Skip to main content
Log in

Assessing the relative importance of dispersal in plant communities using an ecoinformatics approach

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Increased insight into the factors that determine the importance of dispersal limitation on species richness and species composition is of paramount importance for conservation and restoration ecology. One way to explore the importance of dispersal limitation is to use seed-sowing experiments, but these do not enable the screening of large sets of species and habitats. In the present paper we present a complementary approach based on comparing small plots with larger regions with regard to species composition and distribution of functional traits. We developed a GIS tool based on ecological and geographical criteria to quantify species pools at various spatial scales. In this GIS tool, containing floristic, large databases, phytosociological and functional information are exploited. Our premise is that differences in the nature of the species in local and regional species pools with regard to functional traits can give important clues to the processes at work in the assembly of communities.

We illustrate the approach with a case study for mesotrophic hay meadows (Calthion palustris). We tested the effects of differences in frequency in the local Habitat Species Pool and differences in dispersal and persistence traits of species on local species composition. Our results show that both species pool effects and functional traits affect the probability of occurrence in small plots. Species with a high propagule weight have, given the frequency in the Local Habitat Species Pool, a lower probability of occurrence in small plots. The probability of local occurrence, however, is increased by the ability to form a persistent soil seed bank and by adult longevity. This provides support for the view that the degree of dispersal limitation is dependent on the degree of spatial isolation of the focal site relative to source populations and moreover that species inherently differ in the degree to which dispersal limitation is a limiting factor for local occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin M.P., Nicholls A.O. &Margules C.R. (1990): Measurements of the realized qualitative niche: environmental niches of five Eucalyptus species.Ecol. Monogr. 60: 161–177.

    Article  Google Scholar 

  • Bakker J.P. &Berendse F. (1999): Constraints in the restoration of ecological diversity in grassland and heathland communities.Trends Ecol. Evol. 14: 63–68.

    Article  PubMed  Google Scholar 

  • Bakker J.P. &Olff H. (1995): Nutrient dynamics during restoration of fen meadows by haymaking without fertiliser application. In:Wheeler B.D., Shaw S.C., Foit W.J. &Robertson R.A. (eds.),Restoration of temperate wetlands, Wiley & Sons, London, pp. 143–166.

    Google Scholar 

  • Bekker R.M., Schaminée J.H.J., Bakker J.P. &Thompson K. (1998): Seed bank characteristics of Dutch plant communities.Acta Bot. Neerl. 47: 15–26.

    Google Scholar 

  • Chesson P.L. &Warner R.R. (1981): Environmental variability promotes coexistence in lottery competitive systems.Amer. Naturalist 117: 923–943.

    Article  Google Scholar 

  • Chytrý M. (2001): Phytosociological databases give biased estimates of species richness.J. Veg. Sci. 12: 439–444.

    Article  Google Scholar 

  • Cornell H.V. (1993): Unsaturated patterns in species assemblages: the role of regional processes in setting local species richness. In:Ricklefs R.E. &Schluter D. (eds.),Species diversity in ecological communities, University of Chicago Press, Chicago, pp. 243–252.

    Google Scholar 

  • Cornell H.V. (1999): Unsaturation and regional influences on species richness in ecological communities: A review of evidence.Ecoscience 6: 303–315.

    Google Scholar 

  • Cornell H.V. &Karlson R.H. (1997): Local and regional processes as controls of species richness. In:Tilman D. &Kareiva P. (eds.),Spatial ecology, The role of space in population dynamics and interspecific interactions, Princeton Univ. Press, New Jersey, pp. 250–268.

    Google Scholar 

  • Cousins S.A.O., Lavorel S. &Davies I. (2003): Modelling the effects of landscape pattern and grazing regimes on the persistence of plant species with high conservation value in grasslands in south-eastern Sweden.Landscape Ecol. 18: 315–332.

    Article  Google Scholar 

  • Dupré C. (2000): How to determine a regional species pool: a study in two Swedish regions.Oikos 89: 128–136.

    Article  Google Scholar 

  • Ehrlén J. &Eriksson O. (2000): Dispersal limitation and patch occupancy in forest herbs.Ecology 81: 1667–1674.

    Google Scholar 

  • Ehrlén J. &van Groenendael J.M. (1998): The trade-off between dispersability and longevity — an important aspect of plant species diversity.Appl. Veg. Sci. 1: 29–36.

    Article  Google Scholar 

  • Eriksson O. (1993): The species-pool hypothesis and plant community diversity.Oikos 68: 371–374.

