
Differential Fault Analysis
of Secret Key Cryptosystems

Eli Biham
Computer Science Department

Technion - Israel Institute of Technology

Haifa 32000, Israel

biham~cs.technion.ac.il

http://www.cs.technion.ac.i l / 'biham/

Adi Shamir
Applied Math. and Comp. Sci. Department

The Weizmann Institute of Science

Rehovot 76100, Israel

shamir~wisdom.weizmann.ac51

Abstract
In September 1996 Boneh, Demillo, and Lipton from Bellcore announced

a new type of cryptanalytic attack which exploits computational errors to find
cryptographic keys. Their attack is based on algebraic properties of modular
arithmetic, and thus it is applicable only to public key cryptosystems such
RSA, and not to secret key algorithms such as the Data Encryption Standard
(DES).

In this paper, we describe a related attack, which we call Differential Fault
Analysis, or DFA, and show that it is applicable to almost any secret key
cryptosystem proposed so far in the open literature. Our DFA attack can use
various fault models and various cryptanalytic techniques to recover the cryp-
tographic secrets hidden in the tamper-resistant device. In particular, we have
demonstrated that under the same hardware fault model used by the BeUcore
researchers, we can extract the full DES key from a sealed tamper-resistant DES
encryptor by analyzing between 50 and 200 ciphertexts generated from unknown
but related plalntexts.

In the second part of the paper we develop techniques to identify the keys
of completely unknown ciphers (such as SkipJack) sealed in tamper-resistant
devices, and to reconstruct the complete specification of DES-like unknown
ciphers.

In the last part of the paper, we consider a different fault model, based
on permanent hardware faults, and show that it can be used to break DES by
analyzing a small number of ciphertexts generated from completely unknown and
unrelated plaintexts.

1 Introduction

In September 1996 Boneh, Demillo, and Lipton from Bellcore announced an ingenious
new type of cryptanalyt ic a t tack which received widespread attention[11,5]. This

514

attack is applicable only to public key cryptosystems such as RSA, and not to secret
key algorithms such as the Data Encryption Standard (DES)[17]. According to Boneh,
"The algorithm that we apply to the device's faulty computations works against the
algebraic structure used in public key cryptography, and another algorithm will have
to be devised to work against the non-algebraic operations that are used in secret key
techniques". In particular, the original Bellcore attack is based on specific algebraic
properties of modular arithmetic, and cannot handle the complex bit manipulations
which underty most secret key algorithms.

This type of attack on a tamper-resistant device shows that even cryptographic
schemes sealed inside such devices might leak information about the secret key. Earlier
papers on this subject, including the papers of Anderson and Kuhn[1], and of Kocher[8],
had shown that tamper-resistant devices are vulnerable to several types of attacks
including attacks against the protocols, attacks using carelessness of the device's pro-
grammers, and timing attacks.

In this paper, we describe a new attack, related to Boneh, Demillo, and Liptons'
attack, which we call Differential Fault Analysis, or DFA, and show that it is applicable
to almost any secret key cryptosystem proposed so far in the open literature. In
particular, we have actually implemented DFA in the case of DES, and demonstrated
that under the same hardware fault model used by the Bellcore researchers, we can
extract the full DES key from a sealed tamper-resistant DES encryptor by analyzing
between 50 and 200 ciphertexts generated from unknown but related plaintexts. In
more specialized cases, as few as five ciphertexts are sufficient to completely reveal
the key. The power of Differential Fault Analysis is demonstrated by the fact that
even if DES is replaced by triple DES (whose 168 bits of key were assumed to make
it practically invulnerable), essentially the same attack can break it with essentially
the same number of given ciphertexts.

Differential Fault Analysis can break many additional secret key cryptosystems,
including IDEAl9], RC5[19] and Feal[21,16,14,15]. Some ciphers, such as Khufu[13],
Khafre[13] and Blowfish[20] compute their S boxes from the key material. In such
ciphers, it may be even possible to extract the S boxes themselves, and the keys,
using the techniques of Differential Fault Analysis. Differential Fault Analysis can
also be applied against stream ciphers, but the implementation might differ in some
technical details from the implementation described above. At this point we should
note that small differences in the fault models might crucially affect the capabilities
and the complexities of the attacks.

