
Auxiliary Variables and Recursive Procedures

Thomas Schreiber

LFGS Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland

Abstract~ Much research in axiomatic semantics suffers from a lack of
formality~ In particular~ most proposed verification calculi for imperative
programs dealing with recursive procedures are known to be unsound
or incomplete. Focussing on total correctness, we present a new con-
sequence rule which yields a sound and complete Hoare-style calculus
in the presence of parameterless recursive procedures. Both, the stand-
ard consequence and an improved rule of adaptation are instances of
our new rule. This work has been developed under the auspices of the
computer-aided proof system LEGO. The rigorous treatment of auxiliary
variables has been crucial for establishing our results. A comparison with
VDM reinforces our view that auxiliary variables deserve to be treated
seriously.

1 Introduct ion

What is a good framework for formally developing programs from specifications?
Design criteria include notions of soundness and completeness. In this paper,
focussing on total correctness~ we investigate verification calculi for imperative
programs with recursive procedures based on input /output specifications.

We present a new Hoare-style calculus and extend VDM's decomposition
rules [15] in the context of recursive procedures, proving soundness and com-
pleteness for both systems under the auspices of the computer-aided proof sys-
tem LEcO [16].

One of our aims is to demonstrate that it is not only feasible but easier to
work on selected research areas using current proof assistants. Most published
verification calculi for imperative programs dealing with recursive procedures
are known to be either unsound or incomplete, despite authors backing up their
claims with "proofs" [6]. No such proof a t tempts would have been accepted by
a mechanical proof checker. Furthermore, we believe that in most cases, correct
soundness and completeness proofs require little overhead when being done on a
machine provided the area is formally understood. Previously, auxiliary variables
in Hoare logic have been given insufficient attention. Apt and Meertens [4] have
proposed a method for formally integrating auxiliary variables in assertions. We
extend this idea to Hoare logic~

In the following section, we present design criteria for verification calculi.
Hoare logic and VDM are investigated in the light of these requirements.

Section 3 introduces Hoare logic for simple imperative programs. This section
contains no new results, it is merely intended to serve as a gentle introduction
to developing imperative programs from input /ou tput specifications.

698

Section 4 considers recursive procedures. Parameter passing is an orthogonal
problem which, following Apt [3], we omit in this paper. We motivate a new
consequence rule leading to an improved Hoare logic calculus for imperative
programs with recursive procedures~ A comparison with VDM reinforces our
view that auxiliary variables deserve a rigorous treatment.

The symbol ~ indicates that a corresponding LEco script is available on-
line, point your Web browser to http://~WWo tics. ed. acouk/home/tms/lego/
"r In this paper, we abstract from the details and present our results
in a more conventional mathematical format~ However, we need to occasionally
rely on a more formal notation~ closer to the actual LEGO scripts, to resolve
ambiguities arising from informal presentations. For the reader familiar with
standard techniques for mechanising programming logics [9, 18], the presentation
of this paper is self-contained and provides sufficient information to exploit our
work in other modern computer-aided proof systems such as Coq, HOL, Isabelle
or PVS.

2 D e s i g n C r i t e r i a f o r V e r i f i c a t i o n C a l c u l i

Let ~A be a model interpreting constants, functions and relations of both the
programming language with typical element S and a logical language Pre with
typical element Po One can then extend the language Pre and its notion of
validity ~/~ ~ P to correctness formulae S sat Spec relating specifications Spec
and programs So Validity of A/t ~ S sat Spec is defined in terms of validity of the
underlying logical language and the expected behaviour of programs (which we
shall axiomatise via operational semantics). In the sequel, we omit the model Ad,
assuming implicitly that we are working with a standard model.

The logical languages used in practice are too expressive for model checking
to be feasible in the context of sequential imperative programs. Furthermore,
reasoning directly based on the underlying operational semantics is too clumsy.
A verification calculus'ought to provide a more abstract interface. To implement
a computer-aided framework for developing correct programs from specifications,
one needs to establish a verification calculus containing a set of axioms and rules
for deriving proposition of the form F- S sat Spec. What is the correspondence
between ~ S sat Spec and ~- S sat Spec? Ideally, we would want that ~ S sat
Spec if and only if F S sat Spec:

Defini t ion 2.1 (Soundness) . Only valid specifications can be derived i.e,
F S sat Spee implies ~ S sat SpeCo

Defini t ion 2.2 (Comple teness) . All valid specifications can be derived i.e.,
S sat Spec implies F S sat Spec.