    Article  Google Scholar 

  • Eriksson O. (2000): Seed dispersal and colonization ability of plants — assessment and implications for conservation.Folia Geobot. 35: 115–123.

    Article  Google Scholar 

  • Everts F.H. &de Vries N.P.J. (1991):The vegetation development in stream valley systems; a landscape ecological study of brenthian stream valleys. PhD. Thesis, University of Groeningen, Groeningen.

    Google Scholar 

  • Ewald J. (2002): A probabilistic approach to estimating species pools from large compositional matrices.J. Veg. Sci. 13: 191–198.

    Article  Google Scholar 

  • Ewald J. (2003): A critique for phytosociology.J. Veg. Sci. 14: 291–296.

    Article  Google Scholar 

  • Foster B.L., Dickson T.L., Murphy C.A., Karel I.S. &Smith V.H. (2004): Propagule pools mediate community assembly and diversity-ecosystem regulation along a grassland productivity gradient.J. Ecol. 92: 435–449.

    Article  Google Scholar 

  • Foster B.L. &Tilman D. (2003): Seed limitation and the regulation of community structure in oak savanna grassland.J. Ecol. 91: 999–1007.

    Article  Google Scholar 

  • Freckleton R.P. &Watkinson A.R. (2002): Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations.J. Ecol. 90: 419–434.

    Article  Google Scholar 

  • Grace J.B. (1999): The factors controlling species density in herbaceous plant communities: an assessment.Perspect. Pl. Ecol. Evol. Syst. 2: 1–28.

    Article  Google Scholar 

  • Grime J.P. (2001):Plant strategies, vegetation processes, and ecosystem properties. Ed. 2. John Wiley & Sons, Ltd., Chichester.

    Google Scholar 

  • Grime J.P. &Jeffrey D.W. (1965): Seedling establishment in a vertical gradient of sunlight.J. Ecol. 53: 621–642.

    Article  Google Scholar 

  • Grootjans A.P., Fresco L.F.M., de Leeuw C.C. &Schipper P.C. (1996): Degeneration of species-richCalthion palustris hay meadows; some considerations on the community concept.J. Veg. Sci. 7: 185–194.

    Article  Google Scholar 

  • Grubb P.J., Kelly D. &Mitchley J. (1982): The control of relative abundance in communities of herbaceous plants. In:Newman E.I. (ed.),The plant community as a working mechanism, Blackwell, Oxford, pp. 79–97.

    Google Scholar 

  • Hanski I. (1982): Dynamics of regional distribution: the core and satellite species hypothesis.Oikos 38: 210–221.

    Article  Google Scholar 

  • Hanski I. (1998): Metapopulation dynamics.Nature 396: 41–49.

    Article  CAS  Google Scholar 

  • Hanski I. &Gaggiotti O.E. (2004):Ecology, genetics, and evolution of metapopulations. Elsevier Ac. Press, Amsterdam.

    Google Scholar 

  • Hennekens S.M. &Schaminée J.H.J. (2001): TURBOVEG, a comprehensive data base management system for vegetation data.J. Veg. Sci. 12: 589–591.

    Article  Google Scholar 

  • Herben T. (2000): Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect.J. Veg. Sci. 11: 123–126.

    Article  Google Scholar 

  • Herben T. &Hara T. (2003): Spatial pattern formation in plant communities. In:Sekimura T., Noji S., Ueno N. &Maini P.K. (eds.),Morphogenesis and pattern formation in biological systems — experiments and models, Springer Verlag, Tokyo, pp. 223–235.

    Google Scholar 

  • Hubbell S.P. (2001):The unified neutral theory of biodiversity and biogeography. Monographs in population biology 32: 1–375. Princeton Univ. Press, Princeton, Oxford.

    Google Scholar 

  • Huisman J., Olff H. &Fresco L.F.M. (1993): A hierarchical set of models for species response analysis.J. Veg. Sci. 4: 37–46.

    Article  Google Scholar 

  • Huston M.A. (1999): Local processes and regional patterns: appropriate scale for understanding variation in the diversity of plants and animals.Oikos 86: 393–401.

    Article  Google Scholar 

  • Hutchings M.J. &Booth K.D. (1996): Studies on the feasibility of re-creating chalk grassland vegetation on ex-arable land. I. The potential role of the seed bank and the seed rain.J. Appl. Ecol. 33: 1171–1181.

