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Abstract~ Much research in axiomatic semantics suffers from a lack of 
formality~ In particular~ most proposed verification calculi for imperative 
programs dealing with recursive procedures are known to be unsound 
or incomplete. Focussing on total correctness, we present a new con- 
sequence rule which yields a sound and complete Hoare-style calculus 
in the presence of parameterless recursive procedures. Both, the stand- 
ard consequence and an improved rule of adaptation are instances of 
our new rule. This work has been developed under the auspices of the 
computer-aided proof system LEGO. The rigorous treatment of auxiliary 
variables has been crucial for establishing our results. A comparison with 
VDM reinforces our view that auxiliary variables deserve to be treated 
seriously. 

1 Introduct ion 

What is a good framework for formally developing programs from specifications? 
Design criteria include notions of soundness and completeness. In this paper, 
focussing on total correctness~ we investigate verification calculi for imperative 
programs with recursive procedures based on input /output  specifications. 

We present a new Hoare-style calculus and extend VDM's decomposition 
rules [15] in the context of recursive procedures, proving soundness and com- 
pleteness for both systems under the auspices of the computer-aided proof sys- 
tem LEcO [16]. 

One of our aims is to demonstrate that  it is not only feasible but easier to 
work on selected research areas using current proof assistants. Most published 
verification calculi for imperative programs dealing with recursive procedures 
are known to be either unsound or incomplete, despite authors backing up their 
claims with "proofs" [6]. No such proof a t tempts  would have been accepted by 
a mechanical proof checker. Furthermore, we believe that  in most cases, correct 
soundness and completeness proofs require little overhead when being done on a 
machine provided the area is formally understood. Previously, auxiliary variables 
in Hoare logic have been given insufficient attention. Apt and Meertens [4] have 
proposed a method for formally integrating auxiliary variables in assertions. We 
extend this idea to Hoare logic~ 

In the following section, we present design criteria for verification calculi. 
Hoare logic and VDM are investigated in the light of these requirements. 

Section 3 introduces Hoare logic for simple imperative programs. This section 
contains no new results, it is merely intended to serve as a gentle introduction 
to developing imperative programs from input /ou tput  specifications. 
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Section 4 considers recursive procedures. Parameter passing is an orthogonal 
problem which, following Apt [3], we omit in this paper. We motivate a new 
consequence rule leading to an improved Hoare logic calculus for imperative 
programs with recursive procedures~ A comparison with VDM reinforces our 
view that auxiliary variables deserve a rigorous treatment. 

The symbol ~ indicates that a corresponding LEco script is available on- 
line, point your Web browser to http://~WWo tics. ed. acouk/home/tms/lego/  
"r In this paper, we abstract from the details and present our results 
in a more conventional mathematical format~ However, we need to occasionally 
rely on a more formal notation~ closer to the actual LEGO scripts, to resolve 
ambiguities arising from informal presentations. For the reader familiar with 
standard techniques for mechanising programming logics [9, 18], the presentation 
of this paper is self-contained and provides sufficient information to exploit our 
work in other modern computer-aided proof systems such as Coq, HOL, Isabelle 
or PVS. 

2 D e s i g n  C r i t e r i a  f o r  V e r i f i c a t i o n  C a l c u l i  

Let ~A be a model interpreting constants, functions and relations of both the 
programming language with typical element S and a logical language Pre with 
typical element Po One can then extend the language Pre and its notion of 
validity ~/~ ~ P to correctness formulae S sat Spec relating specifications Spec 
and programs So Validity of A/t ~ S sat Spec is defined in terms of validity of the 
underlying logical language and the expected behaviour of programs (which we 
shall axiomatise via operational semantics). In the sequel, we omit the model Ad, 
assuming implicitly that we are working with a standard model. 

