined

(ka a;kb b| G(tL, t1)G(tL, t1) |p1 a1;p′1 b1) ≡ (ka|Gaa1(tL, t1) |p1)(kb| Gbb1(tL, t1) |p′1) ,

(p1 a1;p′1 b1|Γijl |q1 c1) ≡ (2π)2δ(p1 + p′1 − q1) 2g fa1b1c1Γijl(p1 − zq1, z) , (3.2)

and we denote indifferently the matrix elements of the single propagator by

(ka|Gaa1(tL, t1) |p1) or by (ka a|G(tL, t1) |p1 a1), and similarly (p1 a1;p′1 b1|Γijl |q1 c1) =

(p1;p′1|Γijla1b1c1
|q1).

To calculate the cross section, we have to multiply the amplitude by its complex

conjugate amplitude. In order to analyze the effect of the medium average, it is convenient

to draw the amplitude and the conjugate amplitude in the same diagram, one just below

the other as shown in figure 5 (and in figure 1 of the previous section). The upper part of

the diagram corresponds to the amplitude and the lower part corresponds to the conjugate

amplitude, with time flowing from left to right identically in the amplitude and its complex

conjugate. Gluons which are drawn parallel to each other represent the same physical
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t2 tL

(I) (II) (III)

t1t0

a

a

b

b

ā2

b̄2

c̄2c̄0

c0 c1

a1

b1

J

a2

b2

J∗ c̄1

Figure 5. The three regions that are involved in the description of a gluon splitting in a medium.

Time flows from left to right and the amplitude (upper part) is drawn together with the complex

conjugate amplitude (lower part). The + momentum is conserved in the splitting. The various

indices at each ends of the gluon lines (wavy lines) are color indices. The times separating the

various regions are light-cone times: t1 and t2 are the light-cone times where the gluon splitting

occurs in the amplitude and the complex conjugate amplitude, respectively. The indices a, b, c are

color indices, with each gluon carrying a given set of color indices that involve the same letter: thus

‘gluon a’ can be seen in the various colors a, a1, a2, etc.

gluon (in the amplitude and conjugate amplitude, respectively), so they have the same

momenta and same color at t = tL. For definiteness, we have chosen the splitting to

occur first in the amplitude and then in the conjugate amplitude (i.e., t1 < t2), the inverse

ordering can be accounted for by taking 2 times the real part when calculating the cross

section (see eq. (3.13) below). One may then identify three distinct time regions that

correspond respectively to the propagation between t0 and t1 (region I), between t1 and

t2 (region II), and between t2 and tL (region III). To facilitate the grouping of terms in

the different regions, we make repeated use of the identity (A.20), writing for instance (in

matrix notations) G(tL, t1) = G(tL, t2)G(t2, t1), or G†(t0, t2) = G†(t0, t1)G†(t1, t2). Next,

one introduces closure relations at appropriate times, over complete set of states in the

transverse plane and in color space. The matrix element in the amplitude can then be
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written as (see figures 5 and 7 for pictorial representations)

(ka;kb|Gaa2(tL, t2)Ga2a1(t2, t1)Gbb2(tL, t2)Gb2b1(t2, t1) Γijla1b1c1
Gc1c0(t1, t0)|p0)

=

∫
q2,p1,p

′
1,q
′
2

(ka|Gaa2(tL, t2)|q2)(q2|Ga2a1(t2, t1)|p1)(kb|Gbb2(tL, t2)|q′2)(q′2|Gb2b1(t2, t1)|p′1)

×(p1;p′1|Γijla1b1c1
|q1)(q1|Gc1c0(t1, t0)|p0), (3.3)

and that in the complex conjugate amplitude as

(p̄0|G† c̄0c̄1(t0, t1)G† c̄1c̄2(t1, t2) Γ† ījl
ā2b̄2c̄2

G† ā2a(t2, tL)G† b̄2b(t2, tL)|ka;kb)

=

∫
q̄1,q̄2,p2,p

′
2

(p̄0|G† c̄0c̄1(t0, t1)|q̄1)(q̄1|G† c̄1c̄2(t1, t2)|q̄2)(q̄2|Γ† ījlā2b̄2c̄2
|p2;p′2)

×(p2|G† ā2a(t2, tL)|ka)(p′2|G† b̄2b(t2, tL)|kb). (3.4)

One can now multiply the matrix elements of the amplitude and its complex conjugate,
and regroup terms in the various regions. One writes the result in the following way

(ka|Gaa2(tL, t2)|q2)(kb|Gbb2(tL, t2)|q′2)(p2|G† ā2a(t2, tL)|ka)(p′2|G† b̄2b(t2, tL)|kb)(q̄2|Γ† ījlā2b̄2c̄2
|p2;p′2)

×(q2|Ga2a1(t2, t1)|p1)(q′2|Gb2b1(t2, t1)|p′1)(q̄1|G† c̄1c̄2(t1, t2)|q̄2)(p1;p′1|Γijl
a1b1c1

|q1)

×(q1|Gc1c0(t1, t0)|p0)(p̄0|G† c̄0c̄1(t0, t1)|q̄1),

(3.5)

where the three lines in the expression above correspond to the three regions III, II, I,

respectively, from top to bottom. At this point, we are ready to discuss the medium average

and identify the simple, factorized, color structure of the three regions.

3.2 Color structure

As already noted in the previous section, the contractions of background fields that are

involved in the medium average preserve the overall color of the system, and since all such

contractions are instantaneous, the overall color state of the system comprising all gluons

in the amplitude and its complex conjugate is conserved at all times. Since, as we shall

verify shortly, the overall color state is a color singlet at t = tL, the gluons traversing the

medium are in an overall color singlet at any given time. This property allows us to perform

the medium averages explicitly by reducing considerably the number of color states to be

considered along the calculation: all one needs to do is to find the appropriate singlet state

in which the system is at the separation points t1 and t2. The resulting color structure is

illustrated in figure 6.

That the system of gluons is in a color singlet state at t = tL is easy to see. Indeed the

colors of the gluons are identical in the amplitude and in the complex conjugate amplitude,

and since we do not observe the colors of the produced gluons, these colors are summed over,

projecting the two pairs of gluons a and b onto color singlets. Since the system remains a

color singlet at all times, it is a singlet at time t0, corresponding to the beginning of region

I, with which we start our detailed analysis.
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Figure 6. The color connections that are responsible for making the system of gluons a color singlet

in each of the three regions. The dotted vertices represents f symbols, fabc, while the ‘vertical’

connections among them represents Kronecker delta’s, δab.

Consider then region I, that is, the third line of eq. (3.5). As we have just argued,

the gluon system is in a color singlet state. Hence at time t0, the gluon carries the same

color index in the direct and complex conjugate amplitude (c̄0 = c0), and then the medium

averaging yields

δc0c̄0
〈

(q1|Gc1c0(t1, t0)|p0)(p̄0|G† c̄0c̄1(t0, t1)|q̄1)
〉

= δc1c̄1(q1; q̄1|S(2)(t1, t0)|p0; p̄0), (3.6)

where the quantity S(2)(t1, t0) has already been introduced in eq. (2.13) and evaluated in

eqs. (2.15)–(2.16). Note that in eq. (3.6) a sum over c0 is performed. However, this sum

is not free since the current also carries the same color index. However, since each term of

the sum is eventually independent of c0, we can correct the result by simply dividing by

N2
c − 1. In summary, the contribution of region I after medium average is

δc1c̄1

N2
c − 1

(q1; q̄1|S(2)(t1, t0)|p0; p̄0). (3.7)

Now we turn our attention to region II, that is the second line of eq. (3.5). We can use

the Kronecker delta δc1c̄1 from eq. (3.7) and recall that the color structure of the vertex at

t1 is of the form fa1b1c1 to realize that the relevant correlator for this region is

fa1b1c1
〈
(q2|Ga2a1(t2, t1)|p1)(q′2|Gb2b1(t2, t1)|p′1)(q̄1|G† c1c̄2(t1, t2)|q̄2)

〉
, (3.8)

from where it is clear that we have a color singlet state at t1 by contracting the three initial

color indices with an f symbol. This color structure is unchanged by the medium average

in this region given that there is no other way to combine these three gluons into a singlet
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state. It follows therefore that the color indices at t2 must also be contracted with an f

symbol. More specifically, this means that eq. (3.8) takes the form

fa1b1c1
〈

(q2|Ga2a1(t2, t1)|p1)(q′2|Gb2b1(t2, t1)|p′1)(q̄1|G† c1c̄2(t1, t2)|q̄2)
〉

≡ fa2b2c̄2(q2q
′
2; q̄2|S(3)(t2, t1)|p1p

′
1; q̄1), (3.9)

with

(q2q
′
2; q̄2|S(3)(t2, t1)|p1p

′
1; q̄1)

=
1

Nc(N2
c −1)

〈
(q2|Ga

′
2a1(t2, t1)|p1)(q′2|Gb

′
2b1(t2, t1)|p′1)(q̄1|G†c1c̄

′
2(t1, t2)|q̄2)

〉
fa
′
2b
′
2c̄
′
2fa1b1c1 .

(3.10)

Due to the simple color structure of this object, one can calculate explicitly the medium

average of the Wilson lines inside the propagators, by resumming the contractions of each

pairs of gluons independently. One gets

C(3)
g =

1

Nc(N2
c − 1)

fa1b1c1〈Ũa′2a1
(t2, t1; ra)Ũb′2b1(t2, t1; rb)Ũ

†
c1c̄′2

(t1, t2; rc)〉fa
′
2b
′
2c̄
′
2

= exp

{
−Nc n

4

∫ t2

t1

dt [σ(rb − rc) + σ(rb − ra) + σ(ra − rc)]
}
. (3.11)

The color factor in front of the leading order dipole cross section can be calculated from the

appropriate contraction of the color factors in the adjoint representation fabcf cdefefa =

−Nc
2 f

bdf . The calculation of the path integral needed to complete the evaluation of S(3) is

done in appendix B.2.
Turning our attention to region III, the first line of eq. (3.5), we see that the four

gluons form a singlet state through the combination of two f ’s, one coming from eq. (3.9)
and the other from the vertex at t2 (see eq. (3.5)). As opposed to the previous cases, there
are several ways of combining four gluons to form a singlet state. The final color state is
given by the identification of two pairs of gluons as the conjugate of each other as explicitly
shown by setting the color indices equal for the respective propagators at tL (as already
discussed, a = ā, b = b̄). The relevant correlator for region III is therefore

fa2b2c̄2f ā2b̄2c̄2〈(ka|Gaa2(tL, t2)|q2)(kb|Gbb2(tL, t2)|q′2)(p2|G† ā2a(t2, tL)|ka)(p′2|G† b̄2b(t2, tL)|kb)〉
≡ Nc(N

2
c − 1)(kakb;kakb|S(4)(tL, t2)|q2q

′
2;p2p

′
2). (3.12)

The fact that there is no unique way to combine the four gluons into color singlets, in

contrast to what happened for the 2 and 3-point functions, prevents us to give an explicit

expression for the average of the Wilson lines in the propagators analogous to eq. (3.11)

for the 3-point function. A more detailed analysis is required, which will be carried out in

section 4.

