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The recent publication of Binary Alloy Phase Diagrams, 2nd ed,  [90Mas] and our extensive screening 
of phase diagram graphics for this edition has revealed many phase diagram features, which while 
not explicitly violating phase diagram rules, are to a lesser or greater extent unlikely to represent 
thermodynamically acceptable conditions. In two previous papers, several thermodynamically im- 
probable features or boundaries in binary phase diagrams were pointed out [91Oka2], and some 
unlikely thermodynamic models were shown to be unrealistic, or in error [91Okal]. In the present 
paper; we discuss some of the unlikely features in more detail in order to develop a set of guidelines 
that may be useful for checking future proposed phase diagram boundaries, or some specific phase 
diagram features resulting from both experimental and theoretical work, including also phase dia. 
gram assessments. 

1 .  I n t r o d u c t i o n  

Ideally, an equilibrium phase diagram of a binary (or higher 
order) system should be determined experimentally. As is 
well known, however, in practice, a phase diagram (or some 
portions of it) may be very difficult to determine by experi- 
ments alone because of various unavoidable complications. 
For example, when certain phase boundaries are determined 
by thermal analysis, numerous specimens with different com- 
positions may be needed, or very long annealing times for 
equilibration or phase nucleation could be involved, especially 
at low temperatures. Problems then arise related to tempera- 
ture measurement, contamination, composition control, tech- 
nique precision, and data interpretation. The same applies if 
diffraction techniques, metallographic phase diagram iden- 
tification, or other experimental approaches are used. Ac- 
cordingly, it is not unusual to see numerous portions of 
phase diagrams derived entirely by interpolation from other 
data, assumed similarities to other systems, extrapolation 
from adjoining regions, or just plain invention. Recently, an 
increasing role is also being played by thermodynamic model- 
ing, which carries its own difficulties [91Okal ]. In all these ap- 
proaches to phase diagram construction, all kinds of errors 
tend to compound, and it is not surprising that all too fre- 
quently the resulting phase diagram, or specific features or 
boundaries in it, may be invalid, distorted, or improbable. 

The validity of a proposed phase diagram can often be exam- 
ined from the appearance of the general pattern and the form of 
proposed boundaries. In three earlier reviews, [86Oka], 
[91Okal], and [91Oka2] showed many examples of unlikely 
phase diagram features and emphasized the fact that often even 
though the phase rule may be satisfied, some phase boundaries 

may be entirely improbable thermodynamically. Thus, it can 
be shown that the liquidus of a compound cannot be too asym- 
metric, the changing slope of a phase boundary cannot be too 
abrupt, initial slopes must conform to certain rules, etc. In this 
article, we attempt to provide a firmer quantitative basis to 
some of the qualitative statements in these earlier works, with 
the general objective of providing definitive guidelines for 
visually checking proposed phase boundaries and thermody- 
namic models. 

The present approach may appear to be less rigorous in com- 
parison with other analytical methods based on thermody- 
namic principles. For example, [80Pel] and [81Pel] showed 
that the solidus location can be determined from the liquidus 
location and a limited amount of thermodynamic quantities. 
This concept can be utilized as a criterion for examining the va- 
lidity of the experimentally determined relationship between 
the liquldus and the solidus. More recently, [88Pel] derived 
equations of thermodynamic quantities of related phases to ex- 
press the relationships of the ratio of phase boundary slopes at 
an invariant reaction. The consistency in the slopes of pro- 
posed phase boundaries can be examined accordingly. The 
curvatures of liquidus and solidus at the congruent melting 
point of an intermediate phase must satisfy the Gibbs- 
Konovalov rule, and those of a particular phase diagram can 
be calculated from the second derivative of the Gibbs en- 
ergy functions of the related phases and the scale of the 
phase diagram [81Goo]. Any phase boundary that does not 
conform to this scheme is considered to be erroneous. The 
van't Hoff relationship for the initial slopes of the liquidus and 
solidus (see [91Oka2]) is another well-known rule that can be 
used for checking the validity of a phase diagram. However, 
these exact methods for checking various features of phase 
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Fig. 1 Definitions of qualitative words in this article. (1)A has a sharper peak thanB. B is more flat thanA. (2)A shows a more abrupt change of slope 
than B. (3) A is steeper than B. (4) A is concave. B is convex. 

diagrams have rarely been utilized in phase diagram assess- 
ments primarily because their validity can be checked only af- 
ter establishing first a reliable thermodynamic model and 
sometimes performing extensive calculations. 

The criteria described in the present article were devised to 
circumvent in part the difficulties associated with these 
more rigorous approaches. The present criteria may appear 
to be intuitive, but actually they too derive from thermody- 
namic principles and thermodynamic characteristics of 
phases and materials. The most remarkable advantage of the 
present approach over the more strict methods may be the pos- 
sibility of quickly screening improbable phase diagrams or 
thermodynamic models by pattern recognition. A more rigor- 
ous examination may then be initiated for a given phase dia- 
gram for which anomalous features have been identified as 
judged from the present guidelines. 

As in the earlier papers, we shall continue referring to certain 
curvatures of phase boundaries in somewhat qualitative terms 
such as "sharp," "flat," "steep," "abrupt," etc. The meaning of 
these words is, of course, relative, as easily perceived from the 
fact that the curvature of a phase boundary will vary depending 
on the scale selected for the phase diagram graphics. Thus, a 
"sharp" liquidus in our context only implies that the form of 
the liquidus around a certain compound-like phase appears to 
be more pointed at the melting point in a T-X plot than that of a 
neighboring phase in the same phase diagram, or more pointed 
than the form expected from simple thermodynamic consid- 

erations. Other examples of curvature terminology are illus- 
trated graphically in Fig. 1. 

Most often, the liquid phase considered in this article will be 
assumed to be an ideal solution. Modest deviations from the 
ideal solution behavior will not affect the main points of our 
discussion, but special considerations are needed for the situ- 
ations when the association-forming tendency in the liquid 
phase is very pronounced. For this reason, systems involving 
strongly ionic elements are beyond the scope of the present 
discussion. However, if the association tendency is over- 
whelming in the liquid phase, the compound-like phase may 
be regarded as an element and the present considerations will 
then apply. 

A list of the topics considered in the present paper is given in 
Table 1. Their graphical representation is illustrated in Fig. 2. 

2.  T h e  Form.  o f  t h e  L i q u i d u s  (of  a 
C o m p o u n d )  sn t h e  V s c l n l t y  o f  t h e  
P u r e  E l e m e n t  S ide  (Po int  a in  Fig.  2) 

In this section, the form of a liquidus associated with a com- 
pound-like phase, in the composition range near a pure ele- 
ment side (0 or 100 at.% solute) is considered. An examination 
of the projected metastable range of the liquidus is desirable as 
discussed below. 