The logical languages used in practice are too expressive for model checking 
to be feasible in the context of sequential imperative programs. Furthermore, 
reasoning directly based on the underlying operational semantics is too clumsy. 
A verification calculus'ought to provide a more abstract interface. To implement 
a computer-aided framework for developing correct programs from specifications, 
one needs to establish a verification calculus containing a set of axioms and rules 
for deriving proposition of the form F- S sat Spec. What is the correspondence 
between ~ S sat Spec and ~- S sat Spec? Ideally, we would want that ~ S sat 
Spec if and only if F S sat Spec: 

Defini t ion 2.1 (Soundness) .  Only valid specifications can be derived i.e, 
F S sat Spee implies ~ S sat SpeCo 

Defini t ion 2.2 (Comple teness ) .  All valid specifications can be derived i.e., 
S sat Spec implies F S sat Spec. 

Remark Z.3 (Relative completeness). If the underlying logical language Pre is 
too weak then F S sat Spec may not hold despite ~ S sat Spec because a refined 
specification required in the derivation of b S sat Spec cannot be expressed. 
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Conversely, for expressive logical languages such as Peano Arithmetic, a con- 
sistent formal system allowing one to infer all valid formulae cannot exist due 
to G6del's incompleteness result~ In particular, one cannot expect to achieve 
completeness for the larger class of correctness formulae S sat Speco 

To factor out problems concerning the underlying logical language, Cook [5] 
proposed that one investigates relative completeness: One should only consider 
sufficiently expressive logical languages~ Furthermore, in defining a formal sys- 
tem for ~- S sat Spec, one may assume that all valid formulae of the underlying 
logical language are derivable i.e, ~ P implies }- P. We follow Cook's provi- 
sions respectively by restricting our attention to intuitionistic higher-order logic ~ 
and instead of assuming completeness of Pro, we define b S sat Spec relative 
to provability ~- P rather than to validity b P of the underlying logical lan- 
guage. This is a standard technique in mechanising programming logics because 
provability is a primitive concept in interactive proof systems. 

3 Imperative Programs without Procedures 

In this section, we restrict ourselves to basic language features, the empty state- 
men% assignment, sequential composition, conditional and loop: 

Defini t ion 3.1 (Syntax)~ ~ Imperative programs S: prog are defined by the 
following BNF grammar: 

S : : = s k i p  [ x:----t [ $1;$2 I i f b t h e n S 1  elseS2 [ while b d o S  

We need to axiomatise the intended behaviour of programs. Formal verifica- 
tion is relative to this axiomatisation and independent of specific compilers and 
hardware~ 

The behaviour of an imperative program depends in general on the contents 
of the memory. A particular snapshot of the memory is called a state. For the 
restricted class of programs considered in this paper, it suffices to model the set 
of all states E as the function space from program variable names to values. 

Structural operational semantics provides a clean way to specify the effect of 
each language constructor in an arbitrary state: 

Defini t ion 3.2 (Semant ics) .  ~ The operational semantics is defined as the 

least relation. , . : E x prog x Z ~ Prop satisfying 

skip 
O" ~ O" 

X : - - t  
cr . ' ~ [ X  ~-} t] 

81 & 

S1~ S2 
Cr - -  ~ T  

1 the internal logic of the LEGO system 
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O" 

O" 

& 
O" ~ T 

O" 
i f  b t h e n  $1 else $2 

~ T  

& 
or ~ T 

i f  b t h e n  $1 else $2 
T 

provided b ( a ) ~  

provided ~b(a) . 

whi le  b do S 
a * a provided ~b(a)  . 

S whi le  b do S 
, ~ ~ ~ T provided b(a) 

whi le  b do S 
O" * T 

The kind Prop is the type of propositions in intuitionistic higher-order logic. In 
the context of a programming language, a boolean expression b may refer to the 
value of program variables. We have modelled boolean expressions as boolean 
valued functions of state b: ~ ~ bOOlo 

Assertions are propositions possibly containing references to program vari- 
ables. We model assertions as predicates on states ~ --4 Prop~ We lift propos- 
itions point-wise to assertions and overload notation e.g. for an assertion p: 

Prop and a boolean expression b: ~ -~ boo1, the expression p A b is represen- 
ted by ~r:  ~p(cr) A i s_ t rue  (b(a)) where i s_ t rue  is the standard coercion from 
the boolean type bool  to the type of propositions Prop. While intuitionistic 
higher-order logic turns out to be well-suited for the research presented in this 
paper, users of other proof assistants may prefer different assertion languages 2. 