3.3 Momentum structure

The fact that the correlator of the random background field depends only on the difference

of the transverse coordinates leads to total transverse momentum conservation. It follows
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(I) (II) (III)
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kb

kb

p2

q̄2 − p2

q̄2p0

p0 q1

p1

q1 − p1

J

q2

q̄2 − q2

J∗ q1

Figure 7. Flow of momenta in the amplitude for one gluon splitting and its complex conjugate. At

any given time, the sum of momenta in the amplitude equals the sum of momenta in the complex

conjugate amplitude. The + component of the momentum is conserved, k+
a + k+

b = p+
0 , and is not

indicated.

that at each instant of time, the sum of momenta in the amplitude equals that of momenta

in the complex conjugate amplitude, since this is the case at the final time tL. As explicitly

shown in appendix B, each of the n-point function contains a corresponding δ-function

expressing this property. There are also additional δ-functions hidden in the vertices Γ

which express the conservation of transverse momentum in the local splitting. Using all

these δ-functions, one can then reduce considerably the number of momentum integrations

when building the cross section for the branching process. The resulting flow of momenta

is displayed in figure 7, which also lists the independent momenta that we use. We denote

with a tilde the n-point functions from which the delta function for momentum conservation

has been factored out.

There are further simplifications that reduce the number of independent momentum

variables. For instance, the 2-point function depends only on the difference of two momenta.

Similarly for the 3-point function. Also the vertex depends only on p − zq, as visible on

eq. (A.23). These extra simplifications will be exploited when needed.

We are now in a position where we can write the cross section for the two gluon

production process. After performing the medium average and summing over polarizations,

one obtains

d2σ

dΩkadΩkb

=
g2Nc

(2p+
0 )2

2<e
∫ tL

t0

dt2

∫ t2

t0

dt1

∫
p0,p1q1q̄2p2q2

Γijl(p1 − zq1, z) Γījl(p2 − zq̄2, z)

×(kakb;kakb|S̃(4)(tL, t2)|q2, q̄2−q2;p2, q̄2−p2)(q2, q̄2−q2; q̄2|S̃(3)(t2, t1)|p1, q1−p1; q1)

×(q1; q1|S̃(2)(t1, t0)|p0;p0) J i,c0(p+
0 ,p0)J ∗̄i,c0(p+

0 ,p0). (3.13)
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In this equation, we used the compact notation dΩk ≡ (2π)−3d2k dk+/2k+ for the element

in phase-space and in the r.h.s. it is understood that p+
0 = k+

a + k+
b and z = k+

a /p
+
0 .

3.4 Qualitative comments

Before getting into the details of the evaluation of the various n-point functions that enter

the expression above, we find it useful to make a few qualitative observations that will

lead us to better appreciate the physical content of the calculations to be performed in

subsequent sections.

As we have seen, the n-point functions that appear in the various regions contain a

medium average of a product of Wilson lines in an overall color singlet state, inside a

path integration. The way to proceed in the explicit average evaluations is to calculate the

average of a particular combination of Wilson lines with fixed paths in transverse coordinate

space, then perform the integration over these paths. In general, the medium average of the

Wilson lines decays exponentially with the distance between particles constituting a color

neutral state, typically as ∆x2 & 2/(q̂∆t) (see e.g. eq. (2.18) for the 2-point function). That

is, one gets a significant suppression factor whenever the particles are farther apart than the

inverse of the typical transverse momentum acquired by multiple collisions. On the other

hand, in the path integral, the gluons trajectories diffuse in transverse coordinate space,

which typically increases the average distances between the gluons so that ∆x2 ∼ ∆t/ω.

Combining these two estimates, one gets that in order avoid a large exponential suppression

factor the longitudinal extent of the medium average in consideration should be limited to

∆t .
√

2ω/q̂ = τ
br
� L.

The argument above does not always hold since it assumes that the diffusion in trans-

verse space is independent for all the gluons, so that the mean distance between them is

monotonically increasing. However, when two gluons are conjugate to each other their

diffusions in transverse coordinate space are correlated, indeed their transverse separation

stays constant (see appendix B). This implies that the longitudinal extent of region I is

not constrained by the argument above. On the other hand, the three gluons in region II

propagate independently. This, combined with the fact that there is only one way to form

a color neutral state with three gluons, implies that this region II must be short-lived, i.e.,

t2 − t1 . τbr
, in order to avoid suppression factors.

In region III we run again into the case where gluons can be paired with their respec-

tive conjugates and therefore do not propagate all independently. Moreover, by pairing the

gluons this way, two color neutral subsystems are formed, which can propagate indepen-

dently and be arbitrarily far away from each other without introducing suppression factors.

Nevertheless, the general argument concerning the suppression of correlations by medium

rescattering still holds within a narrow region bordering region II, where all four gluons are

still correlated. We shall find that the longitudinal extent of that intermediate region is of

order τ
br

, for the same basic reasons as for region II. Accordingly, we shall conclude that

the four-point correlator obtained for the medium average in region III is factorizable into

two two-point correlators except for a parametrically small (∼ τ
br
/L) region right after the

second splitting.
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4 Factorization of two-gluon propagation

We turn now to the detailed analysis of region III. As already anticipated in the previous

section, the main goal here is to show that the propagation of the two resulting gluons can

be considered as independent and correlations among them are a subleading effect. In that

case, all the effects of the splitting can be included inside the splitting kernel of region II,

which will be calculated in detail in the next section.

We need to calculate explicitly the 4-point function S(4)(tL, t2). Since the definition

of the scalar propagators entering the average in (3.12) take a simpler form in coordinate

space, it is convenient to calculate first the medium average of the four propagators in

coordinate space with arbitrary endpoints, perform the Fourier transform, and then impose

the necessary constraints in the momentum variables.

The coordinate space 4-point function under consideration takes the explicit form

(yayb; ȳaȳb|S(4)(tL, t2)|xaxb; x̄a, x̄b)

=

∫
DraDrbDr̄aDr̄b exp

{
i

2

∫ tL

t2

dt
(
k+
a ṙ

2
a + k+

b ṙ
2
b − k+

a
˙̄r2
a − k+

b
˙̄r2
b

)}
× fa2b2c̄2f ā2b̄2c̄2〈Ũaa2(tL, t2; ra)Ũbb2(tL, t2; rb)Ũ

†
ā2a(t2, tL; r̄a)Ũ

†
b̄2b

(t2, tL; r̄b)〉, (4.1)

where ra,b(t2) = xa,b, ra,b(tL) = ya,b and similarly for the bar coordinates.

We start by first calculating the medium average of the Wilson lines before attempting

to perform the path integrations. Since for the moment we are only concerned with what

occurs in region III and all the propagators have the same longitudinal extent, longitudinal

coordinates will be dropped from the Wilson lines, and only the transverse trajectories will

be kept explicit.

The calculation of the correlator in the last line of eq. (4.1) turns out to be extremely

complex even for our simple, Gaussian, model for the random background field. So, before

we start the calculation, it is useful to make some remarks about its general structure and

the strategy that will be employed for the rest of the section. Since our goal in this section

is to show that, to the level of desired accuracy, one can factorize this correlator into the

propagation of two independent gluons, it will be convenient to split the evaluation into a

‘factorizable’ piece and a ‘non-factorizable’ piece where,

S(4)(tL, t2) = S
(4)
fac (tL, t2) + S

(4)
nfac(tL, t2), (4.2)

with

(yayb; ȳaȳb|S(4)
fac (tL, t2)|xaxb; x̄a, x̄b)

= (ya; ȳa|S(2)(tL, t2)|xa; x̄a)(yb; ȳb|S(2)(tL, t2)|xb; x̄b), (4.3)

or, in terms of the momentum representation entering the expression for the cross section,

(kakb;kakb|S̃(4)
fac (tL, t2)|q2, q̄2 − q2;p2, q̄2 − p2)

= (2π)2δ(2)(p2 − q2)P(ka − q2, tL − t2)P(kb − q̄2 + q2, tL − t2). (4.4)
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Figure 8. Graphical representation of the correlator (4.6) and its large-Nc version (4.7). The

horizontal lines in between the vertical dashed lines represent the Wilson lines either in the adjoint

(gluon lines) or fundamental (quark lines) representation. Lines in the right and left ends of the

diagrams indicate color connections only, with gluon lines identifying adjoint color indices, quark

lines identifying fundamental color indices, and three gluon vertices representing f symbols.

The analysis below is therefore aimed to show explicitly that the non-factorizable pieces

are suppressed with respect to the factorizable pieces and therefore it is only the expression

in (4.4) which enters the result for the cross section of the two-gluon production process.

The complete evaluation of the correlator in (4.1) is complicated because of the many

singlet states that can be constructed with four gluons, but by transforming this expression

into one with only Wilson lines in the fundamental representation it is possible to gain some

insight about the transitions between the different color states. In order to do that, one

makes use of the following identity relating Wilson lines in the adjoint representation with

Wilson lines in the fundamental representation,

Ũab(r) = 2Tr
[
U †(r)taU(r)tb

]
. (4.5)

After repeated use of this identity, one can perform the color algebra and eliminate all the

explicit color factors (see details in appendix C), arriving at

fa2b2c̄2f ā2b̄2c̄2〈Ũaa2(ra)Ũbb2(rb)Ũ
†
ā2a(r̄a)Ũ

†
b̄2b

(r̄b)〉

=
1

2

〈
Tr
[
U(ra)U

†(r̄a)
]

Tr
[
U(r̄b)U

†(rb)
]

Tr
[
U †(ra)U(rb)U

†(r̄b)U(r̄a)
]

−Tr
[
U(ra)U

†(r̄a)U(rb)U
†(r̄b)U(r̄a)U

†(ra)U(r̄b)U
†(rb)

]
+ h.c.

〉
. (4.6)

This may not look like a real improvement: the number of Wilson lines has doubled

and now we have several nontrivial terms to deal with! The advantage of this approach

is that it greatly simplifies when one considers the large-Nc limit, a common approach

used to simplify the calculations while capturing the essential physical behavior. In the

fundamental representation, each color trace is proportional to Nc, from where it becomes

clear that the first term will dominate over the second in the large-Nc limit. Still in

this limit, one can factorize the average of a product of traces as the product of the
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independent averages of each individual trace. Indeed, correlations between fields entering

different traces are suppressed by inverse powers of Nc. By also using the fact that all the

considered correlators are real (at least, in our Gaussian model for the medium averages),

we finally get the following expression for the dominant contribution at large Nc:

fa2b2c̄2f ā2b̄2c̄2〈Ũaa2(ra)Ũbb2(rb)Ũ
†
ā2a(r̄a)Ũ

†
b̄2b

(r̄b)〉

=
〈

Tr
[
U(ra)U

†(r̄a)
]〉〈

Tr
[
U(r̄b)U

†(rb)
]〉〈

Tr
[
U †(ra)U(rb)U

†(r̄b)U(r̄a)
]〉
.(4.7)

This relation can be easily seen graphically by replacing the gluons with quark-antiquark

pairs as shown in figure 8, where only the planar part was kept. Each of the loops corre-

sponds to one of the traces in (4.7) and connections among them are suppressed.

The three factors in (4.7) can then be evaluated independently. Two of them are quark

dipoles which take the by now standard form (compare with eq. (2.14))

C(2)
q (tL, t2; r, r̄) ≡ 1

Nc

〈
Tr
[
U(r)U †(r̄)

]〉
= exp

[
−CFn

2

∫ tL

t2

dt σ(r − r̄)

]
. (4.8)

The third factor in (4.7) has the form of a quadrupole amplitude. This kind of cor-

relator has been studied in the literature, always for Wilson lines with fixed transverse

coordinates while here we need to be able to evaluate it for arbitrary trajectories. A

straightforward generalization, as it was possible in the case of the dipole amplitude, is

so far not available. On the other hand, the use of the large-Nc limit helps greatly to

further simplify the calculation and allows us to gain some insight into which terms are the

important ones for the situation at hand.

