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Abstract. In this paper we get an effective algorithm to compute all odd orders and 
ramification indices of homeomorphisms acting on compact surfaces, orientable or 
not. 

Introduction 

A classical p rob lem is to  determine  the act ions of  finite groups  on compac t  
topologica l  surfaces. The groups  acting on surfaces of genus 2 (resp. genus 3) were 
ob ta ined  by W i m a n  [13], Maclach lan  1,101 and Scherk 1"12]. More  recently, 
Brough ton  1"2] classified all group act ions for genera 2 and  3. 

In this pape r  we get an effective a lgor i thm to compute  all odd  orders  and  
ramif icat ion indices of h o m e o m o r p h i s m s  act ing on compac t  surfaces, or ientable  
or  not.  The s tudy  of even orders  is more  involved;  it  uses the odd  case and  it will 
be t rea ted  by the au thors  in a for thcoming paper.  

W e  remark  that  our  p rob lem is equivalent  to determining all odd orders  
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N SC1-CT91-0716, J. M. Gamboa was partially supported by DGICYT PB 89-379 and Science Plan 
N SC1-CT91-0716, and J. Lafuente was partially supported by Science Plan N SC1-CT91-0716. 
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and ramification indices of automorphisms of compact Klein surfaces. The input 
of our algorithm is a triple (g, k, 00 where g, k are nonnegative integers and 0t = 1 
or 2. The output is the set O(g, k, ct) of all odd integers N > 1 such that an 
orientable, if ~ = 2, or nonorientable, if 0t = 1, compact Klein surface of genus g 
exists whose boundary has k connected components, admitting an automorphism 
of order N. Also, whenever N occurs in O(g, k, o O, and if f is an automorphism of 
order N acting on the surface S, the algorithm provides the topological type of 
the quotient S ' =  S / ( f )  and the ramification indices of the natural projection 
S ~ S'. Of  course the functorial correspondence between compact Klein surfaces 
and projective, smooth, real or complex algebraic curves allows us to compute, 
using the algorithm, the orders of birational automorphisms on such curves. 

The article is organized as follows: the theoretical background needed to 
understand the paper is contained in Section 1. The algorithm, in the case 
g + 0t > 3, is explained and described in Section 2, while the case g + 0t < 3 is 
treated in Section 3, where some alternative procedures are also briefly commented 
on. To finish, we give some concrete examples. 

1. Preliminaries 

For  fixed data g, k, 0t, let us denote by K(g, k, or) the family of orientable, if 0t = 2, 
or nonorientable, if ct = 1, compact Klein surfaces of genus g whose boundary has 
k connected components. Independently of the value of k, if g + ~ > 3, then every 
surface S E K(g,  k, ct) can be written, by the Riemann Uniformization Theorem (see 
[11]), as a quotient S = H / F  of the hyperbolic plane H = {z ~ C: Im(z) > 0} under 
the action of a non-Euclidean crystallographic (NEC in short) group F, i.e., F is 
a discrete subgroup of the extended Mrbius  transformations consisting of the 
transformations 

az + b a2 + b 
z - - * - -  ad - bc > O or z - - * - -  ad - bc < O, a, b, c, d real. 

cz + d '  c~ + d '  

The algebraic structure of the group F is completely determined by the 
following list of numbers, 

a(F) = (g; ~; [m t . . . . .  mr]; {(n,l . . . . .  n,~): i = 1 . . . . .  k}), 

which is called the signature of F. The meaning of g, ct, and k is evident, while the 
numbers m I . . . . .  m, (resp. n~l . . . . .  n~,) denote the ramification indices of  the 
canonical projection n: H ~ S on the interior points of S (resp. on the/ -boundary 
component  of S). Moreover, a finite group G acts as a group of automorphisms 
on S if and only if another NEC group A containing F as a normal subgroup 
exists such that G = A/F. This way, the classical Riemann-Hurwitz  formula can 
be read as: order of G =/~(F)/#(A), where # denotes the hyperbolic area of a 
fundamental region of the corresponding group. For these basic results the reader 
can see, e.g., [4]. 
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According to ct = 1 or 2 and k = 0 or  k # 0, results concerning the set O(g, k, ~t) 
appear  in [7, Theorem 4], [3, Theorem 3.7] and [4, Theorems 3.1.2 and 3.1.3]. 
We summarize  them as follows: 