De f in i t i on  3.3 ( T h e  s e m a n t i c s  o f  H o a r e  logic).  [~ For assertions p, q and 
program S, the specification schema 

  oare {.)o {.} : - ,  Prop) • prog • -* Prop) -+ Prop 
S 

~Hoare {P} S {q} _a Va: ~"  p(a )  ~ 2T: ~ "  (0" ," T) A q(T) 

characterises ttoare logic for total correctness. It is valid if for all initial states a 
satisfying the precondition p, the program S terminates in a final state z such 
that  the postcondition q holds. 

When we want to show that  a particular program S satisfies a specification, 
we can exploit the inductive definition of the operational semantics. However, in 
practice, this will be too tedious, because the operational semantics presentation 
is in general not sufficiently abstract. It is advisable to establish a set of axioms 
and rules for deriving correctness judgements. 

Based on work of Floyd [8], Hoare [12] proposed a verification calculus (ori- 
ginally for partial correctness) now referred to as Hoare logic. The following 
presentation contains a refined loop rule due to Harel Ill] which leads to total 

correctness. 
2 In classical systems i.e., in which the axiom of excluded middle holds, the distinction 

between the types bool and Prop is not required. 
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Defini t ion 3.4o [~ A verification calculus for Hoare logic is defined as the least 
relation Fnoa~e {.} . {.} : (G --+ Prop) x prod x (~ ~ Prop) ~ Prop satisfying 

b-noare (P} skip (p} (1) 

(2) 

FHoare {P} $1 {r} FHoare (r} $2 (q} 
}-Hoare (P} ~1; ~2 {q} 

(3) 

}"Hoare {P A b} $1 (q} ~-Hoare (P A "ab} ~2 {q} 
~Hoare (P} if b then  S~. else $2 {q} 

(4) 

Vn: No ~.oaro (p(n + 1)} S {p(n)} 
}"Hoare (3n:N. p(n)} while b do S {p(0)) 

provided Va~ ~-: ~o Vn: N-(p(n + ])(a) ~ b(a)) A (p(0)(T) ~ -~b(~-)) (5) 

T h e o r e m  3.5 (Soundness) .  [~ The above verification calculus is sound. 

Proof. ~ [] 

C o m p l e t e n e s s  It is easy to see that the above Hoare calculus cannot be com- 
plete. Assuming completeness, we can show that checking the correctness of a 
program would be decidable: There is one rule for every constructor of the pro- 
gramming language. Given an arbitrary specification f-Hoare {P} S {q}, it suf- 
rices to check if the assertions p, q match the assertions in the conclusion of the 
rule corresponding to the structure of the program S. If not, FHoare (p} S {q} 
is not derivable. Otherwise, we recursively examine the premises of the applied 
rule. This process either terminates in a rule being rejected or with no premises. 
In the latter case, the program S satisfies the specification [-Hoare {p} S {q}. 

To obtain completeness, we must be able to equivalently transform assertions 
or, in particular in the case of loops, weaken the precondition and strengthen 
the postcondition [10]~ Adding the consequence rule 

[-Hoare {Pl} S (ql} 
~-Hoare {p} S {q} provided Va, ~-: ~ .  p(~) =~ Pl (a) A ql (r) =~ q(r) 

(6) 
leads to a complete system while retaining soundness: 

L e m m a  3.6 (Soundness) .  ~ The consequence rule (6) preserves soundness. 

Proof. ~-~ Straightforward. 

T h e o r e m  3.7 (Comple teness ) .  ~ The verification calculus defined as the 
least relation satisfying (1)-(6) is complete. 

Proof. ~-~ See [11]. In the context of partial correctness, a completeness proof 
has recently been mechanised in Isabelle by Nipkow [18]. 
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4 Imperative Programs with Recursive Procedures 

In this section~ we extend Hoare logic for recursive procedures. Parameter 
passing is an orthogonal issue which, following Apt [3]~ we omit in this paper~ 
For simplicity~ we also restrict our attention to the case of a single procedure 
declaration~ We expect no difficulties in generalising the results in this paper to 
mutually recursive procedures. In the sequel~ So: prog denotes the body of the 
procedure. 