There are only two independent singlet states that can be formed with two quark-

antiquark pairs corresponding to the two possible ways of pairing quarks with antiquarks.

Considering the way the color indices are contracted for the quadrupole amplitude, one can

consider this quadrupole amplitude as the probability of switching from one singlet state

to the other one, after undergoing multiple scatterings with the medium. For the case at

hand, it is clear that the natural causal way to consider the process is such that the two

singlet states are made with the pairs of lines a, b and respectively ā, b̄ in the initial state,

and with the pairs a, ā and b, b̄ in the final state.

The two aforementioned singlet states are not orthogonal and therefore one can isolate

a contribution where the system was initially in the final color state and all the interactions

with the medium preserve this color state. In that case, one can consider the four-particle

system as two separate quark dipoles, which do not see each other, yielding a product of

two already familiar dipole amplitudes C
(2)
q . This type of contribution has the exact same

structure as what was referred at the beginning of the section as the factorizable piece and

the calculation below will show explicitly how one arrives at eq. (4.3).

The non-factorizable piece consists of all the possible cases not accounted for in the

factorizable piece, which are those where transitions between the color states are allowed

during the interaction. In general one can have an arbitrary number of such transitions, but

in the large-Nc limit those are suppressed by inverse powers of Nc. In that case, one must

take into account only contributions where there is only one transition between the two
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Figure 9. Sample of the kind of interactions allowed at each end of the quadrupole amplitude.

The dashed line in the middle represents the transition point in between the two regions where a

different kind of contraction is allowed.

possible singlet states. All the diagrams which are not suppressed by inverse powers of Nc

have the general form depicted in figure 9: on the left side of the diagram only contractions

between lines a and b, or between lines ā and b̄ are allowed, while on the right side of the

diagram only contractions between the lines a and ā, or between lines b and b̄ are allowed.

These two regions are separated by just one contraction performing the transition, which

can connect either lines a and b̄, or lines ā and b. It is easy to show that those are the only

planar diagrams present in this calculation.

In order to find a closed expression for the sum of all these diagrams one has to choose

an orientation to perform the resummation. For our purpose, it is convenient to read the

diagrams from right to left. In that case, one starts with the dipole formed by lines a, ā

and b, b̄ up to t3 at which point the transition contraction occurs. Specifically, at t3, a

transition occurs to the singlet state where the two dipoles are formed by the pairs a, b and

ā, b̄. All the contractions on both sides of the interactions can be resummed into dipole

amplitudes over the corresponding longitudinal extent. This procedure assumes that there

is a transition, and therefore ignores all the diagrams with no transition, i.e., the diagrams

where all the contractions respect the singlet structure in the right side of the diagram. In

order to properly account for those diagrams one must include the factorizable contribution,

given by the product of two dipole amplitudes for the respective dipoles in the right hand

side of the diagram. The total result is then the following:

Q(tL, t2; ra, rb, r̄a, r̄b) ≡
1

Nc

〈
Tr
[
U †(ra)U(rb)U

†(r̄b)U(r̄a)
]〉

= C(2)
q (tL, t2; ra, r̄a)C

(2)
q (tL, t2; rb, r̄b)

+

∫ tL

t2

dt3 C
(2)
q (tL, t3; ra, r̄a)C

(2)
q (tL, t3; rb, r̄b)T (t3)

×C(2)
q (t3, t2; ra, rb)C

(2)
q (t3, t2; r̄a, r̄b), (4.9)
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Figure 10. Contractions contributing to the transition amplitude between the two singlet states.

where T (t3) denotes the transition between the two states. It receives contributions from

the diagrams in figure 10 and is explicitly given by

T (t3) = CFn [σ(ra − rb) + σ(r̄a − r̄b)− σ(ra − r̄b)− σ(r̄a − rb)]t3 , (4.10)

where all coordinates are evaluated at t3. The separation between the factorizable piece

and the non-factorizable one is manifest in formula (4.9). It is important to note that the

same analysis can be performed by reading the diagrams from left to right. One obtains

a formula which is the same as above except that the labels b and ā are interchanged. In

that case the transition amplitude includes a, ā and b, b̄ contractions instead of the first two

diagrams of figure 10. It is easy to show that the two expressions are equivalent by noticing

that if one substracts the two different ways of writing the non-factorizable term one can

perform the t3 integral explicitly and show that the resulting contribution vanishes.

Now we are in a position to insert the medium average of the Wilson lines into the

4-point function (4.7). Consider first the term corresponding to the factorizable piece of

the quadrupole, one gets

(yayb; ȳaȳb|S(4)
fac (tL, t2)|xaxb; x̄a, x̄b)

=

∫
DraDrbDr̄aDr̄b exp

[
i

2

∫ tL

t2

dt
(
k+
a ṙ

2
a + k+

b ṙ
2
b − k+

a
˙̄r2
a − k+

b
˙̄r2
b

)]
×
[
C(2)
q (tL, t2; ra, r̄a)C

(2)
q (tL, t2; rb, r̄b)

]2
. (4.11)

In the large-Nc limit the square of a quark dipole amplitude is equivalent to a gluon dipole

amplitude, therefore this factorizable piece can be rewritten as

(yayb; ȳaȳb|S(4)
fac (tL, t2)|xaxb; x̄a, x̄b)

=

∫
DraDr̄a exp

{
ik+
a

2

∫ tL

t2

dt
(
ṙ2
a − ˙̄r2

a

)}
C(2)
g (tL, t2; ra, r̄a)

×
∫
DrbDr̄b exp

{
ik+
b

2

∫ tL

t2

dt
(
ṙ2
b − ˙̄r2

b

)}
C(2)
g (tL, t2; rb, r̄b),

= (ya; ȳa|S(2)(tL, t2)|xa; x̄a)(yb; ȳb|S(2)(tL, t2)|xb; x̄b), (4.12)

where we have identified the path-integral representations of the 2-point function

S(2)(tL, t2) according to eq. (B.4). We thus find the factorized structure anticipated in

eq. (4.3), at least within the large-Nc approximation.

– 25 –



J
H
E
P
0
1
(
2
0
1
3
)
1
4
3

Now let us focus on the non-factorizable piece. The last line on (4.9) has the same

structure as the factorizable piece except for the fact that its starting longitudinal coor-

dinate is at t3. One can still recombine this piece with the remaining dipole amplitudes

in (4.7) since those amplitudes can be split in two in the following way:

C(2)(tL, t2; r, r̄) = C(2)(tL, t3; r, r̄)C(2)(t3, t2; r, r̄), (4.13)

yielding to two independent gluon dipoles for the region with longitudinal coordinate

greater than t3.

(yayb; ȳaȳb|S(4)
nfac(tL, t2)|xaxb; x̄a, x̄b)

=

∫
DraDrbDr̄aDr̄b exp

{
i

2

∫ tL

t2

dt
(
k+
a ṙ

2
a + k+

b ṙ
2
b − k+

a
˙̄r2
a − k+

b
˙̄r2
b

)}
×
∫ tL

t2

dt3

[
C(2)
q (tL, t3; ra, r̄a)C

(2)
q (tL, t3; rb, r̄b)

]2
T (t3)

× C(2)
q (t3, t2; ra, rb)C

(2)
q (t3, t2; r̄a, r̄b)C

(2)
q (t3, t2; ra, rb)C

(2)
q (t3, t2; r̄a, r̄b). (4.14)

Moreover, in the same way that the scalar propagators follow the convolution rela-

tion (A.20), one can also split the longitudinal extent of the path integrals at t3 and

explicitly perform the integration in the region where the system factorizes into two inde-

pendent gluons. One gets,

(yayb; ȳaȳb|S(4)
nfac(tL, t2)|xaxb; x̄a, x̄b)

=

∫ tL

t2

dt3

∫
zaz̄azbz̄b

(ya; ȳa|S(2)(tL, t3)|za; z̄a)(yb; ȳb|S(2)(tL, t3)|zb; z̄b)T (Z)

×
∫ t3

t2

DraDrbDr̄aDr̄b exp

{
i

2

∫ t3

t2

dt
(
k+
a ṙ

2
a + k+

b ṙ
2
b − k+

a
˙̄r2
a − k+

b
˙̄r2
b

)}
× C(2)

q (t3, t2; ra, rb)C
(2)
q (t3, t2; r̄a, r̄b)C

(2)
q (t3, t2; ra, rb)C

(2)
q (t3, t2; r̄a, r̄b), (4.15)

with ra,b(t3) = za,b and similarly for the bar coordinates.

The transition amplitude T depends explicitly on the new intermediate coordinates.

One can easily see that in the harmonic approximation it takes the simple form

T (Z) = − q̂
2

(za − z̄a) · (zb − z̄b). (4.16)

When switching to momentum space, these coordinate differences can be expressed in terms

of derivatives of the two-point functions going from t3 to tL.

After performing the Fourier transform, the non-factorizable piece can be written as

(kakb;kakb|S̃(4)
nfac(tL, t2)|q2, q̄2 − q2;p2, q̄2 − p2)

=

∫ L

t2

dt3

∫
q3aq3b

q̂

2
∇P(ka−q3a, tL−t3) ·∇P(kb−q3b, tL−t3)Ĩ(Q3a, Q3b, Q2, Q̄2, P2),

(4.17)
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where ∇ denotes the gradient with respect to the transverse momentum variables, and Ĩ is

the Fourier transform of the path integral in (4.15) after removing the overall momentum

conserving δ-function,

(2π)2δ(2)(q′2 − q̄2 + q2)Ĩ(Q3a, Q3b, Q2, Q̄2, P2)

=

∫
{x,z}

e−i[q3a·(za−z̄a)+q3b·(zb−z̄b)−q2·xa−q′2·xb+p2·x̄a+(q̄2−p2)·x̄b]

×
∫ t3

t2

DraDrbDr̄aDr̄b exp

{
i

2

∫ t3

t2

dt
(
k+
a ṙ

2
a + k+

b ṙ
2
b − k+

a
˙̄r2
a − k+

b
˙̄r2
b

)}
× C(2)

q (t3, t2; ra, rb)C
(2)
q (t3, t2; r̄a, r̄b)C

(2)
q (t3, t2; ra, rb)C

(2)
q (t3, t2; r̄a, r̄b). (4.18)

This object is explicitly calculated in appendix B.3. The main result of that calculation

is that the result of the path integration is not exponentially suppressed only if its lon-

gitudinal extend is small, of order of the formation time. In terms of our result for the

non-factorizable piece of the 4-point function it means that we can restrict the integration

over t3 to only the interval between t2 and t2 + tf , leading to the the fact that the region

after t3 is of the order of the length of the medium while the region between t2 and t3 is of

the order of the formation time.

Using the explicit expression for the P’s in eq. (2.19), one can easily see that the

derivatives in (4.17) give a factor of

(ka − q3a) · (kb − q3b)

q̂2(tL − t3)2
∼ 1

q̂L
. (4.19)

This additional factor of L in the denominator can not be compensated in any way since

the integration in t3 was shown to have support over a small region and therefore does not

depend on L. Therefore, the non-factorizable piece of S(4) is parametrically smaller than

the factorizable piece by a factor of τ
br
/L and can be safely discarded for the kinematical

regime under study.