    Article  Google Scholar 

  • Jakobsson A. &Eriksson O. (2000): A comparative study of seed number, seed size, seedling size and recruitment in grassland plants.Oikos 88: 494–502.

    Article  Google Scholar 

  • Keddy P.A. (1992): Assembly and response rules: two goals for predictive community ecology.J. Veg. Sci. 3: 157–164.

    Article  Google Scholar 

  • Kelt D.A., Tarper M.L. &Meserve P.L. (1995): Assesing the impact of competition on community assembly: a case study using small mammals.Ecology 76: 1283–1296.

    Article  Google Scholar 

  • Kolb A. &Diekmann M. (2004): Effects of environment, hab itat configuration and forest continuity on the distribution of forest plant species.J. Veg. Sci. 15: 199–208.

    Article  Google Scholar 

  • Kupferschmid A.D., Stampfi A. &Newberry D.M. (2000): Dispersal and microsite limitation in an abandoned calcareous grassland of the Southern Prealps.Folia Geobot. 35: 125–141.

    Article  Google Scholar 

  • Legendre P., Dale M.R.T., Fortin M.-J., Gurevitch J., Hohn M. &Mayers D. (2002): The consequences of spatial structure for the design and analysis of ecological field surveys.Ecography 25: 601–615.

    Article  Google Scholar 

  • Leishman M.R. (1999): How well do plant traits correlate with establishment ability? Evidence from a study of 16 calcareous grassland species.New Phytol. 141: 487–496.

    Article  Google Scholar 

  • Lindborg R. &Eriksson O. (2004): Historical landscape connectivity affects present plant species diversity.Ecology 85: 1840–1845.

    Article  Google Scholar 

  • Lepš J. (2001): Species-pool hypothesis: limits to its testing.Folia Geobot. 36: 45–52.

    Article  Google Scholar 

  • Lockwood J.L. &Pimm S.L. (1999): When does restoration succeed? In:Weiher E. &Keddy P.A. (eds.),Ecological assembly rules, Perspectives, advances, retreats, Cambridge Univ. Press, Cambridge, pp. 363–378.

    Google Scholar 

  • Loreau M. (2000): Are communities saturated? On the relationship between alfa, beta and gamma diversity.Ecol. Letters. 3: 73–76.

    Article  Google Scholar 

  • McCullagh P. &Nelder J.A. (1989):Generalized linear models. Ed. 2. Chapman & Hall, London.

    Google Scholar 

  • McCune B. (1994): Improving community analysis with Beals smoothing function.Ecoscience 1: 82–86.

    Google Scholar 

  • Moles A.T., Falster D.S., Leishman M.R. &Westoby M. (2004): Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime.J. Ecol. 92: 384–396.

    Article  Google Scholar 

  • Mouquet N., Leady P., Meriguet J. &Loreau M. (2004): Immigration and local competition in herbaceous plant communities: a three-year seed-sowing experiment.Oikos 104: 77–90.

    Article  Google Scholar 

  • Mucina L., Schaminée J.H.J. &Rodwell J.S. (2000): Common data standards for recording relevés in field survey for vegetation classification.J. Veg. Sci. 11: 769–772.

    Article  Google Scholar 

  • Münzbergová Z. &Herben T. (2004): Identification of suitable unoccupied habitats in metapopulation studies using co-occurrence of species.Oikos 105: 408–414.

    Article  Google Scholar 

  • Ozinga W.A., Bekker R.M., Bakker J.P., Schaminée J.H.J. &van Groenendael J.M. (2004): Dispersal potential in plant communities depends on environmental conditions.J. Ecol. 92: 767–777.

    Article  Google Scholar 

  • Ozinga W.A., Schaminée J.H.J., Bekker R.M., Bonn S., Poschlod P., Tackenberg O., Bakker J.P. & van Groenendael J.M. (2005): Predictability of plant species composition from environmental conditions is constrained by dispersal limitation.Oikos, in press.

  • Pärtel M., Zobel M., Zobel K., &van der Maarel E. (1996): The species pool and its relation to species richness: evidence from Estonian plant communities.Oikos 75: 111–117.

    Article  Google Scholar 

  • Poschlod P. &Bonn S. (1998): Changing dispersal processes in the central European landscape since the last ice age: an explanation for the actual decrease of plant species richness in different habitatas?Acta Bot. Neerl. 47: 27–44.

    Google Scholar 

  • Ricklefs R. (1987): Community diversity: relative roles of local and regional processes.Science 235: 167–171.