Definit ion 4.1 (Syntax) .  [~ We extend the syntax by the constructor call 
which ought to invoke the body of the procedure, So. 

S : : = s k i p  I x:----t [ Sx;S~ t if b t h e n S t  elseS2 ] while b d o S  ! call 

Example 4.2 (Procedure declaration). [~ A recursive procedure declaration for 
computing the factorial function x! is given by 

So -a i f  x = 0  t h e n  y : - -  1 
else x:----x-1;cal l ix:--x+ l ; y : = y * x  

fi 

Defini t ion 4~ (Semantics)~ ~ A procedure call results in executing the body 
of the procedure So. We extend the operational semantics from Definition 3.2 

by So 

call 
O" ~ - T  

Sokotowski [20] has proposed the rule 

vn: N. {p(n)} call {q}   oare + 1)} SO {q} 
0 Fnoare {3n: N-p(n)} call {q} 

provided Va:E. -,p(O)(a) (7) 

to deal with recursive procedures. For a procedure call to terminate, there must 
be a finite recursive depth n. For n = 0, we have no recursion, for n + l ,  it suffices 
to show that the procedure body satisfies the specification. In this derivation, we 
may employ the original correctness formula as an additional axiom. However, 
the assumed Hoare triple must have recursive depth n. A simple form of contexts 
can capture such an additional assumption: 

Defini t ion 4.4 (Context ) .  [~1 Contexts contain at most one correctness for- 
mula for procedure calls. A context F: Context can be represented by the BNF 

grammar F : :  = 0 I {P} call {q}. 

Hoare triples are from now on annotated by contexts i.e., . t-Hoare {.} �9 {'} : 
Context • (• --+ Prop) x prog • (~ -+ Prop) --+ Prop. As usual, in the sequel, 
we omit the empty context 0 in Hoare triples. 
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The previously given rules (1)-(6) need to be revised to support contexts: 

P ~'Hoare {P} skip {p} (8) 

F }-Hoare {B[X ~ t]} X:~-- t {p} (9) 

r ~-Hoare {P} $1 {r} F ~'Hoare {r} ~2 {q} 
F ~-noare {P} $1;$2 {q} 

(10) 

F FHoare {p A b} S~ {q} F FHoare {p A -~b} $2 {q} 
F PHoare {P} if b t h e n  $1 else $2 {q} 

(11) 

Vn: No r ~'Hoare {p(n -j- 1)} S {p(n)} 
r ~Hoare {3n: ~ .  p(~t)} whi le  b do S {p(0)} 

provided Va, ~-: E-Vn: N- (p(n + 1)(a) =~ b(a)) h (p(0)(T) =~ -~b(T)) (12) 

F ~-Hoare {Pl) ~ {ql} 
P ~Hoare {P} S {q} 

provided Va~ T: Z- p(a) ~ Pl (a) A ql (T) ~ q(~') 
(13) 

Furthermore, we need to add an axiom scheme 

{p} call {q} bHoare {P} call {q} 

capturing the meaning of contexts. 

(14) 

Remark 4.5. Instead of introducing contexts, one could consider adding ahigher_ 
order variant of (7): 

Yn: N. Fnoare {p(n)} call {q} =::~]'-Hoare (p(n + 1)} SO {q) 
~-Hoare {3n: N" p(n)} call {q) 

provided Va:Z,-~p(0)(a) (15) 

As a drawback, (15) is not a valid constructor in an inductive definition of the 
relation ~-rIoare due to the negative occurrence of Fnoare in the premiss~ One 
might also question the adequacy of this formulation: Instead of merely adding 

~-Hoare {p(n)} call {q) (16) 

as a new temporary axiom in deriving ~-Hoare {p(n + 1)} So {q}, the premiss of 
(15) also permits induction on the derivation of (16). 