Remark Z.3 (Relative completeness). If the underlying logical language Pre is
too weak then F S sat Spec may not hold despite ~ S sat Spec because a refined
specification required in the derivation of b S sat Spec cannot be expressed.

699

Conversely, for expressive logical languages such as Peano Arithmetic, a con-
sistent formal system allowing one to infer all valid formulae cannot exist due
to G6del's incompleteness result~ In particular, one cannot expect to achieve
completeness for the larger class of correctness formulae S sat Speco

To factor out problems concerning the underlying logical language, Cook [5]
proposed that one investigates relative completeness: One should only consider
sufficiently expressive logical languages~ Furthermore, in defining a formal sys-
tem for ~- S sat Spec, one may assume that all valid formulae of the underlying
logical language are derivable i.e, ~ P implies }- P. We follow Cook's provi-
sions respectively by restricting our attention to intuitionistic higher-order logic ~
and instead of assuming completeness of Pro, we define b S sat Spec relative
to provability ~- P rather than to validity b P of the underlying logical lan-
guage. This is a standard technique in mechanising programming logics because
provability is a primitive concept in interactive proof systems.

3 Imperative Programs without Procedures

In this section, we restrict ourselves to basic language features, the empty state-
men% assignment, sequential composition, conditional and loop:

Defini t ion 3.1 (Syntax)~ ~ Imperative programs S: prog are defined by the
following BNF grammar:

S : : = s k i p [x:----t [$1;$2 I i f b t h e n S 1 elseS2 [while b d o S

We need to axiomatise the intended behaviour of programs. Formal verifica-
tion is relative to this axiomatisation and independent of specific compilers and
hardware~

The behaviour of an imperative program depends in general on the contents
of the memory. A particular snapshot of the memory is called a state. For the
restricted class of programs considered in this paper, it suffices to model the set
of all states E as the function space from program variable names to values.

Structural operational semantics provides a clean way to specify the effect of
each language constructor in an arbitrary state:

Defini t ion 3.2 (Semant ics) . ~ The operational semantics is defined as the

least relation. , . : E x prog x Z ~ Prop satisfying

skip
O" ~ O"

X : - - t
cr . ' ~ [X ~-} t]

81 &

S1~ S2
Cr - - ~ T

1 the internal logic of the LEGO system

700

O"

O"

&
O" ~ T

O"
i f b t h e n $1 else $2

~ T

&
or ~ T

i f b t h e n $1 else $2
T

provided b (a) ~

provided ~b(a) .

whi le b do S
a * a provided ~b(a) .

S whi le b do S
, ~ ~ ~ T provided b(a)

whi le b do S
O" * T

The kind Prop is the type of propositions in intuitionistic higher-order logic. In
the context of a programming language, a boolean expression b may refer to the
value of program variables. We have modelled boolean expressions as boolean
valued functions of state b: ~ ~ bOOlo

Assertions are propositions possibly containing references to program vari-
ables. We model assertions as predicates on states ~ --4 Prop~ We lift propos-
itions point-wise to assertions and overload notation e.g. for an assertion p:

Prop and a boolean expression b: ~ -~ boo1, the expression p A b is represen-
ted by ~r: ~p(cr) A i s_ t rue (b(a)) where i s_ t rue is the standard coercion from
the boolean type bool to the type of propositions Prop. While intuitionistic
higher-order logic turns out to be well-suited for the research presented in this
paper, users of other proof assistants may prefer different assertion languages 2.

De f in i t i on 3.3 (T h e s e m a n t i c s o f H o a r e logic). [~ For assertions p, q and
program S, the specification schema

 oare {.)o {.} : - , Prop) • prog • -* Prop) -+ Prop
S

~Hoare {P} S {q} _a Va: ~" p(a) ~ 2T: ~ " (0" ," T) A q(T)

characterises ttoare logic for total correctness. It is valid if for all initial states a
satisfying the precondition p, the program S terminates in a final state z such
that the postcondition q holds.

When we want to show that a particular program S satisfies a specification,
we can exploit the inductive definition of the operational semantics. However, in
practice, this will be too tedious, because the operational semantics presentation
is in general not sufficiently abstract. It is advisable to establish a set of axioms
and rules for deriving correctness judgements.

