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1 Introduction

One of the key objectives of the heavy-ion program at the LHC is to investigate prop-

erties of the quark-gluon plasma (QGP) using hard probes. In particular, one addresses

in-medium modifications of the fragmentation properties of final state energetic particles

that depart from the well-known fragmentation pattern in vacuum, for instance in e+e−

annihilation, proton-proton collisions etc., where no dense medium is formed. These modi-

fications are assumed to be sensitive to local medium properties, such as the density, as well

as their spatiotemporal evolution. Indeed, strong medium effects are observed in heavy-ion

collisions for both single-inclusive leading particle spectra [1–3] and two-particle correla-

tions [4, 5]. While such measurements have reached a high level of sophistication, shedding

light on qualitative aspects of the quark-gluon plasma, studies of intrajet distributions in

heavy ion collisions have recently been initiated both at RHIC [6–8] and LHC [9–11] with

many promising results and prospects for the future.

The increased experimental capabilities at these high energies have also triggered sev-

eral efforts to improve the theoretical understanding of gluon radiation in the presence

of a colored medium. Until recently, only the leading order one-gluon medium-induced

emission spectrum off a highly energetic quark or gluon, which will be denoted BDMPS-

Z throughout, was known [12–15]. Equivalent formulations were also derived in [16–24].

This spectrum measures radiative parton energy loss in the QGP and accounts for momen-

tum broadening of the radiated gluon which undergoes multiple scattering in the medium.

The characteristic broadening of the transverse momenta of such gluons, arising due to

coherence effects between medium rescatterings, sets an upper bound on the energy of the

induced radiation which, nevertheless, can be quite sizable in relatively opaque media.
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Regrettably, since the process under consideration does not deal with interference ef-

fects between emitters, see section 2, the extension to multi-gluon emissions is bound to

rely on ad hoc conjectures. In order to study the importance of these radiative interfer-

ences, lately the gluon emission spectrum off a time-like quark-antiquark (qq̄) antenna was

calculated. In [25, 26] we considered an antenna traversing a relatively thin medium, i.e.,

assuming only one scattering in the medium background potential. In [27], on the other

hand, we resummed multiple scatterings in the limit of soft gluon emission. The aim of

the present work is to generalize the latter results to arbitrary number of rescatterings of

the quark, antiquark and gluon, thus extending the validity of our previous findings to

arbitrarily opaque media and up to large gluon energies. We also briefly discuss the main

difference between the direct and interference contributions which relates to the physics of

decoherence of QCD radiation, thus making contact with our previous work [25, 27].

The key result of this work is the derivation of the interference spectrum, cf. eq. (4.16),

while a complete and detailed discussion of the emerging physical picture is presented

in [26, 28], see also [29] for a complementary discussion. The paper is structured as follows.

At the outset, in section 2, we discuss briefly the known coherence phenomena relevant for

high-energy physics and heavy-ion collisions. Then, in section 3, we present and solve the

classical Yang-Mills equations for the qq̄ antenna, thus obtaining a compact expression for

the medium-induced gluon field. Medium averages for the total spectrum are described in

section 4 where we also present the novel interference spectrum J , given in eq. (4.16), which

encodes the new ingredients of transverse coherence in medium. The general properties

of this spectrum are also outlined in brief. In particular, the emergence of strong color

screening in relatively opaque media leads to a “memory loss” effect, discussed in section 5.

In this case the induced gluon spectrum becomes the incoherent superposition of radiation

off the quark and the antiquark. Finally, we summarize and conclude in section 6.

2 Color coherence phenomena in a few words

Coherence phenomena in jet physics have been extensively studied in the framework of

perturbative QCD since the early 80’s (see, e.g., [30–33] and references therein). It has been

shown that they substantially affect experimental observables. The effect that proved to be

crucial dealt with jet evolution in vacuum: the so-called color coherence. The cascading of

a jet, initiated by a hard parton, occurs in a coherent manner. In other words, subsequent

parton branchings of the shower are not independent but depend on the characteristics of

the previous branching. More precisely, it was found that successive parton branchings are

ordered in angles [34, 35]. This limits the phase space for soft emissions that tend to occur

at large angles. Experimentally, this fact is manifested in the depletion of soft hadrons in

the single-inclusive particle distribution, which exhibits the so-called humpbacked plateau.

