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In recent years, many computer-aided diagnosis 
schemes have been proposed to assist radiologists in 
detecting lung nodules. The research efforts have been 
aimed at increasing the sensitivity while decreasing 
the false-positive detections on digital chest radio- 
graphs. Among the problems of reducing the number 
of false positives, the differentiation between nodules 
and end-on vessels is one of the most challenging 
tasks performed by computer. Most investigators have 
used a conventional two-stage pattern recognition 
approach, ie, feature extraction followed by feature 
classification. The performance of this approach de- 
pends totally on good feature definition in the feature 
extraction stage. Unfortunately, suitable feature defini- 
tion and corresponding extraction implementation al- 
gorithms proved to be very difficult to define and 
specify. A convolution neural network (CNN) architec- 
tute, trained by direct connection to the raw image is 
proposed to tackle the problem. The CNN, which uses 
Iocally responsive activation function, is directly and 
Iocally connected to the raw image. The performance 
of the CNN is evaluated in comparison to an expert 
radiologist. We used the receiver operating character- 
istics (ROC) method with area under the curve (Az) as 
the performance index to evaluate all the simulation 
results. The CNN showed superior performance 
(Az = 0.99) to the radiologist's (Az = 0.83). The CNN 
approach can potentially be applied to other applica- 
tions, such as the differentiation of film defects and 
microcalcifications in mammography, in which the 
image features are difficult to define or not known a 
priori. 
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R ECENTLY, various computer-aided diag- 
nosis (CADx) systems, 1-8 which use both 

digital image-processing techniques and artifi- 
cial neural networks, have been developed to 
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automatically detect lung nodules on digital 
chest radiographs. Typically, CADx schemes 
successively perform two diagnostic functions: 
(1) location of suspected nodule areas, also 
known asa  "prescan process," on the digitized 
chest radiograph and (2) differentiation of 
"true" nodules from "false" nodules. In recent 
literature, many effective digital processing algo- 
rithms have been developed to locate suspected 
nodules. 2-4,6 It has been determined that too 
many false-positive classifications per chest ra- 
diograph are made. These false-positives in- 
clude rib crossings, rib-vessel crossings, vessel 
clusters, and end-on vessels, s,9 The difficulty of 
identifying end-on vessels is among the prob- 
lems of reducing false-positive detections. 

The shadow of an end-on vessel is formed by 
the incident x-ray beam parallel to the vessel. 
The shape of its shadow may be characterized 
by a small, round pattern. Generally, these 
small, round spots contain high contrast with a 
high degree of circularity. In distinguishing 
these round nonnodule objects from nodules, 
the size versus contrast information is one of the 
most important criteria used by radiologists. 
End-on vessels tend to have higher contrast 
than nodules of the same size. To extract the 
image features of size and radius is notan  easy 
task because a nodule and an end-on vessel are 
usually surrounded or overlapped with chest 
structures such as ribs, clavicles, and vessels. 
Accordingly, it is difficult to specify the contrast 
and size of the nodule or end-on vessel in such a 
noisy lung structure environment. Several mor- 
phology-based algorithms 3-5 have been pro- 
posed to extract specific features, such as circu- 
larity, size, and contrast. Matsumoto et al 6 used 
a region-growing method to find the transition 
points where the effective radius or circularity 
of the grown region increases abruptly. This 
transition indicates that the grown region has 
merged with the surrounding background adja- 
cent to the suspected nodule. The contrast of 
the suspected nodule is defined as the gray-level 
interval between the average high pixel value of 
the region and the average pixel value of the 
transition points. Lin et al 1~ proposed an 
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algori thmic approach to extract the contrast  

and radius in format ion  from the raw image of 
nodules  and  end -on  vessels. Based on the de- 
fined features  of contrast  and  radius, he investi- 
gated the fea ture  dis t r ibut ions of the radius 
versus cont ras t / radius .  The  me thod  achieved an 
area u n d e r  the curve (Az) value of 0.94. Though  
the me thod  showed promise in the task, too 
many  parameters ,  such as the n u m b e r  of high 
and  low pixels and the m Ÿ  radius, needed  
to be adjusted. 

