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Abstract The emergence and spread of highly pathogenic avian influenza (H5N1) viruses among poultry in Asia,

the Middle East, and Africa have fueled concerns of a possible human pandemic, and spurred efforts

towards developing vaccines against H5N1 influenza viruses, as well as improving vaccine production

methods. In recent years, promising experimental reverse genetics-derived H5N1 live attenuated vaccines

have been generated and characterized, including vaccines that are attenuated through temperature-

sensitive mutation, modulation of the interferon antagonist protein, or disruption of the M2 protein. Live

attenuated influenza virus vaccines based on each of these modalities have conferred protection against

homologous and heterologous challenge in animal models of influenza virus infection. Alternative vaccine

strategies that do not require the use of live virus, such as virus-like particle (VLP) andDNA-based vaccines,

have also been vigorously pursued in recent years. Studies have demonstrated that influenza VLP vacci-

nation can confer homologous and heterologous protection from lethal challenge in a mouse model of

infection. There have also been improvements in the formulation and production of vaccines following

concerns over the threat of H5N1 influenza viruses. The use of novel substrates for the growth of vaccine

virus stocks has been intensively researched in recent years, and several candidate cell culture-based systems

for vaccine amplification have emerged, including production systems based on Madin-Darby canine

kidney, Vero, and PerC6 cell lines. Such systems promise increased scalability of product, and reduced

reliance on embryonated chicken eggs as a growth substrate. Studies into the use of adjuvants have shown

that oil-in-water-based adjuvants can improve the immunogenicity of inactivated influenza vaccines and

conserve antigen in such formulations. Finally, efforts to develop more broadly cross-protective immuni-

zation strategies through the inclusion of conserved influenza virus antigens in vaccines have led to ex-

perimental vaccines based on the influenza hemagglutinin (HA) stem domain. Such vaccines have been

shown to confer protection from lethal challenge in mouse models of influenza virus infection. Through

further development, vaccines based on the HA stem have the potential to protect vaccinated individuals

against unanticipated pandemic and epidemic influenza virus strains. Overall, recent advances in ex-

perimental vaccines and in vaccine production processes provide the potential to lower mortality and

morbidity resulting from influenza infection.

1. Introduction

1.1 Influenza A

Influenza viruses are classified in the family of Orthomyx-

oviridae, and comprise viruses possessing negative-sense, single-

stranded, segmentedRNAgenomes. Themost serious infections

of humans occurwith viral strains of the genus Influenzavirus A.[1]

In particular, influenza A subtypes H1N1 and H3N2 currently

cause significant human morbidity and mortality,[2,3] with

an estimated 10–15% of the US population infected, and an

average of approximately 30 000 associated deaths occurring

annually.[4,5] Globally, as many as 500 000 fatalities may occur

each year.[6] In addition, influenza A viruses have the propensity

to cause periodic pandemics, as novel strains of influenza virus

emerge from avian or other animal reservoirs into immunolog-

ically naive human populations. Three such influenza pandemics

occurred in the 20th century:[7] in 1918,[8] 1957,[9] and 1968.[10]

The 21st century has already witnessed one pandemic event, in

2009.[11,12] The disease burden associated with such pandemics

can be enormous: in the order of 50million deaths occurred

during the 1918 influenza pandemic, and up to 4million deaths

were associatedwith theH2N2 strain introduced into the human

population in 1957.[9] Such historical precedents provide com-

pelling impetus to construct and maintain public health systems

that can adequately combat future pandemics. However, while

influenza pandemics are considered to be inevitable, the identity

of any specific pandemic strain is notoriously difficult to predict

before the event. Furthermore, while vaccination is considered

the pre-eminent public health measure to protect populations

against pandemic influenza, it can take 4–6months ormore from

the time of strain selection to deliver vaccine using current

manufacturing technologies,[13,14] and the antigenic diversity

present in influenza viruses restricts the utility of currently

licensed vaccines to a small number of specific strains. Thus, as

the global spread of a pandemic influenza virus strainmay occur

in a considerably shorter time span than 6 months, the need to

make improvements to the vaccine production chain is clear.

With this impetus, several technologies are being developed or

have recently become available that may shorten the lead-time

to vaccine delivery and that aim to make the production chain

more secure.
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These advances include generating vaccine seed viruses using

reverse genetics techniques, amplifying vaccine seed viruses in

non-traditional substrates such as Vero and Madin-Darby

canine kidney (MDCK) cell cultures, lowering the need for anti-

gen by using dose-sparing measures such as the inclusion of ad-

juvants, or improving the route of delivery. Other approaches

include the use of recombinant vaccine vectors, which do not rely

on growth of influenza virus to create the vaccine. These include

the use of DNA vaccination, virus-like particle (VLP)-based

vaccination, use of virus vectors such as vaccinia, adenovirus and

others, and using recombinant bacterial protein as antigen.

Finally, progress has been made recently in efforts to gen-

erate more broadly protective vaccine by targeting conserved

epitopes maintained within the influenza virus genome.