T h e o r e m  4.6 (Soundness ) .  The verification calculus defined by the least re- 
lation ~-Hoare satisfying (7)-(14) is sound. 
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Proof. ~ By induction on the derivation of F ~-Hoare (P} S {q}, we show sim- 
ultaneously 

1. ~Hoare {P} S {q} whenever F = 0 and 
2. (~Ho~re {Pl} call {ql}) ~ (~Ho~r, {P} S {q}) whenever r = {px} call {ql}, 

reflecting the semantics of non-empty contexts. 
[] 

However, the above presentation of Hoare logic catering for recursive procedures 
is not complete: 

Example ~. 7 (Incompleteness results). The procedure being previously declared 
in Example 4.2 correctly implements the factorial function. Using the axiomatic 
system, we can show that 

~Hoare ( t rue} call {y = x!} (17) 

is derivable, but we cannot prove that the value of the program variable x re- 
mains invariant i.e., ~ {x = z} call {x = z} where z is an auxiliary variable, 
see [3] for a proof. Unfortunately, this jeopardises the credibility of (17). The 
procedure declaration So & x: = 1; y: = i would also satisfy (17) without leaving 
the variable x invariant. 

4.1 A Better Consequence Rule  

Auxiliary variables are to blame for incompleteness. They are usually considered 
as program variables or as (meta-) logical variables not occurring in programs, 
but they deserve a more rigorous treatment. Auxiliary variables are crucial 
in specifying properties. In Hoare logic where assertions are predicates on the 
initial and final state respectively, auxiliary variables are the only means to 
directly relate input and output. Almost every proper specification relies on 
auxiliary variables! It is inadequate to treat them as program variables or meta- 
logical variables. Otherwise, additional rules to achieve completeness tend to be 
somewhat elaborate to compensate for a too liberal notion of auxiliary variables: 
They must never occur in programs and, unless they appear in both pre- and 
postcondition, they can be eliminated by the consequence rule (13). 

The role of auxiliary variables has been recognised by Apt and Meertens: For 
an arbitrary domain T, assertions may depend on the value of program variables, 
characterised by the domain of states ~ and auxiliary variables, characterised 
by the domain T i.eo assertions can be considered as relations T -4 Z --+ Prop 
I4]. We extend this idea to Hoare logic. 

Defini t ion 4.8 (Semant ics  of  Hoare  logic). [~ For assertions p, q: T ~ 
-+ Prop and programs S: prog~ we can capture total correctness specifications 

incorporating auxiliary variables by the relation 

~Hoare (-} " {'} : (T -~ ~ --} Prop) • prog X (T -+ ~ -+ Prop) --> Prop 
S 

~Hoare {P} S (q} -~'~ Vz :T  .V(T: ~"  p(Z)(O') ~ 3 T : ~ "  (0" ~ 7-) /~, q(z)0-) 
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It is straightforward to redefine the relation ~Hoare under this extended inter- 
pretation while preserving all of the above results~ 

Example ~.9o ~ In LEGO, we represent the specification that  a program S leaves 
the value of the program variable x invariant by 

}-Hoare {,kZ: T"  An: :~. a(x) = z} call  {Az: T -  ~T: E" ~-(X) = Z} 

with T -~ N. We will however continue to use the pretty-printed notation ~-Hoare 
{~ = ~} c a l l  {~  = z} 

Analysing the failed derivation of i-House {X = Z} call (x = z}, we motivate a 
new consequence rule to achieve completeness: From an instantiation of (14) 
i.e.~ 

{n  = x + 1 = z + 1} c a l l  {x  = z }  e .o~re  { n  = x + 1 = ~ + 1} c a l l  {~  = ~}  
( lS)  

we get stuck having to show 

(n  = x + 1 = z + 1} call {x = z} }-Hoare { n  = x -~- 1 = Z} call (x + 1 = z) . 

(19) 

It is easy to see that  at this stage, no rule is applicable. We require a rule 
similar to the consequence rule 

r ~.o~ro {p~} S {q~} 
F ~'noare {P} S { q} provided Vo', T: ~"  p(o') =:~ Pl (dr) A ql (T) ~ q(T) 

Notice that  the side-conditions unnecessarily tie the auxiliary variables of the 
premiss together with those of the conclusion. In particular, we would have to 
show x = z ~ x + 1 = z. 