Theorem 1.1. Let  g, k be nonnegative integers and let ~ = 1, 2, with g + ~ > 3. 
A positive odd integer N ~ O(g, k, ~) if  and only if  nonnegative integers r, g', k' with 
ct + g' >- 2, and posit ive divisors m 1 . . . . .  mr, l~ . . . .  , lk, , o f  N,  each mi > 2, ex is t  such 
that: 

(a) ctg + k - 2 = N(~t 9' + k' - 2 + ~ :  ~ (1 - 1/mi) ). 
(b) k = ~ k "  U/l j .  

(c) I f  ~t + g' = 2, then 1.c.m.{m 1 . . . . .  m, ,  11 . . . . .  Ik,} = N.  
(d) I f  e = 2, the l.c.m, o f  the set  {m 1 . . . . .  mr, ll . . . . .  Ik, } equals the l.c.m, o f  the set 

obtained after deleting one o f  these elements. 

Remarks .  1. The numbers  ml . . . . .  m, (resp. 11 . . . . .  lk, ) do not  necessarily need to 
be distinct. 

2. By definition, the 1.c.m. of  the empty  set equals 1. 
3. Assume that N e O(g, k, ~) satisfy the conditions above and the integers g', 

k', ml  . . . . .  mr, 11 . . . . .  lk, solve equations (a)-(d). Then  a surface S ~ K(g,  k, ~) and 
an au tomorph i sm f on S of order  N exist and, f rom the p roof  of Theorem 1.1, 
the quotient  surface 

S' = S / ( f )  ~ K(g', k', ~), 

the numbers  m l , . . . ,  m, are the ramification indices on the interior points of S' of 
the canonical  projection S ~ S', and the numbers  11 . . . . .  lk, are determined by the 
action of f on the set of boundary  components  of  S. In particular,  note that  S' is 
orientable if and only if the same holds for S. This follows from [8] and, among  
other  things, it makes  the s tudy of the odd  case simpler. 

2. Algorithm To Compute O(g, k, ct) in the Case g + u > 3. 

As was said before, the input of  our a lgori thm is the  triple (g, k, ~t). Theorem 1.1 
above shows that the existence of a surface S e K(g ,  k, ~) and an au tomorph i sm 
on S of odd  order N is equivalent to a formula with parameters  and existential 
quantifiers. On  the o ther  hand, it is known from [13], in the orientable case, and 
[3], in the nonorientable  one, that  if g + ct > 3, then the order  of all au tomor -  
phisms of surfaces wi thout  boundary  of genus g is bounded above  by 2(~g + ~ - 1). 
Also, if f is an au tomorph i sm of S e K(9,  k, ~) with k > 0, it extends to a surface 
without  boundary  S' ~ K(g, O, ~), see Theorem D in [6]. Hence  

" I f  g + ct > 3 and N e O(g, k, ct), then N _< 2(ag + �9 - 1)." 
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In particular the parameters m l , . . . ,  m,,/1, . . . ,  I k, of Theorem 1.1 are also bounded 
above, since they are divisors of N. Also, since each m i > 3 it follows from condition 
(a) in Theorem 1.1 that ~t 9' + k' + 2r/3 < ctg + k. Hence all "variables" r, 9', k', 
ml . . . .  , m,, 11 . . . . .  I k, are bounded above a priori, i.e., in terms of the input (9, k, ~). 

Thus, there is a finite set of candidates occurring in O(g, k, at) and to decide if 
a given odd number N < 2(~tg + a -- 1) occurs in O(g, k, ct) requires only a finite 
number of elementary arithmetic computations. However, we do not apply this 
naive method directly. Obviously, if N E 0(#, k, ~), then O(g, k, ~) contains all 
divisors of N. This leads us to determine, first, all prime powers occurring in 
O(g, k, ~). Afterwards, we check the products of prime powers that appear in the 
set O(g, k, ~). Consequently, the first step of our algorithm is: 

Step 1. Determine the set 

X = X(g, k, 0t) = {p~: p in an odd prime, e > 1, p~ < 2(~g + ct - 1)}. 