The feature of angular ordering reflects the transverse dynamics of the jet. As a

simple example, let us consider the radiation pattern of a qq̄ antenna with opening angle

θqq̄ in a color singlet state. As long as the transverse wave length of the radiated gluon,

λ⊥ ∼ 1/k⊥, is smaller than the transverse dipole separation when the gluon is formed,

r⊥ ∼ tformθqq̄ (the formation time being defined as tform ∼ ω/k2
⊥ where ω and k⊥ are
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the gluon energy and transverse momentum, respectively), the gluon resolves the color

structure of the pair and therefore is radiated either off the quark or the antiquark. In the

opposite case the radiation is strongly suppressed since the gluon cannot resolve the color

structure of the antenna. In terms of angles, this means that gluons emitted at angles

θ > θqq̄ are suppressed. Clearly, this coherence phenomenon arises as long as two or more

emitting particles are involved. Generally speaking, small-angle radiation which resolves

the independent emitters is incoherent while large-angle gluons are sensitive to the total

charge of the system and are therefore emitted coherently. In the following we shall refer

to this color coherence phenomenon by “transverse coherence”.

In the case of in-medium radiation, another type of coherence arises which we, in

contrast to the above, will call “longitudinal coherence”, namely, when the medium is

dense enough an energetic particle can scatter coherently off several scattering centers

along its trajectory during its formation time, tform ∼ Ncohλ (λ being the mean free path

in the medium and Ncoh the number of coherent scattering centers). It was realized a some

time ago that this is analogous to the Landau-Pomeranchuk-Migdal (LPM) effect known

from QED. In particular, the medium-induced radiative spectrum is suppressed by a factor

1/
√
ω, as compared to incoherent radiative spectra induced by a single scattering, due to

destructive interferences between theNcoh scattering centers. The BDMPS-Z spectrum [12–

15] mentioned above, which takes into account the non-Abelian LPM effect, has been the

main ingredient in most studies of parton energy loss in the QGP.

For the study of jet evolution in heavy-ion collisions it therefore seems imperative to

incorporate both the transverse and longitudinal coherence phenomena. However, such a

unified approach is missing to date. Only recently were both coherence effects considered

together in the context of antenna radiation in medium [25–29].

Let us here merely point out a general analogy between the two phenomena. Note

how the transverse and longitudinal wavelengths, λ⊥ and λ‖ ∼ tform, each are sensitive

to the number of emitters and the number of scattering centers, respectively, determining

the breakdown of independent radiation (in the former case) or scattering (in the latter)

and the onset of coherence in both cases. In this work, we shall address the issue of both

transverse and longitudinal coherences in the same setup, which we argue is the building

block of in-medium jet calculus.

3 Emission amplitude from classical Yang-Mills equations

As in our previous works [25–27], we shall proceed in the framework of the classical Yang-

Mills (CYM) equations, applicable for soft gluon radiation off an energetic charge [24].

First, let us recall the amplitude of emitting a gluon with momentum k ≡ (ω,~k), given by

the standard reduction formula,

Ma
λ(~k) = lim

k2→0

∫
d4x eik·x�xA

a
µ(x)εµλ(~k) , (3.1)
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where εµλ(~k) is the gluon polarization vector while Aaµ, the classical gauge field, is the

solution of the CYM equations,

[Dµ, F
µν ] = Jν , (3.2)

with Dµ ≡ ∂µ − igAµ and Fµν ≡ ∂µAν − ∂νAµ − ig[Aµ, Aν ]. The covariantly conserved

current, i.e., [Dµ, J
µ] = 0, describes the projectiles.

