Skip to main content
Log in

Turbulence-radiation interaction in confined combustion systems

  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

A new approach for modeling turbulence-radiation interaction is proposed. The formulation is based upon equations for statistical moments. Additional to the balance equations for the velocity and mixture fraction, equations for the mean, variance, covariance of heat release rate, and mixture fraction is solved. The coupling with the chemistry model is formulated by means of a two dimensional pdf of mixture fraction and heat release rate. The proposed approach is open for improvement by more sophisticated submodels. A natural gas fired combustion chamber is designed and constructed, and the temperature field measured by CARS spectroscopy. The main features of the modified combustion system are discussed. The comparison of experimental temperatures with the numerical simulation of the combustion system shows the good quality of our approach. The modeling of the two dimensional pdf is found to be most suitable for the hot region near the burner, where most radiation effects take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A x, Ar :

geometric const, of the flux model

D :

diffusion coefficient

F x, Fr :

radiation fluxes

f :

mixture fraction

g :

heat release rate

h :

enthalpy

K a :

absorption coefficient

k :

turbulent kinetic energy

Pr :

Prandltl number

t :

time

u i :

velocity vector

w :

h tmin(f)−hadia(f)

x i :

space vector

y j :

mass fraction of componentj

ε:

dissipation rate

v :

viscosity

ρ:

density

σ:

Stefan Boltzmann constant

∼:

density aver. mean quantity

″:

density aver. fluct. quantity

−:

time aver. mean quantity

adia :

adiabatic

i, j :

vector components

g :

forg equation

f :

forf equation

gf :

for\(\widetilde{g''f''}\) equation

r :

radial

t :

turbulent

tmin :

with minimum system temperature

x :

axial

References

  1. Peters, N.: Comb. Sci. Tech., Vol. 19 (1978).

  2. Maidhof, S. andJanicka, J.: AGARD Conference Proceedings 536, Neuilly sur Seine, 1993, pp. 10.1–10.10.

  3. Siddal, R.G. andSeluck, C.L.: J. Inst. Fuel 49 (1976) pp. 10–20, 1976.

    Google Scholar 

  4. Lockwood, F.C. andShah, N.B.: Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1981, pp. 1404–1414.

  5. Hottel, H.C. andSarofim, A.F.: In: Radiative Transfer. New York: McGraw-Hill, 1967.

    Google Scholar 

  6. Siegel, R. andHowell, J.R.: In: Thermal Radiation Heat Transfer, New York: Hemisphere, 1981.

    Google Scholar 

  7. Zinser, W.: Zur Entwicklung mathematische Flammenmodelle für die Verfeuerung technischer Brennstoffe. VDI-Fortschrittsberichte, Reihe 6, Nr.171 (1985).

  8. Dupont, V.; Gray W.A.; Pourkashanian, M. andWilliams, A: Proc. of the Eurotherm Seminar, Lyon, France, February 1992.

  9. Kosters, C.L.; Hoogendoorn, C.J. undPeeters, T.W.J.: VDI-Berichte Nr. 922 (1991).

  10. Bhattarcharjee, S. andGrosshandler, W.L.: Combustion on Flame Vol. 77 (1989) pp. 347–357.

    Article  Google Scholar 

  11. Cox, G.: Combust. Sci. and Tech. Vol. 17 (1977) pp. 75–78.

    Google Scholar 

  12. Nelson, D.A.: J. of Heat Transfer Vol. 111 (1989) pp. 131–134.

    Google Scholar 

  13. Kritzstein, F. andSoufiani, A.: Int. J. Heat Mass Transfer Vol. 36 (1993) No. 7, pp. 1749–1762.

    Article  Google Scholar 

  14. Gore, J.P.;Jeng, S.-M. andFeath, G.M.: J. of Heat Transfer, Vol. 109 (1987) pp. 165–171.

    Google Scholar 

  15. Kounalakis, M.E.;Gore, J.P. andFeath, G.M.: J. of Heat Transfer, Vol. 111 (1989), pp. 1022–1030.

    Google Scholar 

  16. Gore, J.P. andFaeth, G.M.: J. of Heat, Transfer, Vol. 110 (1988) pp. 173–181.

    Article  Google Scholar 

  17. Davis, L.C.;Marko, K.A. andRimai, L.: Appl. Opt. 20 (1981) 1685–1690.

    Article  Google Scholar 

  18. Neuber, A.A.; Hartick, J.W. andHassel, E.P.: Thirteenth International Conference on Raman Spectroscopy, Würzburg 1992, pp. 256–257.

  19. Prucker, S.; Meier, W. andStricker, W.: Submitted to Rev. Sci. Inst., August (1993).

  20. Lyons, V.J. andGracia-Salcedo, C.M.: Determination of Combustion Gas Temperatures by Infrared Radiometry in Sooting and Nonsooting Flames. NASA Technical Paper 2900, AVSCOM Technical Report 88-C-008.

  21. Lipp, F.;Hartick, J.;Hassel, E.P. andJanicka, J.: 24th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1992, pp. 287–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartick, J.W., Neuber, A.A., Früchtel, G. et al. Turbulence-radiation interaction in confined combustion systems. Forsch Ing-Wes 61, 67–74 (1995). https://doi.org/10.1007/BF02601416

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02601416

Keywords

Navigation