Actually, the ma in  concern  of using algorith- 
mic approach lies in the me thod  of defining and  
quant i fying the features  that  will discr iminate  
nodules  and  end-on  vessels. W h e n  nodules  or 
end-on  vessels are partially or fully superim- 

posed on ribs, bronchi ,  and o ther  ana tomic  
chest structures,  the size and contrast  can not  
be clearly defined. Therefore ,  the algorithmic 
methodologies  based on morphology alone and  
on a priori  knowledge of known features  have 
been  problematic .  In  this study, to extract the 
suitable features  from the two-dimensional  (2D) 
images of chest radiographs,  a convolut ion neu-  
ral network (CNN) architecture,  12-15 t ra ined  by 

direct connec t ion  to the raw image, has b e e n  
configured and tested to solve the p rob lem of 
dist inguishing nodules  and  end-on  vessels. Per- 
formances  of the CNN as well as that  of an 
expert radiologist are evaluated.  

MATERIALS AND METHODS 

Database of lmage Blocks 

The generation of image blocks of nodules and end-on 
vessels involved three stages: acquisition of digitized chest 
radiographs, extraction of image blocks, and preprocessing. 

Acquisition of digitized chest radiographs. For this study, 
we used posterior-anterior chest radiographs that were 
selected mainly from routine cases at Georgetown Univer- 
sity Medical Center (Washington, DC). The chest radio- 
graphs (14 x 17 inches, actual size) were digitized to 
2,048 x 2,500 • 10 bits by using a laser film scanner (model 
KDFR-S; Konika, Tokyo, Japan). For computational sim- 
plicity, the digitized chest films were averaged to 512 • 
625 • 10 bits such that one pixel represents 0.7 x 0.7 mm, 
actual size. 

Extraction of image blocks. Image blocks (each 32 x 32 
pixels) of nodules and end-on vessels on the digitized chest 
images were extracted manually from the cancerous and 
normal chest images, respectively. The cancerous and nor- 
mal chest images have been confirmed by computed tomog- 
raphy, biopsy, or follow-up films. Note that it is very difficult 
even for radiologists to identify a nodule that is close to the 
hilum area, the central portion of the lung where all the 

blood vessels enter the lung. To eliminate the possibility of 
mistakenly selecting a nodule as an end-on vessel, all image 
blocks were selected from the areas away from the hilum. 
The block size of 32 • 32 pixels (about 22 • 22 mm) is 
sufficient to encompass the various sizes of small nodules 
(diameter range, 3 to 15 mm) and end-on vessels in which 
we were interested. A minimal size of 3 mm is chosen 
because most radiographically detectable nodules are larger 
than 3 mm. 16 

Preprocessing. The quality of chest radiographs varŸ 
because of the noise introduced during film development, 
nonuniform thickness of chest walls, and the transmission 
properties of tissues, vessels, and ribs of different patients. 
In general, the perihilar area in a chest radiograph is more 
radiodense than the peripheral area because of differences 
in the amount of tissue traversed by the x-ray beam in the 
two regions. The variation in optical density observed in the 
lung field is caused by the gross anatomy of the lung and 
nonuniform chest wall (background trend). Because the 
image blocks were obtained from different regions of the 
lung, each image block contains nonuniform lung back- 
ground. It is important to correct the background trend so 
that the overall background becomes uniform. Katsuragawa 
et al 17 used a 2D surface-fitting technique in which the lung 
background trend was estimated and corrected by fitting a 
second-order polynomial surface to the gradual change in 
the background density distribution in a selected region of a 
suspected nodule area. We applied the same method to 
rectify the local background discrepancy in each image 
block. There is no normalization or scaling process per- 
formed on the image blocks. The preprocessed image is 
directly connected to the input of the CNN. The potential 
use of CNN for extraction as well as classification of image 
features is investigated. 

C N N  Architecture 

The CNN architecture shown in Fig 1 is investigated for 
its ability to distinguish nodules from end-on vessels. The 
network has one input layer, one hidden layer, and one 
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Fig 1. 
shown. 
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The CNN architecture with one output neuron is 
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output neuron in the output layer. The input layer consists 
of M 2 neurons that correspond to the M x M pixel 
preprocessed input image. 