1.2 H5N1 Influenza Virus as a Possible Pandemic Threat

Highly pathogenic avian influenza virus (HPAIV) of the

H5N1 subtype caused a series of outbreaks of influenza disease

in poultry in Asia between 1997 and 2003.[15-17] These out-

breaks were accompanied by infrequent human infections,[18]

which resulted in severe disease or death in the individuals

concerned.[19-21] By 2003, H5N1 viruses had become endemic in

poultry in Asia,[22] resulting in the deaths of millions of un-

protected poultry through infection or culling,[23] as well as

causing sporadic fatal cases in humans[24,25] through contact

with poultry. The geographic range of the virus endemicity in

poultry increased by 2006 to include areas of Africa, and

the periodic human infections associated with HPAIV H5N1

outbreaks continue. TheWHO reports that up until 20 January

2011, 518 human cases of H5N1 infection had been confirmed,

with a mortality rate of around 60%.[26]

Due to the susceptibility of certain individuals to infection,

there exists the potential for the virus to adapt within a human

host through mutation or reassortment with a seasonal influ-

enza strain, resulting in the genesis of a pathogenic virus pos-

sessing a transmissible phenotype. While the likelihood of such

an event arising is considered to be of very low probability, its

consequences could potentially be grave. Concerns regarding

an influenza pandemic originating from an HPAIV strain have

prioritized the H5N1 subtype of influenza virus for vaccine

development.

In the event of a worst-case influenza pandemic scenario, it

has been estimated that over a billion doses of vaccinemay be re-

quired globally, and delivered within, at the most, 4–6 months,

in order to fully prevent a public health disaster.[27] Current

manufacturing methods and capacities are not adequate to

allow such a pandemic response. Vaccine strains have to be

identified, and seed stocks generated and then tested for

immunogenicity and safety, before large-scale production can

commence.[13,14] The final stocks then have to be tested, pack-

aged, and distributed before use. As mentioned above, this

process can take 4–6 months or more using current tech-

nologies.[27] The timeline of production can furthermore ex-

pand due to a number of factors that are difficult to control; the

vaccine virus strain may (i) be slow growing; (ii) grow to low

titers; (iii) incorporate low levels of hemagglutinin (HA) anti-

gen; (iv) cause the death of the growth substrate; or (v) change

immunologically by adapting to the growth substrate. In ad-

dition, if the substrate itself is limited, this will cause further

logistical difficulties. In a situation where a pandemic influenza

virus is circulating, time to vaccine delivery is of the essence.

Several of these vaccine production concerns would be appli-

cable to an H5N1 virus strain, and has given rise to a recent

upsurge in interest in the development of novel H5N1 influenza

vaccines and vaccine production technologies.

This article focuses on the current state of research onH5N1

vaccines and vaccine production technologies, summarizes

advances, and assesses how these developments may ultimately

improve public health.

2. Advances in Influenza Vaccine Development

2.1 Reverse Genetics-Derived Vaccines

Several distinct strategies for the generation of live atten-

uated influenza virus (LAIV) vaccines have emerged through

the use of reverse genetics techniques to introduce attenuating

mutations into the influenza virus genome. These strategies

include (i) the directed introduction of mutations in the poly-

merase genes resulting in a temperature-sensitive phenotype;

(ii) the modulation of the interferon antagonist protein, non-

structural protein 1 (NS1), to create viruses unable to prevent

the induction of a cellular anti-viral state; and (iii) the disrup-

tion of the cytoplasmic tail of the M2 protein of influenza

virus, resulting in viruses that cannot assemble efficiently. An

advantage of reverse genetics-based approaches is the ability to

specifically tailor the growth characteristics of live attenuated

vaccine viruses, in order to optimize the balance between im-

munogenicity and safety. An additional application of reverse

genetics techniques is the generation of seed viruses destined to

be used as inactivated split or subunit vaccines.

The production of HPAIV H5N1 vaccines involves issues

specific to the subtype. These viruses are highly pathogenic, not

only to the conventional embryonated egg substrate, but also

potentially to manufacturing workers. In addition, HPAIV
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have select agent status in the US, which restricts their use to

highly stringent containment facilities and work practices.

The use of reverse genetics techniques allows swift, targeted

modification of these viruses at the necessary loci, in order

to attenuate virulence, improve growth properties, maintain

immunogenicity, and allow production of vaccine to occur at a

lower containment level. Thus, reverse genetics techniques are

well suited to meet the need for a rapid response to vaccine

demand in a pandemic situation, and the advantages that re-

verse genetics techniques offer may be particularly useful in the

case of an H5N1-origin pandemic.

2.2 Cold-Adapted, Temperature-Sensitive (ca/ts), Live
Attenuated Influenza Virus (LAIV) Vaccines

Cold-adapted temperature-sensitive (ca/ts) LAIV vaccines are

presently licensed for use in the US. Originally, these vaccines

were generated by classical reassortment methods, such that the

constituent viruses possessed the antigenic proteins HA and

neuraminidase from the viral strains of interest and the remaining

proteins from ca/ts master donor strains.[28] In the US, the two

master donor strains used were A/Ann Arbor/6/60 (H2N2) and

B/Ann Arbor/1/66. Three ca/ts viruses comprised each final

vaccine such that it included the antigenic proteins of the H1N1,

H3N2, and influenza B strains predicted to circulate for a given

influenza season. These master donor strains continue to be used

to generate vaccines by classical reassortment techniques.