Why have we begun looking for the prime powers occurring in O(#, k, 0t)? The 
reason is that we obtained in [5] a much better upper bound for the prime powers 
in O(#, k, ~) than the general one 2(~g + �9 - 1) referred to before. To be precise 
let p be an odd prime, let e > 1 be an integer, and consider the "p-adic" expansion 
of k: 

e - 1  

k = a ~ p e +  ~ ajp j, O < a j < p  for 0 < j < e - 1 ,  a~>0 .  
j=O 

Then define p(p, e, k) = ~_~=o aj and it follows from Theorem 6 in [7], Theorems 
4.1 and 4.3 in [3] and Theorems 1 and 3 in [5] that if p~e O(g, k, ~), then 

ctg + k - 1 _/~(p, e, k, ct) if (~, k) # (2, O) 

and 

g >_/z(p, e, O, 2) if (ct, k) = (2, 0), 

where the function p(p, e, k, ct) is defined as 

e-1 - 1  
P~- I ! P _ ~  + ( 2 _  ~t)k 

#(p, e, k, ~) - )  1 + pe- l(p + 1 - ~) 
I 

I Pe(P(P' e, k) - or) + 1 

[,p~(p(p, e, k) - e) + e + 1 - ot 

if ( p , e , k , ~ ) = ( 3 , 1 ,  O, 2), 

if (p ,e ,k ,  ot)v~(3,1, O, 2), k < l ,  

if k = 2 ,  

if k > 2 ,  k~O,  l m o d p ,  

if k > 2 ,  k - e m o d p ,  e = 0 , 1 .  
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Note  that  in the quoted papers we obtained the so-called min imum algebraic genus 
of surfaces with k boundary  components  admitt ing an au tomorph i sm of order  p*, 
and we have just expressed the bound in terms of the da ta  (9, k, ct). Hence, the 
second step in our algori thm is: 

Step  2. Determine the set 

Y =  Y(g, k, a) = {Pe E X :  #(P, e, k, ct) <- {~g + k - 1  
if (ct, k) r (2, 0), 

if (a, k) = (2, 0). 

Now we must  check what  values in Y satisfy Theorem 1.1. Since the divisors 
of N = pe for prime p have the form ff with 0 < i < e we can reformulate Theorem 
1.1 in this case as follows: with the notat ion there, let 

x, = ~ { m ~  {m x . . . . .  mr}: m = pl}; yj = ~:{IE {l 1 . . . . .  lk'}: l = pJ} 

for 1 < i < e, 0 < j  < e. Then conditions (a) and (b) in Theorem 1.1 are nothing 
more  than: 

(a') a9 + k - 2 = pe(ct 9' + k' - 2) + ~7=,  x,(P ~ - P~-'). 
(b') k = ~Y=o YjP~-J, k' = ZY:o Yj. 

Let us define A = A(xa . . . . .  x~; Yo . . . . .  Ye) = {1 _< i _< e: xl + yi # 0} and 

Oax  A if A is not empty,  
M = otherwise. 

Then condit ion (c) is equivalent to: 

(c') I f ~ + g ' - - 2 ,  t h e n M = e .  

Moreover ,  to say that  the 1.c.m. of rn x . . . . .  mr, ll . . . . .  lk, does not change if we 
delete one of these numbers  is equivalent to saying that  the m a x i m u m  power  of 
p occurring in {m 1 . . . . .  m, ,  l l , . . . ,  Ik,}, if distinct from one, occurs at least twice. In 
other  words, (d) is equivalent to: 

(d') I f ~ = 2 a n d M ~ 0 ,  t h e n x u + y u  > 2 .  

This way, the third step in our  a lgori thm is: 

Step  3. For  every prime p ~ X(#, k, ~t), let e = e(p) be the positive integer such that 
pe ~ Y(9, k, ~) but  pe+ l q~ Y(O, k, ~). Afterwards we decide if nonnegative integers g', 
k' with :t + 9' > 2 and positive integers x 1 . . . . .  x~; Yo . . . . .  y~ satisfying conditions 
(a')-(d') above exist. If  this is so, we know that  1, p . . . . .  p~ ~ O(g, ~, k). If  not  we 
repeat  the process with p~- 1, and so on. The  biggest pd occurring in O(g, k, a) is 
called the p-pr imary  solution. 