Based on work of Floyd [8], Hoare [12] proposed a verification calculus (ori-
ginally for partial correctness) now referred to as Hoare logic. The following
presentation contains a refined loop rule due to Harel Ill] which leads to total

correctness.
2 In classical systems i.e., in which the axiom of excluded middle holds, the distinction

between the types bool and Prop is not required.

701

Defini t ion 3.4o [~ A verification calculus for Hoare logic is defined as the least
relation Fnoa~e {.} . {.} : (G --+ Prop) x prod x (~ ~ Prop) ~ Prop satisfying

b-noare (P} skip (p} (1)

(2)

FHoare {P} $1 {r} FHoare (r} $2 (q}
}-Hoare (P} ~1; ~2 {q}

(3)

}"Hoare {P A b} $1 (q} ~-Hoare (P A "ab} ~2 {q}
~Hoare (P} if b then S~. else $2 {q}

(4)

Vn: No ~.oaro (p(n + 1)} S {p(n)}
}"Hoare (3n:N. p(n)} while b do S {p(0))

provided Va~ ~-: ~o Vn: N-(p(n +])(a) ~ b(a)) A (p(0)(T) ~ -~b(~-)) (5)

T h e o r e m 3.5 (Soundness) . [~ The above verification calculus is sound.

Proof. ~ []

C o m p l e t e n e s s It is easy to see that the above Hoare calculus cannot be com-
plete. Assuming completeness, we can show that checking the correctness of a
program would be decidable: There is one rule for every constructor of the pro-
gramming language. Given an arbitrary specification f-Hoare {P} S {q}, it suf-
rices to check if the assertions p, q match the assertions in the conclusion of the
rule corresponding to the structure of the program S. If not, FHoare (p} S {q}
is not derivable. Otherwise, we recursively examine the premises of the applied
rule. This process either terminates in a rule being rejected or with no premises.
In the latter case, the program S satisfies the specification [-Hoare {p} S {q}.

To obtain completeness, we must be able to equivalently transform assertions
or, in particular in the case of loops, weaken the precondition and strengthen
the postcondition [10]~ Adding the consequence rule

[-Hoare {Pl} S (ql}
~-Hoare {p} S {q} provided Va, ~-: ~ . p(~) =~ Pl (a) A ql (r) =~ q(r)

(6)
leads to a complete system while retaining soundness:

L e m m a 3.6 (Soundness) . ~ The consequence rule (6) preserves soundness.

Proof. ~-~ Straightforward.

T h e o r e m 3.7 (Comple teness) . ~ The verification calculus defined as the
least relation satisfying (1)-(6) is complete.

Proof. ~-~ See [11]. In the context of partial correctness, a completeness proof
has recently been mechanised in Isabelle by Nipkow [18].

702

4 Imperative Programs with Recursive Procedures

In this section~ we extend Hoare logic for recursive procedures. Parameter
passing is an orthogonal issue which, following Apt [3]~ we omit in this paper~
For simplicity~ we also restrict our attention to the case of a single procedure
declaration~ We expect no difficulties in generalising the results in this paper to
mutually recursive procedures. In the sequel~ So: prog denotes the body of the
procedure.

Definit ion 4.1 (Syntax) . [~ We extend the syntax by the constructor call
which ought to invoke the body of the procedure, So.

S : : = s k i p I x:----t [Sx;S~ t if b t h e n S t elseS2] while b d o S ! call

Example 4.2 (Procedure declaration). [~ A recursive procedure declaration for
computing the factorial function x! is given by

So -a i f x = 0 t h e n y : - - 1
else x:----x-1;cal l ix:--x+ l ; y : = y * x

fi

Defini t ion 4~ (Semantics)~ ~ A procedure call results in executing the body
of the procedure So. We extend the operational semantics from Definition 3.2

by So

call
O" ~ - T

Sokotowski [20] has proposed the rule

vn: N. {p(n)} call {q} oare + 1)} SO {q}
0 Fnoare {3n: N-p(n)} call {q}

provided Va:E. -,p(O)(a) (7)

to deal with recursive procedures. For a procedure call to terminate, there must
be a finite recursive depth n. For n = 0, we have no recursion, for n + l , it suffices
to show that the procedure body satisfies the specification. In this derivation, we
may employ the original correctness formula as an additional axiom. However,
the assumed Hoare triple must have recursive depth n. A simple form of contexts
can capture such an additional assumption:

Defini t ion 4.4 (Context) . [~1 Contexts contain at most one correctness for-
mula for procedure calls. A context F: Context can be represented by the BNF

grammar F : : = 0 I {P} call {q}.