Taking auxiliary variables seriously, assume that  T and T1 characterise the 
auxiliary variables' domain in the conclusion and premiss, respectively. Then, 
intuitively, from the class of assumptions Vzl: T1 �9 I ~ }-Hoare {Pl (Zl)} S { ql (Zl) } 
we have to show Vz: T �9 F ~-Hoare {p(z)) S {q(z)}. We may relax the side- 
condition by finding for every instance of z : T  an instance z l :T1 such that  
Va: Z, T: E-(p(z)(a)  ~ Pl (Zl)(a)) A (ql (z~)(r) ~ q(Z)(T)) holds. It is even more 
effective (see also Sect. 4.3) to choose a witness zl relative to the values of 
variables in the initial and final states a and T such that  the precondition p(z)(a) 
holds: 

r ~.oaro {P l }  S { q l }  

provided Vz: T -  Va, r: ~ .  p(z)(a) 

~zl: Wl .p l ( z l ) ( a )  A (ql(z~)(T) ~ q(Z)(T)) (20) 

L e m m a  4.10 (Soundness ) .  ~ Replacing the consequence ~ule (13) by (20) 
preserves soundness. 
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Proof. ~ From the premiss ~Ho~e (Pl } S (ql } i.e., 

S 
Vzl:T1 oVa :~op l ( z l ) ( a )  ~ 3T:Z~ (~ 

and the side condition 

Vz: To Wr, v: ~0 p(z)(a)  ~ 3z1: T I "  Pl (z l ) (a)  A (ql (Zl)(T) ~ q(z)(r))  , 
(22) 

we need to show that  ~Hoare (P} S {q} holds. 
Given an auxiliary variable z and an initial state a satisfying p(z)(a) ,  we need 

S 
to find a final state T such that  a , ~- and q(z)(T). Combining p(z)(a)  and 
(22), we can extract  a witness z ~ such that  pl(z~)(a) holds. 

S 
We can now employ (21), yielding the desired final state ~- with a , r 

S 
and ql(z~)(V)o Having discharged the proof obligation a * T, we show the 
remaining q(Z)(T). In the presence OfT, another refinement by (22) yields an aux- 
iliary variable zl satisfying Pl (Zl)(a) and allows us reducing q(z)(r)  to ql (z l ) ( r ) .  
Appealing again to (21), from Pl (z l ) (a)  we may infer that  there is a state ~ sat- 

S 
isfying both a ,. ~? and ql(zl)(~)o This completes the proof because the 
states T and 71 must be the same given that  the programs considered are determ- 

inistic. [] 

402 Completeness 

In this section~ we show that  the new consequence rule leads to a complete 
verification calculus i.e., the correctness of a program employing Hoare logic is 
derivable whenever a proof relying on the low-level operational semantics exists. 
The structure of the proof follows the completeness proof for a more elaborate 
set of rules in [2]. The central theorem directly relates the descriptive power of 

operational semantics and Hoare logic: 

Theorem 4.11 (Most g e n e r a l  f o r m u l a ) .  ~ For any program S, in Hoare 
logic, we can derive ~Hoare {P} S (q} where the assertion p characterises the 
set of states in which S terminates and q characterises the set of all final states 

i.e, S 

Proof. ~ By induction on the structure of the program S and a nested induction 
on the structure of the procedure body So in the case S ~ call. [] 

Having treated auxiliary variables in a rigorous manner, it is interesting to ob- 
serve that  the main Theorem 4.11 singles out the set of all states a~ the domain 
for auxiliary variables i.e., T ~= Z. Intuitively, such a restriction ties the auxili- 
ary variables together with the program variables. Let (xl . . . .  , xn) be the set of 
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all program variables with corresponding types { T1,. .  �9 , Tn } occurring in some 
program S. An assertion of the form )~z: T1 x --- x Tn')~a: E - P ( z . l , . . .  , z.n, a) 
is equivalent to )~z: E .  )~a: E o P(z(xl)~ �9 ~ , z(xn), a). 

C o r o l l a r y  4.12.  [~1 The verification calculus defined as the least relation I-Hoa,e 
satisfying (7) - (12) ,  (1,4) and the new consequence rule (20) is complete. 