We shall carry out our calculation in the light-cone gauge (LCG) A+ = 0,1 where only

the transverse polarization contribute to the cross-section, and
∑

λ ε
i
λ(εjλ)∗ = δij , where

i(j) = 1, 2. Then, the differential gluon radiation spectrum is given by

dN =
∑
λ=1,2

|Ma
λ(~k)|2 d3k

(2π)3 2k+
, (3.3)

where the phase space is d3k ≡ d2k dk+.

Consider an energetic qq̄ pair with momenta p ≡ (E, ~p) and p̄ ≡ (Ē, ~̄p), respectively,

created in the splitting of a highly virtual photon or gluon generated in a hard process

and moving in the +z direction. In the infinite energy limit, or equivalently for soft gluon

radiation, this virtual state has a life-time too short to be resolved by the emitted gluon.

Indeed, for soft gluons the pair looks like if it was produced instantaneously at t = 0. This

property is the basis of soft-collinear factorization.

In the absence of the medium, the classical eikonalized current that describes the pair

created at time t0 = 0 reads Jµ(0) = Jµq (0) + Jµq̄ (0) + Jµ3 (0), where, e.g., the quark vacuum

current reads

Jµ,aq (0) = g
pµ

E
δ(3)(~x− ~p

E
t) Θ(t)Qaq . (3.4)

In momentum space the total current reads

Jµ,a(0) (k) = −ig
(

pµ

p · k + iε
Qaq +

p̄µ

p̄ · k + iε
Qaq̄ −

pµ3
p3 · k + iε

Qa3

)
, (3.5)

where Qq denotes the color charge vector of the quark (and, analogously, Qq̄ for the anti-

quark). The third component of the current is needed for charge conservation, such that

k ·J(0) = 0 which leads to Qq+Qq̄ = Q3, while momentum conservation implies ~p3 = −~p−~̄p.
For a singlet antenna Q3 = 0. In the case of a colored antenna, the third component of the

current does not contribute in the frame where p3 ≈ (0, p−3 ,0) because of the gauge choice.

Taking the square of the total color charge vector, it is therefore possible to obtain the

scalar product of two different charges, which in our case are

Qq ·Qq̄ =

{
−CF for a singlet antenna (γ∗ → qq̄)

−CF + CA/2 for an octet antenna (g∗ → qq̄) ,
(3.6)

1The light-cone decomposition of the 4-vector x ≡ (x0, x1, x2, x3) is defined as x ≡ (x+, x−,x), where

x± ≡ (x0 ± x3)/
√

2 and x = (x1, x2).
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where CF ≡ (N2
c − 1)/2Nc and CA ≡ Nc are the fundamental and adjoint color charge-

squares of SU(3). The above reasoning can be extended to arbitrary color configurations

of the particles involved.2

We shall focus on the the region of small angles defined by: p+, p̄+ � |p|, |p̄| � k+ �
|k|. This is suitable in intrajet physics where one deals mainly with collimated particles.

The entire qq̄ pair and gluon system is then strongly collimated in the +z direction [24]. A

systematic way to perform this limit is to boost the medium in the opposite direction. Since

we are only interested in asymptotic states, i.e., in probing the field Aa(x) at large times,

x+ →∞, the amplitude (3.1) can be rewritten in a more convenient form (cf. appendix A),

namely

Ma
λ(~k) = −

∫
x+=+∞

dx−d2x eik·x 2∂+
x A

a(x) · ελ(~k) , (3.7)

for on-shell gluons, i.e., k2 = 0. With the gauge choice above only the transverse component

of the gauge field is dynamical. Its linear response to the medium interaction reads [24]

�Ai − 2ig
[
A−med, ∂

+Ai
]

= − ∂
i

∂+
J+ + J i , (3.8)

where the medium field Aµmed only has a negative light-cone component which, in the

limit considered above, is related to the medium color source density through the Poisson

equation −∂2A−med(x+,x) = ρmed(x+,x) [24]. In Fourier space it reads

A−med(q) = 2π δ(q+)