2.2.1 Reverse Genetics-Derived ca/ts LAIV Vaccines

More recently, LAIV vaccines for seasonal influenza virus

strains generated by reverse genetics have also been licensed in

the US. These vaccines still comprise the same master donor

strains,[29,30] reassorted with the antigenic proteins of circulat-

ing influenza strains, but are obtained using recombinant DNA

technology, thereby increasing the efficiency and precision of

the virus generation process. First-generation, plasmid-based,

reverse genetics-derived viruses were obtained through trans-

fection of 12–16 plasmids into virus-permissive cell co-cultures,

in which eight plasmids encode the negative-sense viral RNAs,

driven from a polymerase (pol) I promoter, and the remaining

plasmids encode viral mRNAs, driven from a pol II pro-

moter.[31,32] When transfected into cells with compatible pol I

and pol II proteins, these plasmids generate the necessary

protein and viral RNA products to allow the recovery of in-

fectious virus. The technique has been subsequently refined

through the use of ambisense plasmids, which contain both pol

I and pol II promoters flanking the DNA encoding viral gene

segments of interest.[33] This approach reduces to eight the

number of plasmids required in the rescue transfection, thereby

improving efficiency of virus rescue. A further reduction in the

number of plasmids required was achieved in 2005, with

the advent of four- and five-plasmid-based rescue systems.[34]

The licensure of ca/ts vaccines for seasonal influenza that utilize
reverse genetics techniques facilitates efficient and predictable

generation of the virus of interest, and represents an improve-

ment in the vaccine production chain.

2.2.2 H5N1 Subtype ca/ts LAIV Vaccines

Although currently unlicensed, several experimental reverse

genetics ca/ts LAIV vaccines specifically targeting H5N1 sub-

type viruses that show promise in animal models have been

developed in approximately the last decade. Two candidate

reverse genetics ca/ts LAIV vaccines designed to protect against

A/Hong Kong/97 (H5N1) were generated in 1999.[35] The

constituent viruses, possessing the A/Hong Kong/156/97 or

A/Hong Kong/483/97 HA and neuraminidase proteins, with

attenuated cold-adapted A/Ann Arbor/6/60 internal gene

segments, were modified to remove the polybasic cleavage site

from the HA proteins (a typical attenuating modification

performed on reverse genetics-derived live attenuated H5N1

vaccines), resulting in trypsin-dependent in vitro growth. The

viruses maintained a ca/ts phenotype, grew to in excess of 108

EID50 (50% egg infectious dose)/mL in embryonated chicken

eggs (ECEs), and were shown to be safe and immunogenic in a

ferret model. Safety was demonstrated by an absence of viral

growth in ferret lung following inoculation with 107 EID50 of

virus. In 4-week-old chickens, vaccination with either vaccine

was safe and provided 75–100% protection from a lethal

homologous challenge, and 50% protection from a lethal het-

erologous H5N1 virus challenge.

Further ca/ts LAIV H5N1 vaccines – generated using es-

sentially the same strategy, but possessing surface proteins

derived from strains arising in Hong Kong in 1997 and 2003, or

in Vietnam in 2004 – gave similarly encouraging results.[36]

These vaccines also demonstrated trypsin-dependent in vitro

growth, and were safe and immunogenic in mice and ferrets.

Mice were protected from a stringent (5000MLD50 [50%mouse

lethal dose]) challenge with homologous or heterologousH5N1

virus following one dose of vaccine. This protection was

observed despite an absence of serologic correlates of pro-

tection. Two doses of vaccine, administered 4 weeks apart,

furthermore resulted in a complete absence of viral replication

in the lungs of mice and ferrets following homologous or

heterologous H5N1 challenge 4 weeks after vaccine boost.

In 2009, an open-label human vaccine trial in healthy adults

demonstrated the safety of the Hong Kong-2003 and Vietnam-
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2004 strain-based vaccines.[37] However, replication of the

vaccine strains was minimal, and serum-based correlates of

protection were absent, even after two doses of vaccine were

administered. In follow-up studies, the authors demonstrated

that over-attenuation of vaccine may be related to removal of

the polybasic cleavage site of the HA, in the context of the ca/ts
internal gene constellation.[38] Although traditional correlates

of protection based on hemagglutination inhibition activity

were not detected in sera, both vaccines were immunogenic,

generating virus-specific IgA in approximately half of the study

participants. The lack of a significant hemagglutination in-

hibition response observed in both animal studies and human

vaccine trials highlights the difficulty of determining reliable

correlates of protection when using LAIV as opposed to tra-

ditional inactivated vaccines. To allow meaningful evaluation

of these vaccines in humans, more research into novel correlates

of protection for LAIV is clearly needed.

In parallel studies involving reverse genetics-derived ca/ts
LAIV H5N1, Fan et al.[39] demonstrated immunogenicity and

protective efficacy in bothmice and non-human primates, further

suggesting that ca/ts LAIV vaccines are potentially efficacious

against HPAIV H5N1. In these studies, the elicitation of neu-

tralizing antibody, as well as T-cell responses, was observed.

Taken together with the data of Subbarao and co-workers,[35,36]

these results suggest that a diverse range of immunologic re-

sponses contribute to protection induced by ca/ts LAIV vaccines.

