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ABSTRACT. Objective.  The objectives of  our study were (1) to 
implement intelligent respiratory alarms with a neural net- 
work; and (2) to increase alarm specificity and decrease false- 
alarm rates compared with current alarms. Methods.  We 
trained a neural network to recognize 13 faults in an anesthesia 
breathing circuit. The system extracted 30 breath-to-breath 
features from the airway CO2, flow, and pressure signals. We 
created training data for the network by introducing 13 faults 
repeatedly in 5 dogs (616 total faults). We used the data to 
train the neural network using the backward error propaga- 
tion algorithm. Results. In animals, the trained network re- 
ported the alarms correctly for 95.0% of the faults when tested 
during controlled ventilation, and for 86.9% of the faults dur- 
ing spontaneous breathing. When tested in the operating 
room, the system found and correctly reported 54 of  57 faults 
that occurred during 43.6 hr of  use. The alarm system pro- 
duced a total of  74 false alarms during 43.6 hr of  monitoring. 
Conclusion. Neural networks may be useful in creating intel- 
ligent anesthesia alarm systems. 

KEY WORDS. Equipment: alarms; circuits. Monitoring: practi- 
cal alarms. 

ABSTRAKT. Ziel. Die Ziele unserer Studie waren (1) die Imple- 
mentation intelligenter Alarme ffir die Beatmungs~berwa- 
chung mit Hilfe neuronaler Netze und (2) die Verbesserung 
der Alarm-Spezifitlit sowie die Reduktion der Zahl der 
Fehl-Alarme im Vergleich zu derzeitigen Alarmsystemen. Me- 
thoden. Wir trainierten ein neuronales Netzwerk zur Erken- 
nung von 13 verschiedenen Fehlertypen in Aniisthesie- 
Beatmungskreisl~iufen. Das System ermittelte 30 Merkmale 
aus Messungen der CO2-Konzentration, des Flows und des 
Druckes im Atemweg. Wir erzeugten Trainings-Datens~itze 
fiir das neuronale Netz durch wiederholte Induktion von Fehl- 
ern der 13 Typen bei 5 Experimenten an Hunden (616 Fehler- 
situationen insgesamt). Die Datens~itze wurden zum Training 
des Netzwerkes nach der Methode der Fehlerrfickiibermittlung 
genutzt. Ergebnisse. In Tierexperimenten erzeugte das trai- 
nierte Netzwerk korrekte Alarme in 95% der F~ille bei kon- 
trollierter Beatmung und in 86.8% bei Spontanatmung. Im 
Operationsaal detektierte das System 54 der 57 innerhalb yon 
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43.6 Betriebsstunden aufgetretenen Fehler Das Alarmsystem 
erzeugte in dieser Zeit insgesamt 74 Fehlalarme. $chluBfol- 
gerung. Die Ergebnisse weisen darauf hin, dab Neuronale 
Netzwerke bei der Entwicklung von intelligenten Anlisthesie- 
Alarmsystemen sinnvoll eingesetzt werden kGnnen. 

RESUMEN. Objet ivo.  Los objetivos de nuestro estudio fueron 
(1) implementar alarmas respiratorias inteligentes mediante re- 
des neuronales; y (2) aumentar la especificidad de las alarmas 
y disminuir la incidencia de falsas alarmas, comparando con 
las alarmas actualmente en uso. M~todos. Entrenamos una 
red neural para reconocer 13 fallas en un circuito respiratorio 
de anestesia. E1 sistema extrajo 30 caracteristicas, respiracibn 
a respiracibn, desde el CO2 de via a~rea, y desde las sefiales 
de flujo y presibn. Creamos informaciGn para entrenar la red 
introduciendo 13 fallas repetidamente en 5 perros (616 fallas 
en total). Usamos la informacibn para entrenar la red neuronal 
usando el algoritmo de propagacibn retrbgrada del error. Re- 
sultados. En animales, la red entrenada report6 correctamente 
las alarmas para el 95% de las fallas durante ventilacibn con- 
trolada, y para 86.9% de las fallas durante ventilacibn espont~- 
nea. A1 ser probada en el pabellbn quirthrgico, el sistema iden- 
tific6 y report6 correctamente 54 de las 57 fallas que 
ocurrieron durante 43.6 horas de uso. E1 sistema de alarma 
produjo un total de 74 falsas alarmas durante las 43.6 horas 
de monitorizacibn. Conclusibn.  Las redes neuronales pueden 
ser thtiles para crear sistemas de alarma inteligentes para anes- 
tesia. 