5 The splitting kernel and the gluon-splitting cross section

In this section we shall complete the calculation of the cross-section for medium-induced

gluon branching, establish the formula (2.21), and give an explicit expression for the split-

ting kernel K.

We return to eq. (3.13), and make a first simplification that exploits the main result of

section 4, namely the factorization of the 4-point function. Thus, we replace in eq. (3.13),

S(4)(tL, t2) by S
(4)
fac (tL, t2) given by eq. (4.4). We obtain then

d2σ

dΩkadΩkb

=
g2Nc

(2p+
0 )2

2<e
∫ tL

t0

dt1

∫ t1

t0

dt2

∫
p0,p1,p2,q1,q2q̄2

(2π)2δ(2)(p2 − q2)

×Γijl(p1 − zq1, z) Γījl(p2 − zq̄2, z)

×P(ka − q2, tL − t2)P(kb − q̄2 + q2, tL − t2)

×(p2, q̄2 − q2; q̄2|S̃(3)(t2, t1)|p1, q1 − p1; q1)

×P(q1 − p0, t1 − t0)J i,c0(p+
0 ,p0)J ∗̄i,c0(p+

0 ,p0), (5.1)
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where p+
0 = k+

a + k+
b , z = k+

a /p
+
0 . (In order to follow the flow of momenta it may be useful

to refer to figure 7.) At this point we recognize in eq. (5.1) the three ‘classical propaga-

tors’ P expressing the transverse momentum broadening of the gluons before and after the

branching. These are almost the same as in eq. (2.21), except that the momenta are those

appropriate to regions I and III, while in eq. (2.21) the finite extent of region II is neglected.

We shall return to this question shortly, and identify now the splitting kernel K by com-

bining the 3-point function S̃(3)(t2, t1) with the vertex factors that are explicit in eq. (5.1).

Consider first the two vertex functions. They combine to yield

1

4
Γijl(P̂ 1, z) Γījl(P̂ 2, z) =

[
1

z2
+

1

(1− z)2

]
P̂ 1 · P̂ 2 δ

īi + 2 P̂
i
1 P̂

ī
2, (5.2)

where we have set P̂ 1 = p1 − zq1, P̂ 2 = p2 − zq̄2. For simplicity, we consider here only

inclusive cross sections that are averaged over azimuthal angles. Under this assumption

one can then replace 2 P̂
i
1 P̂

ī
2 by (P̂ 1 · P̂ 2) δīi, and get

Nc Γijl(P̂ 1, z)Γ
ījl(P̂ 2, z) =

4

z(1− z)Pgg(z) (P̂ 1 · P̂ 2) δīi , (5.3)

where

Pgg(z) = Nc

[
z

1− z +
1− z
z

+ z(1− z)
]
,

is the leading-order Altarelli-Parisi splitting function [37].

Next we consider the 3-point function S̃(3)(t2, t1), which is calculated in appendix B.2.

In the harmonic approximation it reads (cf. eq. (B.28))

(p2, q̄2 − p2; q̄2|S̃(3)(t2, t1)|p1, q1 − p1; q1) =

[0.2cm] =
8π[1 + z2 + (1− z)2]

3q̂∆t
exp

{
−2[1 + z2 + (1− z)2](q1 − q̄2)2

3q̂∆t

}
× 2π(1 + i)

k2
br

sinh(Ω∆t)
exp

{
−(1 + i)

(P̂ 1 + P̂ 2)2

4k2
br

coth(Ω∆t/2)
− (1 + i)

(P̂ 1 − P̂ 2)2

4k2
br

tanh(Ω∆t/2)

}
,

(5.4)

with ∆t = t2 − t1, and

Ω ≡ 1 + i

2τ
br

, τ
br
≡
√
z(1− z)p+

0

q̂eff
, k2

br
≡ q̂eff τbr

=
√
z(1− z)p+

0 q̂eff , (5.5)

where q̂eff denotes an average, z-dependent, version of the jet quenching parameter:

q̂eff ≡
1

2
q̂
[
z2 + (1− z)2 + 1

]
. (5.6)

In writing the expression above for the 3-point function, we have used the delta-function

δ(2)(p2 − q2) in eq. (5.1) in order to replace q2 by p2. This allowed us in particular to

express S̃(3)(t2, t1) in terms of P̂ 2. This expression (5.4) of S(3)(t2, t1) makes it clear that
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the extent of region II is limited: indeed, since 1/ sinh(|Ω|∆t) ∝ exp{−∆t/
√

2τ
br
} for large

∆t, the time separation ∆t = t2 − t1 needs to be kept smaller that τ
br

in order to avoid

exponential suppression. Thus, as anticipated via simple considerations in section 2, and

in the qualitative discussion of section 3.4, one sees that the time scale of the branching

process is indeed determined by τ
br

. Recall that this is also (approximately) the same time

scale that controls the exponential damping of the non factorizable part of the 4-point

function (see section 4 and appendix B.2, eq. (B.51)).

In order to proceed further, we shall exploit the fact that region II has limited extent

and neglect in the factors P the fraction of momenta that can be attributed to momentum

broadening within region II. Since this region is of extent τ
br

, this fraction is typically of

order τ
br
/L as compared to the momentum acquired through propagation before and after

the splitting (this is in fact explicit for the dependence of S̃(3) on q1− q̄2 in eq. (5.4), where

it can be seen that (q1 − q̄2)2 is at most of order q̂τ
br

). Thus we shall replace in eq. (5.1)

P(kb− q̄2 + q2, tL− t2) by P(kb− q1 + q2, tL− t2) (ignoring the small difference q1− q̄2),

and use as independent variables q1, P̂ 1, P̂ 2, q1 − q̄2 in place of q1,p1, q̄2, q2. Since the

factors P do not depend on P̂ 1 nor q1− q̄2, the integration over these variables in eq. (5.1)

leaves these P factors intact. This allows us to define a kernel as follows

K(P̂ 2, t2 − t1, z) ≡
Pgg(z)

[z(1− z)p+
0 ]2
<e
∫
q1−q̄2,P̂ 1

(P̂ 1 · P̂ 2) S̃(3)(∆t, P̂ 1, P̂ 2, q1 − q̄2), (5.7)

where we have made explicit the independent momentum variables on which S̃(3) depends.

A straightforward calculation of the gaussian integrals in eq. (5.7) yields

K(p,∆t, z)=Pgg(z)
P̂

2
2

2[z(1−z)p+
0 ]2
<e
[(

1

cosh2(Ω∆t)

)
exp

{
− iP̂

2
2

2z(1−z)p+Ω
tanh(Ω∆t)

}]
.

(5.8)

Using this definition for K, one can rewrite eq. (5.1) as

d2σ

dΩkadΩkb

= 2g2z(1−z)
∫ tL

t0

dt2

∫ t2

t0

dt1

∫
p0,P̂ 2,q1

P(ka−q2, tL−t2)P(kb−q1+q2, tL−t2)

× K(P̂ 2,∆t, z)P(q1 − p0, t1 − t0)
dσhard
dΩp0

, (5.9)

where dσhard/dΩp0 = |J(p+
0 ,p0)|2. Now, as already explained, the kernel K(t2 − t1) effec-

tively restricts the time integrations in eq. (5.9) to ∆t ≡ t2− t1 . τbr
. This is a small time

interval as compared to the typical values of t1 and t2, of order tL, so, in line with our

previous approximations, we integrate the kernel over ∆t while neglecting the difference

t2 − t1 in the various factors P. We then redefine the kernel after integration over ∆t:
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(eq. (5.8), to be later restored)

∫ t2−t0

0
d∆t

1

2z(1− z)p+
0

(
P̂

2
2

cosh2(Ω∆t)

)
exp

{
− iP̂

2
2

2z(1− z)p+
0 Ω

tanh(Ω∆t)

}

= i

∫ t2−t0

0
d∆t

d

d∆t
exp

{
− iP̂

2
2

2z(1− z)p+
0 Ω

tanh(Ω∆t)

}
,

= i

[
exp

{
− iP̂

2
2

2z(1− z)p+
0 Ω

tanh(Ω(t2 − t0))

}
− 1

]
. (5.10)

To further simplify the kernel, and again in line with our approximations, we neglect the

region of integration t2 . τ
br

+ t0. When t2 − t0 � τ
br

, one can use tanh(Ω(t2 − t0)) ≈ 1

and then the kernel becomes time-independent. After taking the real part in eq. (5.10) and

restoring the proper factors from eq. (5.8), we finally obtain:

K(P̂ 2, z, p
+
0 ) ≈ 2

z(1− z)p+
0

Pgg(z) sin

[
P̂

2
2

2k2
br

]
exp

[
− P̂

2
2

2k2
br

]
. (5.11)

This kernel generalizes the result obtained in [25] in the eikonal limit.

Putting everything together, and proceeding to various relabelings (t2 → t, P̂ 2 →
p − zq, q2 → p, q1 → q), one recovers the expression for the cross-section for quasi-

instantaneous medium-induced gluon branching given in eq. (2.21)

The kernel K(p−zq, z, p+
0 ) describes the splitting of a gluon with longitudinal momen-

tum p+
0 and transverse momentum q into two gluons, one with longitudinal momentum

fraction z and transverse momentum p, the other with longitudinal momentum fraction

1−z and transverse momentum q−p. Note that K does not depend on p and q separately,

but only on the combination p− zq, which may be understood as the relative momentum

of the effective non relativistic two-dimensional motion of the gluons in the transverse

plane (with q playing the role of the ‘center of mass’ momentum). We may also write

p− zq = p+(vp−vq) = (p+− q+)(vp−q−vq), where vp = p/p+ etc. are transverse veloci-

ties. Interestingly, the quantity |vp−vq| is a measure of the actual emission angle in three

dimensions. To see that, let us introduce the three-dimensional velocities, ~vq = (vzq,vq)

and ~vp = (vzp,vp), with v2
zq + v2

q = 1, etc. Then, (vp − vq)2 = 2(1 − cos θp) ' θ2
p, and

similarly for |vq−p − vq|. Since eq. (5.11) constrains the value of p− zq to be of order k
br

at most, emission angles are constrained as follows

|θp| ' |vp − vq| .
k

br

zq+
, |θq−p| ' |vq−p − vq| .

k
br

(1− z)q+
. (5.12)

These formulæ make it clear that it is the softest offspring gluon which is emitted at the

largest angle and hence that controls the geometry of the branching.