H o w  the compute r  handles the diophantine equations (a')-(d') is explained later 
in Section 4. 
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After this step we know all the odd prime powers occurring in 0(9, k, ~). To 
deal with the general case, let {p]', . . . .  pT, ~} be the set of all pr imary elements in 
0(9, k, or) and C = C(9, k, a) = p] . . . .  p~. The elements of 0(9, k, a) divide C. Now, 
if in Theorem 1.1 we group the divisors m~'s (resp. /;s) with the same value, the 
fourth step is: 

Step 4. First determine the set 

T = {N ~ N:  N divides C, N is not a prime power, N _< 2(ag + ~ - 1)}. 

Each element N e T has the form N = p~ . . . .  p~,~ and the map 

T ~ N n + I :  N--*(v 1 + " -  + vh, v 1 . . . . .  Vh) 

is injective. Hence we obtain a total ordering in T defined as 

pi .. . .  p~h<p~.. .p~ 

if (v 1 + "'" + v h, vl . . . . .  vh) is smaller than (v'l + "'" + v~,, v'l . . . . .  v~) in the lexico- 
graphical order. Then, for the biggest element in T with respect to this order, we 
check if nonnegative integers 9', k', with 9' + ~ > 2, two nonnegative integers s 
and t, distinct divisors m~, . . . ,  mt of N, distinct divisors I 1 . . . . .  I s of N, and 
nonnegative integers #1 . . . . .  #,, 21 . . . . .  2~,/~ > 1, exist such that:  

(a") aNg' + Nk'  + ~ =  1 t~i(N -- N/rni) = 2N + o~g + k - 2. 
(b") k = ~ = 1  2jU/lj,  k' = ~ = ~  2~. 
(c") If  ~ + 0' = 2, then l.c.m.{m~ . . . . .  m,, la . . . . .  ls} = N. 
(d") If  a = 2 and F is the collection of  all numbers  ll . . . . .  ls, rn~ . . . . .  mr, each lj 

counted 2j times and each rn~ coun ted /~  times, then 

1.c.m. F = 1.c.m.(F -- {f}) for all f e F. 

Once this is done with the biggest element in T the process continues with 
the next one, and so on. This provides all the elements in O(9, k, ~). Of  course, 
whenever we check that N = p]' ..- p~h satisfies conditions (a")-(d") above, it follows 
that  the same holds true for N' = p]'...p~,~ if each v'q < vq, 1 < q < h, and the 
computer  does not  check these cases. 

This finishes the algori thm to produce O(g, k, ~) in the case # + ~t > 3. Notice 
that  to know that some odd N e O(g, k, or) it suffices to know that equations 
(a")-{d") admit  some solution. However,  our  procedure provides us with all the 
solutions o f  this system of equations. Hence, as remarked in Section 1, to get all 
possible topological  types of  surfaces of the form S / ( f )  where S runs over K(g, k, ct) 
and f is an au tomorph ism of order  N e O(9, k, ~), and to know the ramification 
indices of  the projection n: S --* S / ( f )  on the interior points of  S / ( f )  and the 
action of  f on  the boundary  components  of  S we go to: 
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Step 5. For  every value N ~ O(g, k, ~) obtained in Step 4, find all possible solutions 
g', k', 11 . . . . .  l~, 21 . . . . .  2~, ml . . . . .  m~, #1 . . . . .  #t of system (a")-(d"). 

Then S / ( f )  ~ K(9', k', ~), the projection n has a ramification set of the form 
{ml,.u'., mi : i=  1 . . . . .  t}, and f groups the boundary  components  of S in the 
following way: for every j = 1 . . . . .  s there are exactly 2j blocks of N/Ij components  
of OS, each of them mapped  onto the same connected component  of the boundary  
of S / ( f ) .  

3. Algorithm To Compute O(g, k, at) in the Case g + ot < 3. 

Let f be a homeomorph i sm  of finite order odd N on the surface S. We say that  
the action of f on S is free if the set Fix(fl)  = {x e S: fl(x) = x} of fixed points of 
f* is empty,  for all 0 < l < N. Our  first result in this section concerns the case 
k = 0, ~ = 2 (and so g = 0, 1), i.e., the sphere and the torus. We abbreviate  2N + 1 
for the set of odd positive integers. 