∫ ∞
0

dx+Amed(x+, q) eiq
−x+ . (3.9)

The current is found from the continuity relation, ∂µJ
µ = ig[A−med, J

+], which can be

solved iteratively [27] with

Jµq(m) = ig
pµ

p · ∂
[A−med, J

+
q(m−1)] , (3.10)

where the subscript m denotes the order of the expansion in the medium field. For m > 0,

in momentum space we get

Jµ,aq(m)(k) = −(ig)m+1 pµ

p · k

[
m∏
i=1

∫
d2qi
(2π)2

∫ x+i+1

0
dx+

i × e
i
p·qi
p+

x+i T · Amed(x+
i , qi)

]ab
Qbq e

i p·k
p+

x+m ,

(3.11)

where x+
m+1 = L is the total medium length and T are the generators of SU(3) in the

adjoint representation, so that

[T · Amed(x+
i , qi)]

abQb = −ifabcAcmed(x+
i , qi)Q

b , (3.12)

2For example, the charge scalar product for a pure gluon antenna, i.e., g∗ → g1g2, is simply Qg1 ·Qg2 =

−CA/2, while gluon radiation off a quark, q∗ → qg, yields Qq ·Qg = −CF /2.
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where fabc are the SU(3) structure constants. Summing over the number of possible inter-

actions, Jµ,aq =
∑∞

m=0 J
µ,a
q(m), yields

Jµ,aq (k) = −ig pµ

p · k

[
δab +

∫ L

0
dx+ e

i p·k
p+

x+
∂−Uabp (x+, 0)

]
Qbq , (3.13)

where Up denotes the Wilson line in the adjoint representation, tracing the trajectory of

the quark which is given by its momentum p. It is found from the general definition of the

Wilson line in the adjoint representation, given by

U(x+, 0; [r]) ≡ Pξ exp

[
ig

∫ x+

0
dξ T ·A−med (ξ, r(ξ))

]
, (3.14)

where Pξ denotes path ordering along ξ and r is defined by the trajectory of the probe by

setting

Up(x
+, 0) ≡ U(x+, 0; [r])

∣∣
r(ξ)=ξ p/p+

. (3.15)

Note that color indices are omitted when they are obvious to alleviate the notations. The

general medium-modified current, given in eq. (3.13), was obtained for the first time in [27].

In coordinate space, it simplifies to

Jµq (x) = Up(x
+, 0) Jµq(0)(x), (3.16)

with the vacuum current defined in eq. (3.4). Note that Up(x
+, 0) = Up(L, 0) for x+ > L.

Returning presently to the calculation of the gauge field, the solution of eq. (3.8) takes the

following form

Aiq(x) =

∫
d4y G(x, y) J̃ iq(y), (3.17)

where the modified current reads

J̃ i = − ∂
i

∂+
J+ + J i , (3.18)

and the retarded Green’s function is defined by(
�− 2 ig T ·A−med∂

+
)
G(x, y) = δ(4)(x− y). (3.19)

Note that this Green’s function is invariant under translations along the x− direction due

to the fact that the medium field depends only on x+ and x. This translational symmetry

yields the conservation of the gluon energy k+ while traversing the medium and holds as

long as k+ � |k|. This property allows us to introduce another useful Green’s function

G(x+,x ; y+,y|k+) =

∫ +∞

−∞
dx−ei(x−y)−k+2∂+

x G(x, y) , (3.20)

which obeys the following Schrödinger-like equation(
i∂− +

∂2

2k+
+ g T ·A−med

)
G(x+,x ; y+,y|k+) = iδ(x+ − y+)δ(x− y) . (3.21)

– 6 –
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The solution to eq. (3.21) is well known and can be expressed in terms of a path integral

in the transverse plane, leading to

G
(
x+,x; y+,y|k+

)
=

∫
D[r] exp

[
i
k+

2

∫ x+

y+
dξ ṙ2(ξ)

]
U(x+, y+; [r]) , (3.22)

where U(x+, y+; [r]) is defined in eq. (3.14) and the boundary conditions are r(y+) = y

and r(x+) = x. The Green’s function G describes simultaneously the color rotation of

the emitted gluon together with its Brownian motion in the transverse plane due to the

interactions with the background field [16, 24, 36].