Differential fault analysis is not limited to finding the keys of known ciphers:
We introduce an asymmetric fault model which makes it possible to find the secret
key stored in a tamper-resistant cryptographic device even when nothing is known
about the structure and operation of the cryptosystem. A prime example of such a
scenario is the SkipJack cryptosystem, which was developed by the NSA, has unknown
design, and is embedded as a tamper-resistant chip inside the commercially available
Fortezza PC cards. We have not tested this attack on SkipJack, but we believe that
it is a realistic threat against some smartcard applications which were not specifically
designed to counter it.

Moreover, we show that in most interesting cases we can extract the exact structure

515

of an unknown DES-like cipher sealed in the tamper-resistant device, including the
identification of its round functions, S boxes, and subkeys. If the attacker can only
encrypt with the tamper-resistant device with a fixed key (e.g., in PIN verifying
devices), still the attacker can identify the operation of the cipher with this particular
key, which lets him encrypt and decrypt under this key.

The transient fault model used in all these attacks has not been demonstrated in
physical experiments, and was questioned by representatives of the smartcard industry.
We thus suggest a practical attack based on a different fault model which will hopefully
be less controversial. In this model we cut one wire or permanently destroy a single
memory cell in the smartcard using a narrow laser-beam. This model allows us to
mount a pure ciphertext only attack which finds the key with only a few ciphertexts
generated from random unrelated unknown plaintexts. The attack is thus applicable
even when the smartcard chooses the message it wants to encrypt, and even it if uses
counters or random bits to foil differential attacks on related plaintexts.

2 T h e A t t a c k on D E S

Todays' computers are extremely reliable. Still, it is possible for interested parties to
intentionally induce faults into some kinds of computations. Although this is almost
impossible to do to a remote computer or to a mainframe, it can be done to smartcards.

In many applications (like electronic money, identification systems, or access con-
trol) smartcards are used as secure extensions of the host, and enable their owners to
apply cryptographic computations without knowing the hosts' secret keys. It is as-
sumed that the smartcards are tamper-resistant, and thus even the owner of a smart-
card cannot open it or reverse-engineer it in order to reveal the secret keys kept inside
the smartcard.

However, due to the simplicity of the smartcards, and the ability of its owner
to control the environment, the owner of the smartcard can force the smartcard to
malfunction in many ways, such as changing the power supply voltage, changing the
frequency of the (external) clock, and applying radiation of many kinds.

Boneh, Demillo, and Lipton suggested using faults induced by the card owner in
order to deduce the private keys in number theoretic public key cryptosystems.

We use the following fault model, similar to the model used by Boneh, Demillo,
and Lipton: The smartcard is assumed to have random transient faults in its re-
gisters, with some small probability of occurrence in each bit, so that during each
encryption/decryption there appears a small number of faults (typically one) during
the computation, and each such fault inverts the value of one of the bits, either from
zero to one or from one to zero.

More accurately, we assume that during each faulty computation there occurs one
(or a few) faults, at random times during the computations, and with random choice
of the registers and positions in the registers. Both the bit location and the exact
timing of the fault are unknown to the attacker.

This model lets the attacker induce errors at some random position during the DES
encryption, i.e., at some random bit of one of the registers in a random round. For

516

the sake of simplicity we assume that the only affected registers are those keeping the
right half of the data (the registers keeping the left half do not affect the results till
they are exchanged with the right half), i.e., we assume that faults may occur in one
of the 16 �9 32 = 512 bits of the right halves of the 16 rounds, and the fault position is
unknown to the attacker.

In the attack, the attacker uses the smartcard to encrypt some (possibly unknown)
plaintext twice. The attacker compares the two results, and if they differ, he assumes
that a fault occurred during exactly one of the two encryptions. As a result, he obtains
two ciphertexts derived from the same (unknown) plaintext and key, where one of the
ciphertexts is correct and the other is the result of a computation corrupted by a single
bit error during the computation.