Hoare triples are from now on annotated by contexts i.e., . t-Hoare {.} �9 {'} :
Context • (• --+ Prop) x prog • (~ -+ Prop) --+ Prop. As usual, in the sequel,
we omit the empty context 0 in Hoare triples.

703

The previously given rules (1)-(6) need to be revised to support contexts:

P ~'Hoare {P} skip {p} (8)

F }-Hoare {B[X ~ t]} X:~-- t {p} (9)

r ~-Hoare {P} $1 {r} F ~'Hoare {r} ~2 {q}
F ~-noare {P} $1;$2 {q}

(10)

F FHoare {p A b} S~ {q} F FHoare {p A -~b} $2 {q}
F PHoare {P} if b t h e n $1 else $2 {q}

(11)

Vn: No r ~'Hoare {p(n -j- 1)} S {p(n)}
r ~Hoare {3n: ~ . p(~t)} whi le b do S {p(0)}

provided Va, ~-: E-Vn: N- (p(n + 1)(a) =~ b(a)) h (p(0)(T) =~ -~b(T)) (12)

F ~-Hoare {Pl) ~ {ql}
P ~Hoare {P} S {q}

provided Va~ T: Z- p(a) ~ Pl (a) A ql (T) ~ q(~')
(13)

Furthermore, we need to add an axiom scheme

{p} call {q} bHoare {P} call {q}

capturing the meaning of contexts.

(14)

Remark 4.5. Instead of introducing contexts, one could consider adding ahigher_
order variant of (7):

Yn: N. Fnoare {p(n)} call {q} =::~]'-Hoare (p(n + 1)} SO {q)
~-Hoare {3n: N" p(n)} call {q)

provided Va:Z,-~p(0)(a) (15)

As a drawback, (15) is not a valid constructor in an inductive definition of the
relation ~-rIoare due to the negative occurrence of Fnoare in the premiss~ One
might also question the adequacy of this formulation: Instead of merely adding

~-Hoare {p(n)} call {q) (16)

as a new temporary axiom in deriving ~-Hoare {p(n + 1)} So {q}, the premiss of
(15) also permits induction on the derivation of (16).

T h e o r e m 4.6 (Soundness) . The verification calculus defined by the least re-
lation ~-Hoare satisfying (7)-(14) is sound.

704

Proof. ~ By induction on the derivation of F ~-Hoare (P} S {q}, we show sim-
ultaneously

1. ~Hoare {P} S {q} whenever F = 0 and
2. (~Ho~re {Pl} call {ql}) ~ (~Ho~r, {P} S {q}) whenever r = {px} call {ql},

reflecting the semantics of non-empty contexts.
[]

However, the above presentation of Hoare logic catering for recursive procedures
is not complete:

Example ~. 7 (Incompleteness results). The procedure being previously declared
in Example 4.2 correctly implements the factorial function. Using the axiomatic
system, we can show that

~Hoare (t rue} call {y = x!} (17)

is derivable, but we cannot prove that the value of the program variable x re-
mains invariant i.e., ~ {x = z} call {x = z} where z is an auxiliary variable,
see [3] for a proof. Unfortunately, this jeopardises the credibility of (17). The
procedure declaration So & x: = 1; y: = i would also satisfy (17) without leaving
the variable x invariant.

4.1 A Better Consequence Rule

Auxiliary variables are to blame for incompleteness. They are usually considered
as program variables or as (meta-) logical variables not occurring in programs,
but they deserve a more rigorous treatment. Auxiliary variables are crucial
in specifying properties. In Hoare logic where assertions are predicates on the
initial and final state respectively, auxiliary variables are the only means to
directly relate input and output. Almost every proper specification relies on
auxiliary variables! It is inadequate to treat them as program variables or meta-
logical variables. Otherwise, additional rules to achieve completeness tend to be
somewhat elaborate to compensate for a too liberal notion of auxiliary variables:
They must never occur in programs and, unless they appear in both pre- and
postcondition, they can be eliminated by the consequence rule (13).

The role of auxiliary variables has been recognised by Apt and Meertens: For
an arbitrary domain T, assertions may depend on the value of program variables,
characterised by the domain of states ~ and auxiliary variables, characterised
by the domain T i.eo assertions can be considered as relations T -4 Z --+ Prop
I4]. We extend this idea to Hoare logic.