Failures in the patient breathing circuit cause many  pre- 
ventable anesthesia accidents. Hose  disconnects are the 
most  c o m m o n  failure and result in apnea [1-3].  Other  
failures include leaks in hose connections and leaks 
around the endotracheal tube cuff  (hypoventilat ion) 
[1,4,5], a irway obstruct ions (barotrauma or h y p o v e n -  
tilation) [6], and incompetent  nonrebreathing valves 
(CO2 breathing) [4,7]. All o f  these problems are ha rm-  
less if  detected and corrected quickly. 

Neural  ne tworks  should be capable o f  identifying 
these faults during anesthesia. Recent applications show 
that neural ne tworks  can process complex  combinat ions  
o f  variables to classify events or  objects into multiple 
categories (e.g., voice and image recognition).  These 
pattern recognit ion capabilities should allow neural net-  
works  to process airway signals, creating specific failure 
classifications whenever  the signals are abnormal .  N e u -  
ral ne tworks  should be able to provide problem-specif ic  
alarm messages, while keeping the n u m b e r  o f  false 
alarms low. 

We developed a neural ne twork  based alarm sys tem 
that automatically detects and identifies the location o f  
13 breathing circuit failures. In an animal study, we 
measured the true-posit ive rate with which  the neural 
networks  identified the faults. In a clinical study, we  
measured the system's  false-positive alarm rate. 
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METHODS AND MATERIALS 

Sensors 

Figure 1 shows the neural network alarm system sen- 
sors. A mainstream monitor measures the CO 2 concen- 
tration (Novametrix, Inc., model 1260, Wallingsford, 
CT). A solid-state pressure transducer measures airway 
pressure through a 0.6-cm diameter 200-cm tube (Sen- 
sym, model SCX01DN, Sunnyvale, CA). A variable 
orifice pneumotach (Carlsbad Plastics, Carlsbad, CA) 
and differential pressure transducer (Validyne Instru- 
ments, model MP45, Northridge, CA) measure airway 
flow. Together these transducers added 15 ml of  dead 
space to the airway. We auto-referenced both pressure 
transducers to ambient pressure every 30 min to correct 
for drift. 

Feature Extraction 

Figure 2 diagrams data flow through the alarm system 
computer (PC-386, Zenith Data System, St. Joseph, 
MI). The computer samples the output from the three 
sensor signals at 60 Hz with 12-bit resolution (Tecmar, 
Labmaster, Solon, OH). Samples are scaled and placed 
in a first-in-first-out buffer. The algorithm extracts the 
30 features listed in Tables 1 through 3 from each breath 
(k) and stores them in a feature vector F[k], where k is 
a discrete time indicator in__breaths. The computer cal- 
culates a difference vector D[k] for each breath, each of  
whose elements is the difference between the current 
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Fig 2. Data flow through the alarm-generating algorithm. 

value of  the ith feature (/7/[k]), and a weighted sum of  
past values for the ith feature (mi[k]): 

~[k] -- ~[k] - ~[k], (1) 

w h e r e  

~ [ k ]  = (0.15)F[k] + (0 .85)~[k  - 1]. (2) 

"""'9 
If an alarm condition is detected, M[k] is not updated 
until the condition is resolved. The system knows that 
an alarm has been resolved when it again recognizes 
normal breaths. The breath-detection algorithm forces 
the interval between updates to be less than 30 sec. 

Neural Networks 

Figure 3 shows the alarm system's five neural networks. 
--4 

The first network uses the feature vector F[k] to classify 
each breath as controlled or spontaneous. It has 30 input 
nodes, a layer of  30 fully interconnected hidden nodes, 
and two output nodes. 