Both ends of the liquidus of an intermediate phase must even- 
tually terminate at invariant reactions such as a eutectic or a 
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peritectic. Sometimes, the proposed form of the liquidus im- 
mediately above these invariant reaction temperatures is 

Table 1 Topics of the Present Paper 
Features Discussed 
in Fig. 2 Topic in section 

a . . . . . . . . . . . . . . . . .  

b . . . . . . . . . . . . . . . . .  

c . . . . . . . . . . . . . . . . .  

d . . . . . . . . . . . . . . . . .  

e . . . . . . . . . . . . . . . . .  

f . . . . . . . . . . . . . . . . .  

g . . . . . . . . . . . . . . . . .  

h . . . . . . . . . . . . . . . . .  

i . . . . . . . . . . . . . . . . . .  

j . . . . . . . . . . . . . . . . . .  

k . . . . . . . . . . . . . . . . .  

l . . . . . . . . . . . . . . . . . .  

m . . . . . . . . . . . . . . . .  

n . . . . . . . . . . . . . . . . .  

o . . . . . . . . . . . . . . . . .  

The form of the liquidus (of a compound) 2 
in the vicinity of the pure element side 

An unusually asymmetric liquidus 3 

An unacceptably abrupt change of slope 4 
in a phase boundary 

Flatness (or sharpness) of a miscibility gap 5 
upper boundary 

Flatness (or sharpness) of a liquidus around 6 
a eompoued 

A miscibility gap occurring close to a pure 7 
element side 

A synteetie reaction in combination with a 8 
compound forming at lower temperatures 
in the same composition range 

Two adjoining compounds having very similar 9 
compositions 

Too much coincidence in unusual combination 10 
of phase diagram features 

An excessive slope change associated with a 11 
polymorphic transformation occurring in a 
phase or a compound 

A single-phase field having no width at 0 K 12 

A two-phase field becoming increasingly wider 13 
at higher temperatures 

A congruent transformation of a compound 14 
on cooling 

An inverse miscibility gap 15 

Atoo narrow G + Ltwo-phase field 16 

highly suspect even if the curvature of the liquidus appears to 
be normal (e.g., no abrupt change of slope is evident). The ter- 
mination of the equilibrium portion of the liquidus of an inter- 
mediate phase by an invariant reaction is of course expected 
from the relationship between the liquid phase and the com- 
pound phase (i.e., the invariant reaction reflects the thermody- 
namic competition between the neighboring phases and is not 
connected with the form of the liquidus of the compound under 
consideration). It follows from this that the overall validity of 
a liquidus trend must be judged by taking into account also its 
projected metastable ranges. 

In order to examine the liquidus of a compound including 
the metastable range, it is convenient to assume that all 
neighboring solid phases, including the terminal phase, can 
be excluded. Then, the liquidus becomes visible in its entire 
composition range from 0 to 100 at.%. (Only the 0 at.% side 
is discussed hereafter to eliminate redundancy.) Here we re- 
call that the extrapolated liquidus cannot cross the 0 at.% sol- 
ute line, because the slope of the Gibbs energy function of the 
liquid phase always (except at 0 K) has a negative infinity 
value at 0 at.% due to the RTXIogX term, which derives from 
the contribution of the ideal entropy of mixing (Fig. 3). Ac- 
cordingly, any liquidus of an intermediate phase, when ex- 
trapolated, can approach the 0 at.% line only asymptotically. 
Thus, for example, in order to satisfy this requirement, the 
liquidus ofAcB 4 (Fig. 4), would have to involve a rather abrupt 
change of slope (as indicated with a dotted line) instead of the 
smooth (and incorrect) extrapolation indicated with a dashed 
line.* Nevertheless, the mandated accelerated change of slope 

*A rather marginal example was selected for the illustration in Fig. 4. 
The problem becomes more pronounced when the eutectic composi- 
tion is closer to 0 at.%. 

o K 

A 

Hg. 2 Topics of the present paper. 
X /3 
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is intuitively abnormal (considering only the stable and recta- 
stable liquidus and nothing else), and it would be helpful to 
have a clearer guideline of  how much change of  slope is ther- 
modynamically reasonable. 

Possible general forms of  the liquidus associated with an A3B- 
type compound were illustrated in [91Oka2] assuming that the 
liquid was an ideal solution.* Several more general situations 

Always ~ line 
positive 

Fig. 3 G~bs energy function near 0 at.% solute. 

for a liquidus are considered below for an AB-type (50 at.%) 
compound melting at 1000 ~ The liquid is now assumed to 
be a regular solution. Of course a further deviation from a regu- 
lar solution behavior would cause additional changes in the 
form of  the liquidus, but the rate of  change may be expected al- 
most always to be a slowly changing function in any one phase. 
Hence, the use of  a regular solution approximation may be ade- 
quate for the present purpose. (Note that the present aim is to 
show that a too abrupt change of slope in a liquidus near the 0 
at.% line is difficult to justify thermodynamically.) 

In order to examine possible variations of  the curvature of a 
given liquidus, the curves shown in Fig. 5 were calculated for 
rather extreme situations. Curves al  and a2 correspond to a 
situation where the interaction parameter is positive and large, 
i.e., Gex(L)= 18 0(XlX(1-J0 J/tool. This value cannot be 
raised much higher because a miscibility gap then develops in 
the liquidus [91Oka2]. Curves c l  and c2 correspond to another 
extreme situation where the interaction parameter is now nega- 

*When the liquid can be regarded as an ideal solution, the validity of 
the liquidus curve may be examined more easily by plotting inX vs 
1/T (Arrhenius plot), where X is the liquidus composition in atomic 
fraction and Tis in K. If the Gibbs energy of the compound in equilib- 
rium with the liquid varies linearly with temperature (which is a good 
approximation [91Okal]), the plot should appear as a straight line at 
X << 1. The Arrhenius plot will be a curved line when there is any 
deviation from this ideal situation (nonideal liquid, substantial 
solubility, and at very low temperatures where the Gibbs energy of 
a compound cannot be approximated to vary linearly with tempera- 
ture). Therefore, the question of how much can be tolerated in an 
abrupt change of a liquidus slope is also found in the Arrhenius plot. 
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Fig. 4 Ac-B phase diagram. From [90Mas]. 