Inserting the field solution (3.17) into eq. (3.7), we obtain the amplitude

Ma
λ,q(

~k) =

∫
x+=+∞

d2x eik
−x+−ik·x

∫
dy+dy−d2y eik

+y−

× Gab(x+,x; y+,y|k+)U bcp (y+, 0) ελ · J̃
c

q(0)(y) , (3.23)

where k− = k2/2k+ for the on-shell gluon. Simplifying further by integrating over y− and

y by making use of the vacuum current given in eq. (3.4), the amplitude in eq. (3.23) finally

becomes

Ma
λ,q(

~k) =
g

k+

∫
x+=+∞

d2x eik
−x+−ik·x

∫ +∞

0
dy+e

i k
+p−

p+
y+

× ελ ·
(
i∂y + k+n

)
Gab(x+,x ; y+,y |k+)

∣∣∣
y=n y+

U bcp (y+, 0)Qcq , (3.24)

where we have introduced the dimensionless vector n = p/p+ (equivalently, n̄ = p̄/p̄+

for the antiquark). The corresponding amplitude for the antiquark, Ma
λ,q̄(

~k), is found by

substituting p with p̄ and Qq with Qq̄.

Summarizing, the amplitude in eq. (3.24) describes the propagation of the quark, with

color charge Qq, from the beginning of the medium up to a point y+ where the gluon

emission takes place, and the further propagation of the gluon through the medium out to

the detector. The process is depicted in figure 1. Note that y+ > L implies gluon vacuum

emission off an in-medium color rotated quark current.

4 The antenna spectrum in the presence of a medium

In the following, we assume a simple model for the medium, namely that it is made out of

uncorrelated, static scattering centers (in the spirit of the Glauber picture). Then, we can

treat the background field, Amed, as a Gaussian white noise. The medium average of two

fields can therefore be written as

〈Aamed(x+, q)A∗bmed(x′+, q′)〉 ≡ δab n(x+) δ(x+ − x′+)(2π)2 δ(2)(q − q′)V2(q) , (4.1)

where V(q) is the medium interaction potential and n(x+) is the 3-dimensional density

of scattering centers. In a static medium, V(q) is usually chosen to be a Debye-screened

Coulomb potential [16, 17, 36].
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0 Ly+

p̄

k

p

+ sym.

Figure 1. The gluon radiation amplitude off an energetic qq̄ pair created at t = 0 in a medium of

length L. The gluon is emitted at time y+ (cf. eq. (3.24)).

+ +sym.

Figure 2. Represention of the various contributions to the in-medium antenna spectrum. The first

diagram stands for the interference part J , while the second one stands for the BDMPS part Rq.

The rest symbolizes the symmetric configuration.

Considering for the moment the most general case of a virtual gluon splitting into a

quark-antiquark pair, g∗ → qq̄, the spectrum can be written in the standard form [30] as

dN =
αs

(2π)2
[CFRsing + CA J ]

d3k

(k+)3
, (4.2)

where we have introduced the spectrum of a color-singlet antenna

Rsing = Rq +Rq̄ − 2J , (4.3)

and

CF Rq = (k+)2〈|Mq|2〉 , (4.4)

CF Rq̄ = (k+)2〈|Mq̄|2〉 (4.5)

(−CF + CA/2)J = (k+)2 〈ReM∗qMq̄〉 , (4.6)

represent the independent radiation components off the quark, the antiquark and the inter-

ferences, respectively. Here, 〈· · · 〉 stand for medium averages as defined in eq. (4.1). Note

that the first term in eq. (4.2) is proportional to the color charge of the quark/antiquark

constituents whereas the second term is proportional to the total charge of the antenna.