--9 
Neural networks 2 and 3 use the feature vector (F[k]) 

to determine if  a breath is normal or if  it belongs to 
one of  the five general alarm classes listed in Table 4. 
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Table 1. Features Extracted from the Capnogram 

1. Phase II slope 
2. Phase IV slope 
3. Phase III slope 
4. Phase I time 
5. Phase II time 
6. Phase IV time 
7. Minimum partial pressure 
8. Maximum partial pressure (end-tidal CO2) 
9. Time (since start of breath) that the maximum CO2 

Occurs 
10. Sample mean of capnogram 
11. Sample variance of capnogram 

Table 2. Features Extracted fi'om the Airway Pressure Signal 

1. Inspiratory pressure-volume slope 
2. Expiratory pressure-volume slope 
3. Pressure difference between start and end of breath 
4. Maximum pressure 
5. Minimum pressure 
6. Pressure signal mean 
7. Pressure signal variance 
8. Area of pressure-volume loop 

Table 3. Features Extracted from the Flow Signal 

1. Inspiratory time/expiratory time 
2. Inspiratory volume minus expiratory volume 
3. Maximum flow during inspiration 
4. Maximum flow during expiration 
5. Mean inspiratory flow 
6. Volume at which maximum inspiratory flow occurs 
7. Volume at which maximum expiratory flow occurs 
8. Respiratory rate 
9. Inspired tidal volume 

10. Variance of expiratory flow signal 
11. Number of flow volume loops in breath 
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Fig 3. Neural network architecture. The first network classifies 
each breath according to mode of ventilation (controlled or spontane- 
ous). Networks 2 and 3 use absolute features to classify each 
breath as normal or abnormal. I f  the breath is abnormal, one of 
four messages is generated. Networks 4 and 5 use differential fea- 
tures to generate more specific alarm messages (see Table 4). 

breath. Network  4 (or 5) becomes active if network 2 
(or 3) identifies an abnormal breath, or if a measure of  
change, d[k], exceeds a threshold 8, indicating a signifi- 
cant change in the time trend of  the features. This 
threshold varies according to the stability of  d- - tha t  is, 
according to the normal breath-to-breath difference in 
the features. 

Networks 2 and 3 have 30 input nodes, 30 hidden-layer 
nodes, and five output nodes. These networks identify 
general faults that are extant when the alarm system is 
first activated or those faults that develop slowly over where 
the course of  many breaths. 

Networks 4 and 5 use the differential feature vector 
(D[k]) to place each breath into one o f  the 14 specific 
alarm classes listed in Table 4. Networks  4 and 5 have 
30 input nodes, 40 hidden-layer nodes, and 14 output 
nodes. The specificity o f  networks 4 and 5 should be where 
higher, because their inputs are the difference between 
the current features and those o f  the last "normal"  

3O 
~ .  (mi[k] - f[k]) 2 

d l k J  = , 

i=1 

(3) 

vi[k ] = 0.1~[k] - mi[k]) 2 + 0.9vi[k - 1] (4) 

= ma + 0.1v a, (5) 

md[k ] = 0.1d[k] + 0.9ma[k - 1], (6) 
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Table 4. General and Specific Alarm Classes 

Critical 
Count 

GENERAL ALARM MESSAGES 

1. Hose disconnection 
2. Breathing circuit obstruction 
3. Valve leak 
4. Endotracheal tube problem 
5. No alarm 

SPECIFIC ALARM MESSAGES 

1. Endotracheal tube obstruction 3 
2. Endotracheal tube cuff leak 3 
3. Endotracheal tube disconnection 2 
4. Inspiratory hose obstruction 3 
5. Inspiratory hose leak 4 
6. Expiratory hose obstruction 3 
7. Expiratory hose leak 5 
8. Inspiratory valve leak 3 
9. Inspiratory valve obstruction 4 

10. Expiratory valve leak 3 
11. Expiratory valve obstruction 3 
12. Inspiratory hose disconnection 2 
13. Expiratory hose disconnection 2 
14. No alarm 3 

Table 5. Ventilator Settings Used in Animal Testing 

Breaths Per 
Minute I : E Ratio 

and 

va[k ] = 0 . 1 ( d [ k ]  - md[k]) 2 + 0.9vd[k -- 1].  

10 1:1.5 
2 1:2.5 
3 1:1.5 

15 3 1:2.5 

3 20 1:1.5 
1 1:2.5 

(7) 

Alarm Filtering 

To reduce the number of  false alarms, networks 4 and 
5 must find the same fault in several of  the past six 
breaths, before the alarm system gives a message to the 
user. We refer to the number of  breaths for which a 
fault must be identified (within the previous six breaths) 
as the "critical count." Networks 2 and 3 must find the 
same fault in several of  the past four breaths. Table 4 
shows the minimal number (critical count) for each 
alarm message. These numbers reflect the reliability 
with which the networks identify each failure. In the 
case that both a specific alarm and general alarm are 
active, only the specific alarm message is reported. 