Defini t ion 4.8 (Semant ics of Hoare logic). [~ For assertions p, q: T ~
-+ Prop and programs S: prog~ we can capture total correctness specifications

incorporating auxiliary variables by the relation

~Hoare (-} " {'} : (T -~ ~ --} Prop) • prog X (T -+ ~ -+ Prop) --> Prop
S

~Hoare {P} S (q} -~'~ Vz :T .V(T: ~" p(Z)(O') ~ 3 T : ~ " (0" ~ 7-) /~, q(z)0-)

705

It is straightforward to redefine the relation ~Hoare under this extended inter-
pretation while preserving all of the above results~

Example ~.9o ~ In LEGO, we represent the specification that a program S leaves
the value of the program variable x invariant by

}-Hoare {,kZ: T" An: :~. a(x) = z} call {Az: T - ~T: E" ~-(X) = Z}

with T -~ N. We will however continue to use the pretty-printed notation ~-Hoare
{~ = ~} c a l l {~ = z}

Analysing the failed derivation of i-House {X = Z} call (x = z}, we motivate a
new consequence rule to achieve completeness: From an instantiation of (14)
i.e.~

{n = x + 1 = z + 1} c a l l {x = z } e .o~re { n = x + 1 = ~ + 1} c a l l {~ = ~}
(lS)

we get stuck having to show

(n = x + 1 = z + 1} call {x = z} }-Hoare { n = x -~- 1 = Z} call (x + 1 = z) .

(19)

It is easy to see that at this stage, no rule is applicable. We require a rule
similar to the consequence rule

r ~.o~ro {p~} S {q~}
F ~'noare {P} S { q} provided Vo', T: ~" p(o') =:~ Pl (dr) A ql (T) ~ q(T)

Notice that the side-conditions unnecessarily tie the auxiliary variables of the
premiss together with those of the conclusion. In particular, we would have to
show x = z ~ x + 1 = z.

Taking auxiliary variables seriously, assume that T and T1 characterise the
auxiliary variables' domain in the conclusion and premiss, respectively. Then,
intuitively, from the class of assumptions Vzl: T1 �9 I ~ }-Hoare {Pl (Zl)} S { ql (Zl) }
we have to show Vz: T �9 F ~-Hoare {p(z)) S {q(z)}. We may relax the side-
condition by finding for every instance of z : T an instance z l :T1 such that
Va: Z, T: E-(p(z)(a) ~ Pl (Zl)(a)) A (ql (z~)(r) ~ q(Z)(T)) holds. It is even more
effective (see also Sect. 4.3) to choose a witness zl relative to the values of
variables in the initial and final states a and T such that the precondition p(z)(a)
holds:

r ~.oaro {P l } S { q l }

provided Vz: T - Va, r: ~ . p(z)(a)

~zl: Wl .p l (z l) (a) A (ql(z~)(T) ~ q(Z)(T)) (20)

L e m m a 4.10 (Soundness) . ~ Replacing the consequence ~ule (13) by (20)
preserves soundness.

706

Proof. ~ From the premiss ~Ho~e (Pl } S (ql } i.e.,

S
Vzl:T1 oVa :~op l (z l) (a) ~ 3T:Z~ (~

and the side condition

Vz: To Wr, v: ~0 p(z)(a) ~ 3z1: T I " Pl (z l) (a) A (ql (Zl)(T) ~ q(z)(r)) ,
(22)

we need to show that ~Hoare (P} S {q} holds.
Given an auxiliary variable z and an initial state a satisfying p(z)(a) , we need

S
to find a final state T such that a , ~- and q(z)(T). Combining p(z)(a) and
(22), we can extract a witness z ~ such that pl(z~)(a) holds.

S
We can now employ (21), yielding the desired final state ~- with a , r

S
and ql(z~)(V)o Having discharged the proof obligation a * T, we show the
remaining q(Z)(T). In the presence OfT, another refinement by (22) yields an aux-
iliary variable zl satisfying Pl (Zl)(a) and allows us reducing q(z)(r) to ql (z l) (r) .
Appealing again to (21), from Pl (z l) (a) we may infer that there is a state ~ sat-

S
isfying both a ,. ~? and ql(zl)(~)o This completes the proof because the
states T and 71 must be the same given that the programs considered are determ-

inistic. []