The hidden layer is composed of n groups of N x N 
neurons arranged as n independent N x N feature maps, 
where N is equal to M - k + 1 and the k x k area is called 
the receptive field. Each hidden neuron takes input on a k x 
k neighborhood on the input image block. For neurons in 
the same feature map that are one neuron apart, their 
receptive fields in the input layer are one pixel apart. 
Moreover, each neuron in the same feature map is con- 
strained to have the same set of k 2 weights and perform the 
same operation on the corresponding parts of the input 
image. Thus, the total effect of the operation can be 
expressed a s a  2D discrete convolution with the k x k 
convolution kernel (ie, the receptive field). Namely, the 
feature map is the output of the input image convolution 
with the kernel. Al1 neurons in other feature maps share 
other k 2 weights in the same way. Each hidden neuron yj 
generates its output through a local responsive activation 
function which is given by 

yj(w,x_,aj) =Ay(w,x_,aj)(1 -Ay(w,x_,aj)), (1) 

whereAj(w~,aj) is the sigmoid activation given by 

1 
Aj(w,x_,aj) = , (2) 

where wji is the weigth between hidden neuron j and pixel i 
of the input image block, ~ is the gray value of input pixel], 
and aj is the bias of the hidden neuron j. Note that xi . . . . .  
x~ 2 are the pixel areas on the input image block that are 
connected to the neuron j. The input-to-output activations 
of the locally responsive and sigmoid functions (equations 1 
and 2, respectively) are shown in Fig 2. Note that equations 
1 and 2 are first order differentiable. Each locally responsive 
neuron becomes activated only for inputs in some small 
region of the input space. When the input has value greater 
than 10 or smaller than -10, the output activation is close to 
0. The mŸ and maximum activation are 0 and 1, 
respectively. 

The output neuron is fully connected to the hidden layer. 
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Fig 2. The sigmoid and Iocally responsive activation func- 
tions ate shown. 

The activation Zo of the output neuron is given by 

1 
Zo(w,y_,go) - , (3) 

where Woi is the weight between the output neuron and 
neuron i in the hidden layer, nN 2 is the total number of 
neurons in the hidden layer, and go is the bias of the output 
neuron. 

In summary, the network consists of 1 + M 2 + n • N 2 
neurons (including the input neurons) and (k 2 + 2) • n • 
N 2 + 1 links (including the bias links) in which n • 
[2 • N 2 + k 2] + 1 are independent links (including the 
independent bias links). 

RESULTS A N D  DISCUSSION 

In the  fol lowing exper iments ,  the  C N N  archi-  
t ec tu re  (see  Fig  1) has  this se tup:  input  image  
blocks  o f  32 x 32 pixels,  ie, M = 32; ke rne l  size 
of  5 x 5, ie, k = 5; 10 f ea tu re  maps ,  ie, n = 10; 1 
ou tpu t  neuron;  and  an add i t i ona l  b ias  inpu t  1 to 
each  n e u r o n  in the  h idden  and  o u t p u t  layers.  

Accord ingly ,  each  f ea tu re  m a p  in the  h idden  
layer  has  28 x 28 neurons .  T h e  to ta l  n u m b e r  o f  
neu rons  is 8,865, the  to ta l  n u m b e r  of  links is 
211,681, and  the  to ta l  n u m b e r  of  i n d e p e n d e n t  
links is 15,931. T h e  n u m b e r  of  ne u rons  and  l inks 
include,  respect ively,  the  input  n e u r o n s  and  the  
bias  l inks tha t  have an input  va lue  of  1. 

N e ~ o r k  Tra in ing  

All  the  ne twork  weights ,  inc luding  the  bias  
weights ,  a re  u p d a t e d  using the  b a c k - p r o p a g a -  
t ion  l e a r n i n g  r u l e .  19 In i t ia l ly ,  the  n e t w o r k  
weights  a re  p rese t  with r a n d o m  n u m b e r s  using 
a un i fo rm  d i s t r ibu t ion  b e t w e e n  - 1 / F i  and  
+ 1/Fi  where  Fi is the  n u m b e r  of  inputs  (ie, 
fan-ins)  f rom the  prev ious  layer  tha t  a re  con- 
nec ted  to n e u r o n  i. T h e  ne twork  weights  ( includ-  
ing bias  weights)  a re  u p d a t e d  af te r  each  p re sen -  
ta t ion  of  a single t ra in ing  p a t t e r n  by using the  
so-cal led  s tochast ic  g r ad i en t  p roc e du re .  2~ T h e  
ne twork  weights  a re  saved at  every t en th  i tera-  
t ion,  whe re  one  i t e ra t ion  r e p re s e n t s  the  comple -  
t ion of  a l ea rn ing  sequence  (ie, a f eed - fo rward  
pass  fo l lowed by an  e r ro r  b a c k - p r o p a g a t i o n  
pass,  t h rough  the  en t i r e  set of  t ra in ing  pa t -  
terns) .  Sum of  squa red  e r ro r  (SSE)  19 over  all the  
t ra in ing  p a t t e r n s  was used  as the  objec t ive  
funct ion  tha t  was to be  min imized  th rough  
ne twork  training.  T h e  des i r ed  o u t p u t  ( t each ing  
signal)  at  the  ou tpu t  n e u r o n  has  a h ighes t  
ac t iva t ion  va lue  1 and  lowest  va lue  0 when,  
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respectively, a nodule and an end-on vessel are 
presented at the input of the network. The 
initial learning rate is preset to 0.001 and is 
gradually decreased to 0.0001, 0.00001, and 
0.000001. The training procedure is terminated 
whenever one of the following three conditions 
is satisfied: (1) the SSE reaches a value below 
0.1, (2) there is less than 1% change of SSE for 
100 consecutive iterations, or (3) there are more 
than 1,000 training iterations. 