Animal Study Protocol 

We anesthetized 5 mongrel dogs (10 to 25 kg) with 
intravenously injected sodium thiopental (25 mg/kg) 
and used 0.5 to 1.5 vol% halothane to keep their mean 
arterial blood pressure near 100 mm Hg. We used a 

Narkomed anesthesia machine with an oxygen fresh gas 
flow of  1 to 3 L/min  (Drager, Telford, PA). We ad- 
justed the tidal volume to keep the PETCO 2 between 30 
and 40 mm Hg using an Ohio model 7000 ventilator 
(Ohmeda, Madison, WI). To prevent spontaneous 
breathing during the controlled ventilation portion of  
the experiments, we gave bolus doses of  sodium thio- 
pental. 

We created all 13 specific faults listed in Table 4 in 
each dog experiment--at  least once at each of  the six 
ventilator settings listed in Table 5 and twice during 
spontaneous breathing. We maintained each fault for six 
breaths, then let the breathing circuit return to steady 
state. When the elements of  v[k] (eq 4) changed by less 
than 5% from one breath to the next, we created the 
next fault. The computer stored the feature vector f[k] 
for each breath in a sequential file. 

Neural Network Training 

We used the data from the first 4 dogs to train the neural 
networks. We hand-coded a version of  the Backward 
Error Propagation algorithm in Pascal and used the 
complete database (3,432 feature vectors) 300 times 
each, with the events presented in random order, with 
a learning rate of  0.001 and a momentum of  0.8 to train 
the network [8,9]. It took a RISC-based workstation 
11.8 hr to train the five networks (DN10000, Apollo 
Computers, Chelmsford, MA). At the completion of  
training, we installed the resulting network interconnec- 
tion weights in the five networks. When the network ran 
on a 16-MHz PC-386 computer, with a math co- 
processor, it took 69.5 msec to classify each breath (float- 
ing point neural network implementation in Pascal). 

We measured the performance of  the neural network 
by presenting to it the feature vectors from the fifth dog 
(data not used in training). The "confusion" matrix in 
Figure 4 shows the faults created (rows) and the faults 
reported by the networks (columns). This training and 
testing process was repeated five times, until the feature 
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Fig 4. Alarm performance during controlled ventilation in 5 dogs. 
The faults were created as shown in the rows of the matrix. The 
columns show the number of times a message was reported by the 
alarm system. Column 14 (specific alarm indeterminate) indicates 
faults for which the system reported multiple alarm messages. 

vectors for each dog had been used once for testing and 
four times for training. 

Operating Room Protocol 

We measured the performance of  the alarm system by 
using it to monitor 20 patients during general anesthe- 
sia. The University of  Utah Institutional Review Board 
approved the study and each patient gave informed con- 
sent. Inhalation anesthesia was delivered following stan- 
dard clinical practice using a Narkomed 2B anesthesia 
machine (Drager, Telford, PA). The study included pe- 
riods of  controlled ventilation, spontaneous breathing, 
and manual ventilation. Before going into the operating 
room, we trained the alarm system neural networks 
using all of  the data from the animal study. 

Following intubation, we placed the alarm system 
sensors between the endotracheal tube and the breathing 
circuit Y-piece or between an elbow connected to the 
endotracheal tube and the Y-piece. The computer ran 
continuously during the operation, storing 30 features 
from each breath in sequential data files. In most cases, 
the sensors remained in the breathing circuit and data 
collection continued until extubation. 

An independent observer, a graduate student not in- 
volved in providing patient care, watched each proce- 
dure and the computer display, and kept a record of  

all the breathing circuit events listed in Table 4 (e.g., 
disconnects, leaks, occlusions). He recorded the breath 
number (k) when each event occurred. Most observed 
events were not "critical" faults, but rather events that 
normally occur in the course of  clinical care (e. g., endo- 
tracheal tube disconnect to install a heat-moisture ex- 
changer into the circuit). 

Upon completion of  the operating room study, we 
used the data from 10 of  the patients and the data from 
the animal study to train the neural networks. We added 
20 hidden-layer nodes to networks 4 and 5 because of  
the increased training data. We used the data from the 
remaining 10 patients (data not used in training) to mea- 
sure the accuracy of  the trained alarm system by pre- 
senting these feature vectors to the system in the same 
order as they were collected in the operating room. 