Theorem 3.1. 

(a) O(0, 0, 2) = 0(1, 0, 2) = 2 N  + 1. 
(b) Let f be a homeomorphism of odd order > 1 on the sphere S. Then Fix( f )  

has two points and the quotient S / ( f )  is a sphere. 
(c) Let f be a homeomorphism of odd order N v~ 3 on the torus T. Then the 

action o f f  on T is free and the quotient T / ( f )  is a torus. 
(d) Homeomorphisms f l  and f2 of order 3 on the torus T exist such that the action 

off1 on T is free, Fix(f2) has three points, T/(fa ) is a torus, and T / ( f  2) is 
a sphere. 

Proof. (a) Let N be an odd positive integer. Then the rotat ions of angle 2~/N 
shown in Fig. 1 are au tomorphisms  of order N. 

2tfN 

@ 
I 

Fig. 1. Rotations of angle 2n/N. 



458 E. Bujalancr A. F. Costa, J. M. Gamboa, and J. Lafuente 

(b) Let N be the order of f .  If  Z denotes the Euler characteristic, then the 
Riemann-Hurwitz formula says 

2 = z(S) = N z ( S / ( f ) )  - N ~ (1 - 1/m,), 
/=1 

where m 1 . . . .  , m, are the branching indices of the covering re: S ~ S / ( f ) .  Then, 
necessarily, z ( S / ( f ) )  = 2, i.e., S / ( f )  is a sphere, since otherwise the right-hand 
side of the formula above would be negative. Hence, 

N < 2 ( N - 1 ) = N  ~. ( 1 - 1 / m , ) < 2 N  
/=1 

and, since each m, _> 3 because m, divides N, we get r = 2. Thus 

2 = N / m  I +N/m2,  i.e., m l = m  2 = N ,  

and therefore f fixes two points. 
(c) and (d) Assume that f is an automorphism which acts nonfreely on T and 

let N be its odd order. We check that N = 3. In fact, 

0 = z(T) = N x ( T / ( f )  ) -- N ~ (1 - 1/m,) 
i= l  

and since the action is not flee, we can assume ml > 1. Thus x ( T / ( f ) )  > 0, i.e., 
z ( T / ( f ) )  = 2 and T / ( f )  is a sphere. Also 

. 2=  ~ (1-1/mi) 
i=1 

and, with each ml being odd, the unique solution of the last equation is r = 3, 
m~ = m 2 = m 3 = 3. Let pl, P2, P3 be the branching points of the covering 
re: T-.-* T / ( f ) .  We get a surjective group homomorphism 

n,:  I r l ( T / ( f )  -- {Pl, P2, P3)) "-* ZN, 

where r h ( T / ( f }  - {Pl, P2, P3}) is the fundamental group and is generated by the 
meridians xl ,  x2, x3 around the points pl, P2, P3. Since Z N is generated by the 
images n.(x,), each of them of order mi = 3, we obtain N = 3. This proves part  
(c) since, of course, when f acts freely, the Riemann-Hurwitz  formula gives 
0 = z ( T ) =  N z ( T / ( f ) ) ,  i.e., z ( T / ( f ) ) =  0 and T / ( f )  is a torus. The existence 
of f l  of part  (d) was proved in (a) while the homeomorphism f2 is given by 
the rotation of angle 2n/3 which fixes the points O, P, and Q on the torus of 
Fig. 2. []  



An Algorithm To Compute Odd Orders and Ramification Indices of Cyclic Actions 459 

Q 

P 
Fig. 2. The homeomorphism ./2. 

We now study nonorientable surfaces with empty boundary, i.e., the projective 
plane and the Klein bottle. We first need the following: 

Lemma 3.2. Let S be a compact nonorientable surface without boundary and let 
be its orientable double covering. Then every homeomorphism f of finite odd order 
N on S can be lifted to a homeomorphism f of S of order N. 