It is instructive to study the proof of the Completeness Corollary 4.12 to 
appreciate the role of the main Theorem 4.11~ in particular~ why it suffices to 
consider the set of all states as the domain of auxiliary variables. 

Proof~ ~ Let S be a program and p, q: T --~ E ~ Prop be assertions for an 
arbi t rary domain T.  Given ~Hoare {P} S {q} i.e., 

S 
Vz: T W: s ~  p(z) (o)  ~ a~: s ( .  , ~) ^ q(-)(~) (23) 

we need to show that  ~-Hoare {P} S {q} is derivable~ Applying the generalised 
S consequence rule (20) to the main Theorem 4.11 with p l ( z l ) ( a )  __a ~ * zl 

and ql(Zl)(T) __a Zl = T yields ~-Hoare {P} S {q}, provided we can satisfy the 
side condition 

Vz: T .  Va, r: ~ .  p(z)(a)  ~ 3z~: E-  (a 

Clearly, (23) implies (24). 

zl)  A ( T = Z l = V  q(Z)(T)) 
(24) 

[] 

4.3 The Rule  of  Adaptat ion 

Most proposed verification calculi for recursive procedures are known to be un- 
sound or incomplete. Patches to calculi often yield an elaborate set of rules or 
intricate side-conditions [2, 19]. A common approach has been to retain the con- 
sequence rule (13) and adopt further rules to achieve completeness. The rule of 
adaptation has played a central role in previous work. We show that  accounting 
for known problems in Hoare's rule of adaptation leads to a new rule which turns 
out to be a simple instantiation of our new consequence rule. 

Recall that  in order to derive ~-Hoare {X = Z} call  {x = z}, we need to adapt 
the auxiliary variable z if we want to prove (19). In such a situation~ from (18), 
a rule for adapting the auxiliary variable z leads to 

{ n = x + l = z + l } c a l l { x = z } ~ - ~ o a r e  {p} cal l  {x + l = z} 

where the precondition p should be sufficiently weak to satisfy 

n = x + l = z  ::~ p o 
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In general~ rules of adaptation are of the form 

r ~-Hoare {Pl} S {ql} 
r ~-Hoare {P} S {q} 

for arbi t rary assertions Px, ql~ q, and particular proposals for the adapted pre- 
condition p. Ideally, the rule should be left maximal [7] i.e., the precondi- 
tion p should be the weakest possible satisfying ~Hoare {P} S {q} in the light 
Of ~Hoare {Pl } 8 { ([1 }. 

Catering for auxiliary variables at the meta level, Hoare [13] has proposed 

p ~ ha: 2 ~ 3Zl ~ pl (a)  A VT: 2"  ql(T) => q(~') (25) 

where zl is a list of all (auxiliary) variables free in pl, ql, but not in q. 
However, while adding Hoare's rule of adaptation leads to a complete verifi- 

cation calculus, Morris [17] and Olderog [191 have shown chat, in general, (25) is 
not the weakest precondition~ For total correctness, Morris [17] points out two 
instructive counter examples: 

Example 4.13o Let Pl -~ ql ~ h a : E  �9 z > 0 A a(x) > 0 and q =~ )~a:Z �9 z > 0 A 
a(x)  > 0o The weakest precondition is then given by An: ~ - z > 0 A ~(x) > 0. 
However, (25) requires the stronger ha: 2 .  z > 9 A a(x) > 0 (modulo equivalence 
transformations), because the auxiliary variable z occurs in both premiss and 
conclusion~ 

This problem can be solved by formally treating assertions as relations of aux- 
iliary variables and states i.eo 

p = hz: T -  ha: 2 . 3 z 1 :  T I "  Pl (zl) (a) h VT: 2 .  ql (Zl) (T) ::22 q(z) (V) 
(26) 

Morris' second example shows that  the choice for the auxiliary variable zl may 
have to depend on the value of variables in the final state: 

Example 4.14. Let pl - ~ / ~ z : N . h a : ~ . z  -- 0Vz  = 1, ql ~ s  .a(x) ~ z 
and q ~ hz: N .  ha: Z �9 a(x) ~ 0 A a(x) r 1. The weakest precondition is then 
given by t r u e .  However, both (25) and the weaker (26) are equivalent to false. 