We may get more precise on the probabilistic interpretation of the kernel K by inte-

grating the cross section over suitable elements of phase space. Consider the formula (2.21)
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that we have just derived,

d2σ1

dΩkadΩkb

= 2g2z(1− z)
∫ tL

t0

dt

∫
p0,q,p

P(ka − p, tL − t)P(kb − q + p, tL − t)

×K(p− zq, z, p+
0 )P(q − p0, t− t0)

dσhard
dΩp0

, (5.13)

in which it is understood that k+
a + k+

b = p+
0 . From this we may calculate

dσ1

dzdΩ+
0

=
1

2

∫
d2ka

∫
d2kb

dσ1

dkadkbdzdΩ+
0

. (5.14)

This quantity represents the cross section for a gluon with initial + momentum in the

phase space element dΩ+
0 ≡ dp+

0 /((2π)2p+
0 ) to split into two gluons, one of which carries

the fraction zp+
0 of the initial + momentum. The factor 1/2 is a symmetry factor that

accounts for the fact that each configuration of 2 identical gluons is counted twice in the

integration over ka and kb. The calculation is easily done and yields

dσ1

dzdΩ+
0

=
g2

4π

∫ tL

t0

dt

∫
p−zq

K(p− zq, z, p+
0 )

dσhard

dΩ+
0

, (5.15)

with

dσhard

dΩ+
0

=

∫
dp0

(2π)2

dσhard
dΩp0

. (5.16)

From eq. (5.15), one reads the probability per unit time for a gluon with energy p+
0 and

transverse momentum q to produce a splitting with one of the produced gluon carrying a

momentum fraction zp+
0 and a transverse momentum p:

dP

dp dz dt
=

αs
(2π)2

K(p− zq, z, p+
0 ). (5.17)

The integration over the transverse momentum yields

K(z, p+) ≡
∫

d2q

(2π)2
K(q, z, p+) =

1

2π

Pgg(z)

τ
br

(z, p+)
. (5.18)

Note that the gluon spectrum produced via a single medium-induced emission may be

recovered from this formula, by integrating eq. (5.18) over time up to tL and multiplying

by a factor of 2z:

z
dN

dz

∣∣∣∣
one emission

=
αs
π
zPgg(z)tL

√
q̂eff

z(1− z)p+
. (5.19)

This is recognized as the BDMPSZ spectrum, as expected [8–12].

The kernel in eq. (5.11) may turn negative for large value of the transverse momen-

tum. This would not be a serious problem in practice since this occurs for momenta

(q & πk
br

) for which the gaussian in eq. (5.11) is very small, but it indicates a limitation of

– 31 –



J
H
E
P
0
1
(
2
0
1
3
)
1
4
3

the approximation that has been used to arrived at eq. (5.11). In fact, a large transverse

momentum q � k
br

cannot be acquired over a time scale ∼ τ
br

as a result of soft multiple

scattering. Rather it must be associated with some rare but hard collision, which can be

more accurately treated in the single scattering approximation — that is, by keeping only

the term linear in the dipole cross-section in the expansion of the 2-point function (2.14)

—, but by keeping the logarithmic dependence upon r. When applied to the momen-

tum broadening probability, this procedure yields for the Fourier transform in eq. (2.16),

P(∆p,∆t) ∼ (q̂∆t)/(∆p)4. We expect this procedure to lead to a similar behavior in 1/q4

at large q for the kernel K(q, z, p+). We leave the detailed discussion of this particular

point for a subsequent study.

6 Conclusions

In this paper, we have provided a complete calculation of medium-induced gluon branching

in the regime where the gluons that take part in the branching undergo multiple soft

scattering with the medium. The kernel that describes the branching has been calculated

as a function of transverse momentum, beyond the eikonal approximation. An important

conclusion of our study is that the offspring gluons lose color coherence with respect to each

other on the same time scale as that of the branching process itself. Thus, as soon as they

are produced, they propagate independently from each other, a picture that holds to within

corrections of order τ
br
/L� 1. Our explicit proof relies on a large–Nc approximation but

we believe that our conclusions remain generally valid.

In the regime considered in this paper, where the energies of the emitted gluons are

within the range ωBH � ω � ωc, a regime dominated by multiple scattering, subsequent

emissions by these gluons do not interfere with each other. Indeed, the typical duration

τ
br

(ω) of a branching process is much smaller than the longitudinal extent L of the medium.

Since the interference effects between the offspring gluons are possible only during this

branching time τ
br

, whereas independent emissions by these gluons can occur anywhere

along the size L of the medium, the longitudinal phase-space for interference phenomena

is suppressed compared to the corresponding phase-space for independent emissions by a

factor τ
br

(ω)/L� 1.

The suppression of interference effects is a key ingredient for having independent emis-

sions. The other key ingredient is that successive emissions do not overlap with each other,

a situation which, as recalled in the introduction, may occur for sufficiently soft gluons,

that can be produced at a high rate. Whether a fully probabilistic description of successive

branchings can be given depends therefore on how well one can control the emission of very

soft gluons (beyond the apparent infrared divergences produced by the splitting functions,

and that are easily seen to cancel in the calculation of physical processes). We leave this

point for a subsequent study.

There are further limitations of the present calculation that need to be emphasized.

The calculation that we have presented is valid in a regime where interactions with the

medium are dominated by soft multiple scattering. While this is a legitimate assumption

for the leading particle and the hardest component of its medium-induced radiation, this
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may not be also the case for the very soft gluons at the end of a cascade, especially if their

energies approach the Bethe-Heitler energy. A proper treatment of this particular region

would require a more accurate treatment of the single scattering between a gluon and the

medium, which implies in particular relaxing the eikonal approximation. Also, we have not

included in our formalism the vacuum-like emissions, that is, the emissions by which the

energetic gluon that enters the plasma loses its initial (potentially large) virtuality. Such

emissions are controlled by the standard splitting functions for bremsstrahlung. These are

generally hard emissions at small angles. In fact, all the emissions at angles much smaller

than θc should proceed exactly as in the vacuum with usual destructive interferences leading

to angular ordering. Hard emissions at larger angles θ � θc are possible as well, and for

them interference effects become negligible because of medium effects [21–25]. For hard

emissions at intermediate angles θ ∼ θc the situation is more complicated [21, 23], so in

order to better understand this and also to have a unified description of the in-medium

jet evolution, it would be very useful to extend our formalism by including vacuum-like

emissions.
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A Gluon dynamics in a background field

In this appendix, we review briefly properties of the gluon propagator in a background

field A−(x+,x) which is independent of x−. To within an inessential term that can be

ignored, this propagator can be entirely expressed in terms of a 2 + 1 dimensional “scalar”

propagator (independent of Lorentz indices), that describes non-relativistic propagation in

the transverse plane, with x+ playing the role of time. The dependence on Lorentz indices

is factored out into coefficients that are used to define an effective three-gluon vertex. This

vertex and the scalar propagator can be used to simplify perturbative calculations for the

effective non relativistic gluo-dynamics in the transverse plane.

We work in the light cone gauge A+ = 0, with covariant derivative Dµ = ∂µ − igAµ,

and the only non-vanishing component of the background field is A−(x+,x). In this gauge,

the free propagator reads, in momentum space,

Gµν0 (p) = −G0(p) dµν(p) dµν(p) ≡
[
gµν − pµnν + pνnµ

n · p

]
, G0(p) ≡ −1

p2
, (A.1)

with nµ = (n+, n−,n⊥) = (0, 1,0), so that n ·A = A+ = 0 and n · p = p+. Note that Gµν0

is symmetric under the interchange of µ and ν, and it vanishes if either index is +. The

non vanishing components are

Gij0 (p) = G0(p)δij , G−i0 (p) =
pi

p+
G0(p), G−−0 (p) = 2

p−

p+
G0(p). (A.2)
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p′, bp, c

A−
a (p′ − p)

(T a)bc

Figure 11. Representation of the vertex coupling the propagating gluon to the background fieldA−a .

The matrix T a is a matrix of the adjoint representation. The background field A−a is independent

of x−, so that there is no transfer of + momentum at the vertex, that is, p′+ = p+.

In the presence of the background field, the propagator is modified. In particular, it is

no longer diagonal in momentum space (except for the + component of the momentum).

It is is also a non diagonal matrix in color space. It may be written quite generally as

Gµνba (p′, p), with the convention that p is incoming and p′ is outgoing (and similarly for the

color indices). That is, one may regardGµνba (p′, p) as the matrix element (p′ b|Gµν |p a), which

we shall also write
(
p′|Gµνba |p

)
when convenient. To determine the structure of Gµν , we write

(p′ b|Gµν |p a) = (p′|p)δabGµν0 (p) +Gµµ
′

0 (p′) (p′ b|Tµ′ν′ |p a)Gν
′ν

0 (p), (A.3)

with (p′|p) = (2π)4δ(4)(p− p′), and expand T µν in powers of the background field. We get

(p′|T νµba |p) = −i(p′|V ν+µ
bca |p)A−c (p′ − p)

−(p′|V µ+µ′

bed |p′′)A−e (p′ − p′′)G0,µ′ν′(p
′′) (p′′|V ν′+ν

dca |p)A−c (p′′ − p) + · · · (A.4)

Here, (p′|V ν+µ
bca |p) stands for V ν+µ

bca (p′, p− p′,−p), where V is the usual three-gluon vertex,

defined generally as (with all momenta chosen outgoing), see figure 11,

V µνρ
abc (k, p, q) = −gfabc [gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ] . (A.5)

The fact that in eq. (A.4), or in eq. (A.3), Vν+µ(p′, p) is contracted with G0 propagators,

puts constraints on the values of the indices µ and ν (see eqs. (A.2)). A simple analysis

reveals that the only relevant components of the vertex are

V j+i
bca (p′, p− p′,−p) = gf bca gji(p+ p′)+ = −2igp+ (T c)ba g

ji, (A.6)

where we have used p′+ = p+. It follows that Tµ′ν′(p′, p) vanishes unless the indices µ and

ν are spatial indices, and furthermore T ij is diagonal. We shall set

Tij(p′, p) = −δijT (p′, p). (A.7)

Taking this property of T µν into account, one can rewrite eq. (A.3) as

(p′|Gνµba |p) = (p′|p)δabGνµ0 (p)−Gνi0 (p′) (p′|Tba|p)Giµ0 (p), (A.8)
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and, using (A.1), as

(p′|Gνµba |p) = −(p′|p)δbaG0(p)dνµ − dνidiµG0(p′) (p′|Tba|p))G0(p). (A.9)

At this point, we define a ‘scalar propagator’ (p′|Gba|p)

(p′|Gba|p) = (p′|p)δbaG0(p)−G0(p′) (p′|Tba|p)G0(p), (A.10)

and substitute this into eq. (A.9) to obtain

Gµνba (p′, p) = (p′|p)δbaG0(p)
[
−dµν(p)− dµi(p)diν(p)

]
+ dµi(p′)diν(p)Gba(p

′, p). (A.11)

A direct calculation, using the explicit expression of dµν given in eq. (A.1) reveals that

(p′|p)G0(p)
[
−dµν(p)− dµi(p)diν(p)

]
= −δµ−δν−(p′|p) 1

(p+)2
. (A.12)

We recognize the instantaneous contribution to the gluon propagator in light-cone

perturbation theory. This contact term can be ignored in the present calculation. Thus

we are left with

(p′|Gνµba |p) = dνi(p′)(p′|Gba|p)diµ(p), (A.13)

which expresses the gluon propagator as the scalar propagator multiplied by factors that

carry all information about Lorentz indices.

The Fourier transform of the scalar propagator, (x|G|y) = G(x, y), is the solution of

the equation [
�x − 2ig(A− · T )∂+

]
G(x, y) = δ(x− y), (A.14)

an equation that naturally arises when solving the Yang-Mills equations for a fluctuating

gauge field in the presence of the A− background [36, 38]. This is easily seen by writing this

equation as G−1
0 +Σ = 1, with Σ the self-energy, and then identifying T = Σ−ΣG0Σ+ · · · .