In the first step of the attack we identify the round in which the fault occurred.
This identification is very simple and effective: If the fault occurred in the right half
of round 16, then only one bit in the right half of the ciphertext (before the final
permutation) differs between the two ciphertexts. The left half of the ciphertext can
differ only in output bits of the S box (or two S boxes) to which this single bit enters,
and the difference must be related to non-zero entries in the difference distribution
tables[4] of these S boxes. In such a case, we can guess the six key bits of each such
S box in the last round, and discard any value which disagrees with the expected
differences of these S boxes. On average, about four possible 6-bit values of the key
remain for each active S box.

If the faults occur in round 15, we can gain information on the key bits entering
more than two S boxes in the last round: the difference of the right half of the ciphertext
equals the output difference of the F function of round 15. We guess the single bit fault
in round 15, and verify whether it can cause the expected output difference, and also
verify whether the difference of the right half of the ciphertext can cause the expected
difference in the output of the F function in the last round (i.e., the difference of the
left half of the ciphertext XOR the fault). If successful, we can discard possible key
values in the last round, according to the expected differences. We can also analyse
the faults in the 14'th round in a similar way. We use counting methods in order
to find the key. In this case, we count for each S box separately 1, and increase the
counter by one for any pair which suggests the six-bit key value by at least one of
its possible faults in either the 14'th, 15'th, or 16'th round. The right value of the
key is expected to be counted more frequently than any wrong value, and thus can be
identified.

We have implemented the algorithmic part of this attack on a personal computer.
Our analysis program found the whole last subkey given between 50 and 200 cipher-
texts, by simulating random single-faults in all the rounds.

This attack finds the last subkey. Once this subkey is known, we can proceed in
two ways: We can use the fact that this subkey contains 48 out of the 56 key bits in
order to guess the missing 8 bits in all the possible 2 s = 256 ways. Alternatively, we
can use our knowledge of the last subkey to peel off the last round (and remove faults
that we already identified), and analyse the preceding rounds with the same data using

!.Counting on more than one consecutive S box should reduce the number of required ciphertexts.

517

the same attack. This latter approach makes it possible to attack triple DES (with
168 bit keys), or DES with independent subkeys (with 768 bit keys).

This attack still works even under more general assumptions on the fault locations,
such as faults inside the function F. more than one fault during encryption, or even
faults in the key or the key scheduling algorithm.

To check these claims, we have implemented a variant of this attack in which the
faults may occur also in the inputs of the F function, rather than only in the right half
of the data (i.e., the faults do not affect the following rounds directly), and found that
the number of ciphertexts required to find the key is about the same as in the original
attack, although the faults may occur in twice as many positions.

If the attacker can induce the faults in a chosen position or a chosen time during
encryption, he can improve his results by a large factor. For example, if the attacker
can cause the faults to appear uniformly in the last two, three, or four rounds of the
DES encryption (rather than in all the 16 rounds), our attack requires only about 10
ciphertexts! If the attacker can choose the exact position of the fault, this number can
be further reduced to about 3 ciphertexts.

2.1 D i s c u s s i o n

We described a new attack on ciphers using transient hardware faults. Smartcard
designers can try to counter this attack by computing the encryption function twice,
and outputting the ciphertext only if the results are identical. This solution is however
insufficient: the probability that the same fault occurs during both encryptions may
not be sufficiently small. In the attack there are only 512 possible positions for a
fault. When computing twice with a single random fault in each of the two encryp-
tions, there is a probability of 1/512 to generate the same fault in both computations.
Since the device outputs the doubly-corrupted results, the attacker receives the same
data as in the original attack, if he tries 512 as many encryptions. Thus, instead
of generating about 200 ciphertexts in the original attack, the device performs about
100000 encryptions.

In many cryptographic implementations, the key scheduling algorithm precom-
putes all the subkeys in advance, or computes the subkeys from the key every single
encryption. In such cases, it is easy to find ciphertext pairs whose differences result
only from one faulty subkey bit, when the faults affect the subkeys. In the attack we
should assume that the difference is caused by one faulty subkey bit, or by several
subkey bits caused by one fault during the key scheduling algorithm. The number of
ciphertexts required for such analysis is expected to remain about the same as in the
attack we described.

DFA can also be combined with other types of cryptanalytic attacks: for example,
when the cipher is computed by software in the device, the faults might affect the
program counter or the loop index. In such cases, we can apply more or fewer rounds
than required.