Journal of Phase Equilibria Vol. 14 No. 3 1993 319 



S e c t i o n  I: B a s i c  a n d  A p p l i e d  R e s e a r c h  

tive and large, i.e., GeX(L) = - 1 0 0  000X(1 - X )  J/mol, which  is 
an exceptionally l o w  value [91Ok02]. In this case, the liquidns 

does not reach the 0 at.% solute line at all. For comparison, an 
ideal solution case is also included in Fig. 5 (b l  to b5). 
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Among  these curves, b4 and b5 give the apparent appearance 
of  boundaries projecting to cross the 0% line without a down- 
ward turn, especially if the rapidly turning portion of  each 
curve is in an actual diagram obscured from view by the 
liquidus of  another phase, such as the terminal solid solution 
However, these models correspond to rather artificial situ- 
ations because the coefficients of  the T term (-2  or --4) for 
curves b4 and b5 may be too negative for a real case, as dis- 
cussed in section 6. Accordingly, it may be concluded that in a 
general case, a liquidus requiring an abrupt change of slope to 
avoid "crossing" the 0 a t %  line when extrapolated, near the 
0% line (as shown with a dotted line in Fig. 4), should be re- 
garded as suspect. The remedy would be to make the equilib- 
rium portion of the liquidus steeper near the 0 a t %  line, if the 
modeling and the experimental data (if any) allow it. 

3. A s y m m e t r i c  Liquidus.  Cu,rv.es . 
A r o u n d  C o m p o u n d s  (Pmnt  b ,n  F,g. 2) 

A strikingly asymmetric (and hence suspect) liquidus about a 
congruently melting compound in a phase diagram was al- 
ready pointed out as an unlikely situation in [86Oka] and 
[91Oka2]. A definition of  the asymmetry is of  course some- 
what ambiguous, but from a glance at the La-Au phase dia- 
gram (Fig. 6), for example, it is obvious that the liquidus of 
[3LaAu is more symmetric than that of  I.aAu 2. An  approximate 

Table 2 La.Au Thermodynamic  Data 
G(LaAu2) = -38 929 + 0.533T J/tool 
AmixG*xC L) = X(1-X)(-97 488-58 085X) J/mol 

judgment can be made by comparing the ratio of  the width of 
the two-phase fields on each side of  a compound at the same 
temperature. If  the width on one side is either one haft or dou- 
ble that on the other side, the asymmetry may be considered 
clearly unusual. In our earlier calculation of  the La-Au phase 
diagram [87Gsc], we derived a set of  almost perfectly symmet- 
ric liquidii for all observed compounds (dotted lines). The 
modeling is illustrated in Table 2 by the Gibbs energy func- 
tions used for the calculation of  the form of  the LaAu 2 liquidus 

In order to examine here the effect of  further changes in this se- 
lected Gibbs energy function on the resulting asymmetry, the 
liquidus on the right-hand side of  LaAu 2 was recalculated for 
various modified AmixGeX(L ) terms assumed for the liquid 
phase  In this calculation, the Gibbs energy function of LaAu 2 
and its melting point are, of  course, fixed. Admittedly, the tran- 
sition between the two branches of  the LaAu 2 liquidus, on the 

Table 3 Calculated L a A u  2 Liquidus Composition at 1148 
and 1054 ~ 
AmixG*X(L), Liquidus, at. % Au 
J/mol 1148 *C 1054 *C 
.,I"(1 -X)(-200 000 + 95 700,t') ..................... 72.30 75.68 
X(1 -X)(-100 000 - 54 300X)(a) ................. 71.21 73.70 
X(1 -X)(-97 488 - 58 08570 ........................ 71.23 73.69 
X(1 -X)(0 - 204 300X) ................................ 70.61 72.71 
X(1 -X)(100 000 - 354 300X)(b) ................. 70.20 72.07 
.,I"(1 -.70(200 000 - 504 300X)(b) ................. 69.91 71.61 

(a) Almost identical to the reference curve and not shown in Fig 7 (b) Avery 
unlikely situation because the partial molar enthalpy for the dilute solution is 
strongly positive at 0% and strongly negative at 100 at.%. 
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Fig.7 Asymmetric liquidus 
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left- and right-hand sides of stoichiometry, is incompatible 
with the Gibbs-Konovalov rule [81Goo] because the d2G/dX 2 
value is discontinuous at the congruent point. Hence, the pre- 
sent modeling should be regarded as corresponding to the situ- 
ation where the zero slope requirement at the congruent point 
may be regarded as a further subtlety that is not material to the 
more general examination of the liquidus behavior caused by 
changes in the thermodynamic properties of the liquidus as 
composition changes. The calculated results (Table 3) indicate 
that it is very difficult to generate asymmetry (Fig. 7) even 
when a drastic change in the thermodynamic behavior of the 
liquid phase is introduced, as shown by the various forms of 
the AmixGeX(L ) function in Table 3. 

It appears that if the width ratio is 1:1.5 (note the scale at 1148 
~ in Fig. 7), the liquidus is already fairly asymmetric. If the 
ratio is 1:2, the liquidus is strikingly asymmetric in the sense 
that an unlikely transition in the thermodynamic properties of 
the liquid phase would be involved in that composition range. 

When checking liquidus asymmetries around compounds in a 
phase diagram, the above rough measure of the width ratio 
should be applied at several temperatures shghtly away from 
the melting point because unessential drawing errors often 
cause an appearance of asymmetry very near the melting point. 

Note: (1) If the liquidus is indisputably asymmetric, it is usu- 
ally found that the corresponding solidus is also asymmetric, 
which means that the compound is actually a phase with a con- 
siderable width. (2) A relatively normal liquidus associated 
with a compound existing near a pure component may appear 
asymmetric at low temperatures because one side of it is lim- 

ited by the edge of the phase diagram (see e.g., the Ba-Be phase 
diagram in [90Mas]). 

4. An Abrupt Change  of  S lope  (Point c 
in Fig. 2) 

This is a more general situation of the case already considered 
in section 2. An abrupt change of  slope in the liquidus is caused 
either by an abrupt change in the thermodynamic properties of 
the liquid phase or an abrupt change in the thermodynamic 
properties of the solid phase (in this case a compound) in equi- 
librium with the liquid [91Oka2]. In the previous section, it 
was shown that the slope of a liquidus does not change sub- 
stantially even when the thermodynamic behavior of the liquid 
phase changes substantially. We now examine the influence of 
the change in the thermodynamic behavior of the compound 
on the slope of the liquidus. 

Table 4 Relationship Between the Gibbs Energy and the 
Melting Point of an Equiatomic Compound (Liquid is an 
Ideal Solution) 
M e l t i n g  G i b b s  ene rgy ,  

point, *C J / m o l  Comment 
1600 ........................... - 4  572  - 3 .322T ... 

1300 ........................... - 6  1 4 4 -  1 ,857T ... 