402 Completeness

In this section~ we show that the new consequence rule leads to a complete
verification calculus i.e., the correctness of a program employing Hoare logic is
derivable whenever a proof relying on the low-level operational semantics exists.
The structure of the proof follows the completeness proof for a more elaborate
set of rules in [2]. The central theorem directly relates the descriptive power of

operational semantics and Hoare logic:

Theorem 4.11 (Most g e n e r a l f o r m u l a) . ~ For any program S, in Hoare
logic, we can derive ~Hoare {P} S (q} where the assertion p characterises the
set of states in which S terminates and q characterises the set of all final states

i.e, S

Proof. ~ By induction on the structure of the program S and a nested induction
on the structure of the procedure body So in the case S ~ call. []

Having treated auxiliary variables in a rigorous manner, it is interesting to ob-
serve that the main Theorem 4.11 singles out the set of all states a~ the domain
for auxiliary variables i.e., T ~= Z. Intuitively, such a restriction ties the auxili-
ary variables together with the program variables. Let (xl , xn) be the set of

707

all program variables with corresponding types { T1,. . �9 , Tn } occurring in some
program S. An assertion of the form)~z: T1 x --- x Tn')~a: E - P (z . l , . . . , z.n, a)
is equivalent to)~z: E .)~a: E o P(z(xl)~ �9 ~ , z(xn), a).

C o r o l l a r y 4.12. [~1 The verification calculus defined as the least relation I-Hoa,e
satisfying (7) - (12) , (1,4) and the new consequence rule (20) is complete.

It is instructive to study the proof of the Completeness Corollary 4.12 to
appreciate the role of the main Theorem 4.11~ in particular~ why it suffices to
consider the set of all states as the domain of auxiliary variables.

Proof~ ~ Let S be a program and p, q: T --~ E ~ Prop be assertions for an
arbi t rary domain T. Given ~Hoare {P} S {q} i.e.,

S
Vz: T W: s ~ p(z) (o) ~ a~: s (. , ~) ^ q(-)(~) (23)

we need to show that ~-Hoare {P} S {q} is derivable~ Applying the generalised
S consequence rule (20) to the main Theorem 4.11 with p l (z l) (a) __a ~ * zl

and ql(Zl)(T) __a Zl = T yields ~-Hoare {P} S {q}, provided we can satisfy the
side condition

Vz: T . Va, r: ~ . p(z)(a) ~ 3z~: E- (a

Clearly, (23) implies (24).

zl) A (T = Z l = V q(Z)(T))
(24)

[]

4.3 The Rule of Adaptat ion

Most proposed verification calculi for recursive procedures are known to be un-
sound or incomplete. Patches to calculi often yield an elaborate set of rules or
intricate side-conditions [2, 19]. A common approach has been to retain the con-
sequence rule (13) and adopt further rules to achieve completeness. The rule of
adaptation has played a central role in previous work. We show that accounting
for known problems in Hoare's rule of adaptation leads to a new rule which turns
out to be a simple instantiation of our new consequence rule.

Recall that in order to derive ~-Hoare {X = Z} call {x = z}, we need to adapt
the auxiliary variable z if we want to prove (19). In such a situation~ from (18),
a rule for adapting the auxiliary variable z leads to

{ n = x + l = z + l } c a l l { x = z } ~ - ~ o a r e {p} cal l {x + l = z}

where the precondition p should be sufficiently weak to satisfy

n = x + l = z ::~ p o

708

In general~ rules of adaptation are of the form

r ~-Hoare {Pl} S {ql}
r ~-Hoare {P} S {q}

for arbi t rary assertions Px, ql~ q, and particular proposals for the adapted pre-
condition p. Ideally, the rule should be left maximal [7] i.e., the precondi-
tion p should be the weakest possible satisfying ~Hoare {P} S {q} in the light
Of ~Hoare {Pl } 8 { ([1 }.