In some implementations, the DES key scheduling is applied with two 28-bit shift
registers, C and D, as in its original definition. The key rotates every round, and
is restored to its original state at the end of encryption, since the total number of

518

shifts during the 16 rounds is 28. If the faults affect the shifts of these registers,
then in the following encryptions the key is changed to a related key. Related key
cryptanalysis[3], or differential related key cryptanalysis[7] might be applied with
DFA in such cases. We expect that linear cryptanalysis[12] can also be combined
with DFA in some cases (in a similar way to differential-linear cryptanalysis[10]),
especially when the identification of the fault position is highly reliable (or when the
fault positions might be chosen by the attacker).

Variants of DFA attacks can in some cases also derive the keys of modes of opera-
tion in which only part of the ciphertext is known to the attacker. This is similar to the
situation studied in [18] for differential cryptanalysis of the CFB mode of operation.

3 Breaking Unknown Cryptosystems
In this section, we introduce a variant of DFA that can find the secret keys of unknown
cryptosystems, even if they are sealed inside tamper-resistant devices, and nothing is
known about their design. In this attack, we assume a slightly different fault model:
the main assumption behind this fault model is that the cryptographic key is stored
in an asymmetric type of memory, in which induced faults are much more likely to
change a one bit into a zero than to change a zero bit into a one (or the other way
around). CMOS registers seem to be quite symmetric, but most types of non-volatile
memory exhibit some degree of asymmetry. For example, a one bit in an EEPROM
cell is stored as a small charge on an electrically isolated gate. If the fault is induced
by external radiation (e.g., ultraviolet light), then the charges are more likely to leak
out of the gate than to be forced into the gate.

To make the analysis simpler, we assume that we can apply a low level phys-
ical stress to the tamper-resistant device when it is disconnected from power, whose
only possible effect is to occasionally flip one of the one bits in the key register to a
zero. The plausibility of this assumption depends on numerous physical and technical
considerations, which are beyond the scope of this paper.

We further assume that we are allowed to apply two types of cryptographic func-
tions to the given tamper-resistant device: We can supply a plaintext m and use the
current key k stored in the non-volatile memory of the device to get a ciphertext c, or
we can supply a new n-bit key k' which replaces k in the non-volatile memory.

The cryptanalytic attack has two stages: In the first stage, we keep the original
unknown secret key k stored in the tamper-resistant device, and use it to repeatedly
encrypt a fixed plaintext mo. After each encryption, we disconnect the device from
power and apply a gentle physical stress. The resultant stream of ciphertexts is likely
to consist of several copies of co, followed by several copies of a different cl, followed
by several copies of yet another c2, until the sequence stabilizes on c/. Since each
change is likely to be the result of one more key bit flipping from one to zero (thus
changing the current key ki into a new variant k~+l), and since there are about n/2
one bits in the original unknown key k, we expect f to be about n/2, and c/ to be the
result of encrypting m0 under the all-zero key k/.

In the second stage of the attack, we work our way backwards from the known

519

all-zero key k / t o the unknown original key k0. Assuming that we already know some
intermediate key k,+h we assume that ki differs from ki+l in a single bit position. If
we knew the cryptographic algorithm involved, we could easily try all the possible
single bit changes in a simple software simulation on a personal computer, and find
the (almost certainly unique) change which would give rise to the observed ciphertext
cl. However, we do not need either a simulator or knowledge of the cryptographic
algorithm, since we are given the real thing in the form of a tamper-resistant device
into which we can load any key we wish, to test out whether it produces the desired
ciphertext cl. We can thus proceed deterministically from the known k! to the desired
ko in O(n) stages, trying O(n) keys at each stage. The attack is guaranteed to succeed
if the fault model is satisfied, and its total complexity is at most O(n 2) encryptions.

This seems to be the first cryptanalytic attack which makes it possible to find the
secret key of a completely unknown cryptosystem in polynomial time (quadratic time
in our case). It relies on a particular fault model which is stronger than the transient
fault model described above, and which has not been experimentally verified so far. In
the full version of this paper we'll discuss numerous extensions of the attack, including
the analysis of more complicated fault models in which the sequence of corrupted keys
forms a biased random walk in the space of 2 n possible keys.