The total spectrum in eq. (4.2), with its various components, is illustrated in figure 2.

Because of the symmetries between the quark and the antiquark emission amplitudes

we only need to evaluate the cross term, J , represented in the left panel of figure 2. Using
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eq. (3.24) we obtain

J = Re

{∫ +∞

0
dy′+

∫ y′+

0
dy+

∫
d2x

∫
d2x′e−ik·(x−x

′)+ik+(n2y+−n̄2y′+)/2

×
(
i∂y + k+n

)
·
(
−i∂y′ + k+ n̄

) 1

N2
c − 1

〈TrG(∞,x; y+,y|k+)Up(y
+, 0)

× U †p̄(y′+, 0)G†(∞,x′; y′+,y′|k+) 〉
}

+ sym. , (4.7)

where the gluon is emitted at y+ in the amplitude and at y′+ > y+ in the complex conjugate.

The symmetric part, i.e., interchanging q ↔ q̄ in all relevant quantities, accounts for the

opposite y+ ordering. Then, the medium average can be split into three pieces, namely

1

N2
c − 1

〈TrG(∞,x; y+,y|k+)Up(y
+, 0)U †p̄(y′+, 0)G†(∞,x′; y′+,y′|k+) =∫

d2z
1

N2
c − 1

〈TrG(∞,x; y′+, z|k+)G†(∞,x′; y′+,y′|k+)〉

× 1

N2
c − 1

〈TrG(y′+, z; y+,y|k+)U †p̄(y′+, y+)〉

× 1

N2
c − 1

〈TrUp(y+, 0)U †p̄(y+, 0)〉 , (4.8)

where we have used the following identity

G(∞,x; 0,y|k+) =

∫
d2z G(∞,x; z+, z|k+)G(z+, z; 0,y|k+) . (4.9)

In the region from 0 to y+ < y′+ the gluon is not produced yet, neither in the amplitude

nor in the complex conjugate. The pure quark-antiquark interference is described by

1

N2
c − 1

〈TrUp(y+, 0)U †p̄(y+, 0)〉 = 1−∆med(y+, 0), (4.10)

where ∆med was defined in [27] as the decoherence rate of the antenna,

∆med(y+, 0) ≡ 1− exp

[
−1

2

∫ y+

0
dξ n(ξ) σ(δn ξ)

]
, (4.11)

with δn = n− n̄. The modulus of this vector corresponds roughly to the opening angle of

the pair, i.e., |δn| ≡ sin θqq̄ ∼ θqq̄. The decoherence rate depends on the dipole cross-section

σ, which is given by

σ(δn ξ) = 2αsCA

∫
d2q

(2π)2
V2(q) [1− cos(δn · q ξ)] . (4.12)

For consistency with previous calculations, we note that n(ξ)σ(r) ≈ 1
2 q̂(ξ) r

2 in the ‘har-

monic oscillator’ approximation [37], which is valid in the limit of multiple soft scatterings.

Here, q̂ is the medium transport coefficient probing the accumulated transverse momentum

squared per unit length.
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From y+ to y′+, there is an interference between gluon and antiquark-medium inter-

actions, which is described by

1

N2
c − 1

〈TrG(y′+, z; y+,y|k+)U †p̄(y′+, y+)〉 =

exp

{
ik+n̄ ·

[
z̄(y′+)− ȳ(y+)

]
+ i

k+

2
n̄2(y′+ − y+)

}
×K

(
y′+, z̄(y′+) ; y+, ȳ(y+)|k+

)
,

(4.13)

where z̄(y′+) = z − n̄ y′+ and ȳ(y+) = y − n̄ y+. The gluon multiple scattering with the

medium is taken into account by the path integral K [16, 17, 36], given by

K
(
y′+, z; y+,y|k+

)
=

∫
D[r] exp

[∫ y′+

y+
dξ

(
i
k+

2
ṙ2(ξ)− 1

2
n(ξ)σ(r)