Catering for auxiliary variables at the meta level, Hoare [13] has proposed

p ~ ha: 2 ~ 3Zl ~ pl (a) A VT: 2" ql(T) => q(~') (25)

where zl is a list of all (auxiliary) variables free in pl, ql, but not in q.
However, while adding Hoare's rule of adaptation leads to a complete verifi-

cation calculus, Morris [17] and Olderog [191 have shown chat, in general, (25) is
not the weakest precondition~ For total correctness, Morris [17] points out two
instructive counter examples:

Example 4.13o Let Pl -~ ql ~ h a : E �9 z > 0 A a(x) > 0 and q =~)~a:Z �9 z > 0 A
a(x) > 0o The weakest precondition is then given by An: ~ - z > 0 A ~(x) > 0.
However, (25) requires the stronger ha: 2 . z > 9 A a(x) > 0 (modulo equivalence
transformations), because the auxiliary variable z occurs in both premiss and
conclusion~

This problem can be solved by formally treating assertions as relations of aux-
iliary variables and states i.eo

p = hz: T - ha: 2 . 3 z 1 : T I " Pl (zl) (a) h VT: 2 . ql (Zl) (T) ::22 q(z) (V)
(26)

Morris' second example shows that the choice for the auxiliary variable zl may
have to depend on the value of variables in the final state:

Example 4.14. Let pl - ~ / ~ z : N . h a : ~ . z -- 0Vz = 1, ql ~ s .a(x) ~ z
and q ~ hz: N . ha: Z �9 a(x) ~ 0 A a(x) r 1. The weakest precondition is then
given by t r u e . However, both (25) and the weaker (26) are equivalent to false.

Relaxing the precondition p so that the witness zl can benefit from inspecting
the final value of program variables according to T leads to

p = hz: T o)~a: Z . VT: 2 - 3 z v T1 p l (z l) (a) A (ql(Zl)(T) =:~ q(z)(T)) .
(27)

Notice that our rule of adaptation where the precondition p is the weakest pos-
sible (27) is a straightforward instantiation of the new consequence rule (20).
Conversely, (20) is admissible in the presence of (13) and our rule of adaptation.

709

404 V D M and Recurs ive P r o c e d u r e s

The decomposition rules of the Vienna Development Method (VDM) [15] are
similar in spirit to Hoare logic~ A major conceptual contribution of VDM is that
it formally captures the fact that, in practice, specifications relate the output to
the input i.e., the postcondition may refer to both the initial and final state~

Defini t ion 4.15 (Semant ics of VDM~s decompos i t i on rules) . ~ Follow-
ing Gordon [9], we can represent the meaning of VDM specifications by the
relation

~VDM {,} �9 {o} : (~ ~ Prop) x p r o g x (~ ---4 ~ --4 Prop) ---4 Prop

~VDM {P} S {q} A Va:Zop(a) =~ ST:Zo (a S . r) A q(a)(w)

Presentations of VDM are usually restricted to simple imperative programs
with local variables. There is a one-to-one correspondence between the rules
of Hoare-style ["Hoare and VDM's decomposition rules F-VDM. From our rig-
orous treatment of auxiliary variables for Hoare logic~ it is easy to see that
specifications in VDM correspond to a particular class of specification in Hoare
logic, in which the auxiliary variables are devoted to freezing the values of all
program variables prior to execution. More precisely, given an arbitrary pre-
condition p: Z --+ Prop, program S and postcondition q: ~ -+ ~ -~ Prop~ the
VDM specification]-VDM {P} S {q} is derivable if and only if the specification
Fnoare {)tZ, a: ~o Z-= ~r A p(a)} S (q} is derivable in Hoare logic. Guided by
this intuition~ we can simplify the consequence rule (20) for a scenario where
auxiliary variables capture the initial state:

r eVDM {Pl } S {ql}
r ~VDM {p} S {q}

provided Va, T: ~ . p(a) ~ (px(a)A (ql(a)(T) :~ q(o')(T))) .

An equivalent consequence rule for VDM has been proposed by Aczel [1].
We were able to show that this rule plays a similar role in VDM to our new

consequence rule in Hoare logic. More precisely, in LEGO, we have shown that
simply adding Sokotowski's procedure call rule to the standard presentation of
VDM (neglecting local variables) leads already to a sound and complete system

The success of VDM reinforces that, in the context of Hoare logic, auxiliary
variables deserve a rigorous treatment. Furthermore, VDM's approach suggests
that in practice it is feasible to confine the domain of auxiliary variables to the
state space Zo

5 S u m m a r y

We have formalised Hoare logic and VDM's decomposition rules for imperative
programs dealing with recursive procedures and proved soundness and (relative)

710

completeness for both systems. This work has been mechanically checked by
the interactive computer-aided proof system LEGO. Under its influence, we
were forced to simplify current presentations of verification calculi to formally
establish soundness and completeness. In particular, based on work by Apt and
Meertens~ we have shown how a rigorous t reatment of auxiliary- variables leads
to a new consequence rule. As a trivial instance, we have gained an improved
rule of adaptation. We have also been able to show that VDM can easily be
extended to cope with recursive procedures. This paper has only dealt with
total correctness, but we are confident that similar results for partial correctness
can also be established.