Overall, ca/ts vaccines represent a promising approach to

protect against H5N1 influenza. Data from studies on ca/ts
vaccines targeting other influenza viral subtypes, as well as data

from the experimental vaccines discussed here, suggest that

these vaccines provide protection that may be broader, more

balanced, and longer lasting than traditional inactivated

vaccines.[40-42] Further research is, however, needed into the

optimization of these vaccines, as well as the identification of

correlates of protection applicable to LAIV vaccines.

2.3 Non-Structural Protein 1 (NS1)-Truncated Influenza

Vaccines

An alternative strategy to ca/ts vaccines for the generation of
experimental LAIV vaccine is through the modulation of the

interferon antagonist protein NS1 of influenza virus. Viruses

lacking the NS1 protein (delNS1) are unable to antagonize the

host interferon response, rendering them highly attenuated in

interferon-competent hosts, while remaining capable of growth

in substrates with a compromised interferon response, such as

Vero cells, as well as in immunocompromised hosts, such as

STAT1 knockout mice.[43] Initial studies demonstrated that,

while being non-pathogenic, such delNS1 viruses were in fact

too attenuated to be optimal as an LAIV vaccine, providing

protection to mice from lethal challenge only when used at a

high inoculum dose of 106 plaque-forming units (PFU).[43]

Further work showed that partial truncation of the NS1 open

reading frame, such that it encoded the first 99 N-terminal

amino acids (NS1-99), yielded a virus with diminished NS1

function. This NS1-99 virus was attenuated relative to wild-

type, but induced a more robust antibody response in the host

than the delNS1 variant.[44] Lower doses of NS1-99 virus were

protective in mice following lethal challenge with wild-type

PR8 virus relative to delNS1-vaccinated animals.[44]

LAIV vaccines containing NS1 truncations have been con-

structed in the context of influenza virus strains associated with

multiple host species, and these, in turn, have been evaluated in

several model systems, including equine,[45,46] porcine,[47-49]

avian,[50] murine,[51] and macaque.[52] The results of these

studies were summarized in a recent review article.[53] In these

diverse model systems and natural hosts, truncated NS1-based

LAIV vaccines have consistently shown attenuated growth,

induced host immunity, and provided protection from mor-

bidity or mortality following challenge with influenza virus.

2.3.1 H5N1 Subtype, NS1-Truncated, LAIV Vaccines

Experimental NS1-truncated LAIV vaccines against H5N1

influenzahave been characterized. Steel et al.[54] generated a panel

of vaccine candidate viruses derived from A/VN/1203/04 virus

in which the NS1 protein was truncated such that it expressed

N-terminal 73, 99, or 126 amino acids, in combination with

removal of the polybasic cleavage site from the HA protein, and

alteration of the polymerase subunit PB2 to affect replicative

ability. The resulting viruses all demonstrated trypsin-dependent

growth in vitro, and were highly attenuated in mice relative to

wild-typeA/VN/1203/04 virus. One dose of vaccine was sufficient

to fully protect mice against a lethal homologous challenge, and

generate virus-neutralizing titers in serum. Inpoultry, vaccination

with 106 EID50 of an NS1-99-containing virus was sufficient to

elicit full protection against homologous lethal challenge, and

partial protection against a heterologous H5N1 virus challenge.

Moreover, shedding of challenge virus from trachea of protected

birds was below the limit of detection, suggesting challenge virus

was neutralized at the site of inoculation.

2.3.2 NS1-Truncated, LAIV Vaccines in Humans

LAIV attenuated through disruption of interferon antagonist

functions provide a different modality from ca/ts vaccines, and
maybe better suited for use in specific population groups, such as

the elderly, who may not respond as well to ca/ts vaccines
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as younger individuals.[55] It has been speculated that the ca/ts
viruses may be too attenuated to achieve optimum protection in

the elderly, due to the presence of pre-existing immunity.

In addition to further pre-clinical testing, clinical studies are

now required to demonstrate the safety and efficacy of NS1-

modulated vaccines in humans. To this end, a recent phase I

clinical trial using a reverse genetics-derived, NS1-truncated

variant of A/New Caledonia/99 (H1N1) virus demonstrated

that the vaccine was well tolerated, safe, and immunogenic

in male volunteers.[56] Interestingly, sera obtained from trial

participants receiving vaccine was found to contain neutraliz-

ing antibodies reactive against the homologous strain as well as

the heterologous isolates A/Solomon Islands/2006 (H1N1) and

A/Brisbane/59/2007 (H1N1).

2.3.3 Preventing Reassortment between NS1-Truncated, LAIV

Vaccines and Circulating Strains

A perceived concern relating to NS1-modulated LAIV is

their potential for genetic reassortment with wild-type virus,

which could lead to phenotypic reversion to pathogenicity. As it

is thought that influenza virus genome segments are packaged

bymeans of a segment-specific mechanism,[1] packaging signals

encoded within the viral RNA of truncated and full-length

non-structural segments would be expected to be degenerate.