RESULTS 

Animal Testing 

The alarm system's four general alarm messages were 
correct for 99.7% of  the 616 faults created during con- 
trolled ventilation in 5 dogs. General alarm messages 
were correct for 96.2% of the 130 faults created during 
spontaneous breathing (5 errors). The 13 specific alarm 
messages were correct for 95.0% of the 616 faults dur- 
ing controlled ventilation (30 errors), and for 86.9% of 
the 130 faults during spontaneous breathing (17 errors). 
Figures 4 and 5 show the confusion matrices, giving the 
number of  times each fault was created (rows) and the 
number of  times each message was reported by the 
alarm system (columns). For example, the second row 
in Figure 4 shows that an "endotracheal tube leak" was 
created 49 times. The alarm system reported the correct 
message, "endotracheal tube leak," 48 times. The alarm 
system reported an incorrect message once, "endotra- 
cheal tube disconnect." If the alarm system's perfor- 
mance were perfect, all of  the numbers would appear 
on the matrix "diagonal." 

Neural network number 1 correctly classified breaths 
as spontaneous or controlled for 98.9% of 26,733 total 
breaths. This total included breaths in which faults were 
present, as well as normal breaths. During the animal 
testing, the alarm system reported 26 alarm messages 
when no faults were present, giving a false-positive rate 
of 0.097%. 

Operating Room Testing 

Table 6 lists the 57 critical events that the observer saw 
during 43.6 hr in the operating room. The true-positive 
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Fig 5. Alarm performance during spontaneous ventilation in 5 
dogs. The rows of the matrix show the faults that were created. 
The columns show the number of times a message was reported by 
the alarm system. Column 14 (specific alarm indeterminate) indi- 
cates faults for which the system reported multiple alarm messages. 

column shows that 54 of  the 57 events were correctly 
identified by the alarm system. For 44 of  these events, 
the alarm system gave specific alarm messages. For 10 
events, it gave general messages. The false-negative col- 
umn shows that two events were not detected by the 
alarm system: an inspiratory 
cheal tube obstruction. The 
shows that on one occasion 
was given in response to an 
nection. 

hose leak and an endotra- 
incorrect message column 
the wrong alarm message 
endotracheal tube discon- 

The false-positive column shows that the system re- 
ported 74 alarms when the observer did not see an 
event. This gives an average false-positive alarm rate of  
1.7 alarms per hour. The majori ty o f  these alarms (52) 
occurred when the surgeon leaned on the patient's 
chest. The abrupt change in pulmonary  compliance 
triggered the "endotracheal tube obstruct ion,"  the 
"breathing circuit obstruct ion,"  or the "inspiratory 
hose obstruction" alarms. The "endotracheal tube 
leak," the second most  c o m m o n  false-alarm message, 
occurred when the surgeon removed  his weight f rom 
the patient's chest, abruptly altering the difference be- 
tween inspired and expired tidal volumes.  

Twice during the clinical study, the alarm system 
helped diagnose unknown faults. During reconstructive 

Table 6. Results of Alarm System Testing in the Operating Room 

True False False Incorrect 
Alarm Type Positive Positive Negative Message 

SPECIFIC ALARMS 

Expiratory hose disconnect 
Inspiratory hose disconnect 
Expiratory valve leak 
Inspiratory valve leak 
Expiratory hose leak 
Expiratory hose obstruction 
Inspiratory hose leak 
Inspiratory hose obstruction 
Endotracheal tube disconnect 
Endotracheal tube cuff leak 
Endotracheal tube obstruction 

GENERAL ALARMS 

15 
4 

1 

17 
5 12 

13 

Hose disconnect 2 
Breathing circuit obstruction 13 
Valve leak 2 
Endotracheal tube problem 2 20 

TOTAL 54 74 2 1 

A total of 57 events were picked up by the observer. The true-positive column shows that the system correctly reported 54 of the 57 events. 
The false-positive column shows that 74 alarm messages were given when no event was observed. The false-negative column shows that no 
message was given when two events were present. Column 4 shows that one event was incorrectly reported. 
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surgery of the nasal septum, the ventilator low-pressure 
alarm sounded, but the attendee did not find the discon- 
nected endotracheal tube hidden under the drapes until 
after the neural network alarm system reported the 
fault. In another case, following rotation of a patient 
from the supine to the prone position, for lumbar de- 
compression, the alarm system correctly reported an 
endotracheal cuff leak. Because neither the conventional 
low minute volume nor the low ~ airway pressure alarm 
sounded, the event might otherwise have gone unno- 
ticed. 