Eq. (A.14) can also be written as[
2∂+

x D−x −∇2
⊥
]
ac
Gcb(x, y) = δ(x− y)δab, (A.15)

where D− = ∂−−igA− ·T , and we used the fact that ∂+A− = 0. Since the background field

A− does not depend on x−, the propagator G(x, y) depends on x− and y− only through

the difference x− − y−. It is then convenient to introduce a new Green’s function

(x|Gab|y) ≡
∫

dk+

2π
e−ik

+(x−−y−) i

2k+
(x| Gab(x+, y+; k+) |y). (A.16)

A simple calculation reveals that G satisfies the following equation[
iD− +

∇2
⊥

2k+

]
ac

(x| Gcb(x+, y+; k+) |y) = iδabδ(x
+ − y+)δ(x− y), (A.17)
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with iD− = i∂− + gA−. Thus, G(x+, y+; k+) is the propagator of a Schrödinger equation

for a non relativistic particle of mass k+ moving in a time dependent potential A−(x+,x),

with x+ playing the role of the time. It can be written as a path integral

(x| G(x+, y+; k+) |y) =

∫
Dr ei

k+

2

∫ x+

y+ dt ṙ2

Ũ(x+, y+; r), (A.18)

with r(y+) = y, r(x+) = x, and Ũ is a Wilson line evaluated along the path r(t)

Ũ(x+, y+; r) = T exp

{
ig

∫ x+

y+

dt A−a (t, r(t))T a

}
. (A.19)

From this relation, one easily deduces the following composition property (using the matrix

notation)

G(x+, y+; k+) = G(x+, z+; k+)G(z+, y+; k+). (A.20)

Consider now the vertex that describes the splitting of a gluon of momentum q into a

gluon of momentum p and a gluon of momentum q − p. This is given by the general ex-

pression (A.5), in which the momentum q is chosen incoming while the other two momenta

are outgoing:

V µνλ
abc (q, p, q − p) = gfabc

[
gµν(q + p)λ + gνλ(q − 2p)µ − gλµ(2q − p)ν

]
. (A.21)

A modified vertex is obtained by combining V µνλ
abc with the factors dµi contained in the

propagators attached to the vertex. Thus we define

Γijlabc = diµ(q)djν(p)dlν(q − p)V abc
µνλ(q, p). (A.22)

Note that the indices on Γ are all transverse. Taking into account that the only non

vanishing contributions of dµi are either of the form dij or di−, one obtains easily

Γijlabc(p− zq; z) = −2gfabc

{
− 1

1− z (p− zq)lδij + (p− zq)iδjl − 1

z
(p− zq)jδil

}
,

(A.23)

where z ≡ p+/q+, and we have made explicit the dependence on the single momentum

p−zq. This momentum has a simple physical interpretation in the effective non relativistic

dynamics. It can indeed be written as zq+(vp − vq), where vp = p/p+ and vq = q/q+.

That is, p − zq is proportional to the (transverse) velocity of one of the produced gluon

relative to that of the parent gluon.

It is convenient also to consider Γijlabc(p − zq; z) as a matrix connecting single gluon

states to two gluon states. We set

(p, b, j;k, c, l|Γ(z) |q, a, i) = (k|q − p)Γijlabc(p− zq; z), (A.24)

where it is understood that p+ = zq+, k+ = (1 − z)q+. Often, we also write Γijlabc(p −
zq; z) = gfabc Γijl(p− zq, z), isolating the coupling constant and the color factor from the

momentum dependent piece.
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In summary, the dynamics of gluons in the light cone gauge A+ = 0, and in the

presence of a background field that does not depend on x−, are essentially those of a two

dimensional non-relativistic field theory. Usual perturbative calculations can be simplified

by using the propagator G and the vertex gfabc Γijl(p−zq, z) that we have discussed in this

section. Note that the factor 1/2p+ which accompanies the propagator G (see eq. (A.16))

is not to be included on the external lines.

B Explicit calculations of n-point functions

In this section we calculate explicitly the n-point functions that are used in the main text.

These n-point functions are products of propagators in the amplitude and its complex

conjugate, i.e. products of G’s and G†’, taken between the same initial time x+ and the same

final time y+. At these times, the transverse coordinates in the various propagators may

take different values. We shall denote generically by X the set of transverse coordinates

in the various propagators at time x+, and by Y the set of the corresponding coordinates

at time y+. Often, we shall include x+ and y+ in the sets X and Y , respectively, that is,

we shall set X = (x+,X), Y = (y+,Y ). In case of a single propagator, the same notation

will be used, with X = (x+,x) and Y = (y+,y). Further details on the notation will be

given as we proceed.

Let us recall that the free propagator reads (we set Gba0 (Y,X) ≡ δbaG0(Y,X))

G0(Y,X) =
( ω

2πi∆t

)
ei

ω(x−y)2

2∆t , ∆t ≡ y+ − x+, (B.1)

where we have called ω the + component of the momentum, a notation that will

be used throughout this appendix. We also write G0(Y,X) as the matrix element

(y|G0(y+, x−)|x) = (y|G0(∆t)|x). The Fourier transform is

(q|G0(∆t)|p) =

∫
dy dx e−iq·y eip·x (y|G0(∆t)|x)

= (2π)2δ(p− q) e−i
p2

2ω
∆t. (B.2)

B.1 The 2-point function

The scalar 2-point function S(2)(Y,X|ω) is defined by

δbb̄〈G†āb̄(X̄, Ȳ |ω)Gba(Y,X|ω)〉 = δaāS(2)(Y,X|ω). (B.3)

Note that, in order to avoid the proliferation of arguments in the functions that we discuss,

we are using the same symbols to denote different variables, depending on the ‘context’,

that is, depending on the object where these variables appear. Thus, in the propagators

G(Y,X), X = (x+,x), Y = (y+,y), in G†(X̄, Ȳ ), X̄ = (x+, x̄), Ȳ = (y+, ȳ), while in the

2-point function S(2)(Y,X|ω), X = (x+,x, x̄) and Y = (y+,y, ȳ). We shall use later a

similar ‘contextual notation’ for the 3 and 4-point functions, where X and Y will represent

collectively larger sets of coordinates (figures, such as figure 12 will help to fix any ambiguity
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a

ā

b

b̄

x y

x̄ ȳ

y+
x+

X Y

(p) (q)

(p̄) (q̄)

Figure 12. Graphical illustration for the 2-point function S(2)(Y,X|ω), where X = (x+,x, x̄) and

Y = (y+,y, ȳ). In parenthesis are given the momenta conjugate to the respective coordinates in

the (mixed) Fourier representation; the + component of the momenta is denoted here by ω and

is the same in the amplitude and its complex conjugate. In the present study, a 2-point function

appears typically as the product of a propagator G in an amplitude and a propagator G† in the

complex conjugate amplitude. These propagators are represented here by oriented lines, with the

arrow pointing to the right for G and to the left for G†.

that may arise). To further simplify the notation, we shall most often omit to indicate

explicitly the dependence on ω. Finally, whenever needed, we shall use a matrix notation,

keeping separate the dependence on time arguments. Thus we shall occasionally write

S(2)(Y,X) as the matrix element (Y |S(2)(y+, x+)|X) with X = (x, x̄) and Y = (y, ȳ),

with boldface letters referring to transverse coordinates only.

By using the path integral representation of the propagators G and G† one gets, after

doing the medium average,

S(2)(Y,X|ω) =

∫
DrDr̄ exp

{
iω

2

∫ y+

x+

dt
(
ṙ2 − ˙̄r2

)
− Nc n

2

∫ y+

x+

dt σ(r − r̄)

}
,

(B.4)

with paths r(t), r̄(t) going from r = x, r̄ = x̄ at time x+ to r = y, r̄ = ȳ at time y+,

respectively. The change of variables

u = r − r̄ , v =
1

2
(r + r̄), (B.5)

allows us to rewrite the path integral as

S(2)(Y,X|ω) =

∫
DuDv exp

{
iω

∫ y+

x+

dt u̇ · v̇ − Nc n

2

∫ y+

x+

dt σ(u)

}
. (B.6)

To evaluate this path integral, we first factorize the dependence on the end points, entirely

contained in the value of the action for the classical paths. It is easily verified that Euler-

Lagrange equation for u(t), ü = 0, is not modified by the interaction (even though the
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individual classical trajectories are no longer straight lines, as in the free case, the difference

u(t) = r(t)− r̄(t) remains a linear function of t). This is enough to calculate the classical

action. We have, in particular,∫ y+

x+

dt u̇ · v̇ =
1

2∆t
[y − ȳ − (x− x̄)] · [y + ȳ − (x+ x̄)] , (B.7)

where we have used that u̇ is independent of time and set

∆t ≡ y+ − x+. (B.8)

A standard calculation of the remaining quadratic path integral then yields

S(2)(Y,X|ω) =
( ω

2π∆t

)2
exp

{
iω

2∆t

[
(y − x)2 − (ȳ − x̄)2

]
− Nc n

2

∫ y+

x+

dt σ(u(t))

}

= G0(Y,X)G†0(X̄, Ȳ ) exp

{
−Nc n

2

∫ y+

x+

dt σ(u(t))

}
, (B.9)

where σ(u(t)) is evaluated along the classical path.

By performing the Fourier transform with respect to the transverse coordinates only,

we obtain the “mixed representation” of the 2-point function, S(2)(Q,P |ω) where Q =

(y+, q, q̄), P = (x+,p, p̄). That is, the ‘momentum’ variables denoted by capital letters

contains the conjugate to the transverse coordinates, but also the light-cone time. One

may also write S(2)(Q,P |ω) as the matrix element (Q|S(2)(y+, x+)|P ), with P = (p, p̄),

Q = (q, q̄). We have

S(2)(Q,P |ω) =

∫
dxdx̄dy dȳ e−iq·y eip·x e−ip̄·x̄ eiq̄·ȳ S(2)(Y,X|ω), (B.10)

where the signs in the various phase factors follow from our convention for the propagators

G and G† that make up S(2). Translational invariance of S(2)(Y,X|ω) (obvious on eq. (B.9))

allows us to perform the integral over the sum of coordinates, leading to a factor (2π)2δ(p−
p̄−q+q̄). To proceed further, it is convenient to change to relative coordinates. In analogy

with eq. (B.5) we define ux = x− x̄, vx = (x+ x̄)/2, and similarly for y, ȳ. The variable

conjugate to q − q̄ is vy − vx. We are interested in the particular Fourier component for

which the momenta at y+ are the same in the amplitude and in the complex conjugate

amplitude, that is q = q̄. In this case, the variable vy − vx drops from the phase factors

in eq. (B.10), and appears only in S(2)(Y,X|ω), where
[
(y − x)2 − (ȳ − x̄)2

]
/2 = (vy −

vx)(uy−ux). The integration over (vy−vx) then produces a factor (2π∆t/ω)2δ(uy−ux),

which in turn implies that u(t) is independent of time, and also that the 2-point function

depends only on the difference p−q (p+q being conjugate to ux−uy), and not on p and

q separately. One finally gets

S(2)(Q,P |ω) = (2π)2δ(2)(p− p̄)

∫
dux exp

[
iux · (p− q)− Nc n

2
σ(ux) ∆t

]
,

≡ (2π)2δ(2)(p− p̄) P(p− q,∆t), (B.11)
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x+ y+

X Y

a1 b1

a2 b2

ā b̄

x1

x2

x̄0

y1

y2

ȳ0

(p1) (q1)

(p2) (q2)

(p̄0) (q̄0)

Figure 13. Graphical illustration for the 3-point function S(3)(Y,X|ω), with X = (x+,x1,x2, x̄0),

Y = (y+,y1,y2, ȳ0) and ω = (ω1, ω2, ω0). The typical 3-point function we deal with in this paper

is the product of two G (right arrows) and one G† (left arrow). Also, the gluons 1 and 2 are issued

from gluon 0, so that conservation of the + momentum implies ω0 = ω1 + ω2.

where the δ-function expresses momentum conservation after taking into account the condi-

tion q = q̄. It is interesting to observe that the requirement q = q̄ has cancelled completely

the “free” contribution to S(2)(Q,P |ω) (except for the momentum conserving δ-function),

leaving only in (B.11) the Fourier transform of the interaction part of S(2)(Y,X|ω) (the

last term in the second line of eq. (B.9)). This cancellation results in the property of

S(2)(Q,P |ω) of being a function only of the difference of momenta p−q. In the absence of

interaction, P(p− q,∆t) goes over to (2π)2δ(p− q) and the dependence on ∆t drops out.