However, by modulating the packaging sequences, it may be

possible to generate a vaccine virus that is unable to reassort

with wild-type viruses, thereby improving the stability of NS1-

truncated strains. A recent publication by Gao and Palese[57]

has demonstrated the feasibility of this approach. Therein, a

recombinant virus possessing HA and non-structural segments

in which the respective packaging signals were exchanged was

generated and characterized. The authors of the study showed

that, compared with a wild-type control, the packaging mutant

virus did not exchange gene segments efficiently with a virus

possessing wild-type packaging sequences.

In a number of contexts, NS1-modulated vaccines have been

demonstrated to stimulate a robust and relatively broad im-

mune response and to provide protection against influenza

infection. The experimental evidence to date furthermore

suggests that one dose of vaccine may be sufficient to safely

generate a protective response, and that this response confers

increased cross-protection against strains compared with

conventional inactivated vaccines.

2.4 M2-Modulated Influenza Vaccines

TheM2 protein of influenza virus functions as an ion channel

allowing acidification of virions in the endosome, thereby facili-

tating uncoating and release of viral RNA into the cytoplasm.[1]

The cytoplasmic tail of M2 has also been shown to be important

in virus assembly as well as pathogenesis.[58-62] Based on the es-

sential functions of this protein in the viral life-cycle, Kawaoka

and colleagues[63-66] have developed a strategy for viral attenu-

ation through truncation of the M2 cytoplasmic tail.

2.4.1 H5N1 Subtype, M2-Truncated, LAIV Vaccines

Watanabe et al.[65] have demonstrated that A/VN/1203/04
(H5N1) virus, genetically altered through an 11 amino acid

truncation of the M2 cytoplasmic tail as well as deletion of the

HA polybasic cleavage site (VN1203M2del11), has attenuated

growth in lungs and nasal turbinates of mice. Moreover,

the MLD50 value of this mutant virus was increased approx-

imately 105-fold relative to the wild-type virus in a mouse

model. Nonetheless, when cultured in eggs, the mutant virus

retained the efficient in vitro growth phenotype of wild-type

A/VN/1203/04 virus. Vaccine-challenge studies with mice vac-

cinated intranasally using live VN1203M2del11 virus demon-

strated sterilizing protection from 100 MLD50 challenge with

homologous or heterologous A/Indonesia/7/05 (H5N1) virus.

2.4.2 AVaccine Based on Lengthening the M2 Cytoplasmic Tail

Similar phenotypic traits to those seen upon truncation of

the M2 protein were observed following extension of the M2

cytoplasmic tail. These studies were performed using a reverse

genetics-derived strain of A/WSN/33 (H1N1) in which the cy-

toplasmic tail of theM2 protein was altered by the introduction

of a carboxy-terminal epitope tag (WSNM2myc).[62] This virus

grew to titers of 108 TCID50 (50% tissue culture infective dose)/
mL inMDCK cells, but induced no lethality in mice inoculated

intranasally with 105 PFU of virus, and had lower viral load in

the lungs than did wild-type virus. In mice infected intranasally

with WSN M2myc virus, and subsequently challenged with

20MLD50 of homologous wild-type virus, complete protection

from death was observed.

Thus, M2-modulated LAIV presents a useful phenotype of

high growth in cell culture combined with attenuated growth

in vivo, while retaining immunogenicity in animal models. At-

tenuation by protein truncation means the chance of reversion

to virulence is low; however, the strategy shares the criticism

with NS1 truncation vaccines that reassortment may lead to a

reversion to wild-type phenotype.

2.5 Bivalent Influenza Vaccines

A further strategy utilized for the generation of LAIV vaccines

involves the replacement of the endogenous influenza virus
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neuraminidase with a heterologous protein. The introduced pro-

tein must provide neuraminidase activity to allow the completion

of the viral life-cycle, and, if selected appropriately, can confer

immunity in the vaccinated host to a second infectious agent.

Thus, using an influenza virus-based, reverse genetics system it is

possible to generate bivalent live attenuated virus vaccines.

Kawaoka and colleagues[67] demonstrated in a mouse model

that a bivalent vaccine virus, based on the PR8 strain and

incorporating the HA-neuraminidase protein from a para-

myxovirus, was attenuated, and effectively protectedmice against

lethal challengewithmouse-adapted influenza and Sendai viruses.

Laboratory studies in both mouse and chicken models have fur-

thermore shown that a bivalent influenza virus utilizing the same

strategy provides protection against both HPAIV H5N1 and the

avian paramyxovirus, Newcastle disease virus (NDV).[68,69] Since

it allows two important pathogens to be targeted with a single

vaccine, this bivalent approach has the potential to greatly de-

crease the costs associated with vaccination campaigns. When

considering vaccination of poultry, in particular, such economic

concerns are of high importance and can determine whether an

immunization program is undertaken or not.

2.6 Inactivated Influenza Vaccines

Reverse genetics can also be used for the rational and effi-

cient generation of seed stocks for inactivated vaccine pro-

duction. By using this approach, Subbarao et al.[70] generated

an experimental H5N1 vaccine virus with the internal genes

derived from A/PR/8/34, as used in currently licensed in-

activated seasonal vaccines, and the surface proteins from

A/HK/491/97 (H5N1). Inactivated vaccine derived from this

virus was shown to be safe, immunogenic, and protective in

both mouse and chicken models.

