Skip to main content
Log in

Gas trapping and release in polycrystalline nickel preimplanted with helium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen profiling using nuclear reaction analysis (NRA) and a thermal desorption technique coupled with scanning electron microscopy (SEM) observations have been used to study the gas trapping and release in high-purity polycrystalline nickel. The effect of the preimplanted helium dose on both deuterium and helium desorption was investigated over a wide range of helium doses (1 x 1021 to 4 x 1021 ions/m2). A computer code, DIFFER, was used to simulate the deuterium flux curves, and the trapping characteristics were evaluated. The simulation results clearly show that a wide distribution of trapping energies exists. This can be explained using a stress-field trapping model. The effective binding energy, E effh , was estimated to be in the range of 0.4 to 0.5 eV. For samples which were irradiated with helium ions to high doses, a massive helium release was also observed. Thermal charging with deuterium was found to reduce the helium self-trapping energy as was expressed by lower temperature helium release. For the high dose samples, deuterium or hydrogen gas charging and thermal ramping were also found to induce blisters growth and surface exfoliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Asaoka, G. Lapasett, M. Aocouturier, and P. Lacombe:Corrosion, 1978, vol. 34, pp. 39–47.

    CAS  Google Scholar 

  2. M. Aucouturier, G. Lapasett, and T. Asaoka:Metallography, 1978, vol. 11, pp. 5–21.

    Article  CAS  Google Scholar 

  3. G.M. Pressouyre and I.M. Bernstein:Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  Google Scholar 

  4. S.M. Myers, S.T. Picraux, and R.E. Stoltz:J. Appl. Phys., 1979, vol. 50, pp. 5710–19.

    Article  CAS  Google Scholar 

  5. S.M. Myers and W.R. Wampler:J. Nucl. Mater., 1982, vols. 111-112, pp. 579–83.

    Article  CAS  Google Scholar 

  6. S.M. Myers, P.M. Follstaedt, F. Besenbacher, and J. Bottinger:J. Appl. Phys., 1982, vol. 53, pp. 8734–44.

    Article  CAS  Google Scholar 

  7. K.L. Wilson, A.E. Pontau, L.G. Haggmark, M.I. Baskes, J. Bohdansky, and J. Roth:J. Nucl. Mater., 1981, vols. 103- 104, pp. 493–97.

    Article  Google Scholar 

  8. P.B. Johnson and D.J. Mazey:Rad. Effects, 1980, vol. 5, pp. 195–201.

    Google Scholar 

  9. W. Jager and J. Roth:J. Nucl. Mater., 1980, vols. 93-94, pp. 746–66.

    Article  Google Scholar 

  10. W. Jager, R. Manzke, H. Trinkaus, R. Zeller, J. Fink, and G. Crecelius:Rad. Effects, 1983, vol. 78, pp. 315–25.

    Google Scholar 

  11. S.E. Donnelly, A.A. Lucas, J.P. Vigneron, and J.C. Rife:Rad. Effects, 1983, vol. 78, pp. 337–47.

    CAS  Google Scholar 

  12. D.A. Young, A.K. McMahan, and M. Ross:Phys. Rev., 1981, vol. B24, pp. 5119–27.

    Google Scholar 

  13. W.R. Wampler and S.M. Myers:Nucl. Inst. Meth. Phys. Res., 1985, vols. B7-B8, pp. 76–80.

    Google Scholar 

  14. M. Ogawa, K. Sameyoshi, Y. Takagi, A. Shiroto, and Y. Suzawa:J. Nucl. Mater., 1987, vol. 149, pp. 247–59.

    Article  CAS  Google Scholar 

  15. M. Ogawa, K. Sumeyoshi, and T. Harada :Nucl. inst. Meth., vol. B33, pp. 768–71.

  16. J. Ehrenberg, E.M.U. Scherzer, and R. Behrisch:Rod. Effects, 1983, vol. 78, pp. 405–16.

    CAS  Google Scholar 

  17. V.F. Zelenskij, I.M. Neklyudov, V.V. Ruzhitskij, V.F. Rybalko, V.I. Bendikov, and S.M. Khazan:J. Nucl. Mater., 1987, vol. 151, pp. 22–33.

    Article  Google Scholar 

  18. S.Q. Shi, E. Abramov, D.A. Thompson, and W.W. Smeltzer:J. Nucl. Mater., 1991, vol. 182, pp. 128–34.

    Article  CAS  Google Scholar 

  19. E. Abramov, S.Q. Shi, D.A. Thompson, and W.W. Smeltzer:J. Nucl. Mater., 1991, vol. 186, pp. 61–67.

    Article  CAS  Google Scholar 

  20. G.D. Lampert:Surf. Coat., 1988, vol. 34, pp. 185–207.

    Article  Google Scholar 

  21. J.F. Zeigler, J.P. Biersack, and U. Littmark:The Stopping and Range of Ions in Solids, Pergamon Press, New York, NY, 1985.