1100 ........................... - 8  938  + 0 .746T 

1000 ........................... - 1 2  430  + 4 .000T Reference  curve 

950 ............................. - 1 5  923 + 7 .256T .., 

900 ............................. - 2 2  909  + 13.765T .,, 
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Fig. 8 Abrupt change of slope. 
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Table 4 lists various Gibbs energy functions of an equiatomic 
compound AB. The one melting at 1000 ~ is used as the refer- 
ence state, which was selected from the situation b2 in section 
2. The corresponding liquidus is shown with a solid line in Fig. 
8. The liquid in this case is an ideal solution. Other curves in 
Fig. 8 were drawn assuming that the thermodynamic behavior 
of the equiatomic compound changes discontinuously at 800 
~ as the temperature is lowered. It is then possible to project 
metastable extensions of the low-temperature segments of the 
different liquidus forms. In Fig. 8, these are drawn to corre- 
spond to apparent melting points arbitrarily set at 1600, 1300, 
1100, 900, and 850 *C. AS may be seen, the required tempera- 
ture coefficient of the Gibbs energy associated with these 
curves (Table 4) varies from -3.322 to 13.765 J/mol �9 K. In 
spite of this drastic change in the temperature coefficient (see 
section 6), the change of slope of the different liquidii at 800 ~ 
is relatively small. Since no phase transformation is assumed 
to occur in the compound, the change in the temperature coef- 
ficient near 800 ~ would have to derive fromfACpdT, where 
ACp is the difference in the specific heats of the compound and 
the average Cp. for the liquid elements at that composition (ref- 
erence state). The integration would be over the temperature 
range where the change of slope is indicated. Even if there ex- 
isted a true phase transformation at 800 ~ (see section 11), it 
would be extremely difficult to explain an abrupt change of 
slope (concave or convex) of a liquidus boundary in terms 
of an abrupt change in the thermodynamic behavior of the 
compound. As a rough measure, the abruptness of the slope 
change may be judged by the apparent congruent melting 
points corresponding to the liquidus portions above and be- 
low the temperature at which the slope change occurs. In the 
present example, a change of only • in the apparent melt- 
ing point (in K) already seems to require too much change in 
the thermodynamic behavior of the compound (as judged by 
the temperature coefficients modeled in Table 4). 

Aphase boundary with an abrupt change as shown at point c in 
Fig. 2 is rarely found in the equilibrium portions of phase dia- 
grams. However, numerous examples can be found where 
such an abrupt change is projected to occur (by extrapolation) 
in the metastable regions of existing phase diagrams. Some- 
times such phase boundaries are drawn to avoid other phase 
rule violations [91Oka2], but they then introduce a projected 
liquidus abruptness that may be unacceptable. 

5. Shape  of  a Misc ib i l i ty  Gap (Point d 
in Fig. 2) 

Miscibility gaps are found in both the liquid and solid states. 
Usually, the shape of the gap near its critical point is uniformly 
round. We attempt here to find possible limits of the curvature 
of a miscibility gap near its critical point. For a reference mis- 
cibility gap, the excess Gibbs energy of a phase (it does not 
matter whether it is a liquid or a solid) was taken to be of the 
form G ex = 20 000X(1 -.X) J/tool, which means that the inter- 

*Then the abrupt change of slope becomes concave, rather than con- 
vex as shown at point c in Fig. 2. The slope change may be caused by 
a second-order transformation in the solid phase. 

action parameter ~ = 20 000 J/tool. This yields a critical point 
at 50 at.% B (of the A-B system) and 930 ~ The shape of the 
calculated gap is quite round, as shown in Fig. 9. In order to 
make the form of this gap sharper, a temperature dependence 
and composition dependence were introduced to ~,  up to the 
feasible maximum limit, keeping the critical point at the same 
location. When the temperature dependence a T  is added to ~, 
the miscibility gap becomes sharper as ct is increased (because 
the critical temperature is fixed, the constant term must be re- 
duced accordingly). Because the usual limit of ct is approxi- 
mately 10 J/mol �9 K (see section 15), a miscibility gap for f~ = 
7972 + 10T J/mol is shown in Fig. 9 as one of the examples. 
When a composition dependence is also added to t2 in the form 
of o.X(1 -X) ,  the miscibility gap becomes sharper as the value 
of a becomes larger. The constant term in t~ must be reduced 
as ct is increased to maintain the critical temperature unaltered. 
The maximum possible value ofct is then 40 000 J/tool to keep 
Q positive for all X. When ct exceeds 40 000, a negative con- 
stant term must be introduced in ~,  and ~ then becomes nega- 
tive near X = 0 and 1. Under these modeling assumptions, the 
interaction between the two starting elements becomes too ar- 
tificial. From this brief analysis, the miscibility gap cannot be 
structured to have a pointed peak in either case. 

It is equally difficult to make a very flat miscibility gap. 
Even when a temperature dependence amounting to as 
much as -10T is introduced in ~,  the form of the miscibility 
gap does not change markedly (Fig. 9). On the other hand, 
when the composition term is modified excessively, two peaks 
appear [93Okal]. 

6. R e l a t i o n s h i p  B e t w e e n  t h e  
S h a r p n e s s  o f . the  Laqmdus o f  a 
C o m p o u n d - L i k e  Phase  and t h e  
Co .rresponding Gibbs Energy  F u n c t i o n  
(Point e in Fig. 2 )  

Auseful notion here is that the "sharpness" of a liquidus of a com- 
pound is strongly related to the "stability" of this compound at 
low temperatures. To illustrate this point, Fig. 10 shows various 
forms of the liquidus of an equiatomic compound melting at 1000 
~ As before, the liquid phase is again assumed for simplicity to 
be an ideal solution. The Gibbs energy function of the com- 
pound is assumed to be of the form G = a + bT, where the ref- 
erence states are the liquid elements. It is clear from Fig. 10 
that the liquidus becomes increasingly more flat as the con- 
stant term a is made smaller, or the coefficient b is made larger. 
As understood from the fact that a is the value of G at 0 K, a re- 
flects the relative stability of the compound at low tempera- 
tures. Because the stability of a compound increases when 
its Gibbs energy is lowered, a compound with a flat liquidus 
must be more stable than one with a sharp liquidus. Hence, 
when more than one compound exists in a system, a compound 
with a higher (less negative) Gibbs energy compared with the 
neighboring compounds cannot "survive" to low tempera- 
tures, because at low temperatures the Gibbs energy of a two- 
phase mixture composed of the neighboring compounds be- 
comes even lower (Fig. 11). Therefore, a compound with a 
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Fig. 10 Relationship between Gibbs energy function and shape of 
liquidus. 

sharp liquidus is destined to decompose eutectoidally into 
two neighboring phases. This simple guide can save much 
time when realistic phase diagram calculations are being at- 
tempted. 