Proof. Let n~-(S) be the subgroup of orientation-preserving elements of the 
fundamental group rq(S). Clearly, since f is a homeomorphism, the subgroup 
rc~(S) is preserved under the action of f on nl(S), and this proves the lemma 
because S is given by n~(S). [] 

Let S denote either the projective plane or the Klein bottle. Its orientable double 
coveting S is, respectively, the sphere or the torus. In both cases, let z be the 
orientation-preserving involution on S such that S = S/(z) .  Let us denote 

H'(S~ = {f :  g ~  S, f is homeomorphism on g and z.f = fz}. 

For every f e H'(S') we get an odd order homeomorphism F: S--* S defined by 
F(0x) = 0ytx ), where 0x e S is the orbit, under the action of z, of the point x e ~. 
From the lemma, the assignment f ~ F from H'(S) onto the group of home- 
omorphisms of S is surjective and preserves orders. Hence, as an immediate 
consequence of Theorem 3.1 we get: 

Theorem 3.3. 

(a) O(1, 0, 1) -- 0(2, 0, 1) -- 2N + 1. 
(b) Let f be a homeomorphism of odd order > 1 on the projective plane P. Then 

Fix(f) is a unique point and P/<f> is a projective plane. 
(c) Let f be a homeomorphism of odd order > 1 on the Klein bottle K. Then the 

action o f f  on K is free and K/<f> is a Klein bottle. 
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Table 1 

Surface g k ~t O(g, k, ~) B.p. R.i. Quotient Orb. dis. 

Disk 0 1 2 2N + 1 1 2N + 1 Disk (1, 1) 
Annulus 0 2 2 2N + 1 0 Annulus (2, 1) 
M6bius S. 1 1 1 2N + 1 0 M/Sbius S. (1, 1) 

R e m a r k .  N o t i c e  tha t  in the s i tua t ion  above ,  the  un ique  h o m e o m o r p h i s m  on  

wh ich  does  n o t  i nduce  a h o m e o m o r p h i s m  on  S is the  h o m e o m o r p h i s m  of  o r d e r  

3 on  the to rus  wi th  three  fixed poin ts .  

T o  finish this  sec t ion  we dea l  wi th  the  cases �9 + g _< 3, k > 0. T h e  key  po in t  

here,  a l r eady  used  in [6] ,  is tha t  every  a u t o m o r p h i s m  f on  the  b o r d e r e d  surface 

S can  be e x t e n d e d  to an  a u t o m o r p h i s m  f ~  of  the  u n b o r d e r e d  surface S*  o b t a i n e d  

f r o m  S by fi l l ing its ho les  wi th  disks. F r o m  this  a n d  T h e o r e m s  3.1 and  3.3 we 

ob ta in :  

T h e o r e m  3.4. Let  or, g, k be three integers with k > 0, g >_ 0, ~t = 1, 2, and ~ + g < 3. 
Then, according to otg + k <_2 or eg + k > 2, the set O(g ,k , e )  and, for  
every N e O(g, k, e), the topological features o f  the projection rr: S ~ S < f  >, where 
S e K(g, k, ct) and f e Aut(S) has order N,  are given in Tables 1 and 2. 

In  these tables, given a positive integer l, we denote by D(1) the set o f  odd positive 
divisors o f  I. Also the integers g', k', ~' denote, respectively, the genus, number o f  
boundary components, and orientability character o f  the quotient S /<f>.  The 
abbreivations B.p. and R.i. mean the number o f  branching points and ramification 
indices, respectively. Finally, the pairs (x, y) in the last column indicates " x  orbits 

with y elements each." 

Table 2 

g k ct O(g, k, ct) B.p. R.i. g' k' ~t' Orb. dis. 