The training set consists of image blocks of 40 
nodules (Fig 3A) and 53 end-on vessels (Fig 
3B). The 40 nodules were selected from the 
image blocks extracted from four chest images 
containing multiple nodules. The 53 end-on 
vessels were randomly selected from the image 
blocks extracted from 10 normal chest images 
that have been confirmed to be "definitely no 
nodule" cases. To improve the situation where 
only a small and limited number of training 
patterns are available, patterns of different 
orientations are generated from a single train- 

A 

ing example and are used in network training. 
For each training pattern p, three rotated ver- 
sions ofp are generated by rotatingp at 90, 180, 
and 270 degrees. In addition, four more pat- 
terns are obtained by left-right flipping of pat- 
tern p followed by rotations of 0, 90, 180, and 
270 degrees. As a result, the number of training 
patterns is virtually increased eightfold. These 
patterns have the same desired output (either 1 
or 0) during network training. Accordingly, the 
training set has virtually increased to 320 nod- 
ules and 424 end-on vessels. During training, all 
744 training patterns of different orientations 
are presented in random order to the input of 
the CNN. 

Learning Curve and Testing 
on the Training Set 

The learning curve of the CNN is shown in 
Fig 4. The initial SSE is 99.1, which decreases to 
1.92 after 500 iterations. Because there is no 
significant improvement of SSE (ie, less than a 

B 

Fig 3. Image blocks for train- 
ing are shown. (A) Nodules, (B) 
end-on vessels. 
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Fig 4. The learning curve of the CNN is shown. 

1% change of SSE for 100 consecutive itera- 
tions), the training process is stopped. The total 
training time on a workstation (model 3000; 
Digital Equipment Corp, Maynard, MA) is 
approximately 3 hours. 

The testing result of the CNN on the training 
set is shown in Fig 5. The white circles and black 
dots in Fig 5 indicate the desired outputs and 
the actual mean output values of the trained 
CNN, respectively, for the 93 training patterns 
(40 nodules and 53 end-on vessels). The white 
circles indicate the desired output values of 
ones for the first 40 image blocks of nodules and 
zeros for the following 53 image blocks of 
end-on vessels. The two well-separated clusters 
of black dots (ie, the learning results) in Fig 5 
show that the trained CNN has achieved a 
100% recognition rate on the training set. 

Network Testing 

The testing set consisting of 66 nodules (Fig 
6A) and 46 end-on vessels (Fig 6B) was used to 
test the generalization performance ~9,2a of the 
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Fig 5. The testing results of the trained CNN on the training 
set is shown. (�9 Desired outputs; (Q), actual mean output 
values of the trained CNN. 

trained CNN. The 66 nodules were selected 
from the image blocks extracted from 17 chest 
images containing single or multiple nodules. 
The 46 end-on vessels were randomly selected 
from the image blocks extracted from nine 
normal chest images which have been con- 
firmed to be "definitely no nodule" cases. 

Generalization Curve and Testing 
on the Test Set 

For each test pattern of Fig 6, A and B, we 
obtain eight rotated versions by using the same 
method as in training the CNN. Then, a mean 
CNN output value is calculated as the average 
of the eight output values generated by the 
CNN for each rotated testing pattern. The 
mean CNN output values for the testing pat- 
terns were analyzed by the ROC method. To 
monitor the CNN's performance and avoid 
network over learning 2~ during the training 
process, we have saved the learned weights and 
computed the Az value at every tenth training 
iteration. Figure 7 shows the Az performance of 
the CNN at every tenth learning iteration. The 
CNN achieves the consistent Az value of 0.99 
after 250 learning iterations. 