The quantity

P(∆p,∆t) =

∫
du exp

[
iu ·∆p− Nc n

2
σ(u) ∆t

]
. (B.12)

can be interpreted as the probability that a gluon acquires a transverse momentum ∆p

while traversing the medium during a time ∆t.

B.2 The 3-point function

The 3-point function S(3)(Y,X|ω) that we need is of the form

f b1b2b̄0S(3)(Y,X|ω) = fa1a2ā0〈Gb1a1(Y,X|ω1)Gb2a2(Y,X|ω2)G† ā0b̄0(X̄, Ȳ |ω0)〉 (B.13)

where we use the contextual notation introduced earlier, with the variables X and Y having

different meanings in S(3) and in G or in G† (see the caption of figure (13)). By expressing

the individual propagators in terms of path integrals, and performing the medium average
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of the Wilson lines, one gets

S(3)(Y,X|ω) =

∫
Dr2Dr1Dr0 exp

{
i

2

∫ y+

x+

dt
(
ω1ṙ

2
1 + ω2ṙ

2
2 − ω0ṙ

2
0

)}

× exp

{
−Nc n

4

∫ y+

x+

dt [σ(r1 − r0) + σ(r2 − r0) + σ(r2 − r1)]

}
.

(B.14)

The integral runs over paths with endpoints ri(x
+) ≡ xi and ri(y

+) ≡ yi (i = 0, 1, 2), and

the three dipole cross sections correspond to the three possible dipoles that can be formed

with the three gluons.

We perform the following change of variables (v can be interpreted as the distance

between gluon 0 and the “center of mass” of gluons 1 and 2)

u = r1 − r2 , v = zr1 + (1− z)r2 − r0 , ω1 = zω0 , ω2 = (1− z)ω0,

(B.15)

so that r1−r0 = v+(1−z)u and r2−r0 = v−zu. For the endpoints, we set ux = x1−x2,

vx = zx1 + (1 − z)x2 − x̄0, and similarly for the y variables. In the variables (B.15), the

3-point function reads

S(3)(Y,X|ω) =

∫
DuDvDr0 exp

{
iω0

2

∫ y+

x+

dt
[
v̇2 + 2v̇ · ṙ0 + z(1− z)u̇2

]}

× exp

{
−Nc n

4

∫ y+

x+

dt [σ(u) + σ(v − zu) + σ(v + (1− z)u)]

}
.

(B.16)

The calculation of the path integrals over r0 and v proceeds as for the 2-point function.

One identifies easily that the classical path v(t) is a straight line, that is, the center of

mass of gluons 1 and 2 move with respect to gluon 0 at constant velocity. This allows us

to calculate the kinetic part of the action corresponding to the variables r0 and v, and to

perform the remaining quadratic path integrals over r0 and v. One gets

S(3)(Y,X|ω) ≡
( ω0

2π∆t

)2
exp

[
iω0

2

∆v

∆t
· (∆v + 2∆r0)

]
×
∫
Du exp

{
iω̂0

2

∫ y+

x+

dt u̇2 − Nc n

4

∫ y+

x+

dt [σ(u)+σ(v−zu)+σ(v+(1−z)u)]

}
.

(B.17)

where, in the integral, v is to be taken as the classical path v(t), and we have set

∆v ≡ vy − vx, ∆r0 ≡ ȳ0 − x̄0, ω̂0 ≡ z(1− z)ω0, (B.18)

with ω̂0 the reduced mass for the relative motion of gluons 1 and 2. Note that in the

absence of interaction with the medium, S(3)(Y,X|ω) reduces to the product of three free
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propagators, as it should. We have indeed

S
(3)
0 (Y,X|ω) =

( ω0

2π∆t

)2
e

iω0
2

∆v
∆t
·(∆v+2∆r0) × ω̂0

2πi∆t
ei

ω̂0
2∆t

∆u2

=
ω0ω1ω2

(2π)3i∆t3
e

i
2∆t(ω1∆r2

1+ω2∆r2
2−ω0∆r2

0), (B.19)

with ∆u ≡ ∆r1 − ∆r2, and ∆ri ≡ yi − xi. The effect of the interaction is, as in the 2

gluon case discussed above, to produce a damping whenever the size of the dipoles exceed

1/(q̂∆t). To analyze these effects further, it is convenient to perform a Fourier transform

with respect to the transverse coordinates.

The Fourier transform (in the mixed representation) reads

S(3)(Q,P |ω)=

∫
x1 x2 x̄0 y1 y2 ȳ0

e−iq1·y1 e−iq2·y2 e−ip̄0·x̄0 eip1·x1 eip2·x2 eiq̄0·ȳ0 S(3)(Y,X|ω),

(B.20)

where translation invariance implies p1 + p2 − q1 − q2 = p̄0 − q̄0. It is convenient to

introduce the following change of variables (with unit Jacobian)

x1 = (1− z)ux + vx + x̄0, x2 = −zux + vx + x̄0, x̄0 = x̄0, (B.21)

and similarly for the variables y1,y2, ȳ0. The phase factor in eq. (B.20) becomes then eiφ

with

φ = x̄0(p1 + p2 − p̄0) + ux[(1− z)p1 − zp2] + vx(p1 + p2) (B.22)

−ȳ0(q1 + q2 − q̄0)− uy[(1− z)q1 − zq2]− vy(q1 + q2). (B.23)

As obvious from its explicit expression (B.16), the 3-point function S(3)(Y,X|ω) depends

on x̄0 and ȳ0 only through the difference x̄0 − ȳ0, which is conjugate to the variable

[p1 +p2− p̄0 +q1 +q2− q̄0]/2 = q1 +q2− q̄0. For the particular Fourier component which

we are interested in, that for which q1 + q2 = q̄0, this variable x̄0 − ȳ0 drops from the

phase factors in eq. (B.20). One can then perform the corresponding integration, which

yields a factor (2π∆t/ω0)2δ(∆v). The δ-function δ(∆v) = δ(vx − vy) implies that v(t) is

independent of time. It also implies that, besides the momentum conserving δ-function,

S(3)(Q,P |ω) depends only on the difference p̄0 − q̄0 rather than on p̄0 and q̄0 separately.

We are then left with

S(3)(Q,P |ω) = (2π)2δ(2)(p1+p2−p̄0)

∫
duxduydvx eiux·(p1−zp̄0)−iuy ·(q1−zq̄0)+ivx·(p̄0−q̄0)∫

Du exp

{
iω̂0

2

∫
dt u̇2 − Nc n

4

∫
dt [σ(u)+σ(v−zu)+σ(v+(1−z)u)]

}
,

(B.24)

where the δ-function is that of momentum conservation, after taking into account that

q1 + q2 = q̄0.
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To proceed further, we evaluate eq. (B.24) in the harmonic approximation, eq. (2.17).

Then the path integral in the second line of eq. (B.24) reads simply

e−3v2
xq̂∆t/8[1+z2+(1−z)2]

∫
Du exp

{
iω̂0

∫ y+

x+

dt

(
u̇2

2
+ iω2

br
u2

)}
, (B.25)

where we have set

τ
br
≡
√
ω̂0

q̂eff
, ω2

br
≡ 1

4τ2
br

, q̂eff ≡
1

2
q̂
[
(1− z)2 + z2 + 1

]
.

The calculation of the quadratic integral

J (ux,uy) =

∫
Du exp

{
iω̂0

∫ y+

x+

dt

(
u̇2

2
+ iω2

br
u2

)}
. (B.26)

is standard, and yields

J (ux,uy) =
k2

br
(1− i)

4π sinh Ω∆t
exp

{
(i− 1)k2

br

4 sinh Ω∆t

[
(u2

x + u2
y) cosh Ω∆t− 2ux · uy

]}

=
k2

br
(1− i)

4π sinh Ω∆t
exp

{
(i− 1)k2

br

2 sinh Ω∆t

[
sinh2 Ω∆t

2
(us+uy)

2+cosh2 Ω∆t

2
(us−uy)2

]}
,

(B.27)

with Ω ≡ (1 + i)ω
br

and k2
br
≡ q̂effτbr

.

The Fourier transform can then be completed. We get

S(3)(Q,P |ω) = (2π)2δ(2)(p1+p2−p̄0)
8π[1 + z2 + (1− z)2]

3q̂∆t
e
− 2[1+z2+(1−z)2](p̄0−q̄0)2

3q̂∆t

× 2π(1 + i)

k2
br

sinh(Ω∆t)
exp

{
−(1 + i)

(P̂ 1 + Q̂1)2

4k2
br

coth(Ω∆t/2)
− (1 + i)

(P̂ 1 − Q̂1)2

4k2
br

tanh(Ω∆t/2)

}
,

(B.28)

where we have set P̂ 1 ≡ p1−zp̄0 and Q̂1 ≡ q1−zq̄0. Setting S(3)(Q,P |ω) = (2π)2δ(2)(p1+

p2−p̄0) S̃(3)(Q,P |ω), we note that S̃(3)(Q,P |ω) is a function of just three variables, p̄0 −
q̄0, and the variables P̂ 1, Q̂1 just defined, and which may be interpreted as the relative

momenta of the 2-dimensional motion at x+ and y+, with p0 and q̄0 playing the role of

respective ‘center of mass’ momenta.

B.3 The path integral needed in the evaluation of the 4-point function

In this appendix we evaluate the path integral entering the evaluation of the non-

factorizable piece of the 4-point function (see eq. (4.18)), which in coordinate space takes
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x+ y+

X Y

a1 b1

a2 b2

ā1 b̄1

x1

x2

x̄1

y1

y2

ȳ1

(p1) (q1)

(p2) (q2)

(p̄1) (q̄1)

(p̄2) (q̄2)
x̄2 ȳ2

ā2 b̄2

Figure 14. Graphical illustration for the path integral I(Y,X|ω), with X = (x+,x1,x2, x̄1, x̄2),

Y = (y+,y1,y2, ȳ1, ȳ2) and ω = (ω1, ω2). The 4-point function is the product of two propagators

G (for gluons 1 and 2, with + momenta ω1 and ω2), and two propagators G† corresponding to the

same gluons in the complex conjugate amplitude. The notation is as in the previous two figures.

the form (see figure 14 for notation)

I(Y,X|ω) =

∫
Dr1Dr2Dr̄1Dr̄2 exp

{
i

2

∫ y+

x+

dt
(
ω1ṙ

2
1 + ω2ṙ

2
2 − ω1 ˙̄r2

1 − ω2 ˙̄r2
2

)}

× exp

{
−CF n

2

∫ y+

x+

dt [σ(r1−r̄1)+σ(r2−r̄2)+σ(r1−r2)+σ(r̄1−r̄2)]

}
.