0 > 2 2 D(k) 2 N 0 k in  2 (k/N, N) 
0 >2 2 D(k - 1) 1 N 0 (k + N - 2)/N 2 ((k - 1)/N, NX1, 1) 
0 >2 2 D(k - 2) 0 0 (k + 2N - 1)/N 2 ((k - 2)/N, N)(2, 1) 
1 >0 2 D(k) 0 1 k/N 2 (k/N, N) 
1 >0 2 3eD(k) 0 0 (k + 6)/3 2 ((k - 3)/3, 3)(3, 1) 
1 > 0 2 3 e D(k) 3 3 0 k/3 2 (k/3, 3) 
1 >0 2 3 e D(k - 1) 2 3 0 (k + 2)/3 2 ((k - 1)/3, 3X1, 1) 
1 > 0 2 3 e D(k - 2) 1 3 0 (k + 4)/3 2 ((k - 2)/3, 3)(2, 1) 
1 > 1 1 D(k) 1 N 1 k in  1 (k/N, N) 
1 > 1  1 D ( k -  1) 0 1 (k - 1)IN 1 ((k - 1)/N, N)(1, 1) 
2 >0 1 D(k) 0 2 k in  1 (k/N, N) 
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Proof As an example we explain the case g = 0, k > 2, ~ = 2 in Table  2. The 
other  ones are left to the reader. Let f be a homeomorph i sm  of odd order  N on 
an orientable surface S of genus 0 whose boundary  has k connected components .  
Then a homeomorph i sm  f *  of order N exists on the sphere S* obtained from S 
by filling with disks the k holes of S. By part  (b) in Theorem 3.1, F i x ( f * )  = {p, q} 
where p, q e S* and p # q. Let D 1 . . . . .  D k be the disks added to S to construct  S*. 
Then if neither p nor  q occurs in D = Uk=~ D~, clearly N divides k, while if p e D 
but q r D, then N divides k - 1. Finally, if p e DI and q e D2, then N must  divide 
k - 2. This explains the tree possibilities occurring in Table  2 in this case, and it 
is now straightforward computa t ion  to check the other data. [ ]  

4. Final Remarks 

1. Note  that  Tables 1 and 2, together with Theorems 3.1 and 3.2, describe explictly 
the sets O(g, k, ct), the topological types of all quotients S / ( f )  where S e K(g, k, ct) 
and f is a h o m e o m o r p h i s m  on S or order N e O(g, k, ct), the ramification indices 
on the inner points of S / ( f )  of the projection re: S -~ S / ( f ) ,  and the action of f 
on the boundary  components  of S. This together with the a lgori thm in Section 2 
solves completely the problem stated in the Introduction.  

2. The argument  used in Section 2 to produce an algori thm allows us to decide 
if a given odd integer N e 0(9, k, ~), g + a > 3, consists essentially of two parts. 
First we look for a set (as small as possible) of candidates and secondly we check 
if those candidates actually occur in O(g, k, ct). Although this second step is 
unavoidable,  there are some procedures to select sets of candidates which, 
combined with Steps 1, 2, and 4, could shorten the number  of computat ions.  For  
example,  the argument  used to produce Tables 1 and 2 is also valid for bigger 
genera. In other words, for all k > 0, O(g, k, ~) ~ O(g, O, ct) and so this second set 
is a set of candidates to check if some N occurs in O(g, k, ct). Analogously, from 
L e m m a  3.2, O(g, O, 1) c O(g - 1, 0, 2) for all g > 1 and more  generally, using the 
orientable compact  unbordered  Riemann surface associated to a Klein surface 
S e K(g, k, ~), see [1], we know that  

O(g, k, ~) c O(ag + k - 1, 0, 2). 

3. In Step 4 of our  algori thm in Section 2 we have lexicographically ordered 
the set T of candidates actually to occur in O(g, k, ~). We think it is interesting to 
decide if a different ordering in T produces a better algorithm. 

4. As explained in Section 2 to compute  O(g, k, c 0, g + ct > 3, we first look for 
all p r imary  solutions, i.e., all elements in O(g, k, a) of the form pd where p is pr ime 
and pa + 1 r O(g, k, a). Afterwards, we calculate O(g, k, ~) looking among  all numbers  
of the form p ] ' " "  p~' where p~', . . . .  p a, are the pr imary  elements in O(g, k, or) and 
0 < ei < di. We could a t tack  the prob lem directly: first look for the set 

T '  = {N odd: N < 2(gg + k -  1)}. 
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Then, for every element N E T', we check if conditions (a")--(d") in Step 4 are 
fulfilled. We believe that our procedure is more effective. First, because this bound 
N < 2(ag + k -  1) is not sharp in general while the condition "#(p, e, k, ~t)< 
ctg + k - 1 if (~, k) # (2, 0) or # < g if (a, k = (2, 0)" is the best one, from I-5]. 
Secondly, because the previous calculation of primary solutions allows us to 
employ suitable notation that simplies the analysis of conditions (a")-(d") in Step 4. 