The distribution of the mean output value for 
each testing pattern generated by the CNN is 
shown in Fig 8, in which white and black dots 
correspond to end-on vessels and nodules, re- 
spectively. The corresponding ROC curve with 
an Az value of 0.99 is shown in Fig 9. 

Analysis of False Negatives and False Positives 

In Fig 8, when we use 0.57 as the decision 
boundary, no false positives are found. How- 
ever, two false negatives are generated. The 
original image and corresponding mean CNN 
output value of the two false negatives are 
shown in Fig 10A. Image a in Fig lOA shows a 
large and radiodense nodule. Image b in Fig 
lOA shows a nodule partially overlapped by 
lung structure and resulting in a high-contrast 
object at the center of the image. Ir we use a 
mean output value of 0.50 as the decision 
boundary (Fig 8), then no false negatives are 
found. However, two false positives (Fig 10B) 
are generated. These images contain end-on 
vessels that are surrounded by lung structure 
and have contrast similar to a nodule. 
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A 

B 

Fig 6. Image blocks for test- 
ing are shown. (A) Nodules, (B) 
end-on vessels. 

Analysis of Feature Maps 
We analyze the images of the 10 feature maps 

as shown in Fig 11, A and B, when a nodule (the 
fourth image from the left of the first row in Fig 

1 .OO- ~ - i  

0.95 

0.80- iIJ JI 
0 I O0 200 300 400 500 

Learning iteration 

Fig 7. Testing results of the CNN at every tenth learning 
iteration are shown. 

6A) and an end-on vessel (the third image from 
the left of the first row in Fig 6B) are the trained 
CNN's inputs, respectively. The input image of 
Fig 1 lA contains a nodule that lies between two 
ribs at the lower left and upper right corners. 
The nodule is partially overlapped with the rib 
at the lower left corner. Note also that there is 
an end-on vessel at the upper left corner of the 
image. The input image of Fig l lB  contains an 
end-on vessel that has a vessel line leading up to 
ir from the bottom left corner. The second and 
third rows in Fig 11, A and B, show the images 
of the 10 feature maps before and after the 
process of locally responsive activation function 
(Fig 2), respectively. The CNN generated mean 
output values of 0.59 and 0.43 when the inputs 
are the nodule and the end-on vessel, respec- 
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Fig 8. Distribution of the mean output value for each 
testing pattern generated by the trained CNN is shown. (0), 86 
nodules; (C)), 46 end-on vessels. 

tively. Ir is interesting to see that the CNN 
generates a low mean output value for the input 
image (Fig llA), which contains not only a 
nodule but also an end-on vessel. Namely, the 
CNN is uncertain about whether the image 
should be diagnosed asa  nodule o ran  end-on 
vessel case. Note that we have similar types of 
training patterns (for example, the first and 
third images in the third row of Fig 3A) associ- 
ated with desired output values of 1 for the 
supervised learning. 

From the images of the 10 feature maps, we 
can see that the CNN performed various image 
processing techniques on the input image. For 
example, feature maps i and j in Fig l l A  show 
that the CNN detected the rib edges while 
suppressing the round object signals. The fea- 
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Fig9. ROC curves with Az = 0.99 for the trained one-hidden- 
layer CNN and Az = 0.83 for the radiologist are shown. 

A (a) (b) 

B (a) (b) 

Fig 10. Shown are the original image blocks and mean 
output values of the (A) two  false negatives and (B) two  false 
positives when the mean output values of 0.57 and 0.50 are 
used as decision boundaries, respectively. 

ture map h in Fig 11B shows the result of 
enhancement of the vessel line leading up to the 
end-on vessel. The two feature maps indexed as 
a in Fig 11, A and B, show two smoothed (ie, 
low-passed filtered) image results. The feature 
maps f and g in Fig 11, A and B, show the effects 
of inverted gray level images. Some images (for 
example, the feature maps b, c, d, ande  in Fig 
11, A and B), show certain processed results; 
however, the appropriate names for those 
learned processing methods are not yet defined. 
The output images of the activation function 
(the bottom row in Fig 11, A and B) show a 
multi-thresholding phenomenon as viewed from 
left to right. 