)]
, (4.14)

which describes the Brownian motion of the gluon the transverse plane from r(y+) = y to

r(y′+) = z. Finally, the medium average involving the gluon line element from y′+ to +∞
reads∫

d2x

∫
d2x′

e−ik·(x−x
′)

N2
c − 1

〈TrG(+∞,x; y′+, z|k+)G†(+∞,x′; y′+,y′|k+) 〉 =

exp

[
−ik · (z − y′)− 1

2

∫ +∞

y′+
dξ n(ξ)σ(z − y′)

]
. (4.15)

For more details on medium averages see, for instance, [16, 24].

Putting everything together and after some straightforward algebra we obtain

J = Re

{∫ ∞
0

dy′+
∫ y′+

0
dy+

(
1−∆med(y+, 0)

)
×
∫
d2z exp

[
−iκ̄ · z − 1

2

∫ ∞
y′+

dξ n(ξ)σ(z) + i
k+

2
δn2y+

]
×
(
∂y − ik+ δn

)
· ∂z K(y′+, z ; y+,y |k+)

∣∣
y=δny+

}
+ sym. , (4.16)

where κ̄ = k− x̄p̄ (similarly, κ = k− xp ), and we have defined the light-cone momentum

fractions x = k+/p+ and x̄ = k+/p̄+. Equation (4.16) is the main result of this paper. It

describes the interference pattern between in-medium gluon radiation off a quark and an

antiquark constituting a collimated antenna.

Taking the limit δn → 0 in eq. (4.16) we find the spectrum off a single quark Rq,
explicitly given by

Rq = 2 Re

{∫ ∞
0
dy′+

∫ y′+

0
dy+

∫
d2z exp

[
−iκ · z − 1

2

∫ ∞
y′+

dξ n(ξ)σ(z)

]
× ∂y · ∂z K(y′+, z ; y+,y = 0 |k+)

}
, (4.17)

where the factor 2 accounts for the opposite y+ ordering. The antiquark spectrum Rq̄ is

found analogously. This corresponds to the BDMPS-Z spectrum, in accordance with [16,

17, 36].
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5 Decoherence in opaque media

The various parts of the total antenna spectrum (4.2), given in eq. (4.16) and eq. (4.17),

respectively, have many features in common. As mentioned before, both account for mul-

tiple scattering of all partons involved in the process — most importantly, the gluon —

and therefore properly account for longitudinal coherence, which is reflected in the LPM

suppression phenomenon. Apart from explicit dependence on the opening angle of the pair

and the color charge, the interference terms of the antenna spectrum (4.16) differs from

the BDMPS-Z spectrum (4.17) mainly by the appearance of factors that encompass the

main elements of transverse coherence in medium. Postponing a exhaustive analysis of

all the features of the gluon in-medium spectrum to a follow-up paper [28], presently we

merely want to point out the most important of these. See also [27] for a analysis valid for

relatively dilute media.

The interferences, given in eq. (4.16), are principally governed by the so-called deco-

herence factor 1−∆med(y+, 0) [27], which is sensitive to the medium density and vanishes

in the opaque limit. To estimate the relevant timescale for this depletion, let us presently

assume that the constituents undergo multiple soft scatterings with a medium made out

of independent scattering centers.3 Thus, in the “harmonic oscillator” approximation [37]

the decoherence rate becomes

∆med(t, 0) = 1− exp

(
− 1

12
q̂ θ2

qq̄ t
3

)
. (5.1)

The decoherence rate tends to one exponentially controlled by the characteristic timescale

for decoherence

td ≡
(
q̂ θ2

qq̄

)−1/3
. (5.2)