Relaxing the precondition p so that  the witness zl can benefit from inspecting 
the final value of program variables according to T leads to 

p = hz: T o )~a: Z .  VT: 2 - 3 z v  T1 p l (z l ) ( a )  A (ql(Zl)(T) =:~ q(z)(T)) . 
(27) 

Notice that  our rule of adaptation where the precondition p is the weakest pos- 
sible (27) is a straightforward instantiation of the new consequence rule (20). 
Conversely, (20) is admissible in the presence of (13) and our rule of adaptation. 
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404 V D M  and Recurs ive  P r o c e d u r e s  

The decomposition rules of the Vienna Development Method (VDM) [15] are 
similar in spirit to Hoare logic~ A major conceptual contribution of VDM is that 
it formally captures the fact that, in practice, specifications relate the output to 
the input i.e., the postcondition may refer to both the initial and final state~ 

Defini t ion 4.15 (Semant ics  of  VDM~s decompos i t i on  rules) .  ~ Follow- 
ing Gordon [9], we can represent the meaning of VDM specifications by the 
relation 

~VDM {,}  �9 {o} : ( ~  ~ Prop) x p r o g  x (~ ---4 ~ --4 Prop) ---4 Prop 

~VDM {P} S {q} A Va:Zop(a) =~ ST:Zo (a S . r) A q(a)(w) 

Presentations of VDM are usually restricted to simple imperative programs 
with local variables. There is a one-to-one correspondence between the rules 
of Hoare-style ["Hoare and VDM's decomposition rules F-VDM. From our rig- 
orous treatment of auxiliary variables for Hoare logic~ it is easy to see that 
specifications in VDM correspond to a particular class of specification in Hoare 
logic, in which the auxiliary variables are devoted to freezing the values of all 
program variables prior to execution. More precisely, given an arbitrary pre- 
condition p: Z --+ Prop, program S and postcondition q: ~ -+ ~ -~ Prop~ the 
VDM specification ]-VDM {P} S {q} is derivable if and only if the specification 
Fnoare {)tZ, a: ~o Z-= ~r A p(a)} S (q} is derivable in Hoare logic. Guided by 
this intuition~ we can simplify the consequence rule (20) for a scenario where 
auxiliary variables capture the initial state: 

r eVDM {Pl } S {ql} 
r ~VDM {p} S {q} 

provided Va, T: ~ .  p(a) ~ (px(a)A (ql(a)(T) :~ q(o')(T))) . 

An equivalent consequence rule for VDM has been proposed by Aczel [1]. 
We were able to show that this rule plays a similar role in VDM to our new 

consequence rule in Hoare logic. More precisely, in LEGO, we have shown that 
simply adding Sokotowski's procedure call rule to the standard presentation of 
VDM (neglecting local variables) leads already to a sound and complete system 

The success of VDM reinforces that, in the context of Hoare logic, auxiliary 
variables deserve a rigorous treatment. Furthermore, VDM's approach suggests 
that in practice it is feasible to confine the domain of auxiliary variables to the 
state space Zo 

5 S u m m a r y  

We have formalised Hoare logic and VDM's decomposition rules for imperative 
programs dealing with recursive procedures and proved soundness and (relative) 
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completeness for both systems. This work has been mechanically checked by 
the interactive computer-aided proof system LEGO. Under its influence, we 
were forced to simplify current presentations of verification calculi to formally 
establish soundness and completeness. In particular, based on work by Apt and 
Meertens~ we have shown how a rigorous t reatment  of auxiliary- variables leads 
to a new consequence rule. As a trivial instance, we have gained an improved 
rule of adaptation. We have also been able to show that  VDM can easily be 
extended to cope with recursive procedures. This paper has only dealt with 
total  correctness, but we are confident that  similar results for partial correctness 
can also be established. 

The LEGO system has been a valuable tool to achieve our results~ It stimu- 
lated us to search for crisp calculi and helped us keep track of the correct proof 
obligations, in particular when dealing with completeness~ Given the numerous 
proposed unsound and incomplete verification calculi, it seems appropriate to 
further investigate how computer-aided proof systems may contribute to research 
in program verification. 
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