Performance of an Expert Radiologist 

An experiment is set up to evaluate an 
experienced radiologist's performance in identi- 
fying end-on vessels. The radiologist has prior 
knowledge that the test is to differentiate nod- 
ules and end-on vessels. The image blocks of 
end-on vessels (Fig 6A) and nodules (Fig 6B) 
are randomly mixed and shown on the monitor. 
The radiologist is allowed to enlarge and adjust 
the intensity and contrast of the image blocks. 
An experienced radiologist applies mainly three 
criteria to identify an end-on vessel: (1) the size 
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A Input image 
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Fig 11. The images of ten feature maps in the hidden layer of the trained one-hidden-layer CNN when {A) a nodule and {B) an 

end-on vessel are the inputs to the network are shown. 

of an end-on vessel is inversely proportional to 
its distance ffom the hilum; (2) some end-on 
vessels have vessel lines leading up to them; and 
(3) end-on vessels ate more radiodense and 
higher in contrast than similarly sized nodules. 

The radiologist does not necessarily apply 
these criteria in a fixed order. Because no 
location information is supplied, the radiologist 
can only apply criteria 2 and 3 to identify end-on 
vessels. For each image block, the radiologist 
assigns a real number (or rating) between 0 and 
1; smaller and larger numbers represent lower 
and higher confidence levels that the testing 
image contains a nodule. The ratings for both 
testing image blocks are analyzed by the ROC 
method. Figure 12 shows the rating assigned by 
the radiologist for each testing pattern, in which 
white circles and cross bars correspond to nod- 
ules and end-on vessels, respectively. The corre- 
sponding ROC results show an Az value of 0.83 
for the radiologist (Fig 9). From Fig 12, the 
radiologist's ratings for the two false negatives 

identified by the CNN (Fig 10A) are 1 and 0.4 
for images a and b, respectively. The radiologist 
has successfully identified the large and high 
radiodense object (image a) as a true nodule. 
The radiologist's ratings for the two false- 
positives as shown in images a and b in Fig 10B 
are 0.50 and 0.7, respectively. In other words, 

0 ] 0 20 30 40 50 60 
Tesfing pattem 

Fig 12. Distribution of the rating for each testing pattern 
given by the radiologist is shown. (�9 nodules; (x),  end-on 
vessels. 
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the radiologist is not sure about the diagnosis of 
image a. Moreover, the rating of 0.7 indicates 
that image b has characteristics that are visually 
similar to a nodule. 

CONCLUSlONS 

From the simulation results of differentiation 
between nodules and end-on vessels, the CNN 
has shown performance (Az = 0.99) superior to 
the radiologist's (Az = 0.83). The neural-net- 
work approach outperformed the methods based 
on the algorithmic design in extraction of known 
or defined new features. Based on the same 
testing data base, the CNN outperforms the 
algorithmic approach developed by Lin et al 1~ 
which achieved an Az value of 0.94. Without the 
laborious design and definition of feature extrac- 
tion rules, the CNN was trained to learn the 
discrimination rules for the task. We have 
observed several interesting points in this study. 
Both the CNN and the radiologist directly dealt 
with the raw image blocks of nodules and 
end-on vessels. Without the information of size 
versus location from the hilum, the radiologist 
used mainly criteria 2 and 3 to differentiate 
between nodules and end-on vessels. The CNN 
dealt directly with the image block, rather than 
prespecified features, and was trained to extract 
and classify features, such as rib edges, vessel 

lines, and round object signals (Fig 11, A and 
B). To improve the CNN's diagnostic perfor- 
mance on testing images that contain both 
nodule and end-on vessel signals, more training 
patterns will be needed. Furthermore, incorpo- 
ration of the radiologist's expertise, such as 
criterion 1, into the CNN will be useful in 
improving the network performance (for ex- 
ample, to eliminate the false-negative case of 
Fig 10A). 

The success of the CNN method in this 
simulation indicates its potential in other appli- 
cations, such as differentiation between film 
defects and microcalcifications in mammograms 
and classification of highly correlated and non- 
orthogonal image patterns. Future research will 
focus on the optimization of the number of 
feature maps and the size of the receptive field, 
on the analysis of trained convolution kernels, 
and on the minimization of the network architec- 
ture through weight elimination and pruning of 
least significant neurons or weights. The overfit- 
ting problem 2~ of oversized networks should 
be further investigated to find a minimal net- 
work architecture with maximum generalization 
performance. 
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