DISCUSSION 

Animal test results show that the neural network based 
alarm system correctly identified 99.7% of the breath- 
ing circuit faults during the best conditions (controlled 
ventilation, general fault messages) and 86.9% of the 
faults in the worst conditions (spontaneous breathing, 
specific fault messages). When used in the operating 
room, the alarm system correctly identified 54 of the 
57 events seen by the observer. Given this true-positive 
rate and the very specific nature of the alarm messages, 
the system should be of significant advantage in helping 
the anesthesiologist quickly find breathing circuit faults. 

Our results for the neural network based system are 
similar to those obtained using knowledge-based rea- 
soning, thresholds, and "if-then" type rules. Brunner, 
Loeb, and Jiang used knowledge-based systems to gen- 
erate specific alarm messages from features extracted 
from the pressure, flow, and CO2 signals [10-13]; van 
der AA used a true expert system (Simplexys) [4]. Ani- 
mal test results are very similar for all systems; but, a 
comparison of true-positive and false-positive rates is 
not meaningful because of dissimilar test conditions. 
Results from the clinical testing of these rule-based sys- 
tems have not been published. 

Although neural network system performance seems 
similar to the performance achieved with knowledge- 
based systems, there are advantages to both approaches 
and the ideal intelligent alarm system probably will use 
both. Kn0wledge-based systems generally use the sim- 
plest and most apparent relationships between the sen- 
sor signals and faults; neural networks embody the 
complete, and often extremely complex, relationships 
between sensor signals and faults (as they appear in the 
training data). The author of a rule-based system knows 
which signals are truly important and writes rules ac- 
cordingly. Most if-then rules are based on one or two 
variables and, even though the variables selected may 
be those that change most when a critical event occurs, 
subtle changes in other variables may also contain useful 
information [10-14]. The author of the production rules 

must understand the behavior of all features during each 
fault, for various breathing circuit configurations and 
for all ventilator settings. The author must remove per- 
sonal bias he or she has gained from past experience. 

A neural network, on the other hand, uses informa- 
tion from all variables simultaneously, in an unbiased 
way [8]. The more complete and more representative 
the training data, the better the neural network per- 
forms. All information from all sensors is used by the 
neural network. Although the same can be done with 
rule-based systems, the rules become extremely com- 
plex. Our neural network used 30 input variables for 
each decision, a formidible task for the author of AI 
rules. If rule-based systems have a weakness, generally 
it is a lack of medical knowledge. If neural networks 
have a weakness, generally it comes because of an in- 
complete training database. For our application, we be- 
lieve it is easier to create a complete database (via simu- 
lation) than it is to understand the complex relationship 
between the sensors and the breathing circuit faults. 

Our neural networks have an advantage over existing 
rule-based systems in that they detect, abnormal states 
directly, rather than just as changes from normal. The 
van der Aa [4] andJiang [12,13] systems need a learning 
period to collect data from several normal breaths from 
each patient, a period of normal breathing, before they 
can identify events. Their rules are triggered when mea- 
sured variables cross thresholds, the thresholds being 
based on information from past normal breaths in that 
patient. Because their system detects any deviation from 
the normal steady state, they alarm falsely when the 
tidal volume, ventilation rate, or fresh gas flow change. 
Our neural network bases part of its decision on abso- 
lute features; thus, it does not require a learning period 
or a period of normal respiration before it can detect 
faults when used in the operating room. It detects ab- 
normal states upon start-up, because it was trained off- 
line, long before the case began. Our neural network 
also uses differential features, which give it increased 
sensitivity to detect changes, thus incorporating some 
of the advantages of the van der Aa and Jiang systems. 