4 Reconstructing Unknown Ciphers

In this section we show how to reconstruct the full structure of unknown ciphers
hidden in tamper-resistant devices. We assume that the attacked cipher is a DES-
like cipher, which encrypts by applying some initial permutation and then applying
a round function several times. The round function applies some function F to the
right half of the data, XORs the result to the left half, and exchanges the roles of the
halves. Finally, some final permutation is performed.

In our attack we reconstruct the cipher in several steps. In each step we receive
some additional information on the unknown structure of the cipher: we start from
the final permutation and continue backwards through the rounds.

Note that the representation of the ciphers is not unique, and thus we cannot
identify the exact original definition of the cipher. Instead, we actually find a family
of representations, of which the original representation is a member. We can then
choose any member of the family as an equivalent representation of the cipher.

In the first step of the attack we study some information on the final permutation:
We identify which ciphertext bits come from the right half and which from the left
half of the last round, i.e., which bits affect which in the last round. We encrypt
several plaintexts several times, and collect pairs of ciphertexts consisting of the real
ciphertext of the plaintext and a faulty ciphertext resulting from some fault during
encryption of the same plaJntext. We identify the faults which occur in the last round
(or two) by counting the bits differing between the real ciphertext and the faulty
ciphertext. We use the pairs in which the number of differing bits in the ciphertexts
is smaller than a threshold (typically about a quarter of the blocksize), in which case,
it is almost certain that the fault occurred in the last round, or in the preceding one.

520

Each fault in the last round differs in one bit in the right half and several bits in the
left half. Therefore, the bits of the left half differ more frequently than the bits of the
right half. We can thus identify the bits of the right half as those which differ in the
least number of pairs.

Once we identify the bits of the right half and the bits of the left half, we can
observe which bits of the left half are affected by each bit of the right half via the
function F in the last round. In DES-like ciphers the F function is composed of S
boxes, and each S box takes a few of the bits of the right half, and affects a few of
the bits of the left half. We can easily identify the number of S boxes, and the input
and output bits of each S box: we just choose all the pairs which differ by only one
bit of the right half, and for each such bit we find the set of all the bits of the left half
which differ in those pairs. This information suffices to find the number of S boxes,
their sizes, and to identify the input and output bits of each S box.

Then, we reconstruct the content of the S boxes, with the specific unknown key
mixed into the input of the S boxes and some unknown value mixed into their output
(i.e., we can identify the table T(x), where T(x.) = S(x(gk)@u, where k is the (actual)
subkey, and u is derived from the right half of the preceding round). This can be done
since the pairs give us the difference T(x) ~ T(y), for two known values z and y. This
reconstruction is very effective. For example, if the unknown cipher is DES, we miss
information on only 6 + 4 = 10 bits out of the 64 * 4 = 256 unknown bits of each S
box, and if the unknown cipher is LOKI[6], we miss information on only 12 + 8 = 20
bits out of the 212 * 8 = 32768 bits of each S box of LOKI. These missing bits do
not reduce the success of the attack since we actually find all the information we need
for peeling off the last round: the subkeys are already mixed into the S boxes and
the extra constants are counted naturally as parts of the subkeys when analyzing the
preceding rounds. This way we can fully analyze the whole cipher, and receive its full
description with the specific key mixed into the S boxes.

Till now we identified the S boxes up to XOR with some unknown constants, some
of which are subkeys. We can further identify the S boxes and the subkeys by analyzing
encryptions under several keys and comparing the differences between the retrieved
tables T. In DES and LOKI the key scheduling algorithm and the S boxes can be easily
identified by such comparisons. In these ciphers, where the key scheduling actually
select key bits into the subkey (rather than making a more complex computation), the
selection pattern of the key bits can be identified by analyzing the effect of different
keys on the T boxes. Then, the effect of the subkeys on the T boxes can be removed,
resulting with the original S boxes and the key scheduling algorithm.

In some ciphers, the function F is not a composition of several S boxes as in DES
and LOKI, but may compute more complex operations. In this case we can model
the function F by a most general structure: for each possible subkey, the F function is
modeled as an arbitrary function. In this case we can view the F function as applying
one huge S box. The number of input and output bits of this huge S box is only half
the block size, and thus even though the identification of this whole S box requires
much work (about 238 in the case of a 16-round 64-bit DES-like cipher), it can still
be done for any particular key. The effect of the key on this S box can be removed in
most cases after repeating this computation for several keys.