The smallest possible value of b is limited by the fact that a 
solid phase at sufficiently low temperatures must become 
more stable than the liquid phase of the same composition. In 
the case of an ideal liquid, for example, the Gibbs energy of the 
liquid phase at equiatomic composition varies with tempera- 
ture at a rate of-5 .763 J/mol �9 K--i.e., the value of R[XlnX + 
(1 -X)ln(1 -X)]*  atX = 0.5. Thus, this is the minimum possi- 
ble value of b in the expression of G = a + b T  for the equia- 
tomic compound (if b is less than -5.763, G would become 
more negative at high temperatures than the Gibbs energy of 
the liquid phase, causing an inverse melting). For a compound 
existing at an off-equiatomic composition (X ,, 0.5), the limit 
of b will be even less negative than -5.763. If the compound is 
moved to positions where X = 0 or 1 (i.e., the terminal ele- 
ments), b becomes equivalent to the entropy of fusion of the 

*The ideal entropy of mixing term, R[XinX + (1 - X)ln(1 - X)], exists 
even in a hypothetical binary system consisting of the same two ele- 
ments (extreme situation of ideal mixing). However, because this bi- 
nary system is actually a pure substance, the entropy of mixing must 
be zero. This contradiction originates from the same cause as the 
Gibbs paradox (explained in most standard textbooks on thermody- 
namics). Due to this term, even when the entropy of fusion of an inter- 
metallic compound is very similar to that of constituent elements, as 
expected from the Richard rule, the b term in the Gibbs energy func- 
tion of the form G = a + b T  will appear to have a different value de- 
pending on the composition of the compound. 

elements. Empirically, it is known that the values of b of most 
elements are approximately constant (the Richard rule) in the 
range of ~10 (• J/mol �9 K, with only a few exceptions for 
nonmetallic elements such as Si and Ge (>30 J/mol. K). Be- 
cause the entropy of fusion of a compound does not differ 
markedly from the entropies of the terminal elements 
[81Goo], the value ofb  of a compound must be approximately 
10-R[XInX + ( 1 - X ) l n ( 1 - X ) ]  J/mol. K. The b values for 
various compounds in the same system therefore include a su- 
perficial contribution from the -R[XInX + (1 -X) ln (1 -X) ]  
J/mol �9 K term. Thus, the value of b of most equiatomic com- 
pounds will be ,-4 (=10 - 5.763) J/tool �9 K (note that the melt- 
ing point is not involved), and hence the resulting liquidus of a 
most normal compound will faU in the shaded range in Fig. 10 
within a tolerable margin. 

The discussion above was based on the assumption that the liq- 
uid is an ideal solution. When the excess entropy of mixing of 
the liquid phase, Am.~.SeX(L), is not zero, the "sharpness" of the 
liquidus will change even for the same b value. However, the 
magnitude of AmixSeX(L) is usually small (often assumed to be 
zero), and its influence is also smaU. When the enthalpy of 
mixing cannot be neglected, the sharpness of the liquidus var- 
ies substantially (but systematically), as akeady discussed in 
section 3. 

* * 9.7 + 1.8 for 56 metallic elements (Ag, AI, Am, Au, Ba, Be, Ca, Cd, 
Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Gd, Hf, Hg, Ho, In, K, La, Li, Lu, 
Mg, Mn, Mo, Na, Nb, Nd, Ni, Np, Pa, Pb, Pd, Pr, Pt, Rb, Rh, Sc, Sn, 
Sr, Ta, Tb, To, Th, Ti, TI, Tm, V, Y, Yb, Zn, Zr). Data were taken from 
[90Din]. Entropy of allotropic transformation is added. 
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~n Displaced Miscibi l i ty  Gap ( P o i n t f  
Fig. 2) 

As mentioned in [91Oka2], the composition of the critical 
point of a liquid miscibility gap is usually found to occur in the 
center range of a phase diagram. A binary phase diagram hav- 
ing a liquid miscibility gap that is significantly displaced to- 
wards either end of the diagram may be considered to be rather 
suspect. The question then arises as to how much displacement 
from a near-central position is tolerable. 

To establish the magnitude of the displacement of the critical 
point, the excess Gibbs energy for the liquid phase of a hypo- 
thetical system A-B may be expressed as a function of the B- 
component concentration X in the usual form 

Amix Gex = f~(X)X(1 - X )  

where f2(X) is the interaction parameter, and the excess en- 
tropy term is assumed to be negligible. When g2(X) is constant 

:1 
A B C 

X 

Fig. 11 Compound B with less negative G is unstable. 

(and positive), the composition of the critical point of a misci- 
bility gap (Xc) is, of course, at 50 at.%. Table 5 shows the cal- 
culated displacement of X c for various asymmetric forms of 
fl(X). The magnitude of fl(1) has been set arbitrarily at 40 
kJ/mol to permit also the calculation of the critical temperature 
(Tc) corresponding to X c. However, the value o f X  c is not re- 
lated to ~(1). 

The selected composition-dependence expressions for 12(J 0 
are shown graphically in Fig. 12. 

In the first-approximation"quasichemical" model, the solubil- 
ity of Ain B, or vice versa, in the liquid state is considered to be 
determined mostly by the relative magnitudes of the nearest- 
neighbor bonds between A and A, B and B, and A and B 
(Bragg-Williams approximation). Here, the deviation from the 
relationship i2(X) = const. (Case I in Table 5) is expected to be 
small because the relative strengths of the bonds are expected 
not to vary significantly with composition. Case 2 corresponds 
to a limit of a normal situation where Ais mostly indifferent to 
the introduction of B, but B strongly repels A in its own envi- 
ronment. Considering the omission of the entropy term and the 

Table 5 Effect of Asymmetry of the Interaction 
Parameter on the Critical Composition of a 
Miscibility Gap 

Case If(X), kJ/mo[ X~ at. % T~ *C 

1 ................................. 40 50 2132 
2 ................................. 40X 74 1986 
3 ................................. 40X 2 82 1963 
4 ................................. 40~ 86 1955 
5 ................................. 40X 4 89 1952 
6 ................................. 40(-1 +2X) 79 2505 
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Fig. 13 G~bs energy relationship at syntectic temperature. 

Journal of Phase Equilibria Vol. 14 No. 3 1993 325 



S e c t i o n  I: B a s i c  a n d  A p p l i e d  R e s e a r c h  

rather crude nearest neighbor approximation in the present es- 
timate, it may be said that the location of a miscibility gap in 

the liquid phase could be viewed as normal i f X  c occurred be- 
tween approximately 25 and 75 at.% (Cases 1 and 2). 
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Table 6 Systems Including a Syntectic Reaction 
Bi-Br Bi-CI Bi-U Cd-P Cd-Rb CI-Hg 
Cl-In Cs-In Ga-I Ga-K Ga-Rb I-T1 
In-Rb Mn-Y Ni-S Sn-P Pb-U Pd-Se 

From [90Mas]. 