The LEGO system has been a valuable tool to achieve our results~ It stimu-
lated us to search for crisp calculi and helped us keep track of the correct proof
obligations, in particular when dealing with completeness~ Given the numerous
proposed unsound and incomplete verification calculi, it seems appropriate to
further investigate how computer-aided proof systems may contribute to research
in program verification.

A c k n o w l e d g e m e n t s

This work has been carried out as part of the Community training project Co-
Development of Imperative Programs and their Correctness Proofs in a Type-
Theoretic Environment funded by the European Commission, programme No
ERBFMBICT950199. We have also benefited from the European Commis-
sion's Esprit Working Group wg 21900 TYPES, the British Council/Deutscher
Akademischer Austauschdienst 's Academic Research Collaboration Programme
Co-Development of Object-Oriented Programs in LEGO and some funding from

EPSRC.
Paul Jackson provided valuable criticisms and suggestions. Discussions with

Martin Hofmann and Zhaohui Luo have greatly influenced the inductive present-
ation of Hoare logic with contexts. I also like to thank Rod Burstall and Healf
Goguen for their helpful comments on earlier drafts of this paper.

R e f e r e n c e s

1. Peter Aczel. A system of proof rules for the correctness of iterative programs -
some notational and organisational suggestions. Unpublished~ August 1982.

2. Pierre America and Frank de Boer. Proving total correctness of recursive proced-
ures. Information and Computation, 84(2):129-162, 1990.

3. Krzysztof R. Apt. Ten years of Hoare's logic: A survey - part I. ACId Transactions
on Programming Languages and Systems, 3(4):431-483, October 1981.

4. Krzysztof R. Apt and Lambert G. L. T. Meertens. Completeness with finite sys-
tems of intermediate assertions for recursive program schemes. SIAM Journal on
Computing, 9(4):665-671, November 1980.

5. Stephen A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM Journal on Computing, 7(1):70-90, February 1978.

711

6. P~ Cousot. Methods and logics for proving programs. In Jan van Leeuwen, ed-
itor~ Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, chapter 15, pages 841-993. Elsevier, 1990.

7. Ole-Johan Dahl. Verifiable Programming. International Series in Computer Sci-
enceo Prentice Hall, 1992.

8. R.W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Syrup. in Applied Mathematics, volume 199 pages 19-32, 1967.

9. Michael J.C. Gordon. Mechanizing programming logics in higher order logic. In
G. Birtwhistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Veri-
fication and Automated Theorem Proving (Banff, Alberta)~ number 15 in Work-
shops in Computing, pages 387-439. Springer, 1991.

10. David Cries. The Science of Computer Programming, chapter 16, pages 193-215.
Springer, 1981o

11. D. Harel. First-order Dynamic Logic, volume 68 of Lecture Notes in Computer
Science. Springer, 1979.

12. C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576-580, 1969. Also in I14].

13. C.A.R. Hoaxe. Procedures and parameters: An axiomatic approach. In E. Engeler,
editor, Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture
Notes in Mathematics~ pages 102-116o Springer, 1971. Also in 114].

14~ C~176 Hoare and Cliff B. Jones, editors. Essays in Computing Science. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

15. Cliff Bo Jones. Systematic Software Development Using VDM. International Series
in Computer Science. Prentice Hall, 2 edition, 1999.

16. The Lego World Wide Web page. http://w~ru, dcs. ed. ac.u.k/home/lego.
17. James H. Morris. Comments on "procedures and parameters". Undated and un-

published~
18. Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics text-

book. In V~ Chandru and V. Vinay, editors, Proceedings of 16th Conference on
Foundations of Software Technology and Theoretical Computer Science (Hydera-
bad, India, December 18-20, 1996)~ volume 1180 of Lecture Notes in Computer
Science, pages 180-192. Springer, 1996.

19. Ernst-Riidiger Olderog. On the notion of expressiveness and the rule of adaptation.
Theoretical Computer Science~ 24:337-347, 1983.

20. Stefan Sokotowski. Total correctness for procedures. In J. Gruska, editor, Sixth
Mathematical Foundations of Computer Science (Tatranskd Lomnica), volume 53
of Lecture Notes in Computer Science, pages 475-483. Springer, 1977.