    Google Scholar 

  22. W.A. Lanford, H.P. Trautvetter, J.F. Ziegler, and J. Keller:Appl. Phys. Lett., 1976, vol. 28, pp. 566–68.

    Article  CAS  Google Scholar 

  23. W.A. Lanford:Nucl. Instr. Meth., 1978, vol. 149, pp. 1–8.

    Article  CAS  Google Scholar 

  24. A. Stem, D. Khatamian, T. Laursen, G.C. Weatherly, and J.M. Perz:J. Nucl. Mater., 1987, vol. 144, pp. 35–42.

    Article  Google Scholar 

  25. E. Abramov and D. Eliezer:J. Mater. Sci. Lett., 1988, vol. 7, pp. 108–12.

    Article  CAS  Google Scholar 

  26. E. Abramov and D. Eliezer:Israel J. Technol., 1988, vol. 24, pp. 197–209.

    CAS  Google Scholar 

  27. S.M. Myers:Proc. Conf. on Environmental Degradation of Engineering Materials, Blacksburg, VA, 1981, pp. 403–12.

  28. J.K. Norskov and F. Besenbacher:J. Less-Common Met., 1987, vol. 130, pp. 475–90.

    Article  Google Scholar 

  29. E. Abramov and D. Eliezer:Proc. Conf. on Hydrogen Effects on Materials Behavior, TMS Publications, Jackson Hole, WY, 1990, pp. 169–77.

    Google Scholar 

  30. E. Abramov and D. Eliezer:Scripta Metall., 1990, vol. 24, pp. 1387–92.

    Article  CAS  Google Scholar 

  31. D.L. Cumming, R.L. Reuben, and D.A. Blackburn:Metall. Trans. A, 1984, vol. 15A, pp. 639–48.

    Google Scholar 

  32. G. Farrell and G. Carter:Vacuum, 1967, vol. 17, pp. 15–19.

    Article  CAS  Google Scholar 

  33. P.A. Redhead:Vacuum, 1962, vol. 12, pp. 203–11.

    Article  CAS  Google Scholar 

  34. K.L. Wilson and M.I. Baskes:J. Nucl. Mater., 1978, vols. 76I-77, pp. 291–97.

    Article  Google Scholar 

  35. G. Carter:Vacuum, 1962, vol. 12, pp. 245–54.

    Article  CAS  Google Scholar 

  36. M. lino:Metall. Trans. A, 1987, vol. 18A, pp. 1559–68.

    Google Scholar 

  37. M.I. Baskes:DIFFUSE ’83, SNL Report No. SAND 83-8231, 1983.

  38. A. McNabb and P.K. Foster:Trans. TMS-AIME, 1963, vol. 227, pp. 618–27.

    CAS  Google Scholar 

  39. R.G. Macaulay-Newcombe, M.P. Riehm, D.A. Thompson, W.W. Smeltzer and E. Abramov:Rad. Effects Defects Solids, 1991, vol. 117, pp. 285–97.

    Google Scholar 

  40. R.A. Oriani:Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

  41. P. Ehrhart, A. Gaber, and W. Jager:Acta Metall., 1987, vol. 35, pp. 1943–50.

    Article  CAS  Google Scholar 

  42. V.N. Chernikov, H. Trinkaus, P. Jung, and H. Ullmaier:J. Nucl. Mater., 1990, vol. 170, pp. 31–38.

    Article  CAS  Google Scholar 

  43. P. Wang, Y. Li, J. Liu, G. Zhang, T. Ma, P. Zhu, C. Qui, and T. Xu:J. Nucl. Mater., 1989, vol. 169, pp. 167–76.

    Article  CAS  Google Scholar 

  44. J.H. Evans:J. Nucl. Mater., 1977, vol. 68, pp. 129–40.

    Article  CAS  Google Scholar 

  45. A.R. Troiano:Trans. ASM, 1960, vol. 52, pp. 54–80.

    Google Scholar 

  46. I.M. Robertson and H.K. Birnbaum:Acta Metall., 1986, vol. 34, pp. 353–66.

    Article  CAS  Google Scholar 

  47. H.K. Birnbaum:Proc. Conf. on Hydrogen Effects on Materials Behavior, TMS Publications, Jackson Hole, WY, 1990, pp. 639- 60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramov, E., Eliezer, D. Gas trapping and release in polycrystalline nickel preimplanted with helium. Metall Mater Trans A 25, 949–959 (1994). https://doi.org/10.1007/BF02652270

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652270

Keywords

Navigation