As the form of g2(X) is made to become more distorted (Cases 
3, 4, and 5), X c moves away from the center of the phase dia- 
gram toward the B side. However, even when t2(X) is assumed 
to have a 4th power dependence onX (Case 5 ) , X  c = 89 at.%. 
Case 6 corresponds to an unusual situation whereby A favor- 
ably dissolves B (negative heat of formation), but B rejects A 
(positive heat of formation). This is of course an unlikely situ- 
ation because the interaction between Aand B should not be in 
general so drastically affected by the environment even when 
the next-nearest-neighbor, or higher-order effects, are taken 
into account. (Note: We are considering a liquid phase situ- 
ation. If water does not dissolve oil, oil does not dissolve water 
either.) Based mainly on these propositions, a liquid misci- 
bility gap having its critical composition outside the range 
of 20 to 80 at.% is very unlikely. If a liquid miscibility gap 
did actually occur near a pure element, this would signal a 
most unusual (and unique) situation, and it would be most 
challenging to determine some existing special reason for it 
(see [93Okal]). 

Note: (1) If the liquid phase develops associations (existence 
of molecules in the liquid state), the molecules behave like at- 
oms. The "center range" for the purpose of considering the 

phase diagram situations should then be taken as falling be- 
tween the molecular composition and the pure element. The 
Hg-S system provides an example of this behavior. (2) Amis- 
cibility gap in the solid phase can of course occur near a pure 
element side (e.g., ~ and (Cd) in the Ag-Cd phase diagram) be- 
cause there may be strong crystal lattice effects. 

8.  S y n t e c t i c  R e a c t i o n  ( P o i n t  g i n  F ig .  2) 

In [90Mas], syntectic reactions (L 1 + L 2 --~ s) are found in 
only relatively few binary systems, as listed in Table 6. Figure 
13 shows a typical schematic Gibbs energy functions situation 
for the liquid and solid phases at the syntectic temperature; im- 
miscibility in the liquid phase and compound formation in a 
solid phase occur at the same time. This is an unlikely situation 
unless the nature of the interactions between the elements con- 
stituting the binary system is very different in the liquid when 
compared with the solid state (elements A and B show affinity 
in the solid state, but they repel each other in the liquid state).* 
Thus, for a syntectic reaction to occur, involvement of two dif- 
ferent types of interaction appears to be necessary. Not surpris- 
ingly, most systems in Table 6 involve a strongly ionic element 
(alkali, halogen, chalcogen). Moreover, the critical composi- 
tion of the miscibility gap and the composition at which corn- 

*Similarly, associations in the liquid state are found only at composi- 
tions at which a compound exists below. Note that the opposite con- 
clusion (when there is a solid compound, there is a liquid association) 
is not true. 
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pound formation occurs are usually substantially different, as 
for example, in the Hg-C1 system (Fig. 14). Apparently, the 
tendency of separation into two liquids at one composition is 
overcome by an even stronger (and opposite) interaction for 
compound formation at another composition. 

It follows from the above observation that the synteaic reaction in 
the Mn-Y system (Fig. 15) would have to be an exceptional situ- 
ation of a simultaneous occurrence of two coincidences: the coin- 
cidence corresponding to a critical temperature of a miscibility 
gap and the synteetic temperature, and the coincidence of the 
composition of a critical point and the proposed stoichiometry 
of a compound. Accordingly, there is a strong possibility that 
this syntectic reaction is not real. If Mn-Y is excluded, Bi-U 
and Pb-U are the only systems in Table 6 not involving 
strongly ionic elements. This may be an interesting situ- 
ation whereby the affinities between Bi and U or Pb and U 
are very high in the solid state, but very low in the liquid 
state. 

Following the same reasoning, a situation shown in the U- 
Ni system (Fig. 16) is also rather unlikely because the 
liquidus just above the peritectic decomposition of U7Ni 9 
(and also UsNiT) is concave. The form of the liquidus sug- 
gests that the enthalpy of mixing in the liquid phase is posi- 
tive, but not high enough to develop a miscibility gap. In 
contradiction to this situation, the formation of compounds at 
lower temperatures implies a negative enthalpy of mixing be- 
tween U and Ni in the same composition range. Other systems 
with similar features as U-Ni also should be considered in this 
light. 

C AB D 
/ 

G(C)[ G(A) G(B) G(O) 

II o, 

R e f e r e n  b c ~ , ~  

X~ 

Fig. 17 Instability of two compounds with similar compositions. For 
both compounds A and B to remain stable in a certain temperature 
range, G(B) is allowed to vary with temperature only within a narrow 
range from b 1 to b 2 in comparison to the wider ranges from c I to  C 2 and 
d 1 to d 2 for G(C) and G(D). Hence, the temperature dependence of 
G(B ) must be very similar to that of G(A) when the compositions of A 
and B are ~milar. 
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9. Two C o m p o u n d s  wi th  Very Similar 
C o m p o s i t i o n s  Are Unl ike ly  to  Coexis t  
in a Wide �9 Tempera ture  Range  
(Situation h in Fig. 2) 

It is very unlikely that two compounds with very similar com- 
positions should be able to coexist over a wide temperature 
range, as shown in a schematic phase diagram in Fig. 2. The re- 
lationship of Gibbs energies of  compounds A and B existing 
near one another is shown in Fig. 17. In order for A and B to re- 

a+O C 

L 

Fig. 19 Four-phase equilibrium due to coincidence. 

main stable in a wide temperature range, the Gibbs energies, G, 
of both compounds must vary with temperature in almost ex- 
actly the same way because even a very small difference in G 
makes one of the compounds unstable (Fig. 17). This is espe- 
cially true when the (stable or metastable) melting tempera- 
tures of the two compounds are not similar. The compound 
with a lower melting temperature will be in general more sta- 
ble at lower temperatures (this is because, in such a situation, 
the temperature dependencies of G for the two compounds are 
dissimilar). Accordingly, the high-melting compound will be- 
come unstable with respect to its neighbor on cooling sooner or 
later, and only one compound will remain stable at low tem- 
peratures. 

I0 .  Too Much Co inc idence  (Point i in 
Fig. 2) 

As in any other phenomena or systems, unusual coincidence 
can happen in phase diagrams, causing an apparent violation 
of phase rules. For example, in the Au-Sb phase diagram (Fig. 
18), the composition of the (Sb) liquidus at the L + (Sb) ---, 
AuSb 2 peritectic reaction temperature (it could also be eutec- 
tic) is shown to be very close to the composition of AuSb 2. 
Here, the apparent difficulty regarding the reaction type at the 
melting point of AuSb 2 could be resolved by careful detailed 
experimentation. However, if a proposed phase diagram re- 
quires such two or more coincidences, a reexamination of a 
specific region may uncover some errors. For example, the ap- 
parent four-phase equilibrium shown by point i in Fig. 2 is pos- 
sible only if the two independent reactions occur at the same 
temperature and composition. If the coincidence is in the"tem- 
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perature" only, the four-phase equilibrium is actually as shown 
in Fig. 19. Since even this type of coincidence is rare, the type 
i situation is either a matter of graphic scale, or is likely to be in 
error. 