52]

We have implemented major parts of this attack on a personal computer, using
DES as the unknown cipher. Our implementation required only about 500 faulty
ciphertexts to identify the bits of the right hal l and up to 5000 faulty ciphertexts to
identify the input and output bits of the S boxes, without reconstructing their actual
entries. Their complete reconstruction would require about 10000 faulty ciphertexts.
Note that the complexity of this S box reconstruction crucially depends on the size of
the S boxes: in DES there are 64 entries in each S box, and thus about 64 faults in the
input of an S box in different ciphertexts suffice to reconstruct the S box (except the
10 missing bits). In LOKI there are 4096 entries in each S box, and thus the number
of required faulty ciphertexts is much larger. If we view the F function as one large S
box, the number of entries of this huge S box is 232, and thus the number of required
faulty ciphertexts in this case is huge, but still practical.

5 Non-Differential Fault Analysis

The main criticism against differential fault analysis was the transient fault model
that was claimed to be unrealistic. Although we still believe that an attack based on
radiation-induced faults is possible, we decided to devise a more practical fault model
that will hopefully be less controversial.

The fault model considered in this section assumes that we can cut a wire or destroy
a memory cell in a register using a narrow laser beam directed into a carefully chosen
location in the silicon. As a result, during computation the values entering the affected
location can be considered to be permanently stuck at a fixed value, and can no longer
affect the rest of the computation. A similar fault model is considered in [2] where it
is used in conjunction with micro-probing to mount other attacks on smaxtcaxd-based
cryptosystems.

5 .1 T h e B a s i c A t t a c k

Based on this fault model we develop a pure ciphertext only attack, which, unlike M1
other ciphertext only attacks, does not make any assumption on the statistical distri-
bution of the plaintexts. Moreover, the ciphertext should only be received after the
permanent fault had already been generated; non-faulty ciphertexts axe not required
at all in this attack. Therefore, this attack will still work if faulty smaxtcaxds, which
already have the appropriate faults due to natural reasons, are given to the attacker.

We describe this attack against a smartcard implementation of DES. We assume
that DES is implemented in hardware as a single round, which is used 16 times as is
described in Figure I. We generate a permanent fault in the least significant bit of
the left-half register, either by destroying the bit or by cutting the wire which enters
or leaves this cell, and assume that the value of this bit is permanently stuck at zero.
Figure 2 describes the values computed by this iterated implementation in the last
round.

For any ciphertext the least significant bit (LSB) of the right half of the ciphertext
(Ll6) is zero, and the LSB of Lls is also zero. The LSB of the output of the F-function

522

,.-1. / - -
t~ I I

Figure 1. An Iterated Hardware Implementation of DES.

LI5 RI5
I Ioi I I~I

LI6 ~ R16
L ,, Iol I IXl

Figure 2. The Last Round in the Iterated Implementation of DES.

of the last round equals the LSB of the left half of the ciphertext (X, since the LSB
of L1s is zero). This bit is the output of $7 in the last round. The input of $7 is
formed by XORing 6 known ciphertext bits with six key bits. We can try all the 64
possible values of the six key bits, and discard any value which does not predict the
LSB of the right half of the ciphertext. Each ciphertext is used to discard about half
of the remaining key values. Thus, given about six ciphertexts (on whose plaintexts
the attacker has no information of any kind) the right value of the six key bits can
be identified. The other bits of the last subkey can be found by inducing additional
faults, or by enumerating and verifying additional key bits.

5.2 Attacks on Unrolled Implementations

The attack becomes easier if DES is implemented as 16 separate hardware rounds. In
this case, a permanent fault induced in one round would not directly affect the other
rounds. In this attack, it suffices to destroy the LSB of register Lls. In particular, if
we destroy the whole L15 in this case, we can find the key with only two ciphertexts.
We can even reduce the number of ciphertexts required to find 32 bits of the last
subkey uniquely to exactly one (rather than only in average) by also destroying the
first and sixth input bits entering the S boxes (after they are XORed with the subkey).
In this case, the F function becomes reversible, and thus its remaining inputs can be
computed uniquely from the outputs.

