creasing as the temperature increases. However, the solubility of Sb must decrease at higher temperature [910ka], because the phase in equilibrium with liquid B is not liquid but gas. A modified phase diagram is shown in Fig. 1. The boiling point of B is 4002 °C [Massalski2].

Cited References

65Wal: F. Wald and R.W. Stormont, *J. Less-Common Met.*, 9(6), 423-433 (1965).

910ka: H. Okamoto and T.B. Massalski, *J. Phase Equilibria*, 12(2), 148-168(1991).

Hf-Ni (Hafnium-Nickel)

H. Okamoto

[90Zen] "updated" the Ni-Hf phase diagram proposed by [83Nas] by optimization of the thermodynamic parameters of the system using the experimental data of [67Sve] and lattice stability parameters of [75Kau]. However, the calculated diagram of [90Zen] is not acceptable. For example, the Gibbs energies of formation of NiHf₂ and NiHf are given to be $G(NiHf_2) = -111245.8 + 61.665T$ and G(NiHf) = -289.5 - 15.317T J/mol, respectively. The Gibbs energy of NiHf₂ becomes too low at low temperatures and NiHf (actually all the other compounds of the Ni-Hf system) becomes unstable (see [91Oka]). [90Zen] also obtained extremely unrealistic temperature dependence in the interaction parameters of the liquid and (Ni) phases. Unfortunately, the initial slope of the (β Hf) liquidus in [83Nas] is not conformable to the

van't Hoff relationship (too steep, see [910ka]). Therefore, the diagram of [83Nas] is also subject to further modification. The crystal structure data [83Nas] are revised in Table 1.

Cited References

67Sve: V.N. Svechnikov, A.K. Shurin, and G.P. Dmitriyeva, Russ. Metall., (6), 95-96 (1967).

75Kau: L. Kaufman and H. Nesor, Can. Metall. Q., 14, 221-232 (1975).
 83Nas: P. Nash and A. Nash, Bull. Alloy Phase Diagrams., 4(3), 250-253.

90Zen: K.J. Zeng and Z.P. Jin, J. Less-Common Met., 166, 21-27 (1990).
91Oka: H. Okamoto and T.B. Massalski, J. Phase Equilibria, 11(2), 148-168 (1991).

Table 1 Ni-Hf Crystal Structure Data

Phase	Composition, at.% Hf	Pearson symbol	Space group	Strukturbericht designation	Prototype
(Ni)	0 to 1	cF4	Fm3m	A1	Cu
Ni ₅ Hf	16.7	cF24	$F\overline{4}3m$	C15 _b	AuBe ₅
Ni ₇ Hf ₂	22.2	m**		•••	•••
Ni ₃ Hf	25	<i>hP</i> 40	P63/mmc	•••	•••
ıNi ₃ Hf	25	hR12	R3m	•••	
Ni ₂₁ Hf ₆	27.6	aP29	$P\overline{1}$	•••	
vi ₇ Hf ₃	30	aP20	$P\overline{1}$		
Ni ₁₀ Hf ₇	41.2	oC68	C2ca	•••	
Ni ₁₁ Hf ₉	45	₫ *	I4/m	•••	•••
NiĤf	50	oC8	Cmcm	B_f	CrB
NiHf ₂	66.7	<i>t</i> J12	I4/mcm	<i>C</i> 16	Al ₂ Cu
βHf)	98 to 100	c/2	Im3m	A2	W
(αHf)	99 to 100	hP2	P63/mmc	A3	Mg

Lu-Sb (Lutetium-Antimony)

H. Okamoto

[90Abd] determined the Lu-Sb phase diagram by means of thermal and metallographic analyses. LuSb is bimorphic with a transformation temperature at 1870 °C [90Abd]. The melting point of LuSb was reported earlier by [74Sam] (same author) to be 2200 °C.

Crystal structure and lattice parameter data are given in Tables 1 and 2, respectively. Lu₅Sb₃ is Mn₅Si₃ type [90Abd]. The NaCl-type crystal structure of LuSb [63Prz] is most likely be for the low-temperature modification, because [90Abd] measured microhardness of NaCl-type crystal. [71Joh] determined the