1 I.  An E x c e s s i v e  S lope  Change 
A s s o c i a t e d  wi th  a Pol.ym. orphlc  
T rans format ion  (Point j in Fig .  2) 

As already shown in section 4, a substantial change in the 
Gibbs energy function of a compound does not seem to cause 
much change in the slope of the liquid (or solid) phase bound- 
ary in equilibrium with the compound. Similarly, a phase 
diagram with a marked change in the slope associated with 
a polymorphic (or allotropic in the case of a terminal phase) 
transformation calls for careful handling because the change in 
the temperature coefficient of the Gibbs energy function ac- 
companying a polymorphic transformation would be only of 
the order of ~1 J/tool �9 K. The slope change of the liquidii of 1~ 
and ctSnSr in the Sn-Sr system (Fig. 20) is a case in point. 

12. Should There Be No Solid Solubil ity 
Range at 0 K? (Point k in Fig. 2) 

Some phase diagrams show all the intermediate phases present 
within the diagram as having vanishing solubility at 0 K (for 
example, Ta-H in Fig. 21). The reasoning for this is that, ac- 
cording to the third law of thermodynamics, the entropy term 
is zero at 0 K and only perfectly ordered states are permissible. 
However, a perfectly ordered state with a specific composition 

is not the only permissible state for alloy systems. As long as 
the enthalpy of mixing of a phase is negative in at least some 
composition range, the Gibbs energy of mixing always be- 
comes negative in the same range as the temperature ap- 
proaches 0 K because the contribution to the Gibbs energy 
from the entropy term also approaches 0. Hence, a continuous 
phase field can exist to 0 K. 

The unlikely occurrence of a zero-width phase field at 0 K may 
be considered with reference to Fig. 21. The composition of the 
Ta-rich boundary of the r I phase is determined by the Gibbs en- 
ergy relationship between the r ! and [3 phases. The composition 
of the H-rich boundary of~] is determined by the Gibbs energy 
relationship between the rl and ~ phases. There is no reason 
why the boundaries should intersect at 0 K. The same applies 
of course to the other phases in Fig. 21. Hence an automatic at- 
tempt to draw boundaries of phases toward convergence of 
zero-width at 0 K (as shown by point k in Fig. 2) does not seem 
to be justified. 

13. The Re la t ionsh ip  B e t w e e n  Two 
Boundaries  o f  a Two-Phase  Field 
When Extrapolated  Toward Higher 
Temperatures  (Sxtuatlon 1 in Fig. 2) 

When the high-temperature ends of two boundaries delineat- 
ing a two-phase field in a given phase diagram are terminated 
by an invariant reaction or experimental data to guide the form 
of the boundaries are scarce, extrapolation of these boundaries 
to higher temperatures may give a clue as to how they should 
be drawn to satisfy thermodynamic conditions. 
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Fig. 22 Trends of two boundaries of a two-phase field at high temperatures. 

Figure 22 shows possible relationships between two such 
boundaries of a two-phase field (in absence of  other phases). 
Obviously, Fig. 22a, 22b, and 22c are the most common situ- 
ations and are not considered here. When at least one of the two 
phases involved is a liquid, one of these situations is inevitable 
because a solid must eventually melt. Figures 22d and 22e are 
possible when the two phases are solids. In both situations, the 

two boundaries may remain separated to infinitely high tem- 
peratures. This is possible when one type of crystal structure is 
always more stable when rich in A and the other type when rich 
in B. Figure 23 shows a possible schematic relationship of the 
Gibbs energies of the two phases. A question may be asked: 
Which of the two situations, Fig. 22d or 22e, is more plausible? 
When the temperature is increased, the solid solution of any 
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m 

X ~  

Fig. 23 G~bs energy functions of two completely misca'ble phases. 

Table 7 Thermodynamic Parameters of a Hypothetical 
Ag-Au System 
Lattice stability parameter and Gibbs energy of formation, J/mol 

GO(Ag, L) = 0 
G~(Au, L) = 0 
G,U(Ag,fec) = -11 300 + 9.149T 
G~(Au, fcc) = -13  000 + 9.719T 
GO(AgAu) = -10  000 + 1.5T 

Excess Gibbs energy of mixing, J /mol  

AmixGeX(L) = 0 
AmixGex(fcc) = 0 

crystal structure will behave more like an ideal mixture. The 
contribution of ideal mixing to the Gibbs energy is of the form 
RT[XlnX+ (1-X)ln(1-X)] .  This term decreases the Gibbs 
energy at a rate of-5.76T J/tool atX = 0.5. On the other hand, 
the entropy of a possible transformation between two solid 
phases with different crystal structures is generally much 
smaller than 5.76 J/tool �9 K. Accordingly, if the magnitude of 
the Gibbs energy were drawn with the same scale on a graph, 
the lattice stability terms (a and b in Fig. 23) will tend to be- 
come smaller as the temperature increases, i.e., the two Gibbs 
energy curves will approach one another. Accordingly, the two 
boundaries of a two-phase field should tend to converge. 
Hence, Fig. 22d is more likely to occur than Fig. 22e. When the 
crystal structures of two phases are the same, the boundary 
must converge smoothly as shown in Fig. 22c. Therefore, Fig. 
22fwith an abrupt change of slope is unlikely to occur. Figures 
22g and 22h are obviously wrong. It follows that ira two-phase 
region is drawn as if it were widening at higher temperatures, 
or the two boundaries appear to cross one another when ex- 
tended, or if the two boundaries appear to cross the pure ele- 

ment line at different temperatures, further experimental work 
may be needed to check the projected trend. 

As is well known, the bcc phase always "wins" at high tempera- 
tures due to the large vibrational entropy contribution in the-TS 
term (Zener-effect [61Mas, 66Zen]). As a result, the phase rela- 
tionships between a bcc phase and phases with other structures 
tend to be of the Fig. 22a-type at the high-temperature end of the 
two-phase field (when the liquid phase is not considered). 

1 4 .  C o n g r t 1 _ e n t  T r a n s f o n n a . t i o n  o f  a . 
C o m p o u n d  o n  C o o l i n g  ( P o i n t  m m F i g .  2) 

If metastable melting is included (i.e., no other solid phases are 
considered), any compound phase eventually melts con- 
gruently. Similarly, any compound phase will congruently 
transform to a continuous solid solution phase on heating if a 
transformation ever occurs (it may not occur, as shown in Fig. 
22d). On the other hand, no compound has been reported to 
transform congruently on cooling. (Even if extended solid so- 
lution phases are also considered, a congruent transformation 
on cooling is not common. A rare exception is the transforma- 
tion of the (,/Fe) in the Cr-Fe system into (ctFe) on cooling.) 
However, it is very easy to construct a hypothetical phase 
diagram with a compound transforming to a continuous 
solid solution phase on cooling. For example, Fig. 24 shows 
a hypothetical Ag-Au phase diagram with an equiatomic 
compound "AgAu," where, for simplicity, the liquid and solid 
phases are assumed to be ideal solutions. The relationship be- 
tween the liquidus and solidus as calculated for this situation is 
essentially identical to that of the published assessed phase 
diagram. Table 7 shows all thermodynamic parameters as- 
sumed in this calculation. According to the criterion in section 
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6, the magnitude of the Gibbs energy of AgAu is quite normal. 
Then, why don't we see the congruent transformation on cool- 

ing? The answer is in the entropy term. The entropy of an or- 
dered phase is smaller than that of a disordered phase making 
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the-TS term of the disordered phase overwhelm that of the or- 
dered phase at high temperatures. Therefore, the disordered 
phase is always more stable at higher temperatures. 