(B.29)

The integral runs over paths with endpoints ri(x
+) ≡ xi and ri(y

+) ≡ yi (i = 1, 2), and

similarly for r̄i. The factor CF in the second exponential of the formula above originates

from the fact that the average of the Wilson lines that leads to this expression involves

quark dipoles C
(2)
q (see eq. (4.18)).

We perform the following change of variables (with unit Jacobian)

u = r1 − r2, ū = r̄1 − r̄2, v = z(r1 − r̄1) + (1− z)(r2 − r̄2),

w = z
r1 + r̄1

2
+ (1− z)r2 + r̄2

2
. (B.30)

with as before ω1 = zω0, ω2 = (1− z)ω0, and ω̂0 = z(1− z)ω0. The inverse transformation
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reads

r1 = w + (1− z)u+
v

2
, r2 = w − zu+

v

2
,

r̄1 = w + (1− z)ū− v
2
, r̄2 = w − zū− v

2
, (B.31)

We also define

x1 = wx + (1− z)ux +
vx
2
, x2 = wx − zux +

vx
2
,

x̄1 = wx + (1− z)ūx −
vx
2
, x̄2 = wx − zūx −

vx
2
, (B.32)

and similarly for the y-variables. In the variables (B.30), the path integral reads

I(Y,X|ω) =

∫
DuDūDvDw exp

{
iω̂0

2

∫ y+

x+

dt
[
(u̇2 − ˙̄u2) + 2v̇ · ẇ

]}

× e

{
−CF n

2

∫ y+

x+ dt [σ((1−z)(u−ū)+v)+σ(−z(u−ū)+v)+σ(u)+σ(ū)]

}
.

(B.33)

The Euler Lagrange equation for w yields v̈ = 0, that is, the classical path v(t) is a linear

function of time. This allows us to calculate the integral over v and w, and obtain

I(Y,X|ω) =
( ω0

2π∆t

)2
eiω0

∆v
∆t

∆w

∫
DuDū e

iω̂0
2

∫ y+

x+ dt (u̇2−̇̄u2)

× e

{
−CF n

2

∫ y+

x+ dt [σ((1−z)(u−ū)+v)+σ(−z(u−ū)+v)+σ(u)+σ(ū)]

}
,

(B.34)

where ∆w = wy − wx, ∆v = vy − vx and v(t) = vx + (∆v/∆t)(t − x+). Note that if

one ignores the second line of eq. (B.34), one recovers I(Y,X|ω) as a product of four free

propagators, expressed in the variables (B.30).

At this point, it is convenient to go to the mixed representation, and take a Fourier

transform with respect to the transverse coordinates. We get

I(Q,P ) =

∫
{x,y}

e−iq1·y1 e−iq2·y2 eiq̄1·ȳ1 eiq̄2·ȳ2 eip1·x1 eip2·x2 e−ip̄1·x̄1 e−ip̄2·x̄2 I(Y,X),

(B.35)

where
∫
{x,y} denotes the integration over the 2×8 transverse coordinates, and the variables

P,Q are those of the mixed representation, e.g., P = (x+,p1,p2, p̄1, p̄2). Translational

invariance (one can easily verify that I(Y,X) is unchanged in a constant shift of all the

coordinates) implies p1 + p2 − p̄1 − p̄2 = q1 + q2 − q̄1 − q̄2. After changing to the

variables (B.32), and taking into account momentum conservation, one finds that q1 +

q2 − q̄1 − q̄2 is conjugate to wx − wy. Now, we are interested in the particular Fourier

component for which q1 + q2 = q̄1 + q̄2. For this component, the dependence of the phase

factor in eq. (B.35) on ∆w = wy −wx drops out. The integration over ∆w can then be
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performed, leading to a factor (2π∆t/ω0)2δ(∆v), while the integration over wy+wx leaves

a factor (2π)2δ(p1 + p2 − p̄1 − p̄2). We are then left with

Ĩ(Q,P ) =

∫
vxuxuyūxūy

eivx·(p1+p2−q1−q2)

× eiux·((1−z)p1−zp2) e−iuy((1−z)q1−zq2) e−iūx·((1−z)p̄1−zp̄2) eiūy ·((1−z)q̄1−zq̄2)

×
∫
DuDū ei

ω̂0
2

∫ y+

x+ dt (u̇2− ˙̄u2)

× e−
CF n

2

∫ y+

x+ dt [σ((1−z)(u−ū)+v)+σ(−z(u−ū)+v)+σ(u)+σ(ū)]. (B.36)

In the path integral in the expression above, the endpoints of the paths are ux,uy and

ūx, ūy, respectively, and v = vx is a constant.

We shall evaluate the path integrals over u and ū in the harmonic approximation, i.e,

set Ncnσ(u) ≈ q̂u2/2. We write the path integral as∫
DuDū e

∫ y+

x+ dtL(u,ū), L = L0 + L1, L0 = i
ω̂0

2
( ˙̄u2 − u̇2). (B.37)

In the harmonic approximation we get

L1 ≈ −
CF
4Nc

q̂
{
A(u2 + ū2)− 2 (A− 1)u · ū+ 2B(u− ū) · v + 2v2

}
, (B.38)

with

A = 1 + z2 + (1− z)2, B = 1− 2z. (B.39)

The shift of variables

u→ u− B

2A− 1
v ū→ ū+

B

2A− 1
v , (B.40)

where v is a constant vector, leaves the measure of the path integral unchanged, as well as

L0, and reduces L1 to

L1 = − CF
4Nc

q̂
{
A(u2 + ū2)− 2 (A− 1)u · ū

}
. (B.41)

At this point, we perform a boost-like transformation,(
u

ū

)
= γ

(
1 β

β 1

)(
u′

ū′

)
, γ =

1√
1− β2

, (B.42)

which again leaves L0 unchanged, that is, L0(u, ū) = L0(u′, ū′). This leaves also the

measure of the path integral unchanged. By choosing β as a solution of the equation

β2 + 1− 2A

A− 1
β = 0, β =

A±
√

2A− 1

A− 1
, (B.43)

one can write L1 in the factorized form

L1 = − CF
4Nc

q̂γ2
[
A(1 + β2)− 2(A− 1)β

]
(u′2 + ū′2). (B.44)
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Simple algebra yields

C(z) ≡ A(1 + β2)− 2(A− 1)β

1− β2
= ±
√

2A− 1 = ±
√

2z2 + 2(1− z)2 + 1 , (B.45)

where the two signs correspond to the two possible solution of eq. (B.43). One can then

write the path integral as∫
Du′Dū′ ei

ω̂0
2

∫ y+

x+ dt(u̇′2− ˙̄u′2) e−
CF
4Nc

C(z)
∫ y+

x+ dtq̂(u′2+ū′2), (B.46)

and the convergence imposes the choice of the positive sign for C(z). This is the product

of two integrals of the type of eq. (B.26):

J (u′x,u
′
y) J̄ (ū′x, ū

′
y) (B.47)

with here

J (u′x,u
′
y) =

ω̂0Ω

2πi sinh(Ω∆t)
exp

{
i

ω̂0Ω

2 sinh(Ω∆t)

[
cosh(Ω∆t)(u′2x + u′2y )− 2u′x · u′y

]}
,

(B.48)

and similarly for J̄ with

Ω =
1 + i

2

√
q̂ CFC(z)

ω̂0Nc
, Ω̄ =

1− i
2

√
q̂ CFC(z)

ω̂0Nc
,

(B.49)

and the values of u′x, u′y, ū
′
x, ū′y can be obtained from the inverse transformation(
u′

ū′

)
= γ

(
1 −β
−β 1

)(
u+ B

2(A−1)v

ū− B
2(A−1)v

)
. (B.50)

At this point, it is clear that the 4-point function that correlates gluons a and b is

exponentially damped on a time scale comparable to that of the 3-point function, more

specifically as

∆t &

√
ω̂0

q̂ C(z)

Nc

CF
≈ τ

br
.

C Color algebra

In this appendix we review the color algebra necessary to justify eq. (4.6) by replacing

adjoint Wilson lines by fundamental ones. This manipulation can be made in several

different ways, here we choose to first replace all adjoint Wilson lines by fundamental ones

by means of the identity in eq. (4.5) and then remove all explicit color matrices t’s and

f ’s by using the Fierz identity taijt
a
kl = 1

2δilδjk − 1
2Nc

δijδkl and the Lie algebra relation
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[ta, tb] = ifabctc. In order to have shorter expressions we will use the shorthand notation

U1 ≡ U(r1), U(r̄1) ≡ U1̄ and similarly for the other coordinates and adjoint Wilson lines.

fmnēf c̄d̄ēŨ1amŨ2bnŨ
†
1̄c̄a
Ũ †

2̄d̄b

= 16fmnēf c̄d̄ēTr
(
U †1 t

aU1t
m
)

Tr
(
U †2 t

bU2t
n
)

Tr
(
U †

1̄
taU2̄t

c̄
)

Tr
(
U †

2̄
tbU2̄t

d̄
)
. (C.1)

Here we can directly apply the Fierz identity to the pairs of matrices ta and tb. One can

easily see that the second term of the identity would remove one of the color matrices

form the traces, in which case the Wilson lines cancel out and one is left with a trace of a

fundamental color matrix, which is zero. One therefore obtains

4fmnēf c̄d̄ēTr
[
U †1U1̄t

c̄U †
1̄
U1t

m
]

Tr
[
U †2U2̄t

d̄U †
2̄
U2t

n
]
. (C.2)

Now all t matrices have different color indices. In order to proceed we need to get rid of

the f symbols, arriving at

4Tr
(
U †1U1̄

[
td̄, tē

]
U †

1̄
U1t

m
)

Tr
(
U †2U2̄t

d̄U †
2̄
U2

[
tm, tē

])
. (C.3)

Now we have three pairs of t matrices with the same color index and therefore we can make

use of the Fierz identity three more times. Notice that the contribution from the second

term of the Fierz identity is always zero since it would eliminate one of the matrices inside a

commutator. By successively eliminating matrices with the indices d̄, m, and ē, we arrive at

2
[
Tr
(
U †1U1̄U

†
2̄
U2

[
tm, tē

]
U †2U2̄t

ēU †
1̄
U1t

m
)
− Tr

(
U †1U1̄t

ēU †
2̄
U2

[
tm, tē

]
U †2U2̄U

†
1̄
U1t

m
)]

= Tr
(
U †1U1̄U

†
2̄
U2

)
Tr
(
tēU †2U2̄t

ēU †
1̄
U1

)
− Tr

(
U †1U1̄U

†
2̄
U2t

ē
)

Tr
(
U †2U2̄t

ēU †
1̄
U1

)
− Tr

(
U †1U1̄t

ēU †
2̄
U2

)
Tr
(
tēU †2U2̄U

†
1̄
U1

)
+ Tr

(
U †1U1̄t

ēU †
2̄
U2t

ē
)

Tr
(
U †2U2̄U

†
1̄
U1

)
=

1

2

[
Tr
(
U †1U1̄U

†
2̄
U2

)
Tr
(
U †

1̄
U1

)
Tr
(
U †2U2̄

)
− Tr

(
U †1U1̄U

†
2̄
U2U

†
1̄
U1U

†
2U2̄

)
−Tr

(
U †1U1̄U

†
2U2̄U

†
1̄
U1U

†
2̄
U2

)
+ Tr

(
U †1U1̄

)
Tr
(
U †

2̄
U2

)
Tr
(
U †2U2̄U

†
1̄
U1

)]
. (C.4)

The last line above is exactly the expression in (4.6).
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