Equivalent performance seems to have been achieved 
with neural networks, without relying on an expert's 
judgment, and with simpler options for updating the 
system. In many cases, it is easier to find good data 
than it is to find an expert with sufficient time to write 
rules. This may be particularly true for breathing circuit 
alarms. When equipment is upgraded, it would seem 
that collecting new data and retraining is preferable to 
reassembling the experts for a rewrite of AI rules. Up- 
dating the system requires that the expert revisit all 
rules, and carefully evaluate how changes may affect 
the old rules. With neural networks, a nonexpert uses 
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simulation to create a database, and training algorithms 
establish the equivalent of  thousands of  optimum rules 
[15,16]. Updating the networks or expanding the area 
of application requires the creation of  new training data, 
and perhaps increasing the size of  the network to handle 
the increased complexity of  the data; but, the network 
training and implementation algorithms remain un- 
changed. If a weakness is found in the system, new 
examples are added to the training data, the neural net- 
work is retrained and performance improves. For ex- 
ample, in our work, we found it necessary to include 
in the training base examples where ventilation and 
fresh gas flow were changed, to reduce false alarm in 
the clinical study. 

We found it best to train one network to find faults 
upon start-up (using absolute features) and to train a 
second network to find more specific faults during op- 
eration (using differential features based on breath-to- 
breath changes in the absolute features). Because differ- 
ential features are more sensitive to change, and because 
changes are often rapid when faults occur, the network 
that uses differential features can recognize all 13 specific 
faults. However, the differential network cannot be 
used alone, because it cannot detect faults that are pres- 
ent when the system is first turned on, nor can it detect 
faults that develop slowly over the course of  many 
breaths. We needed a second network, which uses abso- 
lute features, to detect abnormal states upon start-up. 
Because this second network is less sensitive, it only 
identifies general faults and does not give their specific 
location. 

The varying event detection threshold is a subtle, but 
significant, feature of  our system (eq 5). Because the 
threshold (8) is a function of  the breath-to-breath 
change in a feature, it increases when the feature is un- 
s table-causing the system to be less sensitive during 
spontaneous ventilation--and falls during times of  sta- 
b i l i ty-caus ing the alarm system to become more sen- 
sitive during controlled ventilation. This approach 
reduces false alarms during spontaneous ventilation, 
while maintaining sensitivity during controlled ventila- 
tion. During the clinical trial, even spontaneous over- 
breathing during controlled ventilation did not cause 
false alarms. 

Methods for training and optimizing neural network 
architectures are developing rapidly. We used a simple, 
fully interconnected multilayer perceptron network 
trained with backward error propagation. Undoubt-  
edly, there are other architectures and training methods 
that would reduce training time and improve perfor- 
mance. 

The system's actual false-positive rate is probably 
lower than reported. One weakness in our clinical eval- 

uation is that we could not intentionally create breath- 
ing circuit events, nor could we be certain that an event 
actually existed when the neural network alarm system 
sounded. Our observer could not look for a temporary 
leak around the endotracheal tube cuff or a momentary 
obstruction of  a hose without disturbing surgery. The 
observer recorded only those events that were obvious 
to him, or obvious to the anesthesiologist. 

Before the system is ready for use in the operating 
room, a larger and more diverse data set is needed for 
training. We expect performance to degrade when the 
system is used on patients who are different from those 
used for training. We expect performance degradation 
will be graceful because the system will continue to op- 
erate and will make its best guess. The system will need 
extensive training on a patient simulator to recognize 
all types of  events in all types of  patients and under all 
conditions. If, after expanded training, a weakness is 
found, new examples should be added to the training 
data and the neural networks should be retrained. A 
patient simulator probably is the best way to obtain 
these additional data because of  its ability to create many 
faults over a wide range of  conditions. We expect that 
the final system's true-positive rate in clinical use will be 
better than the true-positive rate measured in our animal 
study (99.7% to 86.7%). False-positive alarms arose 
from events the system was not trained to recognize. 
Training the system to recognize a more diverse set of  
events should reduce false-positive alarms. Performance 
should improve for spontaneous breathing as new train- 
ing data are collected during spontaneous breathing, to 
supplement the sparse data we now have. The false- 
positive rate should fall well below 1.7/hr as the system 
is trained to deal with surgical manipulations, suc- 
tioning, and manual ventilation. 

Although our study emphasizes neural networks, 
some alarm tasks are better handled using knowledge- 
based methods. The best alarm system will be one that 
combines many decision-making tools. We anticipate, 
however, that neural networks will be considered in the 
design of  all future alarm systems [17]. 
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