In an alternative attack, we can destroy all the bits of the subkey registers, except
in the first two rounds. Given the ciphertext, remove the last 14 rounds by decrypting

523

with zero subkeys. Equivalently, we can destroy the outputs of the F-function in
rounds 3-16, so that the outputs become zero. or even cut the cipher after the 14'th
round. In all these cases, the problem is reduced to attacking a two-round DES, which
can be done using one ciphertext.

We can even attack the independent-key variant of any iterated cipher. We simply
remove a round at a time and prepare the required encrypted data for later analysis.
After all the rounds are removed, we find the subkey of the last removed round using
the prepared data, and use this found subkey in attacking the second-to-last removed
round, etc., till we find all the subkeys. Note that we get two equations on each F-
function from two consecutive removed rounds, and thus we get sufficient information
for finding the 48-bit subkeys, although each equation leaks only 32 bits.

5 . 3 A d d i t i o n a l A t t a c k s o n I t e r a t e d I m p l e m e n t a t i o n s

All the above attacks find the key bits horizontally, i.e., a subkey at a time. In iterated
hardware implementations we can do the following vertical attack which finds the first
bits of all the subkeys, then the second bits of all the subkeys, etc. In this attack
we first permanently destroy the plaintext to be zero, and encrypt the zero plalntext
under the unknown key. In the main step of the attack, we cut the wire leaving the last
bit of the subkey in the iterated hardware implementation of the rounds, and encrypt
the zero plaintext under the resultant subkeys. Then, we cut the second-to-last wire,
etc. When all the subkey bits had been cut, we get the zero plaintext encrypted under
the zero subkeys. We can now find the first bits of the subkeys (total of 16 bits in
a 16-round cipher) by trying all their possible values (216 trials), and comparing the
resulting ciphertexts to the last received ciphertext. Then, we try the values of the
second bits of the subkeys, etc, till we find all the bits of the subkeys. For DES in
particular, we can use the fact that the key is divided into two halves. We can cut the
first 23 bits of the subkey before they are XORed to the right half of the data. Then,
we cut the 24'th bit. Then again we cut the next 23 bits. Given the ciphertexts of the
destroyed (i.e., 0) plaintext before and alter each of these events (four ciphertexts),
we can exhaustively search for the 16 key bits which still affect the computation after
the last event. When found, we can complete the 12 key bits of the right half of the
key, and then search for the 16 key bits of the right half which affect the encryption
after the first event. Finally, we complete the remaining 12 key bits.

An additional attack against iterated implementations of DES ignores the data
rather than the key. In this attack we cut the 32-bit data input of the F-function (this
position is denoted by (x) in Figure 1), such that the output of the F-function becomes
dependent only of the subkey and independent of the plaintext. If the actual plaintext
is unknown, we also destroy the plaintext register, i.e., set it to zero permanently.
The key scheduling algorithm of DES divides the key into two halves, each of them
affects only four S boxes in each round ($1-$4, and $5-$8). As a result, 32 bits of
the ciphertext depend only on one 28-bit half of the key, and the other 32 bits of the
ciphertext depend only on the other 28-bit half of the key. Thus, given the ciphertext
of the zero ptaintext (or similarly of any plaintext) under the modified cipher, we can
easily search for the two halves of the key (22s trials for each, each trial costs about
1/4 encryption).

524

5 .4 R e m a r k

Note that in this model it is easy to apply a chosen plaintext attack without choosing
any plaintext - - we just destroy the plaintext register. In such a case, even a fault
tolerant design in which the smartcard encrypts the ptaintext several times and com-
pares the results, will not detect any difference between the ciphertexts. ~ Moreover,
if the verification is done by decrypting the ciphertext, the result register can also be
destroyed, and thus will always be the same as the plaintext register.

6 Acknowledgements

We would like to gratefully acknowledge the pioneering contribution of Boneh, De-
millo, and Lipton, whose ideas were the starting point of our new attack.

References

[1] Ross Anderson, Markus Kuhn, Tamper Resistance - a Cautionary Note,
proceedings of the Second Usenix Workshop on Electronic Commerce, pp. 1-11,
November 1996.