    Article  PubMed  Google Scholar 

  • Ricklefs R.E. &Schluter D. (1993): Species diversity, regional and historical influences. In:Ricklefs R.E. &Schluter D. (eds.),Species diversity in ecological communities, University of Chicago Press, Chicago, pp. 350–363.

    Google Scholar 

  • Rosenzweig M.L. &Ziv Y. (1999): The echo pattern of species diversity: pattern and processes.Ecography 22: 614–628.

    Article  Google Scholar 

  • Schaminée J.H.J., Hommel P.W.F.M., Stortelder A.H.F., Weeda E.J. &Westhoff V. (1995–1999):De vegetatie van Nederland (Vegetation of the Netherlands). Opulus Press, Uppsala/Leiden.

    Google Scholar 

  • Tamis W.L.M. &van ’T Zelfde M. (2003): The KFK-scale, a new rarity scale for the Dutch flora.Gorteria 29: 57–83.

    Google Scholar 

  • Thompson K., Bakker J.P. &Bekker R.M. (1997):Soil seed banks of North West Europe; Methods, density and longevity. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tilman D. (1994): Competition and biodiversity in spatially structured habitats.Ecology 75: 2–16.

    Article  Google Scholar 

  • Tilman D. (1997): Community invasibility, recruitment limitation and grassland biodiversity.Ecology 78: 81–92.

    Article  Google Scholar 

  • Trexler J.C. &Travis J. (1993): Nontraditional regression analyses.Ecology 74: 1629–1637.

    Article  Google Scholar 

  • Turnbull L.A., Crawley M.J. &Rees M. (2000): Are plant populations seed-limited? A review of seed sowing experiments.Oikos 88: 225–238.

    Article  Google Scholar 

  • van der Meijden R., Odé B., Groen C.L.G., Witte J.-P.M. &Bal D. (2000): Endangered and vulnerable vascular plants in the Netherlands. Basic report with proposal for the Red List.Gorteria 26: 85–208.

    Google Scholar 

  • van Tongeren O. (2004): The identification programme ASSOCIA. In:Hennekens S.M.,1998–2004, Turboveg for Windows, Alterra, Wageningen.

    Google Scholar 

  • Venable D.L. &Brown J.S. (1988): The selective interaction of dispersal, dormancy and seed size as adaptations for reducing risks in variable environments.Amer. Naturalist 131: 360–384.

    Article  Google Scholar 

  • Westoby M., Leishman M. &Lord J. (1996): Comparative ecology of seed size and seed dispersal.Philos. Trans. Ser. B 351: 1309–1318.

    Article  Google Scholar 

  • Wilson J.B. &Anderson B.J. (2001): Species-pool relations: like a wooden light bulb.Folia Geobot. 36: 35–44.

    Article  Google Scholar 

  • Witte J.P.M. (1998):National water management and the value of nature. Thesis, Wageningen Agricultural University, Wageningen.

    Google Scholar 

  • Xiong S., Johansson M.E., Hughes F.M.R., Hayes A., Richards K.S. &Nilsson C. (2003): Interactive effects of soil moisture, vegetation canopy, plant litter and seed addition on plant diversity in a wetland community.J. Ecol. 91: 976–986.

    Article  Google Scholar 

  • Zobel K. (2001): On the species-pool hypothesis and the quasi-neutral concept of plant community diversity.Folia Geobot. 36: 3–8.

    Article  Google Scholar 

  • Zobel M. (1997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence.Trends Ecol. Evol. 12: 266–269.

    Article  Google Scholar 

  • Zobel M. &Kalamees R. (2005): Diversity and dispersal — can the link be approached experimentally?Folia Geobot. 40: 3–11.

    Article  Google Scholar 

  • Zobel M., Otsus M., Liira J., Moora M. &Mols T. (2000): Is small-scale species richness limited by seed availability or microsite availability.Ecology 81: 3274–3282.

    Google Scholar 

  • Zobel M., van der Maarel E. &Dupré C. (1998). Species pool: The concept, its determination and significance for community restoration.Appl. Veg. Sci. 1: 55–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim A. Ozinga.

Additional information

contribution to the paper as data suppliers for dispersal data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozinga, W.A., Hennekens, S.M., Schaminée, J.H. et al. Assessing the relative importance of dispersal in plant communities using an ecoinformatics approach. Folia Geobot 40, 53–67 (2005). https://doi.org/10.1007/BF02803044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803044

Keywords

Navigation