5. If we fix integers g >_ 0, k > 0, a = 1 or 2, g + a > 3, to decide if a prime 
power pe occurs in O(g, k, a) involves solving some diophantine equations whose 
solutions should be nonnegative integers (Step 3 of our algorithm). 

This is handled in the following way: 

C a s e  1. Given positive integers a, b and a nonnegative integer c look for all pairs 
of nonnegative integers (x, y) such that 

a x  + by  = c. (1) 

Using Euclid's algorithm we compute the greatest common divisor d of a and b, 
and integers a, fl such that aat + bfl = d. Of course, if d does not divide c, the given 
equation has no solutions. Assume c = Q" d for some integer Q. It is obvious that 
the integer solutions of (1) are x = Q~ + bt,  y = Qfl  - at ,  t ~ Z .  We look for 
nonnegative solutions x and y, i.e., - Q a ~  < ab t  < Qbf l  

C a s e  2. Let r > 2, let ao . . . . .  a, be positive integers, and let c be a nonnegative 
integer. To look for all r-tuples of nonnegative integers (Xo,..., x,) such that 

aoXo + "'" + a r X r  = C (2) 

we use Euclid's algorithm to produce d = g.c.d.(al . . . . .  at). If the equation 

aoXo + d x  = c (3) 

has no nonnegative integer solutions, the same holds true for (2). On the other 
hand, for every solution (l o,/) of (3) we consider the equation 

( a l / d ) x  1 + " "  + (a,/cOx, = 1 (4) 

and (11 . . . . .  l,) solves (4) if and only if (10, 11 . . . . .  l,) solves (2). Since in Step 3 of 
Section 2 the number of variables is bounded above in terms of g, k, ~ and the 
number of unknowns in (4) is smaller than in (2), the process finishes. 

6. This algorithm has been implemented by Lafuente in the language C and 
using it, for example, in the case g = 20, k = 90, �9 = 2 the time needed to compute 
0(20, 90, 2) directly, i.e., using the algorithm described in Section 2, is considerably 
longer than the time needed if we assume 0(20, 0, 2) to be known, as we commented 
in Remark 2. 

As an example consider the surface of Fig. 3. 
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Fig. 3. An example. 

Consider the set P of vertices and edges of a regular dodecahedron. Let U be 
a regular neighborhood of P and let T be the boundary of U. We produce a hole 
in T for each edge in P and we get an orientable surface S of genus 11 with 30 
boundary components. From the construction we remark athat S admits a free 
action of order 5 (given by the rotation of order 5 in P) and an action of order 3 
with four branching points with ramification index equal to 3 (given by the rotation 

Table 3 

O(II, 30, 2) B.p. R.i. g' k' ct' Orb. dis. 

3 1 3 0 2 (6, 3X12, 1) 
3 4 3 0 2 (7, 3X9, 1} 
3 1 3 1 2 (7, 3X9, 1) 
3 7 3 0 2 (8, 3X6, 1) 
3 4 3 1 2 (8, 3)(6, 1) 
3 1 3 2 2 (8, 3)(6, 1) 
3 10 3 0 2 (9, 3)(3, 1) 
3 7 3 1 2 (9, 3)(3, 1) 
3 4 3 2 2 (9, 3)(3, 1) 
3 1 3 3 2 (9, 3)(3, 1) 
3 13 3 0 2 (10, 3) 
3 lO 3 1 2 00,  3) 
3 7 3 2 2 (10, 3) 
3 4 3 3 2 (10, 3) 
9 2 3, 9 0 2 (3, 9)(3, 1) 
9 4 9 0 2 (3, 9)(1, 3) 
5 0 1 2 (5, 5)(5, 1) 
5 5 5 1 2 (6, 5) 
5 0 3 2 (6, 5) 

15 4 15, 15, 3, 5 0 2 (2, 15) 
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of order 3 in P). Table 3 gives us not only this information but describes explicitly 
the set O(11, 30, 2) and the topological data of the corresponding coverings for the 
automorphisms. 
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