[2] Ross Anderson, Markus Kuhn, Low Cost Attacks on Tamper Resistant Devices,
proceedings of the 1997 Security Protocols Workshop, Paris, April 7-9, 1997.

[3] Eli Biham, New Types of Cryptanalytic Attacks Using Related Keys, Journal of
Cryptology, Vol. 7, No. 4, pp. 229-246, 1994.

[4] Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption
Standard, Springer-Verlag, 1993.

[5] Dan Boneh, Richard A. Demillo, Richard J. Lipton, On the Importance of
Checking Cryptographic Protocols for Faults, Lecture Notes in Computer Science,
Advances in Cryptology, proceedings of EUROCRYPT'97, pp. 37-51, 1997.

[6] Lawrence Brown, Josef Pieprzyk, Jennifer Seberry, LOKI - A Cryptographic
Primitive for Authentication and Secrecy Applications, Lecture Notes in Computer
Science, Advances in Cryptology, proceedings of AUSCRYPT'90, pp. 229-236,
1990.

[7] John Kelsey, Bruce Schneier, David Wagner, Key-Schedule Cryptanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES, Lecture Notes in Computer
Science, Advances in Cryptology, proceedings of CRYPTO'96, pp. 237-251,
1996.

2Designers should be very careful with such designs, since under some fault models, the comparison
of the results might leaks information about the key, which wouldn't be leaked otherwise.

525

[8] Paul C. Kocher, Timing Attack's on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems, Lecture Notes in Computer Science, Advances in
Cryptology, proceedings of CRYPTO'96, pp. 104-113, 1996.

[9] Xuejia Lai, James L. Massey, Scan Murphy, Markov Ciphers and Differential
Cryptanalysis, Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of EUROCRYPT'91. pp. 17-38, 1991.

[10] Susan K. Langford, Martin E. Hellman, Differential-linear cryptanalysis, Lecture
Notes in Computer Science, Advances in Cryptology, proceedings of CRYPTO'94,
pp. 17-25, 1994.

[11] John Markoff, Potential Flaw Seen in Cash Card Security, New York Times,
September 26, 1996.

[12] Mitsuru Matsui, Linear Cryptanalysis Method for DES Cipher, Lecture Notes in
Computer Science, Advances in Cryptology, proceedings of EUROCRYPT'93,
pp. 386-397, 1993.

[13] Ralph C. Merkle, Fast Software Encryption Functions, Lecture Notes in Computer
Science, Advances in Cryptology, proceedings of CRYPTO'90, pp. 476-501,
1990.

[14] Shoji Miyaguchi, FEAL-N specifications, technical note, NTT, 1989.

[15] Shoji Miyaguchi, The FEAL cipher family, Lecture Notes in Computer Science,
Advances in Cryptology, proceedings of CRYPTO'90, pp. 627-638, 1990.

[16] Shoji Miyaguchi, Akira Shiraishi, Akihiro Shimizu, Fast Data Encryption
Algorithm FEAL-8, Review of electrical communications laboratories, Vol. 36,
No. 4, pp. 433-437, 1988.

[17] National Bureau of Standards, Data Encryption Standard, U.S. Department of
Commerce, FIPS pub. 46, January 1977.

[18] Bart Preneel, Marnix Nuttin, Vincent Rijmen, Johan Buelens, Cryptanalysis of
the CFB Mode of the DES with a Reduced Number of Rounds, Lecture Notes
in Computer Science, Advances in Cryptology, proceedings of CRYPTO'93,
pp. 212-223, 1993.

[19] Ronald L. Rivest, The RC5 Encryption Algorithm, proceedings of Fast Software
Encryption, Leuven, Lecture Notes in Computer Science, pp. 86-96, 1994.

[20] Bruce Schneier, Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish), proceedings of Fast Software Encryption, Cambridge, Lecture Notes
in Computer Science, pp. 191-204, 1993.

[21] Akihiro Shimizu, Shoji Miyaguchi, Fast Data Encryption Algorithm FEAL,
Lecture Notes in Computer Science, Advances in Cryptology, proceedings of
EUROCRYPT'87, pp. 267-278. 1987.