2.7 Cell Culture-Based Vaccine Production

In order to improve the efficiency, security, and reliability of

the vaccine production chain, the development of alternative

substrates for the growth of influenza virus has seen intensive

activity in recent years.

2.7.1 Embryonated Chicken Eggs as a Substrate

Traditionally, in the US, Europe, and elsewhere, ECEs have

been the substrate for the selection, amplification, and pro-

duction of influenza virus vaccine strains. ECEs are well char-

acterized for the growth of influenza virus, and have proven

useful over many years. Nonetheless, recent focus on influenza

vaccine production in the light of pandemic threats has high-

lighted certain shortcomings relating to the ECEs. Notably,

there is a constrained and relatively inflexible supply of specific

pathogen-free ECEs, which in turn limits vaccine production

capacity.[13,71] This fixed capacity prevents immediate scale-up

in response to a rapidly spreading global outbreak and may be

exacerbated in the case of a pandemic triggered by HPAIV,

since laying hens may be affected by the pandemic strain. In

addition, the downstream processing of influenza virus ob-

tained from the ECEs is cumbersome and labor intensive, and

the logistics of growing influenza virus in the ECEs requires

careful planning to ensure sufficient egg supplies.

In addition to these better-defined limitations, recently there

have been significant difficulties with the isolation of some H3

subtype human influenza viruses in eggs.[13,72] These problems

have led to vaccine production delays and could result in vac-

cine strain mismatch if the epidemic strain of choice cannot be

cultured in eggs.[73] The passage of isolated seasonal influenza

viruses in eggs can furthermore lead to adaptive changes in the

influenza virus genome,[74] whichmay alter the immunogenicity

of the vaccine strain and thereby reducematch to the circulating

strain.[13,75] Finally, the use of eggs is not suited for the growth

of reverse genetics-derived vaccines, which require federally

approved and licensed cell culture systems.

2.7.2 Advantages of Cell Culture-Based Systems

While working towards a reduction in reliance on growth of

influenza virus in the ECEs, it has been noted that influenza

viruses are also amenable to growth in certain transformed

continuous cell lines such as MDCK and Vero cells. Using such

cell lines as a growth substrate for influenza vaccine virus has

several potential advantages, including improved scalability of

the production process over eggs, resulting in the ability to meet

high global demand during pandemic outbreaks, as well as being

capable ofmeeting ananticipated incremental increase in vaccine

demand due to changes in the recommendations for vaccine

coverage. Furthermore, closed bioreactors used for large-scale

cell culture can potentially reduce the risk of contamination of

vaccine with adventitious agents. Cell culture growth may elimi-

nate the need for the generation of high growth reassortants, as

human influenza viruses typically grow to higher titers in a cell

culture than in the ECEs without adaptation, but this approach

may lead to regulatory hurdles relating to approved vaccine

strain usage, and possibly to the need for higher biocontainment

levels during virus production.[13]

2.7.3 Cell Culture-Based Approaches in Use and in Development

The advantages of cell culture-based systems have resulted in

the investigation of several cell lines for amplification of virus
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stocks for vaccine production. In particular,MDCK,Vero, and

PerC6 cells[76-79] have gained the focus of attention. In addition,

Sf9-derived cells have been used to generate protein for an HA-

based influenza vaccine.[80] Sf9 cells are a cell line originally

derived from the fall armyworm, Spodoptera frugiperda.

Novartis obtained regulatory approval in the EU in 2007 to

manufacture an inactivated subunit vaccine for seasonal in-

fluenza (Optaflu�), which is produced in a patented MDCK

cell line (MDCK 33016). A similar, MDCK grown, inactivated

subunit vaccine (Influvac�, Solvay Pharmaceuticals)[81] gained

licensure in the Netherlands in 2001, although this vaccine was

not ultimately taken to market. Data from several clinical trials

conducted using these vaccines demonstrated broadly

comparable safety and immunogenicity profiles to egg-grown

vaccine subjected to the same processing.[79,82-85]

MDCK cell lines have been shown to be amenable to mod-

ification to permit suspension growth[86-88] and to be capable of

growth in defined serum-free media. Several vaccine manu-

facturers have generated master strains, and cell banks, of

MDCK cells, which grow in suspension and yield high titers of

influenza virus.[79] Hussain et al.[89] have described a high

yielding MDCK cell line, which allows the growth of ca/ts in-
fluenza virus to similar titers as those obtained from the ECEs.

The use of Vero cells for influenza vaccine production is also

being pursued. Baxter has several Vero cell culture-derived

vaccine trials completed or underway. A recently published

phase III clinical trial demonstrated comparable safety

and immunogenicity of a Vero-cell-culture-derived influenza

vaccine to the egg-grown vaccine for pH1N1 influenza.[90] In

addition, similarly positive safety and immunogenicity data

were gleaned from a phase II vaccine trial for a Vero cell-

derived H5N1 vaccine.[91]

S. frugiperda-derived cells have been used to grow re-

combinant baculovirus, which expressesHAprotein.Using this

system, three times more protein can be included in the final

seasonal vaccine formulation without adverse reactions relative

to egg-derived vaccine.[80] Studies have indicated that

FluBlok�, a vaccine manufactured using this approach, may be

more immunogenic and provide broader protection than con-

ventional vaccine.[92] Several clinical trials involving FluBlok�

have been performed,[92,93] and the vaccine is awaiting a deci-

sion on licensure in the US.