Hence, when ∆med(td, 0) ∼ 1 all interferences are suppressed and the pair decoheres. It

follows that for td � L, interferences are suppressed as compared to the incoherent contri-

butions to the spectrum, as noted also in [29]. This phenomenon can be understood as a

screening effect in the presence of a dense medium [27]. Not only does the quark (“daugh-

ter”) loose sensitivity of the color charge of the antiquark (its “sibling”) but it also becomes

oblivious to the color charge of the “parent” gluon. This is reflected in the important fact

that the spectrum in medium becomes independent of the total color charge of the antenna,

see eq. (4.2). It is nevertheless important to point out that the above considerations imply

on the other hand that the interferences are instrumental at short timescales, t < td, and in

particular in the regime where td > L. In this case, the interferences are weakly suppressed

and decoherence is partial, see [25–27].

6 Conclusions

To summarize, we have computed the emission spectrum off a qq̄ antenna in both color

singlet and octet representations traversing an arbitrary dense and colored medium. This

3This implies that the range of interaction of these centers, or their screening length, should be much

smaller than the mean free path λmfp.
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generalizes our previous results in [25], which were valid only for dilute media, and in [27],

where we only considered the strictly soft limit.

Our main result is the interference spectrum, given in eq. (4.16), which encompasses

two distinct types of QCD coherence. On one hand, the transverse momentum broadening

of the gluon described by the path integralK is a manifestation of the longitudinal coherence

which results in LPM suppression. On the other hand, due to the proper treatment of the

transverse dynamics of the pair, J additionally contains interference between emissions off

two different projectiles. The latter, radiative interferences, are crucial for building up the

vacuum cascade and for accounting in a proper way for QCD coherence. Our results thus

establish generically how these effects are modified in the presence of an arbitrarily dense

medium. We have argued that this leads to an exceptionally simple picture: the increase

of the medium density leads to total decoherence of the pair. In effect, for dense enough

media the emitters radiate independently of each other and, furthermore, they “forget”

about the existence of the total charge of their parent.

The main result of this paper, eq. (4.16), is quite general and a more detailed analysis of

the antenna spectrum as a function of the medium characteristics goes beyond the scope of

this study. The latter are fully contained in the two-point correlator eq. (4.1). For ‘dilute’

media, where one is sensitive to rare medium interactions, a full analysis of the in-medium

spectrum was already presented in [26]. For a general discussion applicable for multiple soft

scattering with the medium, where we can employ the “harmonic oscillator” approximation

as already mention in section 5, we refer the reader to [28], on the other hand. Finally, it

is worth pointing that eq. (4.16) also includes the virtuality-driven spectrum that is still

present even for vanishing medium characteristics, see also [28] for a further discussion.
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A The reduction formula eq. (3.7)

In this appendix we shall see how we obtain the reduction formula in eq. (3.7). To alleviate

the notation let us consider a generic field A(x). Then, the amplitude for real gluon

production is given by the LSZ reduction formula,

M(~k) = lim
k2→0

∫
d4x eik·x�xA(x) , (A.1)
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where x+ is evaluated up to some finite value which should then be sent to infinity. Ex-

plicitly,

M(~k) = lim
k2→0

lim
z+→+∞

∫ z+

d4x eik·x (2∂+∂− − ∂2)A(x)

= lim
k2→0

lim
z+→+∞

[ ∫
dx−d2x eik·x 2∂+A(x)

∣∣∣
x+=z+

− ik−
∫ z+

dx+d2x eik·xA(x)
∣∣∣
x−=+∞

− k2

∫ z+

d4x eik·xA(x)

]
. (A.2)

The second term vanishes since the field vanishes in the limit x− →∞. The remaining two

terms are sensitive to the order of the limits. For example, taking the z+ limit first leads

to the standard relation

M(~k) = lim
k2→0

−k2A(k) , (A.3)

where the field is defined in momentum space. On the other hand, enforcing the on-shell

condition from the outset, we end up with

M(~k) = lim
x+→+∞

∫
dx−d2x eik·x 2∂+

x A(x) , (A.4)

where all quantities are defined in coordinate space and we have specified the space-time

point the derivative acts upon.
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