In the present model, the structure of"AgAu" was not consid- 
ered. The transformation as shown in Fig. 24 could occur when 
the compound has a simple structure while that of the solid so- 
lution phase is relatively complex, e.g., in organic systems. 
However, it may be safe to conclude that a congruent transfor- 
mation of a compound phase to a solid solution will not occur 
on cooling, especially when the structure of the solid solution 
phase is relatively simple, as in metallic systems. 

The above conclusion may be restated by saying that a two- 
phase field between a compound phase and a solid solution 
phase must become, as a rule, narrower at higher temperatures. 
Otherwise, an unlikely transformation becomes inevitable. 
This obvious situation is sometimes forgotten when the bot- 
tom part of a two-phase field is masked by other reactions. The 
E/E + PuA12 boundary in the Pu-A1 phase diagram (Fig. 25) 
provides a typical example of this unlikely situation. 

15. An Inverse  Misc ibi l i ty  Gap (Point 
n in Fig. 2) 

A thermodynamic model that might result in the development 
of an inverse miscibility gap with a minimum-temperature 
critical point (as shown by point n in Fig. 2) is certainly con- 
ceivable. However, the existence of such a miscibility gap in a 
real system would be certainly unusual* because any solution 
in nature is expected to behave more ideally as the temperature 

is increased. Hence, a thermodynamic model demanding an in- 
verse miscibility gap may be considered to be unrealistic by its 
own nature, at least in simple metallic systems. An inverse 
miscibility gap will occur when the contribution from the ex- 
cess entropy of mixing term overcomes the contribution from 
the ideal entropy of mixing term (maximum-5.763 J/tool �9 K); 
i.e., an inverse miscibility gap develops if the magnitude of the 
excess entropy is greater than ~23X(1 - 2 0  J/mol. A situation 
corresponding to this large value of 23 (=5.763 x 4) may al- 
ready be too unnatural. A factor of I0 was assumed to be the 
limit in section 5. 

A thermodynamic model proposed by [92Sto] for the Pd-Zr 
system may serve as a typical example of the present consid- 
erations. In order to reproduce the Pd-Zr phase diagram in 
[90Mas] (Fig. 26), [92Sto] obtained an expression for the ex- 
cess Gibbs energy of mixing of the liquid phase in the form: 

AmixaeX(L)  = X(1-20[ -476  537 + 241 068X + 292 144X 2 
+ (123.89 + 16.22X- 310.32X2)T] J/tool 

where X is the atomic fraction of Zr. The entropy term here is 
positive and large on the Pd-rich side, and an inverse miscibil- 
ity gap (overlooked by [92Sto]) does develop with the critical 
point atX = 0.387 and 2428 ~ Apparently, the model was in- 
appropriate. (As a matter of fact, the (Pd) liquidus and solidus 
in the original phase diagram [90Mas] used for the modeling is 

*Although no inverse miscibility gap is found in [90Mas], such gaps 
may occur in organic liquids (e.g., water-triethyl amine system) or un- 
der high pressures. 
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itself rather unlikely. The problem to be discussed in [93Oka2] 
is shown with dotted lines.) 

16.  A Narrow G a s + L i q u i d  T w o - P h a s e  
F i e l d  is  U n l i k e l y  (Po in t  o in  Fig .  2) 

The initial opening angle* of a G + L two-phase field as deter- 
mined experimentally, or if calculated by using a thermody- 
namic modal, is generally wide in comparison with a L + s 
opening in a similar situation. This is because the enthalpy of 
vaporization of any element is several times larger than the en- 
thalpy of fusion of the same element. The opening angle can be 
small only when both boundaries are nearly horizontal, as ex- 
pected from the well known van't Hoff relationships [91Oka2]. 
However, it is very unlikely that a narrow two-phase field G + 
L extends substantially away from a pure component line in a bi- 
nary phase diagram, as will be considered below. This may be a 
helpful hint in drawing a schematic phase diagram. 

Horizontal boundaries can occur only when the Gibbs energy 
of the liquid phase is very similar to that of the gas phase. In an 
ordinary situation, the gas phase can be regarded as an ideal 
mixture. At the boiling point of element A in an A-B system, 
the Gibbs energies of the gas and the liquid phase are 

G(G) = RT[XlogX + (1 - J01og(1 - X)] + aX 

G(L) = RT[XlogX + (1 - X)log(1 -X)]  + f/X(1 - J 0  

where standard states are the liquid dements, and a = 
S(B)boilATboil (constan 0. It follows that the interaction pa- 
rameter t) of the liquid phase must be equal to a/(1 -X) ,  i.e., 
the magnitude of fl  must be very close to a atX = 0. In addition 
to this coincidence, the composition dependence of fl  must be of 
the (1 - X )  -1 form (approximately 1 + X form when X << 1), 
whereas a typical Q shows a 1 + kX form composition depend- 
ence (naturally k ,~ 1). 

In summary, a narrow G + L two-phase field is much less 
likely to occur than a narrow L + s two-phase field because the 
enthalpy of vaporization is typically large and the behavior of 
the gas phase is usually nearly ideal. 

17.  C o n c l u s i o n s  

The present work was undertaken to provide a few more guide- 
lines and examples for examining the validity of various phase 
boundaries in binary phase diagrams. The results of this work, 
together with those of our earlier papers [91Okal, 91Oka2], 
have been applied in [93Oka2] as a basis for commenting on 
the reported features of the over 2000 phase diagram graphics 
published in [90Mas]. 

Admittedly, it is as well to keep in mind that the various guide- 
lines discussed above are not rigid rules. Situations undoubt- 

*The van't Hoff relationship is related to the horizontal width of the 
two-phase field (formed by the initial slopes) rather than the opening 
angle between the two phase boundaries. Because the hormontal 
width varies with temperature, the openin$ angle or slope difference 
is a more convenient measure for examining the validity of a phase 
diagram. 

edly exist where some of the above guidelines do not apply. On 
the other hand, it is encouraging to see how many of the old 
phase diagram~ that were not in compliance with the present 
guidelines are being constantly and consistently revised to 
more reasonable forms. The present authors believe that this 
trend will continue in the future and trust that their present ef- 
fort will contribute to this trend. 
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