2.7.4 Drawbacks of Cell Culture-Based Vaccine Production

While improving the security of the vaccine production

chain, the use of transformed cells to grow influenza virus

carries risks associated with the potential for growth of con-

taminating micro-organisms, as well as theoretical risks per-

taining to the known tumorigenicity in mice of cell lines such as

MDCK.[82] For these reasons, strict regulatory requirements

need to be satisfied[13,82] before cell lines can be granted li-

censure for use in the production of influenza vaccines.

Overall, cell culture-based approaches offer a promising al-

ternative to traditional egg-based influenza virus vaccine

manufacture and have the potential to alleviate a number of

logistical concerns with current methods. Some cell lines have

already been adopted and are in use by the vaccine industry.

Cell-based approaches are likely to be increasingly used, but

they have their own challenges, which will need to bemonitored

closely.

2.8 Virus-Like Particles (VLPs) as Influenza Vaccines

Replication-defective influenza VLPs can be generated

through the transfection of plasmid DNA into mammalian or

insect cells. Such VLPs are characterized by spontaneous self-

assembly and budding from transfected cells, following the

intracellular expression of the structural proteins HA, neura-

minidase, and matrix, or combinations thereof.[94-96] The

morphologic and antigenic similarity of influenza VLPs to in-

fluenza virions has encouraged research into their potential use

as a vaccine platform.[95] The potential advantages of VLPs

over conventional inactivated vaccines include cutting out the

need to work with isolated virus strains or egg-based amplifi-

cation systems. Furthermore, as discussed below, some data

suggest that VLPs may induce broader and longer-lasting im-

mune responses than currently licensed inactivated vaccines.

2.8.1 Hemagglutinin-Containing VLPs

In pre-clinical laboratory studies, VLPs incorporating the

major antigen of H5N1 influenza virus, the HA protein, in

combination with neuraminidase and matrix proteins, have

been shown to be protective, immunogenic, and safe in

mice.[97,98] An interesting variation to this approach involves

the inclusion of the minor surface protein of influenza virus,

M2, in the VLPs.Most likely because this protein ismore highly

conserved among strains, incorporation of M2 into VLPs

was shown to broaden the protective response supplied by an

H1N1 VLP.[99]

2.8.2 M2-Based VLPs

VLPs containing matrix and M2 protein, but not HA, were

found to provide an adjuvanting effect in mice when combined

with a conventional inactivated influenza vaccine. The response

to vaccination was broadened in the presence of M2 VLPs,

allowing protection against both H5N1 and H3N2 viruses.
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Furthermore, the immune response induced using this combi-

natorial approach lasted for at least 7 months.[100]

2.8.3 Routes of VLPAdministration

Studies on intranasal delivery of VLPs have shown that

immunization by this route can stimulate a protective immune

response against influenza inmice. The breadth of heterologous

protection conferred by this immunization strategy was im-

proved by the addition of flagellin or other adjuvants.[101,102]

It has furthermore been shown that intradermal delivery of

influenza VLPs against H5N1, using microneedles, stimulates

a protective immune response in mice.[97] Microneedles are

micron-scale needles, which penetrate the stratum corneum

to deliver antigen into the dermis.[103] Protective immune re-

sponses were also observed following microneedle-mediated

H1N1 vaccination.[104] Vaccination provided immunity

that was demonstrated to be long-lasting and superior to

conventional inactivated vaccine in inducing protective im-

munity.[105,106] Additional experimental microneedle-delivered

VLP vaccines targeting H5N1 influenza virus have elicited

immunity, providing complete protection from lethal challenge

in mice.[107,108]

Overall, VLP-based approaches offer a promising alternative

to traditional inactivated influenza virus vaccine and have the

potential to broaden as well as lengthen immune responses rela-

tive to those provided by conventional influenza vaccination.

2.9 DNA-Based Influenza Vaccines

A further method of vaccination that has received increased

attention in recent years is that of DNA vaccination.[109] The

method typically consists of injecting plasmid DNA encoding

antigen directly into the muscle or dermal tissue of the vaccine

recipient. Cells in the tissue take up the DNA, and protein

antigen is expressed and presented intracellularly by the host.

This approach has the potential to provide significant advan-

tages over traditional vaccine delivery methods, including

lower costs. Plasmid DNA can be generated very inexpensively

and on a large scale from Escherichia coli-based culture. Fol-

lowing purification, plasmidDNA can be stored without a cold

chain, reducing the cost of vaccine distribution. This may be of

particular importance in the developing world.

2.9.1 Performance in Animal Models

Relative to traditional inactivated influenza vaccine, DNA

vaccination using HA has been shown to generate balanced

humoral and cell-mediated immune responses in small animal

models,[110] and research has provided evidence of long-lasting

protection in mice.[111] Recent studies by Laddy et al.[112] have

demonstrated that DNA vaccination delivered by in vivo elec-

troporation generated strong humoral and cellular immune

responses in primates, and markedly reduced viral shedding

following challenge with H5N1 influenza virus. In related

studies, broad cross-protection was observed in mice, ferrets,

and primates by vaccinating animals with DNA encoding a

consensus, as opposed to any strain-specific, HA sequence.[113]

Epstein et al.[114] took an alternative approach by using plas-

mids encoding the conserved influenza proteins; vaccination of

this type conferred partial immunity against H5N1 influenza

challenge in mice, but protection was limited to low challenge

doses with moderately virulent virus strains. Similar data were

generated by Rao et al.,[115] who demonstrated that DNA

vaccination with internal protein plasmids conferred limited

immunity to influenza, and that inclusion of the major anti-

genic protein, HA, was required for optimal protection against

lethal challenge with H5N1 in mice and ferrets.

2.9.2 Performance in Humans

The safety and immunogenicity of DNA vaccines against

seasonal influenza has been demonstrated in phase I clinical

trials.[116,117] Furthermore, a recent phase I clinical trial

involving an H5N1 influenza-specific DNA vaccine also dem-

onstrated safety and immunogenicity.[118] Immune responses as

measured by hemagglutination inhibition titers following H5

HADNA vaccination were similar to those observed following

immunization with conventional inactivated H5N1 vaccine,

suggesting further improvement in immunogenicity through

adjuvant use or other means may be desirable.

DNA vaccines have been shown to be safe and provide

protection from influenza morbidity and mortality in a number

of animal studies. The data from clinical trials demonstrate that

these vaccines are also immunogenic in humans, but it remains

to be seen whether DNA vaccination in its current form will

reach licensure. The use of electroporation as a delivery method

may warrant further study as a means of improving the

immunogenicity of DNA vaccines targeting influenza viruses.

2.10 Virus Vectors as Influenza Vaccines

In recent years, researchers have explored the application of

replication-incompetent or nonpathogenic viruses as antigen

delivery platforms. Several potential viral vector systems are at

various stages of development andwere recently the subject of a

review.[119] H5N1-specific experimental vaccines inducing

protective immunity in small animal models have been eval-

uated, including modified vaccinia virus Ankara,[120,121]
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NDV,[68] vesicular stomatitis virus,[122-124] baculovirus,[125-127]

and adenovirus-based systems.[111,128,129] Such delivery plat-

forms have the potential to improve the efficiency of vaccine

production, as they are adaptable to many antigens, require

only the sequence of the antigen of interest, and are amenable to

standardization with bioreactor-based processes. A phase I

clinical trial has shown an A/PR/8/34-based adenovirus vaccine

to be safe and immunogenic.[130]

2.11 Adjuvants

Adjuvants act to stimulate innate immune responses or en-

hance the presentation of antigen and, through these mechan-

isms, increase the immune response to vaccination. Various

adjuvants, including oil-in-water emulsion adjuvants such as

MF59 and AS03, have been shown to be effective in enhancing

the immune response to influenza vaccine.[131-133] In the EU,

adjuvanted influenza vaccine has been shown to be safe over

years of use and after administration of millions of doses. A

recent review by O’Hagan[134] has discussed MF59 adjuvanted

influenza vaccination in detail.

Oil-in-water adjuvants have been shown to improve immu-

nogenicity and reduce the need for antigen, in clinical trials

of inactivated H5N1 vaccine.[135,136] Recently, studies of the

immune response to adjuvanted vaccines have shed light on

the mechanisms behind the augmented responses, providing

rational strategies for the design of improved vaccines.[137,138]

2.12 Efforts Towards a Universal Influenza Vaccine

Monoclonal antibodies that bind to the HA stalk domain

and are both broadly cross-reactive and neutralizing have re-

cently been identified.[139-144] A key feature of these antibodies

is that they map to epitopes that comprise membrane proximal

portions of both the HA1 and HA2 subunits of the HA protein

and, importantly, these epitopes are relatively conserved

among strains. Vaccination with a modified HA that lacks the

globular head domain and maintains the integrity of the stalk

region has been shown to elicit anti-sera that is cross-reactive

against multiple subtypes of HA, and provides protection

against lethal influenza virus challenge.[145] Furthermore, cross-

neutralizing antibodies to influenza virus HA were elicited in

mice by sequential vaccination with drifted HA antigens, sug-

gesting the immune response can be directed towards more

conserved epitopes.[146] These data suggest that, through opti-

mization of antigen delivery and immunogenicity, modifiedHA

molecules could form the basis for a broadly protective influ-

enza virus vaccine. This approach has been supported by recent

studies demonstrating that broadly neutralizing antibodies

directed to the stalk domain of the HA can be generated in

individuals, following natural influenza virus infection or

immunization.[147-149] Future efforts should focus on strategies

to elicit a stronger response to these broadly conserved epitopes

following vaccination.

3. Conclusions

Following a long period of relative stasis in influenza virus

vaccine production methods, the last decade or so has seen

significant advances in both basic research and production

methods. The application of reverse genetics techniques, to-

gether with cell culture-based production practices, has

streamlined vaccine production. Research into alternative

forms of vaccine and a better understanding of immune re-

sponses to vaccination promise to deliver new vaccines that

provide longer-lasting and broader protection from disease.

Steps have already been taken in this direction. Ultimately,

gains in vaccine efficacy and improvements in the efficiency and

security of production processes will translate into lower mor-

tality and morbidity resulting from influenza infection.
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